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ABSTRACT

We present a novel self-supervised feature learning method using Vision Trans-
formers (ViT) as the backbone, specifically designed for object detection and in-
stance segmentation. Our approach addresses the challenge of extracting features
that capture both class and positional information, which are crucial for these
tasks. The method introduces two key components: (1) a positional encoding tied
to the cropping process in contrastive learning, which utilizes a novel vector field
representation for positional embeddings; and (2) masking and prediction, simi-
lar to conventional Masked Image Modeling (MIM), applied in parallel to both
content and positional embeddings of image patches. These components enable
the effective learning of intertwined content and positional features. We evalu-
ate our method against state-of-the-art approaches, pre-training on ImageNet-1K
and fine-tuning on downstream tasks. Our method outperforms the state-of-the-
art SSL methods on the COCO object detection benchmark, achieving significant
improvements with fewer pre-training epochs. These results suggest that better
integration of positional information into self-supervised learning can improve
performance on the dense prediction tasks.

1 INTRODUCTION

In recent years, self-supervised learning (SSL) methods (Chen et al., 2020; He et al., 2020; Caron
et al., 2020; Grill et al., 2020; Caron et al., 2021; Zbontar et al., 2021; Ermolov et al., 2021) for
image feature extraction have advanced significantly. These approaches enable feature extraction
from unlabeled images and, with larger training datasets, have improved performance in various
downstream tasks (Deng et al., 2009; Lin et al., 2014; Zhou et al., 2017; Geiger et al., 2012; Wu
et al., 2015).

While early methods did not restrict the scope of downstream tasks, targeting a broad range from
image classification to dense prediction tasks such as semantic segmentation, recent years have seen
a shift toward developing SSL methods tailored to specific downstream tasks. This shift stems from
the recognition that the features required for image classification, which depend on global image-
level representations, differ significantly from those necessary for dense prediction tasks, where
pixel-level or patch-level features play a crucial role.

This study builds on recent research trends, focusing specifically on object detection (OD) and in-
stance segmentation (IS) as downstream tasks. These tasks require the precise identification of
individual object instances within an image, which necessitates extracting appropriate features from
localized regions such as pixels, patches, or subregions. The core focus of this research is on effec-
tively integrating both the content information of these local regions and their positional information
within the image into feature representations, as these are arguably crucial for OD and IS tasks.

Among SSL methods, contrastive learning is an early and foundational approach that continues to
be widely adopted. In this method, two random crops are taken from a single image, augmented
with random transformations, and the feature representations are trained to be similar in the feature
space. This approach can be interpreted as focusing on learning position-invariant features for the
entire image. Subsequently, pixel-level contrastive learning was introduced to better suit dense
prediction tasks. Besides using crops, these methods pair individual pixels and train their features to
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be similar. A key challenge in this approach lies in determining which pixels to pair. To address this,
various strategies have been proposed, including methods based on proximity in feature space (Su
et al. (2024); Li et al. (2022a)), methods relying on geometric positional correspondence (Yun et al.,
2022; Lebailly & Tuytelaars, 2023), and hybrid approaches that balance these two criteria (Bardes
et al., 2022; Lebailly et al., 2024; Stegmüller et al., 2023).

Another line of research focuses on Masked Image Modeling (MIM) (Bao et al., 2022; He et al.,
2022; Zhou et al., 2022a), a distinctly different approach. This method, designed to use with Vi-
sion Transformers (ViT) (Dosovitskiy et al., 2021), partitions an image into patches and randomly
masking a subset of them. The model is trained to reconstruct the masked patches based on the
context provided by the unmasked ones. Masked patches as reconstruction targets can be pixels as
in MAE (He et al., 2022) or patch-level latent features as in iBOT (Zhou et al., 2022a). MIM is re-
garded as an effective way to learn feature representations that seamlessly combine both the content
information and positional information of each patch.

In this paper, we propose a novel SSL method specifically designed for OD and IS as downstream
tasks, building on the contrastive learning framework. These tasks demand both content information
and positional information to accurately classify object instances while distinguishing them from one
another. Our method focuses on extracting feature representations that seamlessly integrate these
two types of information. Although our motivation is similar to recent works such as DropPos (Wang
et al., 2024) and LOCA (Caron et al., 2024), our approach introduces two novel components that
fundamentally redefine how positional information is utilized during training.

The first is the use of positional encoding tied to the cropping process in contrastive learning; see
Fig. 1. In conventional SSL (Caron et al., 2021; Chen et al., 2021; Caron et al., 2024), the posi-
tion encoding is not aligned with the cropping, meaning the same position embeddings are applied
whether processing the full image or a cropped sub-image. We propose representing positional en-
coding as a vector field with the same dimensions as the input image, which is then cropped in the
same manner as the image and sampled on a regular grid, yielding a set of position embeddings of
the patches. They are subsequently combined with the content embeddings of their corresponding
image patches.

The second component is that, unlike previous MIM (Bao et al., 2022; Peng et al., 2022; He et al.,
2022), which apply masking only to the image content embeddings of patches, our method also
applies it to position embeddings. In our approach, after the input image is patchified into a set
of patches before being fed into the ViT, masking and prediction are performed independently on
both their content embeddings and the position embeddings. The underlying expectation is that
by predicting the masked positional information from the remaining positional and content infor-
mation, and vice versa, the model can extract features that intertwine both the image content and
positional information. It is important to note that this specialized treatment of positional embed-
dings is applied only during training, allowing the standard positional embedding method of ViT to
be seamlessly employed during inference.

We experimentally compare the proposed method with existing state-of-the-art approaches on the
COCO detection dataset (Lin et al., 2014) in the standard setting, i.e., pre-training on ImageNet-
1K (Deng et al., 2009) and fine-tuning on COCO. The results show that the proposed method
achieves significant performance improvements in the downstream tasks of OD and IS, demon-
strating the effectiveness of our approach.

2 PRELIMINARIES

Contrastive self-supervised learning In SSL, a feature extraction model is trained on a pretext
task, and a key is in the design of the task (Doersch et al., 2015; Gidaris et al., 2018; Zhang et al.,
2016; Oord et al., 2018; Vincent et al., 2008). Contrastive methods (Oord et al., 2018; Chen et al.,
2020; He et al., 2020)1 have proven particularly effective, maximizing the similarity of represen-
tations from different views of the same image—created through random crops and other diverse

1The term “contrastive methods” in its narrow sense refers to methods that use both positive and negative
samples. However, for simplicity in this paper, we also refer to ‘non-contrastive methods,’ which use only
positive pairs, as contrastive.
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Conventional Ours

Figure 1: Proposed position encoding. Conventional methods always apply the same positional
encoding to randomly cropped views. In contrast, the proposed method directly applies the posi-
tional encoding defined on the original image to the cropped views.

image augmentations. These methods ensure that the learned representations are invariant to these
augmentations, and they mostly focus on learning image-level representations.

Self-distillation Self-distillation (Caron et al., 2021) is a widely used approach in contrastive SSL.
It transfers knowledge from a teacher model to a student model, with both models being updated
simultaneously. The student is updated via gradient descent, while the teacher is updated as a mo-
mentum copy of the student. Both models, parameterized by θ and θ′ respectively, share the same
network architecture. Given an image x and its two views, u and v, which are randomly cropped
from x and undergo random augmentations, knowledge is distilled through a cross-entropy loss:

Limage = −P [CLS]
θ′ (v)T log P [CLS]

θ (u), (1)

where P [CLS]
θ (·) and P [CLS]

θ′ (·) project [CLS] tokens in the VIT’s input to a probability distribution
over K dimensions. This can also be interpreted as an assignment to K learnable prototypes, with
the student learning these assignments from the teacher.

iBOT (Zhou et al., 2022a) and DINOv2 (Oquab et al., 2024) Masked image modeling
(MIM) (Bao et al., 2022; He et al., 2022) is an SSL method based on a different principle. Using ViT
as the backbone, it divides the input image u into N patches and applies a linear mapping to each,
resulting in N vectors {ui}Ni=1. MIM randomly masks a subset of these vectors and trains a model to
predict the masked vectors from the unmasked ones. Specifically, let {mi ∈ {0, 1}}Ni=1 be a random
mask sampled according to a ratio ρ ∈ [0, 1]. A special token e[MASK] is introduced, replacing the
patch embedding vector ui with ûi = (1−mi) ·ui+mi ·e[MASK] for i = 1, . . . , N . Position embed-
dings {pi}Ni=1 are then added to û to obtain the integrated embeddings {ûi + pi}Ni=1. iBOT (Zhou
et al., 2022a) and DINOv2 (Oquab et al., 2024) implement MIM within a self-distillation framework.
The student model P patch

θ (·) and the teacher model P patch
θ′ (·) project the integrated embeddings into

a probability distribution of K ′ dimensions. The patch-level self-distillation is formulated as the fol-
lowing loss:

Lpatch = −
N∑
i=1

mi · P patch
θ′ (ui + pi)

T logP patch
θ (ûi + pi), (2)

where P patch
θ (·) and P patch

θ′ (·) share the same network architecture and θ is updated by gradient
descent while θ′ is updated by the exponential moving average of θ. MIM has demonstrated strong
performance in dense prediction tasks.

Combining 1 and 2, the losses of iBOT (Zhou et al., 2022a) and DINOv2 (Oquab et al., 2024) can
be summarized as follows:

LDINOv2 = Limage + Lpatch︸ ︷︷ ︸
iBOT

+λKoLeoLKoLeo, (3)

where LKoLeo is defined as in Sablayrolles et al. (2019) to increase feature diversity. These methods
have demonstrated strong performance in both classification and dense prediction tasks.
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(a) (b)

Figure 2: Illustration of the proposed method. (a) The proposed method defines positional encod-
ing directly on the input image. The position embedding for each view is determined in relation to its
crop. Additionally, we introduce a virtual larger image, where the input image is assumed to occupy
a random scale and position. Positional embeddings are then calculated within this virtual image.
The content embeddings of the image are obtained using standard methods from the original image
and are added to the corresponding position embeddings. (b) Using these position embeddings, our
method performs image-level feature alignment between views (Limage) and independently executes
masking and prediction for both position embeddings and content embeddings (Lpos, Lcontent).

3 PROPOSED METHOD

3.1 OUTLINE

The objective is to develop a SSL method tailored for object detection (OD) and instance segmen-
tation (IS). Models pre-trained using this method are expected to efficiently extract the necessary
features for these downstream tasks and deliver high accuracy with minimal fine-tuning. Following
recent studies on SSL methods, we adopt ViT as the backbone for image feature extraction.

As discussed in Sec. 1, OD and IS require isolating object instances in an image, making it essential
to have feature representations that effectively integrate both content and positional information. To
address this, the proposed method builds on existing approaches while introducing mechanisms to
improve the treatment of positional information in feature learning. Specifically, two key compo-
nents are introduced. The first is a positional encoding method that aligns with cropping in image-
level contrastive (or joint-embedding) techniques. The second is a patch-level masking approach that
masks not only image content but also positional information, incorporating both into the prediction
target. Each of these components is detailed below.

3.2 POSITION ENCODING LINKED WITH IMAGE CROPPING

3.2.1 BASIC METHOD

In conventional contrastive methods, two cropped regions from the input image are treated as if
they were complete, independent images, and positional embeddings are applied as such (Fig. 1).
Consequently, the positional and size information of the cropped regions within the original image is
completely discarded, which can hinder the accurate identification of object instances. To overcome
this limitation, we propose a method that crops the positional information embedded in the original
image alongside its RGB content.

The details are as follows. ViT divides the input image x into a fixed number (N ) of patches, which
are then embedded via a linear transformation into a sequence of vectors {xi}Ni=1. The position
of each patch within the image is encoded by a positional vector pi, which is added to the patch
embedding xi to form xi + pi. The resulting sequence {xi + pi}Ni=1 is then fed into the input layer
of ViT.
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Conventional contrastive methods (Chen et al., 2021) extract two cropped views, u = tu(x) and v =
tv(x), from an input image x, and process each view independently in the same way. Specifically,
u is divided into patches and embedded as {ui}Ni=1, which are combined with the fixed positional
encodings {pi}Ni=1, resulting in {ui+pi}Ni=1. The same process is applied to v, yielding {vi+pi}Ni=1.
Thus, while the cropped views u and v can vary in positions and sizes, the positional encodings pi
remain unchanged independently of tu and tv .

The proposed method introduces an alternative approach to positional encoding. Let P denote a
smooth vector field, with its four corners aligned to those of the input image x. While x provides
an RGB vector for each pixel, P encodes the spatial location of each pixel as a vector. Similar to
conventional methods, two views, u = tu(x) and v = tv(x), are cropped from x and divided into
patches, yielding {ui}Ni=1 and {vi}Ni=1. The same cropping transformations, tu and tv , are then
applied to P , generating cropped vector fields pu = tu(P) and pv = tv(P).
Subsequently, pu and pv are sampled on a regular grid corresponding to the patches, and their values
are combined with ui and vi. The resulting inputs to the Vision Transformer (ViT) are {ui+pu,i}Ni=1

and {vi + pv,i}Ni=1, where pu,i and pv,i represent the sampled positional vectors for each patch.

In practice, P is represented as a 2D array of size w × h consisting of d-dimensional vectors,
i.e., P ∈ Rw×h×d. The size w × h are independent of the input image size and are treated as
hyperparameters. Due to the arbitrary nature of the crop operations tu and tv , we interpolate the
array P to obtain {pu,i}Ni=1 and {pv,i}Ni=1.

3.2.2 POSITION AND SCALE AUGMENTATION

By adopting the above approach, it becomes possible to integrate the position and size of cropped
views within the image into the feature representation. However, this method raises two concerns.
First, while the approach encodes absolute positional information, the identification of object in-
stances should typically rely only on the relative positional information between the two views; see
Fig. 1. Learning absolute positions directly and becoming overly dependent on them may lead to
unintended consequences.

Second, there is a notable difference in the spatial distribution and size of objects between Ima-
geNet (Deng et al., 2009) images and those used in OD/IS tasks (e.g., COCO). In ImageNet, objects
generally occupy a large, centralized region of the image, whereas in COCO, multiple objects of
varying sizes appear across different parts of the image. Neglecting this distinction could result in
performance issues.

To address these issues, we apply data augmentation over pu and pv , by randomly shifting and
scaling them together within P; see Fig. 2(a). Specifically, let A represent the smallest bounding
rectangle that encloses pu and pv , as shown in Fig. 2(a). A coordinate transformation ts, consisting
of scaling and translation, is applied to A. The scaling factor is

√
s/|A|, where |A| denotes the area

of the region. The parameter s is randomly sampled from a Beta distribution, as will be discussed in
Sec. 4.3. The translation (displacement) is randomly sampled from a uniform distribution, ensuring
that the new cropped regions remain within the hypothesized input image. With the application of
ts, the positional encodings undergo combined transformations, with the cropped fields becoming
pu ← ts(tu(P)) and pv ← ts(tv(P)).
This position and scale augmentation is expected to reduce excessive reliance on absolute positional
information within the image and alleviate biases associated with the object scale distribution in
ImageNet.

3.3 MASKED POSITION PREDICTION

The introduction of the above positional encoding method broadens the range of options for de-
signing ‘pretext tasks’ (i.e., loss functions) during training. In particular, we propose utilizing po-
sitional information as a target for Masked Image Modeling (MIM) (Bao et al., 2022; Zhou et al.,
2022a; He et al., 2022). Specifically, we extend the approach employed in methods like iBOT and
DINOv2—which is traditionally applied exclusively to content embeddings—to include positional
embeddings. This extension aims to enhance feature representation learning, with a particular focus
on fostering a more effective integration of content and positional information.
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The details are as follows. Recall that in our method, the input vector sequence is represented as
{ui + pu,i}Ni=1, where the positional encoding depends on the cropping of the view u. Our masked
position prediction works as follows: as in MIM, vectors from the input sequence {ui+pu,i}Ni=1 are
randomly selected, and the position codes of the selected vectors are masked. Specifically, if ui+pu,i
is selected, it is modified as ui + e[POSMASK] using a newly introduced special token e[POSMASK]. The
resulting masked sequence is then fed into the ViT.

Through preliminary experiments, we observed that when masking position embeddings, selecting
patches in a cross-shaped pattern produces better results compared to the box-wise selection used in
iBOT and DINOv2 for Masked Image Modeling (MIM) with content embeddings. In those methods,
patches are randomly selected in rectangular boxes, and all patches within each box are masked until
the designated mask ratio ρ is achieved2. For further details, refer to Sec. 4.3.

We retain the original content masking and prediction from MIM—specifically, the selected vector
ui+pu,i is modified to e[MASK]+pu,i—but it is performed independently of the position masking and
prediction described above; see Fig.2(b)3. Thus, masking and prediction are applied symmetrically
to both content and position codes. As illustrated in Fig.2(b), this process is applied only to the
student side (i.e., only for the view u) in the teacher-student framework, similar to the hybrid models
introduced after iBOT (Zhou et al., 2022a).

In summary, the position and content masking and prediction are implemented through the following
loss functions:

Lpos = −
N∑
i=1

P pos
θ′ (ui + pu,i)

T logP pos
θ (ui +mpe[POSMASK] + (1−mp)pu,i), (4)

Lcontent = −
N∑
i=1

P content
θ′ (ui + pu,i)

T logP content
θ (mce[MASK] + (1−mc)ui + pu,i), (5)

where mp
i ∈ {0, 1}N and mc

i ∈ {0, 1}N are the sampled masks with a mask ratio ρ ∈ [0, 1].

It is worth noting that some existing methods also incorporate position prediction; however, they
predict precise positions using location indicators (Wang et al., 2024; Caron et al., 2024) or at the
pixel level (He et al., 2022). In contrast, our method predicts positional information within the
feature (embedding) space, representing a fundamentally different approach.

3.4 ADAPTATION TO DINOV2

While the proposed method can be adapted to other SSL methods, we focus on integrating it with
DINOv2 due to its popularity and performance. The modification to the loss function is straightfor-
ward: we add the position masking and prediction loss from Eq.4 to the original DINOv2 loss as
follows:

Lours =

DINOv2︷ ︸︸ ︷
Limage + Lcontent︸ ︷︷ ︸

iBOT

+λKoLeoLKoLeo +Lpos, (6)

where LKoLeo (Sablayrolles et al., 2019) enhances the diversity of image-level representations, and
its weight λKoLeo is set to 1.

From an implementation perspective, only minor extensions to the existing DINOv2 code are nec-
essary. Specifically, we compute the additional loss mentioned above. In DINOv2, content masking
and prediction were originally applied to 50% of the images in each batch. We now compute the
additional position loss for the remaining images. Additionally, the position augmentation described
in Sec. 3.2.2 can be seamlessly integrated into DINOv2’s data augmentation pipeline, without re-
quiring any further modifications.

2We follow previous studies (Bao et al., 2022; Zhou et al., 2022a; Oquab et al., 2024) in determining ρ for
both masked content and positional predictions, where ρ is randomly selected from the range [0.1, 0.5].

3In our implementation, for each image in a batch, we randomly applied either content or position masking
and prediction, each with a 50% probability. These applications are mutually exclusive, meaning both types of
masking are never applied to the same image simultaneously.
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4 EXPERIMENTS

We conduct experiments to evaluate our method and compare it against other state-of-the-art SSL
methods. Additionally, following recent studies such as Park et al. (2023), we report analyses of
attention maps of pre-trained models and also their visualiation results in Appendix A.

4.1 EXPERIMENTAL CONFIGURATION

Pre-training on ImageNet-1K We pre-train our model on ImageNet-1K (Deng et al., 2009) using
the AdamW (Loshchilov, 2017) optimizer for 100 epochs. The multi-crop augmentation is employed
following the DINO series (Caron et al., 2021; Zhou et al., 2022a; Oquab et al., 2024), specifically
utilizing two global crops and eight local crops. The proposed position encoding method (Sec. 3.2.2)
is applied to both global and local crops, while masked content/position prediction (Sec. 3.3) is
applied only to the global crops. Our training setup is largely based on DINOv2 (Oquab et al.,
2024), with several modifications detailed in Appendix B.1. For baseline comparisons, we use a
ViT-B backbone, while ablation studies are performed using a ViT-S backbone. The weights for the
comparison methods are sourced from their public repositories, except for DINOv2. Since DINOv2
was pre-trained on a much larger dataset of 142M samples (Oquab et al., 2024), we conduct its
training on ImageNet-1K, referring to it as DINOv2†.

Evaluation on COCO and ADE20K We evaluate the transferability of the features learned by
our method on object detection and instance segmentation tasks using the COCO dataset (Lin et al.,
2014). We also report performance on ADE20K (Zhou et al., 2017), in line with recent SSL stud-
ies (Locatello et al., 2020; Wang et al., 2024). We fine-tune the pre-trained models by the commpared
methods obtained as above on COCO and ADE20K as follows. For the COCO dataset, we follow
the evaluation methodology from DropPos (Wang et al., 2024), using ViTDet (Li et al., 2022b) as
our detection framework while removing window attention and relative position encodings from the
backbone. Our implementation is built upon the official ViTDet repository within Detectron2 (Wu
et al., 2019). For the ADE20K dataset, we adhere to the evaluation protocol from LOCA (Caron
et al., 2024), using the linear decoder approach from Segmenter (Strudel et al., 2021), which uti-
lizes a minimal number of adapter layers. We follow the original Segmenter implementation, built
on MMSegmentation (Contributors, 2020). Additional implementation details are provided in Ap-
pendix B.

Compared methods We compare our method with state-of-the-art SSL approaches. For
general-purpose SSL methods, we include DINO (Caron et al., 2021), MAE (He et al., 2022),
iBOTvzhou2021ibot, and DINOv2 (Oquab et al., 2024). For SSL methods specifically designed
for OD/IS, we evaluate Mugs (Zhou et al., 2022b), LoMaR (Chen et al., 2022), DropPos (Wang
et al., 2024), CrIBo (Lebailly et al., 2024), SelfPatch (Yun et al., 2022), FLSL (Su et al., 2024), and
CrOC (Stegmüller et al., 2023). Explanations for these methods are provided in Sec. 4.3. For all
methods, we use the implementations and pre-trained weights available from their official reposi-
tories. Depending on the availability of configurations, we report results for only one of the two
backbones (ViT-B/16 or ViT-S/16) for some methods.

4.2 MAIN RESULTS

Object detection on COCO In Table 1a, we compare the performance of various SSL methods
on the COCO dataset using ViT-B/16 as the backbone. Our method outperforms all the compared
methods in this setting, including OD/IS-specific SSL methods. While DropPos shows some im-
provement over its base model, DINO, it remains inferior to certain general-purpose methods. We
hypothesize that this is due to its high position mask ratio of 94%, which likely hinders the learning
of complex visual patterns. LOCA performs only on par with the general-purpose MAE, whereas
our method surpasses both by +0.9 APBox and +0.8 APMask. Interestingly, DINOv2† achieves per-

4Following iBOT (Zhou et al., 2022a), we calculate the effective number of epochs for each method. In our
case, we apply two global crops of size 224 × 224 and eight local crops of size 96 × 96, which results in a
scaling factor of τ = 2 + (96/224)2 × 8 ≈ 3.5. Therefore, with 100 training epochs, the effective number of
training epochs is 350.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: COCO object detection and instance segmentation and ADE20K semantic segmenta-
tion. We report the results using both ViT-B/16 and ViT-S/16 backbones. The pre-trained weights
for all other methods are sourced from their official repositories, except for DINOv2†, which is our
reproduction on ImageNet-1K.

(a) ViT-B/16 backbone.

COCO ADE20K

Method Eff. Ep. 4 APBox APMask mIoU

DINO 1600 45.5 40.8 44.7
MAE 1600 48.1 43.2 46.2
iBOT 1600 47.6 42.4 47.7
Mugs 1600 47.0 42.0 -
LoMaR 1600 38.1 35.2 -
DropPos 800 47.0 42.2 45.3
CrIBo 800 45.4 40.5 -
LOCA 600 48.3 43.0 48.5
DINOv2† 350 47.7 42.4 47.5
Ours 350 49.2 43.8 48.4

(b) ViT-S/16 backbone.

COCO ADE20K

Method Eff. Ep. APBox APMask mIoU

DINO 3200 42.0 38.0 42.9
iBOT 3200 43.8 39.1 44.8
Mugs 3200 41.3 37.2 -
CrIBo 1600 42.6 38.3 -
SelfPatch 1050 40.4 36.7 -
FLSL 700 45.5 40.5 -
CrOC 600 40.2 36.2 -
LOCA 600 40.1 36.0 44.8
DINOv2† 350 41.9 37.7 44.7
Ours 350 44.8 39.8 44.8

Table 2: Results of COCO object detection
and instance segmentation after extended
fine-tuning (50 epochs).

COCO

Method Eff. Ep. APBox APMask

FLSL 700 48.0 42.6
Ours 350 48.7 43.3

Table 3: Effectiveness of position embed-
ding sampling and masked position predic-
tion Lpos

Pos. Enc. Sampling Lpos APBox APMask

41.3 . 37.2
✓ 43.2 38.6

✓ 43.7 39.1
✓ ✓ 44.8 39.8

formance comparable to iBOT while requiring only about one-fourth of the effective training epochs,
likely benefiting from its broader design exploration.

Table 1b summarizes the results using ViT-S/16 as the backbone. Our method achieves superior
performance compared to all other methods except FLSL (Su et al., 2024). FLSL, a contrastive
learning-based method, employs a distinct strategy that clusters features to capture semantically
meaningful representations at both local and global levels, resulting in its strong performance. In
contrast, our method focuses on refining the design and utilization of positional embeddings during
training. As these two methods are fundamentally distinct yet complementary, the results highlight
the effectiveness of our proposed approach. Moreover, combining the two strategies could further
enhance performance in future work. Notably, when the fine-tuning epochs for OD/IS tasks are
increased to 50 (compared to the baseline in the table), our method outperforms FLSL (see Table 2).

Semantic segmentation on ADE20K In Table 1, we also report the performance of SSL meth-
ods on ADE20K. We observe that the top-performing methods, including iBOT, DINOv2†, LOCA,
and ours, show similar results, with our method not demonstrating a significant improvement in
semantic segmentation. This could be because semantic segmentation is primarily a pixel-level
classification task. Notably, MAE and DropPos perform worse, likely due to the absence of aug-
mentation invariance in contrastive learning, which may be critical for classification tasks. It is also
worth mentioning that the performance of the compared methods is higher than previously reported
in LOCA (Caron et al., 2024), likely due to the use of the AdamW optimizer and learning rate
scheduler, as recommended by Lebailly et al. (2024).

4.3 ABLATION STUDY

We then examine the design choices in our method by evaluating object detection performance on
the COCO dataset. We use a ViT-S backbone here. Starting with the default settings of our method,
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Figure 3: Distributions of
scaling factor s

Table 4: Effects of hyper-parameters with the proposed position
encoding method

(a) Distributions of scaling factor s

Dist. APBox APMask

Const. 43.0 38.6
Uniform 43.7 39.0
Beta(2, 5) 44.8 39.8

(b) Resolutions of P

Pos. Size APBox APMask

19× 19 44.4 39.7
50× 50 44.8 39.8

we systematically ablate each component or hyperparameter. In all tables, the default configuration
is highlighted with a blue background.

Effectiveness of individual components Table 3 shows an ablation study of the two proposed
components: the position encoding method and the masked position prediction. Individually, they
contribute improvements of +1.9 APBox and +2.4 APBox, respectively. When combined, these mod-
ifications further boost performance by at least +1.1 APBox. These results underscore the effective-
ness of each component and indicate their complementary contributions to overall performance.

Scaling factor s As described in Sec. 3.2.2, the proposed positional encoding method simulates
feature extraction from small objects within an image by applying random scaling and translation
transformations to the crop of the position encoding field. The scaling factor s is sampled from a beta
distribution. This approach aligns with the statistical distribution of object sizes in the input images
during object detection. To evaluate the impact of different s distributions, we tested three scenarios:
s = 1.0 (referred to as ‘Const.’), a uniform distribution in the range [0.2, 1.0], and Beta(2, 5). Note
that s = 1.0 indicates no scaling, meaning the object scale from the original ImageNet image
is preserved. The results, shown in Table 4a, indicate that accuracy improves progressively with
s = 1.0 (‘Const’), uniform, and beta distributions, in that order, verifying the proposed sampling
method.

Resolution of position encoding field As described in Sec. 3.2.2, the position-encoding vectors
for each patch (e.g., pu,i) are obtained by sampling at regular grid points with interpolation from a
field P , represented as a tensor of size wp × hp × d. We evaluated the impact of varying the spatial
resolution wp×hp, a hyperparameter in this representation. The results, shown in Table 4b, indicate
that the method is relatively insensitive to changes in resolution.

Figure 4: Position masking: Box-
wise vs. Cross-wise

Position mask sampling strategy Through a preliminary
study, we found that a cross-wise mask sampling strategy, as
shown in Fig. 4, works effectively for masked position pre-
diction. Table 5a compares this approach with the popular
box-wise sampling strategy used for MIM in previous stud-
ies, showing that cross-wise sampling performs slightly better.
We retain the box-wise sampling scheme for masking content
vectors.

Content masking vs. position masking Our method applies either content masking and predic-
tion or position masking and prediction to each image in a batch in a mutually exclusive manner.
The selection is random, with a default ratio of 50:50. For a sanity check, we also evaluate the con-
figurations of 100:0 and 0:100. The results, shown in Table 5b, indicate that the 50:50 mix achieves
the best performance, while applying position masking and prediction alone leads to a significant
performance drop. These findings confirm the effectiveness of combining both approaches.

5 RELATED WORK
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Table 5: Ablating different position mask settings

(a) Ablating different position mask settings

Pos. Mask APBox APMask

Box-wise 44.4 39.7
Cross-wise 44.8 39.8

(b) Image ratio in a batch w/ position or content masking

Content vs. Pos. APBox APMask

100% w/ Masked Cont. Pred. 43.4 38.9
100% w/ Masked Pos. Pred. 21.7 20.7
50% each 44.8 39.8

Dense contrastive learning Dense contrastive learning (O Pinheiro et al., 2020; Wang et al., 2021;
Xie et al., 2021; Bardes et al., 2022) focuses on learning pixel-level representations rather than
image-level ones (Oord et al., 2018; Chen et al., 2020; He et al., 2020), with the goal of improving
performance on dense prediction downstream tasks such as segmentation and detection. The chal-
lenge in pixel-level SSL (Yun et al., 2022; Su et al., 2024; Li et al., 2022a; Lebailly et al., 2024;
Bardes et al., 2022; Stegmüller et al., 2023; Lebailly & Tuytelaars, 2023) is positive samples match-
ing problem. Their approaches can be summarized as either similarity-based or position-based, or
both. Although Lebailly et al. (2024); Stegmüller et al. (2023) also track the positions of cropped
views in the original image, they still use the conventional position encoding. Therefore, they do not
predict relative positions between views and focus only on visual content.

Self-supervised learning with position prediction Recently, several studies (Wang et al., 2024;
Caron et al., 2024), have aimed to improve performance on dense prediction tasks by incorporating
position prediction tasks, which have long been known as pretext tasks in SSL (Noroozi & Favaro,
2016), into the SSL methods mentioned above. One such method in this line of work is Drop-
Pos (Wang et al., 2024), an extension of MAE. In addition to the core principle of MAE, which
masks and predicts the content embedding of image patches, DropPos introduces a task where the
positional embedding of the patches is ‘dropped’ and predicted. Specifically, 75% of the tokens
(ui + pi) are removed, and MAE is applied to the remaining 25%. Among these, 75% (i.e., 18.75%
of the total tokens) have their positional embeddings pi dropped, leaving only ui as input. The task
is to predict the dropped pi in this configuration. LOCA is an SSL method that processes two views
of the input image (a reference view and a smaller query view with overlap) and aims to predict the
query view position in the reference view coordinate by a single cross-attention layer. Within the
cross-attention layer, it has to identify the overlap parts and predict their positions correctly. In these
work, position prediction is formulated as an 1D classification problem:

Lloc = one hot(i)T log P loc(xi), (7)

where one hot(i) is a location indicator, and P loc(·) projects patch tokens (or masked tokens in
DropPos) to a probability distribution over N dimensions.

6 SUMMARY

We presented a novel self-supervised learning method that learns pre-trained weights optimized
for object detection and instance segmentation. The method introduces two key components. The
first is a position encoding aligned with cropped views in a contrastive learning setting. This is
achieved using a position embedding field, where embedding vectors are sampled on a regular grid
corresponding to the geometry of the cropped view in the input image. Combined with the pro-
posed position encoding augmentation, which can be seamlessly integrated into existing SSL data
augmentation pipelines, this approach leads to significant improvements on the COCO benchmark
compared to DINOv2 (reproduced by us on ImageNet-1K). The second component is the simulta-
neous masking and prediction of position and content embeddings, further enhancing performance
on the COCO benchmark. Our method also performs comparably to the state-of-the-art LOCA on
the ADE20K dataset, where LOCA is specially tuned for this task. Lastly, in Appendix A, we
analyze the statistics of attention maps from the pre-trained model and also visualize them across
diverse input images, demonstrating that our method produces instance-level attention maps much
more effectively than other state-of-the-art methods. We hope this study sheds light on the potential
of positional encoding in contrastive learning, an area that remains underexplored in the research
community.
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Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9650–9660, 2021.

Mathilde Caron, Neil Houlsby, and Cordelia Schmid. Location-aware self-supervised transformers
for semantic segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pp. 117–127, 2024.

Jun Chen, Ming Hu, Boyang Li, and Mohamed Elhoseiny. Efficient self-supervised vision pretrain-
ing with local masked reconstruction. arXiv preprint arXiv:2206.00790, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th International Conference
on Machine Learning, pp. 1597–1607, 2020.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
9640–9649, 2021.

MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox
and benchmark. https://github.com/open-mmlab/mmsegmentation, 2020.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. In The Twelfth International Conference on Learning Representations, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by
context prediction. In Proceedings of the IEEE international conference on computer vision, pp.
1422–1430, 2015.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations, 2021.

Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for self-
supervised representation learning. In Proceedings of the 38th International Conference on Ma-
chine Learning, pp. 3015–3024, 2021.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition,
pp. 3354–3361. IEEE, 2012.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=S1v4N2l0-.

11

https://github.com/open-mmlab/mmsegmentation
https://openreview.net/forum?id=S1v4N2l0-


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
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Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In European confer-
ence on computer vision, pp. 516–533, 2022.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103, 2008.

Haochen Wang, Junsong Fan, Yuxi Wang, Kaiyou Song, Tong Wang, and ZHAO-XIANG ZHANG.
Droppos: Pre-training vision transformers by reconstructing dropped positions. Advances in Neu-
ral Information Processing Systems, 36, 2024.

Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li. Dense contrastive learning
for self-supervised visual pre-training. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 3024–3033, 2021.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Zhenda Xie, Yutong Lin, Zheng Zhang, Yue Cao, Stephen Lin, and Han Hu. Propagate yourself:
Exploring pixel-level consistency for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 16684–16693, 2021.

Sukmin Yun, Hankook Lee, Jaehyung Kim, and Jinwoo Shin. Patch-level representation learning for
self-supervised vision transformers. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 8354–8363, June 2022.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In Proceedings of the 38th International Conference on Ma-
chine Learning, pp. 12310–12320, 2021.

13

https://github.com/facebookresearch/detectron2


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part III 14, pp. 649–666. Springer, 2016.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 633–641, 2017.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. Image
BERT pre-training with online tokenizer. In International Conference on Learning Representa-
tions, 2022a.

Pan Zhou, Yichen Zhou, Chenyang Si, Weihao Yu, Teck Khim Ng, and Shuicheng Yan. Mugs: A
multi-granular self-supervised learning framework. In arXiv preprint arXiv:2203.14415, 2022b.

A ANALYSES OF ATTENTION MAPS IN PRE-TRAINED MODELS

Existing SSL methods, including ours, incorporate positional information into feature learning in
various ways. Beyond evaluating performance on downstream tasks, we can analyze how attention
to patches (tokesn) is spatially distributed within the layers of the ViT, providing insights into the
differences between methods. We refer to this spatial distribution as “patch attention” here. In
the following, we use pre-trained models from each method, prepared using the same approach as
in the previous experiments, and evaluate them. All experiments are conducted using a ViT-B/16
backbone, with input images standardized to 480× 480.

A.1 PATCH ATTENTION DIVERSITY

Following Park et al. (2023), we first examine the diversity of attention maps and the effective
receptive field size. It should be noted that while Park et al.’s analysis uses ImageNet-1K images,
we use COCO images as described above. There are two metrics involved (for details, refer to Park
et al. (2023)): normalized mutual information (NMI) (Strehl & Ghosh, 2002) and mean average
distance (MAD) (Dosovitskiy et al., 2021). NMI is the mutual information between a query token
q and a key token k, based on the joint distribution p(q, k) = π(k | q)p(q), where π(k | q) is the
softmax-normalized attention from q to k, and p(q) is assumed to be uniformly distributed across
the image. Intuitively, this measures the diversity of attention maps. MAD measures the average
distance between patch positions within an image, weighted by attention, representing the effective
receptive field size in the ViT. The two metrics are computed by averaging over the heads in the
attention computation in each layer. The results are shown in Fig. 5.

First, it is clear that both metrics vary significantly across methods and layers within the same
method. Dividing the methods into four categories—image-level learning (DINO), patch-level
learning (MAE and DropPos), hybrid methods (iBOT and DINOv2), and methods incorporating
positional learning (LOCA and our method)—the behavior is similar to what was reported in Park
et al. (2023). Specifically, higher patch attention diversity is desirable, but it is smaller in image-
level methods (DINO) and relatively larger in methods that incorporate patch-level learning. The
three methods that showed strong performance on COCO—LOCA, MAE, and our method—exhibit
similar behavior in both metrics, particularly in the last three layers.

A.2 VISUALIZATION OF PATCH ATTENTION IN THE FINAL LAYER

Figure 6 visualizes the attention to all patches (tokens) in the image in the final layer, where a single
point (i.e., a patch) in the input image is selected as the query. The attention is averaged across all
heads. In the leftmost column of the figure, the position of the query patch is indicated by a red dot
in the input image. Across all methods, it appears that patches “close” to the query patch—though in
different senses—receive greater attention. However, the interpretation of “closeness” varies across
methods. To be specific, MAE can look widely but be biased to textures or colors easily, not enough
to identify the instance. Moreover, if the query point is in the background but close to the boundary
of a foreground object, attention is focused more on the foreground than the background, as shown in
the fourth row. DropPos produces an attention map too locally without recognizing wider patterns.
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Figure 5: Statistical differences in attention maps across layers of ViT models pre-trained with
the compared SSL methods. Input images are sourced from the COCO dataset. Normalized mutual
information (NMI) and mean attention distance (MAD) are used as metrics, following Park et al.
(2023). See the text for more details.

LOCA exhibits cross-shaped artifacts in its attention map. iBOT displays more focused attention
than the above methods, but it seems to attend to the entirety of objects in the image without instance
discrimination. This is especially evident in the bottom example, where the distinction between trees
and the traffic sign is unclear. On the other hand, in the attention maps produced by our method,
when the query is on the foreground, the object instance indicated by the query is clearly delineated.
When the query is in the background, the background regions can be highlighted more accurately
without mixing with the foreground. This behavior suggests that our method is most suitable for
object detection and instance segmentation, demonstrating that the proposed approach effectively
achieves its goal.

B IMPLEMENTATION DETAILS

B.1 PRE-TRAINING ON IMAGENET-1K

We follow the implementation of DINOv2 (Oquab et al., 2024) and adopt some settings from
iBOT (Zhou et al., 2022a) due to the significantly smaller scale of training data, i.e., from 142M
dataset to ImageNet-1K. We use the same hyperparameters for both the ViT-B and ViT-S backbones,
except for the number of GPUs: 8 and 4, respectively. The details are provided in Table 6.

We pre-train ViT-S on a single node with 4 A6000 GPUs and ViT-B on 2 nodes with the same setup.
For training time comparison, we compare our method with DINOv2† in our implementation on a
single node. Our method requires 1.3× longer training per epoch.

B.2 OBJECT DETECTION ON COCO WITH FINE-TUNING.

Following DropPos (Wang et al., 2024), we adopt ViTDet (Li et al., 2022b) as our object detection
framework, fine-tuning the entire model on the COCO object detection benchmark with 22,128
iterations and a total batch size of 64 (12 epochs). We use a 3e-4 learning rate for ViT-B backbone
and 1e-4 learning rate for ViT-S backbone. Both learning rate decay at the 19,667-th and 21,306-th
iterations by a factor of 10. To preserve the integrity of the pre-trained weights, we remove relative
position encodings and window attentions from ViTDet, ensuring that the backbone remains as close
as possible to its original pre-trained configuration. We also employ checkpointing and efficient
attention kernels (Lefaudeux et al., 2022) to optimize GPU memory usage.

B.3 SEMANTIC SEGMENTATION ON ADE20K WITH FINE-TUNING

For the ADE20K dataset, we follow LOCA (Caron et al., 2024), adopting the linear decoder protocol
in Segmenter (Strudel et al., 2021) and training for 127 epochs with a batch size of 16 (resulting in
a total of 160k iterations). We consider the optimizer and learning rate settings from Lebailly et al.
(2024), and employ the AdamW optimizer, and sweep the weight decay (wd) across {1e-2, 1e-4}
and the learning rate (lr) across {8e-5, 3e-5, 1e-5, 8e-6} with a min lr of 0.1× lr. We report results
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Input MAE DropPos LOCA iBOT Ours

Figure 6: Patch attention maps with sampled reference points as queries. We visualize the patch
attention maps from the final layer, using the sampled reference points (indicated in red) as queries.

in single scale, averagd over 2 runs. This largely improves the performances reported in LOCA. The
codebase is based on Segmenter (Strudel et al., 2021) and built using MMSegmentation (Contribu-
tors, 2020).

C QUALITATIVE STUDIES OF POSITION MASKING: BOX-WISE VS.
CROSS-WISE

We visualize that vertical line artifacts occur with the box-wise strategy but are absent with the cross-
wise strategy; see Fig. 7. Furthermore, the superiority of the cross-wise strategy is quantitatively
validated in Table 5a.

D OFFICIAL DINOV2 AND DINOV2-REG

DINOv2-reg (Darcet et al., 2024) introduces an implicit way to improve patch representations. The
authors investigate the emergence of unwanted high-norm tokens in DINOv2 (Oquab et al., 2024),
particularly in large-scale training using a 142M dataset and ViT-(L/H/g). They observe that these
high-norm patch tokens contain less local information and more global information. To address
this, they introduce register tokens, which participate in the model’s forward pass without being
directly affected by the loss function. The high-norm tokens are also observed in other models,
such as OpenCLIP (Ilharco et al., 2021) and DeiT-III (Touvron et al., 2022). They hypothesize that
register tokens can complement the high-norm patch tokens, allowing tokens to focus more on local
information without producing high norms.
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Table 6: Implementation details of pre-training on ImageNet-1K

Config

#Epochs 100
Optimizer AdamW
Base learning rate 2e-3
Warmup (#epochs) 10
Layerwise lr decay False
Patch emb. lr decay False
Weight decay (cosine) 0.04 to 0.4
Drop path rate (linear) [0, 0.1]
Teacher temp. 0.04 const.
Teacher momentum init. 0.992
Patch mask prob. [0.1, 0.5]
Pos mask prob. [0.1, 0.5]
Patch mask box-wise
Pos. mask cross-wise
Patch/pos mask ratio 50% vs. 50%
Output dim. (all heads) 65,536
Separate heads True
Norm. last layer True
Dist. of s Beta(2,5)
smin, smax (|P| = 1) 0.2, 1.0
P 50×50
Total batch size 512

Input Box-wise Cross-wise

Figure 7: Artifact comparison in attention maps: Box-wise vs. Cross-wise. Vertical line artifacts
occur with the box-wise strategy but are absent with the cross-wise strategy

We also adopt their pre-trained backbones in our end-to-end fine-tuning experiments on COCO and
ADE20K, as shown in Table 7. It is important to note that their ViT-S/B models are distilled from
a larger pre-trained model, ViT-g, and refined with a larger resolution fine-tuning. Since they use a
patch size of 14×14, we interpolate the patchifier kernel from 14×14 to 16×16 before fine-tuning
to ensure a fair comparison.
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DINOv2-reg and DINOv2 achieve 52.2 APBox on the ViT-B/16 backbone and a 47.4 APBox on
the ViT-S/16 backbone respectively, which are at least +2 APBox higher than the other methods.
Interestingly, we find that DINOv2-reg significantly outperforms DINOv2 with ViT-B but not with
ViT-S.

Table 7: COCO object detection with official DINOv2/-reg (Oquab et al., 2024; Darcet et al.,
2024) backbones

(a) ViT-B/16 backbone.

COCO ADE20K

Method Eff. Ep. APBox APMask mIoU

DINO 1600 45.5 40.8 44.7
MAE 1600 48.1 43.2 46.2
iBOT 1600 47.6 42.4 47.7
Mugs 1600 47.0 42.0 -
LoMaR 1600 38.1 35.2 -
DropPos 800 47.0 42.2 45.3
CrIBo 800 45.4 40.5 -
LOCA 600 48.3 43.0 48.5
DINOv2† 350 47.7 42.4 47.5
Ours 350 49.2 43.8 48.4

On 142M dataset
DINOv2 - 51.1 45.3 52.5
DINOv2-reg - 52.2 46.3 54.3

(b) ViT-S/16 backbone.

COCO ADE20K

Method Eff. Ep. APBox APMask mIoU

DINO 3200 42.0 38.0 42.9
iBOT 3200 43.8 39.1 44.8
Mugs 3200 41.3 37.2 -
CrIBo 1600 42.6 38.3 -
SelfPatch 1050 40.4 36.7 -
FLSL 700 45.5 40.5 -
CrOC 600 40.2 36.2 -
LOCA 600 40.1 36.0 44.8
DINOv2† 350 41.9 37.7 44.7
Ours 350 44.8 39.8 44.8

On 142M dataset
DINOv2 - 47.4 42.2 49.7
DINOv2-reg - 46.5 41.5 49.7
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