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Abstract

Multimodal Large Language Models (MLLMs) have demonstrated strong gener-
alization in vision-language tasks, yet their ability to understand and act within
embodied environments remains underexplored. We present NavBench, a bench-
mark to evaluate the embodied navigation capabilities of MLLMs under zero-shot
settings. NavBench consists of two components: (1) navigation comprehension,
assessed through three cognitively grounded tasks including global instruction
alignment, temporal progress estimation, and local observation-action reason-
ing, covering 3,200 question-answer pairs; and (2) step-by-step execution in 432
episodes across 72 indoor scenes, stratified by spatial, cognitive, and execution
complexity. To support real-world deployment, we introduce a pipeline that con-
verts MLLMs’ outputs into robotic actions. We evaluate both proprietary and
open-source models, finding that GPT-40 performs well across tasks, while lighter
open-source models succeed in simpler cases. Results also show that models with
higher comprehension scores tend to achieve better execution performance. Provid-
ing map-based context improves decision accuracy, especially in medium-difficulty
scenarios. However, most models struggle with temporal understanding, particu-
larly in estimating progress during navigation, which may pose a key challenge.

1 Introduction

Multimodal Large Language Models (MLLMs) [[11 2} 13]] have achieved impressive performance across
a wide range of vision-language tasks, demonstrating strong cross-modal reasoning and zero-shot
generalization. These models excel at answering visual questions [4]], interpreting videos [5]], and
performing complex multimodal reasoning [6]. As their capabilities expand, a central question
emerges: do these models truly understand how to act in the physical world, or are they simply adept
at processing static inputs?

Recent work has begun to explore MLLMSs’ potential in embodied tasks by evaluating their spatial
reasoning in 3D environments [7} [8]]. However, these tasks primarily focus on perception and passive
scene understanding, without assessing the model’s ability to make decisions or take actions. In
comparison, navigation is a core embodied task that involves interpreting natural language instructions,
analyzing visual observations, and making a sequence of decisions to reach a goal. Although
navigation plays a crucial role in real-world applications, it remains relatively underexplored in the
context of MLLMs. Traditional embodied navigation benchmarks, such as Room-to-Room (R2R) [9]]

*Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://navbench.github.io/

Comprehension - Progress Level Comprehension - Local Level

Temporal Progress Estimation Local Observation-Action Reasoning

Given the steps taken so far, how far along If I move in direction (c), what will I see next ?
am I in the instruction? . x —=_
- PO N -
- PR Ty s
\ * &
@2y 52 MAG 1 | ‘;v
N Y I .
‘Qp ~! 1 b } Execution

o ‘,; R > Step-by-step Navigation
Q% o ) (cl Based on the instruction, what steps

Comprehension - Global Lével
Global Instruction Alignment = =

Having completed the navigation, which
instruction best describes the path I just
followed?

should I take to reach the goal?

Difficulty Level &

=y 1 ] : Easy | veaton SR 4

\o IR i . Q‘ Cognitive Complexity
1 3 4@ Spatial Complexity

”~
% Execution Complexity

Figure 1: NavBench evaluates MLLMs across three comprehension tasks and a step-by-step execution
task, assessing their ability to understand navigation behavior, track progress, reason about observation
and action, and act accordingly. The step-by-step navigation is assessed from different difficulty
levels, which is defined by cognitive, spatial, and execution complexity.

and ObjectNav [[10]], were developed prior to the emergence of foundation models. These benchmarks
rely on task-specific supervision and often reduce evaluation to final success rates, providing limited
insight into whether a model genuinely understands the navigation behavior. In many cases, an agent
may reach the goal by exploiting dataset biases or learning shortcuts, without correctly grounding the
instruction or following the intended path.

Similar to how humans acquire embodied skills by first understanding a task and then learning
to execute it, evaluating the embodied capabilities of generalist MLLLMs also requires examining
two fundamental aspects. First, can the model comprehend what a navigation behavior represents,
such as identifying the intent behind a completed trajectory? Second, can it act autonomously to
complete a navigation task, making step-by-step decisions in unfamiliar environments? Furthermore,
navigation tasks in real-world environments can vary significantly in difficulty due to differences in
spatial layout, instruction complexity, and required decision-making steps. For example, navigating
across multiple rooms with ambiguous instructions poses greater challenges than following simple
step-by-step commands in a single hallway. However, most existing benchmarks treat all navigation
episodes equally difficult, failing to capture this essential variation.

To fill these gaps, we introduce NavBench, a benchmark designed to systematically evaluate MLLMs
in embodied navigation under zero-shot settings. NavBench decomposes the evaluation into two
complementary components: Navigation Comprehension, which assesses whether a model under-
stands and aligns with intended navigation behavior, and Navigation Execution, which evaluates the
model’s ability to make accurate step-by-step decisions. To reflect real-world variability, NavBench
incorporates a fine-grained difficulty classification based on spatial, cognitive, and execution com-
plexity. In addition, it provides a deployable real-world navigation pipeline to bridge the gap between
simulation and practical embodiment.

First, for navigation behavior comprehension, inspired by cognitive studies of human spatial rea-
soning [11]], NavBench introduces three fine-grained evaluation tasks designed to assess distinct
reasoning capabilities at three levels: global, progress, and local. It includes 3,200 question-answer
pairs. Specifically, Global Instruction Alignment evaluates the model’s ability to match a given
trajectory with the most appropriate instruction. The candidate instructions are designed with subtle
semantic differences, such as variations in directional cues and landmark descriptions, to encourage
genuine spatial reasoning. Temporal Progress Estimation measures temporal-contextual awareness by
requiring the model to infer progress within multi-step instructions based on a partial trajectory. Local
Observation-Action Inference evaluates the model’s ability to reason about the spatial consequences of
individual actions by either predicting the future observation given an action or identifying the action
that caused a visual transition. Together, these tasks provide a comprehensive framework for assessing
global semantic reasoning, temporal understanding, and local spatial inference in navigation.

Second, NavBench introduces a fine-grained difficulty classification with three levels: easy, medium,
and hard, based on cognitive, spatial, and execution complexity. This allows detailed analysis of



models’ generalization and decision-making performance across varying levels of difficulty. The
benchmark includes 432 navigation cases across 72 scenes.

Finally, to bridge the gap between simulator-based evaluation and real-world deployment, we design
a practical navigation pipeline that connects MLLM outputs to executable actions on real robots. This
pipeline includes a waypoint selection module, an MLLM-based navigator, and a low-level controller,
demonstrating the deployability of our framework in physical environments.

We evaluate both closed-source and open-source MLLMs on NavBench. While GPT-4o currently
achieves the best overall performance, we observe that lightweight models such as Qwen2.5-VL-7B
are capable of reliably completing easy navigation tasks. Notably, this trend is also reflected in our
real-world deployment experiments, suggesting that NavBench may serve as a practical tool for
analyzing the embodied capabilities of both general and resource-efficient MLLMs. Furthermore, our
results suggest several notable trends: (1) comprehension and execution abilities appear to be closely
related, (2) temporal reasoning may pose a persistent challenge for current models, and (3) compact
open-source models can, under certain conditions, approach the performance of proprietary ones,
indicating their potential utility in practical settings.

In summary, our main contributions are as follows: (1) We introduce NavBench, a benchmark
for evaluating MLLMs in embodied navigation under zero-shot settings. (2) We decompose the
evaluation into two components: Navigation Comprehension, with tasks targeting spatial, temporal,
and local reasoning, and Navigation Execution, which assesses decision-making across difficulty
levels. (3) We develop a deployment pipeline that maps MLLM outputs to real-world robot actions.
(4) We perform a detailed evaluation and analysis of both closed-source and open-source MLLMs,
uncovering trends in their reasoning and execution performance across embodied tasks.

2 Related Work

Benchmarks for MLLMs Recent progress in Multimodal Large Language Models (MLLMs)[1} [12}
1301141 [15]] has driven the development of benchmarks assessing visual understanding and cross-modal
reasoning. Early efforts such as VQA[4]], GQA [16], OK-VQA [17]], and TextVQA [18] focus on
specific tasks like factual or commonsense question answering. More recent benchmarks including
MME [19]], MMBench [20], MM-Vet [21]], and MathVista [6] aim for broader coverage, evaluating
perception and reasoning across diverse domains. However, these mainly target static tasks and do
not reflect MLLMs’ ability to act in dynamic environments. To bridge this gap, some recent work
has begun evaluating spatial reasoning in embodied settings. SpatialBench [7]], ScanReason [22]],
and VSI-Bench [8] assess 3D spatial understanding using panoramas, semantic layouts, or textual
scene descriptions. While insightful for embodied perception, they remain limited to passive tasks
and do not assess decision-making or sequential interaction. In parallel, traditional embodied
navigation benchmarks such as R2R[9]], REVERIE[23]], and ObjectNav [[10] have long been used
to test instruction-following agents. However, they were designed for fully supervised settings
and mainly evaluate success rates without probing intermediate reasoning. Although REVERIE
increases instruction abstraction, it retains similar path lengths and decision complexity, limiting
its capacity to reveal behavioral differences. More recently, Wang et al. [24] proposed a fine-
grained evaluation framework for instruction understanding in VLN via multiple-choice questions,
offering interpretability beyond end-to-end metrics. Still, their setup is restricted to small supervised
models and lacks real-world deployment and zero-shot inference. To the best of our knowledge,
no existing benchmark offers a comprehensive evaluation of MLLMs in embodied navigation that
jointly considers instruction understanding, sequential decision-making, difficulty stratification, and
real-world transferability.

Embodied Navigation Embodied navigation tasks require an agent to reach a goal location within
an environment, guided by a description such as an image [25, 26], object [10} 27], or natural
language instruction [9} 28 [29]. Among these, language-guided navigation has attracted significant
attention for its potential to facilitate intuitive human-robot interaction. Researchers have explored
diverse instruction formats, including step-by-step [9, 30], dialog-based [31], and goal- or intention-
oriented instructions [23| 32]]. Traditional approaches train navigation policies using annotated
datasets, incorporating modules to improve object relation understanding [|33}134}35]], vision-language
alignment [36, 37, 38]], memory [39} 140} 41]], and spatial reasoning [42] 43| 44]. While effective on
benchmarks, these methods often suffer from limited generalization due to dataset biases [43 46, 47]].
To mitigate this, recent work turns to MLLMs for zero-shot embodied navigation, leveraging their
generalization abilities. Some use MLLMs to localize goal-relevant regions [48l 149\ 50], while others



Global Level Progress Level Local Level

Global Instruction Alignment Temporal Progress Estimation Local Observation-Action Reasoning

Question: Given the current view and a target view, select
the direction that is most likely to lead to the target view.

Question:
You are presented with a sequence of panoramic views that

Question:
You are given a navigation instruction divided into

represent a navigation path From the starting point to the ol e, el i o MR [ %
goal location. Identify the correct instruction. .
8 c D

Your task is to determine how many sub-instructions =
A.Walk all the way Forward towards the door, and turn left. have been completed based on the views provided. R
Walk Forward, and stop at the other door -

Sub-instruction 1: walk outside and to the left of the
B. Walk up the stairs and into the first doorway on your
table and chair

right. Stop just inside the doorway. R — Direct!

=l i B Current view irection
C. Walk out of the bathroom and turn right. Walk through it @ien 2 el Gl Be Sigp Andl T Win o ) -

., Question: Given the current view and a direction to move.
the doorway on the right and stop in front of the bed yard. select the location matching the expected view after moving,

D. Exit the closet and go straight until you get to the bed. Sub-instruction 3: turn left and walk by the house.

Turn left and exit the room. Turn left and go into the S-SR e e o

bedroom. Wait at the entrance.

Figure 2: Illustration of the Navigation Comprehension task.

employ prompt-based guidance for instruction following [511 52} 53] 54]. These approaches reduce
reliance on task-specific training but still lack fine-grained evaluation: most benchmarks focus solely
on final success rates, offering limited insight into the model’s reasoning process. To address this, we
introduce NavBench, a benchmark that systematically evaluates both the reasoning and execution
capabilities of MLLMs in embodied navigation.

3 Benchmark Design

3.1 Task Formulation

We evaluate the navigation capabilities of MLLMs by decomposing the task into two core components:
Navigation Comprehension, which assesses the understanding of navigation behavior, and Navigation
Execution, which focuses on step-by-step decision making.

Navigation Comprehension It investigates whether the model can understand and reason about
implicit navigation behaviors, including aligning instructions with trajectories, estimating progress
along a plan, and predicting the spatial consequences of actions. These tasks span different reasoning
levels (global, progress, and local) and serve as diagnostic probes for navigation understanding.
Illustrations of the three comprehension tasks are shown in Figure

* Global Level — Global Instruction Alignment: Given a navigation trajectory and several candidate
instructions, the model is required to determine which instruction aligns with the executed path.
This task tests the model’s understanding of the overall intent and structural coherence of the
navigation behavior.

* Progress Level — Temporal Progress Estimation: Provided with a partial trajectory and a list of
segmented sub-instructions, the model must identify the sub-instruction that was most recently
completed. This evaluates the model’s capacity to monitor task progress and comprehend the
temporal structure of instructions.

* Local Level — Local Observation-Action Reasoning: To evaluate the model’s ability to reason about
the spatial consequences of individual actions. We design two variants: (1) Future-Observation
Prediction — the model observes the current view and an action, and selects the correct resulting
view. (2) Future-Action Prediction — the model observes two consecutive views and must identify
the action that caused the transition.

Navigation Execution It examines whether an MLLM can make accurate, step-by-step movement
decisions in an embodied environment based on the current observation and instruction. We conduct
this evaluation in a zero-shot setting [54] within the Matterport3D simulator [55]], categorizing tasks
into three difficulty levels (easy, medium, and hard) to assess performance. To ensure a fair and
standardized evaluation protocol, we evaluate MLLMSs via viewpoint selection rather than low-level
action prediction (e.g., turning or moving forward). This abstraction, consistent with prior embodied
navigation benchmarks [9] 23]}, allows us to focus on high-level semantic reasoning grounded in
language and vision, while avoiding the confounding variability introduced by continuous control. It
also facilitates zero-shot evaluation and comparability across different models. Notably, while our

2The questions in the figure are slightly simplified for clarity and brevity.
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Figure 3: NavBench construction pipeline and statistics. (a) QA generation for comprehension
tasks at global, progress, and local levels. (b) Execution pipeline combining automatic difficulty scor-
ing and human ratings. (c) Benchmark statistics, including comprehension (comp.) task distribution,
QA counts, and execution statistics (e.g., instruction length, steps, distance).

simulator setup centers on abstracted decision-making, Section @]illustrates how this framework can
be extended to real-world navigation by converting viewpoint selection into low-level control.

Specifically, at each step, the model receives the current panoramic observation, the natural language
instruction, and a list of candidate navigable viewpoints. The model must select the next location to
move to, thereby executing the instruction step-by-step until the goal is reached. Formally, at each
step ¢ of a navigation episode, the MLLM receives an instruction x = {wy, wa, ..., wr } of length L,
a set of candidate navigable observation viewpoints O, = {o}, 07, ..., oév }, and optional context C;
(such as navigation history or previous actions). The agent must select an action a; corresponding to
one of the navigable directions:

a; = MLLM(X, Ot, Ct) . (1)

This decision process may involve reasoning about the instruction, interpreting the current view,
leveraging prior context, and anticipating the result of each candidate action.

3.2 Dataset Construction

Data Sources NavBench is constructed by reorganizing and enriching fine-grained navigation data
with multimodal observations to enable zero-shot evaluation of MLLMs. We start by collecting
instruction-trajectory pairs from multiple embodied navigation benchmarks, including R2R [9]],
RxR [30], GEL-R2R [56], and FGR2R [57]. These datasets serve as annotation sources, but do
not include the visual inputs needed for multimodal reasoning. To address this gap, we use the
Matterport3D simulator to extract both panoramic and single-viewpoint RGB images aligned with
navigation trajectories. The image extraction process involves traversing agent paths, sampling
intermediate viewpoints, and rendering corresponding visual observations. All visual and textual
data are then organized into a unified structure that supports multiple reasoning tasks and enables
consistent QA generation across comprehension and execution settings. Figure [3|shows the overall
benchmark construction pipeline.

Statistics We report statistics in Figure[3{c), including distribution of comprehension subtasks and
coverage of scenes and episodes in execution. These statistics reflect the scale and diversity of the
benchmark across reasoning levels and scenes.

3.2.1 Question-and-Answer Pairs Collection

We design three diagnostic tasks targeting global alignment, temporal progress estimation, and
local spatial and action reasoning. In total, we collect 3,200 question-and-answer pairs to evaluate
comprehension capacity in embodied navigation.

Global Instruction Alignment To evaluate MLLMSs’ ability to align spatial trajectories with semanti-
cally consistent instructions, we construct a multiple-choice dataset comprising 1,200 examples. Each
example consists of a panoramic trajectory and five candidate instructions, including one ground-truth



and four distractors. The distractors are generated using four perturbation strategies: (1) Basic:
random instructions sampled from unrelated trajectories, testing global relevance; (2) Directional
replacements, where spatial terms (e.g., “left”, “north”) are substituted using POS tagging via NLTK,
probing directional grounding; (3) Object replacements, where noun phrases are replaced with unre-
lated landmarks drawn from an external landmark-annotated dataset [56l], evaluating object-trajectory
grounding; (4) Shuffled segments, where human-annotated sub-instructions [57] are permuted to
disrupt temporal structure while preserving grammaticality. Each instruction set is randomly ordered
and paired with a panoramic trajectory composed of viewpoint sequences and movement annotations.
The design promotes multimodal spatial reasoning and reduces reliance on superficial cues.

Progress Estimation This task is designed to evaluate a model’s ability to perform temporal reasoning
and monitor execution progress during navigation. Each full navigation instruction is segmented into
a sequence of sub-instructions, and each sub-instruction is aligned with a corresponding portion of the
agent’s trajectory. We leverage fine-grained annotations [57]], which provide this alignment between
individual sub-instructions and the associated panoramic viewpoints traversed during execution. To
construct evaluation examples, we truncate the trajectory at intermediate points that mark the end
of specific sub-instructions. The model is presented with the truncated panoramic trajectory along
with the full list of sub-instructions, and is required to predict the index of the last completed one. To
ensure data quality and minimize ambiguity, we applied a combination of automatic filtering and
manual validation to retain instruction-path pairs with well-defined temporal boundaries (details in
Appendix). In total, we collect 1,000 such examples for evaluation.

Local Observation-Action Reasoning We design two multiple-choice reasoning tasks to evaluate
a model’s capacity for local spatial and action reasoning inference. Both tasks present ambiguous
scenarios that require fine-grained visual discrimination and understanding of plausible transitions. In
Future-Observation Prediction, the model receives a current view and an action, and must choose the
correct resulting view from a set of candidates. In Future-Action Prediction, the model observes two
consecutive views and selects the action that best explains the transition. For both tasks, distractors
are carefully sampled from nearby observations or visually similar actions to ensure ambiguity and
challenge. We collect 500 examples for each format, yielding a total of 1,000 samples. All questions
are formatted as multiple-choice queries to ensure consistency across evaluation tasks.

3.2.2 Navigation Episodes Collection

We sample 432 navigation cases from 72 unique scenes in the Matterport3D simulator [55]. To
systematically assess the difficulty of each case, we define a composite complexity score across three
orthogonal dimensions: spatial, cognitive, and execution complexity. Each dimension is derived
from structural properties of the environment or linguistic cues in the instruction, following the
methodology inspired by [58l 59]. In addition, human evaluation is conducted to further support and
validate the difficulty classification process.

Spatial Complexity It quantifies the geometric and topological challenges of a navigation trajectory.
We consider four features: (1) total path length d, (2) standard deviation of turn angles 6, (3) vertical
range z as a proxy for elevation change, and (4) 2D spatial area A covered by the path. A binary
indicator I(z > 1.5) is included to capture significant elevation changes such as floor transitions.
These features are computed from agent poses and scene connectivity data. The spatial complexity
score is defined as:

Dpatial = v -log(1l + d) + a2 -log(1l + 6) + a3 - I(2 > 1.5) + a4 - log(1 + A). 2)

Cognitive Complexity It reflects the linguistic difficulty of navigation instructions. We extract five
features using dependency parsing: (1) instruction length L, (2) number of verbs V, (3) number
of spatial terms S (e.g., left, upstairs), (4) number of landmark mentions M (e.g., kitchen), and (5)
number of subordinate clauses C (e.g., relcl, advcl). The cognitive complexity score is defined as:

Deognitive = F1 - log(1 4+ L) + P2 -log(1 + V) + B3 -log(1 +S) + B4 -log(1 + M) + 35 - C. (3)
Execution Complexity It measures the behavioral effort required to complete the navigation. We

consider: (1) number of steps N, (2) number of turns 7', (3) floor change indicator F', and (4) number
of decision points D. The score is computed as:

Dexecution = 71 - 1og(l + N) + v -log(1 +T) + 3 - F + 4 - D. )



Normalization Each raw complexity score ® is normalized to the range [1, 9] using a non-linear
mapping:

- log(1 + ®) — log(1 + ®in
(I)—round<1+8- og(l + @) — log(1 + ) 2).

IOg(]. + (I)max) - log(l + (I)min)’ (5)

The weights «, 3, and ~y are empirically set to balance the contribution of each factor.

Human Evaluation To complement the automatic scoring, we conducted a human evaluation to
validate our difficulty annotations. A group of annotators independently rated each case along the
three defined dimensions, using a 1-9 scale with detailed guidelines aligned to our scoring criteria.
Further details are provided in the Appendix.

Difficulty Categorization Based on the final scores, Spatial
each case is categorized into one of three levels, as T

Medium

illustrated in Figure [4} = s

* Easy (score 1-3): Short paths with simple instruc-
tions, few steps, minimal spatial reasoning, and
clear landmarks.

¢ Medium (score 4-6): Instructions with moderate
length, multiple landmarks or spatial phrases, and
medium-length paths.

Execution Cognitive

» Hard (score 7-9): Long trajectories guided by com-
plex multi-step instructions, often involving floor
transitions and multiple spatial references.

Figure 4: Radar chart of average complexity
scores across cognitive, spatial, and execution
dimensions for different difficulty levels.
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Figure 5: Overview of the real-world embodied navigation pipeline.

To demonstrate the real-world feasibility of MLLM-guided embodied navigation, we implement a
modular pipeline that complements our benchmark evaluation, as illustrated in Figure[5] It consists
of three modules: (1) a Waypoint Predictor that extracts RGB and depth inputs to generate candidate
waypoints, (2) an MLLM Decision Module that selects the most goal-aligned waypoint, and (3) a
Low-Level Controller that translates the selected waypoint into motion commands for execution on a
physical robot. The system is deployed on a dual-arm mobile robot equipped with an RGB-D camera
and evaluated in real indoor environments. More details are provided in the Appendix.

5 Evaluation on NavBench

5.1 Settings

Models We evaluate both proprietary and open-source MLLMs widely adopted in recent research.
Proprietary models include GPT-40, GPT-40-mini, Gemini-2.0-flash. Open-source models include
InternVL2.5-2B/8B [60], Qwen2.5-VL-3B/7B [61], LLaVA-OneVision-7B [62], LLaVA-Next-7B,
and Llama3.2-Vision-11B [63]].

Implementation Details Proprietary models are accessed via APIs, while open-source models are
deployed using vLLM [64] and 1mdeploy [65]] on a single NVIDIA A6000 GPU (48GB). Simulator-
based evaluations are conducted in the Matterport3D Simulator [55]], built on high-resolution RGB-D
scans of real indoor environments such as homes and offices. It provides realistic visual inputs and
discrete agent movement within a 3D mesh, making it a standard testbed for embodied navigation. For
real-world deployment, we integrate our pipeline with a dual-arm composite mobile robot equipped
with an Intel RealSense D435 camera and a Water Drop 2 wheeled base. All physical experiments
are conducted in a controlled indoor lab to assess robustness and feasibility.



Table 1: Performance comparison on Navigation Comprehension and Execution.

‘ Navigation Comprehension H Navigation Execution
Model i
odel | Global Progress Local | Comp. Avg | Easy |  Medium | Hard | Exec. Avg
| Accuracy | | SR SPL | SR SPL | SR SPL |
Chance Level (Random) | 19.33 25.4 2934 | 2465 || 1641 957 | 717 372 | 733 499 | 819
VLN-Bench (tiny) Performance
THuman Level 88.33 79.00 85.00 84.11 91.67 88.68 | 87.50 81.53 | 75.00 65.17 81.59
TGPT-40 51.67 45.00 63.00 53.89 66.08 49.01 | 43.79 36.44 | 25.00 20.11 40.07
TQwen2.5-VL-7B 36.67 32.00 47.00 38.56 46.25 3559 | 2527 1893 | 12.50 5.93 24.41
Closed Models
GPT-40 51.33 42.90 65.80 53.34 67.36 54.31 | 41.67 35.71 | 27.78 21.15 41.33
GPT-40-mini 50.33 29.90 59.03 46.42 46.53 4044 | 2847 2490 | 1528 12.29 27.99
Gemini-2.0-flash 79.68 40.30 32.00 50.66 61.81 45.05 46.53 39.08 | 25.69 16.64 39.13
04-mini 76.67 43.60 58.70 59.66 4792 4477 ‘ 26.39 2270 | 1597 10.13 28.98
Open-Source Models
InternVL2.5-2B 67.25 23.40 11.25 33.97 25.69 2529 | 6.94 6.68 7.64 5.86 13.02
Qwen2.5-VL-3B 43.83 21.30 50.63 38.59 23.61 1752 | 1250 8.88 | 10.26 524 13.00
InternVL2.5-8B 62.75 28.50 28.12 39.79 28.47 28.19 | 7.66 742 7.64 6.18 14.26
Qwen2.5-VL-7B 57.58 31.20 47.00 45.26 41.67 32.55 2292 1743 | 1042 5.67 21.77
LLaVA-OneVision-7B 31.17 26.60 39.00 32.26 3125 17.64 | 1558 7.80 | 15.02 7.84 15.86
LLaVA-Next-7B 38.33 27.40 28.50 31.41 27.08 2595 | 11.81 7.69 7.64 6.07 14.54
Llama3.2-Vision-11B 36.00 23.40 29.10 14.75 27.08 2590 | 1042 9.19 | 10.02 7.60 15.04

Note: Dark teal and light teal indicate the top-performing closed and open-source models per column.

T indicates results evaluated on the NavBench (tiny) subset.
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Figure 6: Model Performance under Different Figure 7: Model performance on Local
Instruction Perturbations. Observation-Action Reasoning.

Evaluation Metrics Our benchmark includes both multiple-choice reasoning and embodied naviga-
tion execution tasks. For multiple-choice questions, we follow standard practice [5] and use Accuracy
as the primary metric, which measures whether the model selects the correct answer from a set of
candidates based on the provided information. For execution tasks, we adopt standard metrics in
embodied navigation [9,[30]]. Success Rate (SR) measures the percentage of episodes where the target
object is visible from the agent’s final viewpoint, defined as being within a 3-meter radius. Success
weighted by Path Length (SPL) adjusts SR by path efficiency and is computed as:

1Y 2
PL= N5 —
S N ;S max(4;, p;) ©)

where N is the number of episodes, S; € {0, 1} indicates success, ¢; is the shortest path, and p; is the
path length.

VLN-Bench (tiny) Human Performance To provide an upper-bound reference, we additionally
report human performance on a compact subset of VLN-Bench, denoted as VLN-Bench (tiny), which
was manually annotated and evaluated following the same protocol.

5.2 Performance

We begin by examining the relationship between comprehension and execution. As shown in Table[T]
model performance on comprehension and execution tasks remains closely aligned. Among closed
models, 04-mini achieves the highest comprehension average (59.66%) and maintains competitive
execution performance (28.98%). GPT-4o follows with 53.34% and 41.33%, respectively, suggesting
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Table 2: Impact of map information on GPT-4o. ‘
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that o4-mini excels in understanding navigation instructions, while GPT-4o0 is stronger in executing
them. Among open-source models, Qwen2.5-VL-7B achieves the best overall performance (45.26%,
21.77%), approaching GPT-40-mini (46.42%, 27.99%) and demonstrating potential for practical
deployment in real-world robotics. Turning to comprehension subtasks, InternVL2.5-2B performs
strongly on Global Instruction Alignment (67.25%), even surpassing GPT-40 (51.33%). However,
its accuracy drops sharply on more challenging reasoning tasks. In particular, Progress Estimation
remains a consistent weakness across models; aside from GPT-40 (42.90%), all others perform
poorly, highlighting current MLLMSs’ limitations in temporal reasoning. We next analyze how models
perform across navigation difficulty levels. Most open-source models can only reliably complete
Easy episodes, while GPT-40 maintains relatively strong results across all levels, suggesting better
generalization. These findings suggest several overarching insights. First, comprehension and
execution abilities are strongly linked. Second, temporal reasoning, particularly progress tracking,
remains a major bottleneck. Third, compact open-source models like Qwen2.5-VL-7B can offer
competitive performance with significantly lower resource requirements, making them promising for
embodied applications.

5.3 Discussion

Breakdown of Distractor Types in Instruction Alignment We further analyze performance on
the Global Instruction Alignment task by breaking down results across four distractor types: basic,
direction, object, and shuffle. As shown in Figure@ most models handle the basic condition well,
indicating their ability to reject unrelated instructions. However, performance under direction and
object perturbations varies significantly across models, suggesting inconsistent grounding of spatial
terms and landmarks. Notably, all models perform poorly under the shuffle condition, where sub-
instructions are reordered but their content remains unchanged. This result is particularly revealing:
despite the presence of the same entities and actions, altering the temporal structure makes the
instruction much harder for models to interpret. The models’ failure in this setting highlights their
limited ability to reason about temporal order within complex instructions. This finding aligns with
the low scores observed in the Progress Estimation task, reinforcing that current MLLMs struggle
with temporal understanding across both instruction-level and trajectory-level reasoning.

Future-Action and Future-Observation Reasoning We analyze performance on the Local
Observation-Action Reasoning task, which includes two subtasks: Future-Action and Future-
Observation Prediction. As shown in Figure[7] models show consistent performance across both, with
GPT-4o0 clearly outperforming all others, consistent with its strong results in Navigation Execution.
These subtasks reflect complementary reasoning skills. Future-Action Prediction tests whether a
model can infer the spatial transition between two views, while Future-Observation Prediction re-
quires anticipating how the environment changes after a given action. Both capabilities are critical
for navigation, where agents should reason about cause and effect in spatial transitions.

Effect of Map Information on Action Decisions Although our benchmark evaluations assume
no access to map information, reflecting real-world constraints, we investigate whether providing
map connectivity can enhance action selection. Specifically, we follow the approach introduced
in MapGPT, where topological relationships between explored nodes are encoded as text prompts.
Using GPT-40, we compare performance with and without map input across different difficulty levels.
As shown in Table 2] the presence of map information consistently improves success rates, with
the largest gain observed under medium difficulty, yielding an increase of 4.86 percentage points.
This suggests that access to structured spatial context can facilitate better high-level reasoning and
planning, especially in medium complexity settings where spatial ambiguity is more common.



Table 3: Performance comparison with and without CoT prompting.

Navigation Comprehension \ Navigation Execution \

\ \
Model | Global Progress Local | Comp. Avg | Easy |  Medium | Hard | Exec. Avg
| Accuracy | | SR SPL | SR SPL | SR SPL |
GPT-40 51.33 42.90 65.80 53.34 67.36 5431 | 41.67 3571 | 27.78 21.15 41.33
GPT-40 + CoT 60.42 40.20 60.75 53.79 61.11 49.04 | 4444 36.88 | 30.56 23.20 40.87
Qwen2.5-VL-7B 57.58 31.20 47.00 45.26 41.67 3255|2292 1743 | 1042 5.67 21.77
Qwen2.5-VL-7B + CoT | 60.50 31.40 48.00 46.63 4375 33.06 | 2292 15.62 | 11.11  7.19 22.28

Effect of Chain-of-Thought We incorporated Chain-of-Thought (CoT) prompting following [66] by
prepending “Let’s think step by step” to the instruction input. As shown in Table 3] experiments were
conducted using two of the strongest models in our benchmark: GPT-40 and Qwen2.5-VL-7B. The
results show that CoT prompting brings noticeable improvement in the Global Instruction Alignment
task. GPT-40 improved by 9.09%, and Qwen2.5-VL-7B improved by 2.92%. However, the gains
in other comprehension tasks were marginal or slightly negative. We hypothesize that simple CoT
prompting does not sufficiently enhance performance in spatial or temporal reasoning tasks, which
often require more structured, multi-step planning rather than generic step-by-step thinking. For the
navigation execution task, we observed little benefit from CoT prompting. This is likely because
the task itself already follows a step-by-step process: at each time step, the model receives the full
instruction history and must decide the next action. Therefore, additional CoT prompting provides
limited benefit in this context.

Error Analysis (1) We manually analyze 100 failed cases to understand model failures. Based
on thought traces and action sequences, we identify four common error types: (a) Incorrect Plan:
the plan misaligns with the instruction; (b) Misaligned Action: the plan is valid, but the chosen
movement does not follow it; (c) Failure to Stop: the agent overshoots the goal or stops early; and (d)
Hallucinated Movement: the model selects a nonexistent location. The error distribution is shown
in Figure[8] These patterns align with weaknesses in comprehension tasks. For example, type (c)
reflects poor Progress Estimation. This suggests execution failures often stem from temporal and
spatial reasoning limitations, reinforcing the diagnostic value of NavBench.

(2) We further examine the impact of trajectory length on temporal reasoning. Test samples are
grouped by length into short (1-2 steps), medium (3—4), and long (5+). For GPT-40, the error rate
increases from 35.3% (short) to 42.9% (medium) and 76.1% (long), showing that longer trajectories
amplify temporal reasoning challenges. In contrast, weaker models such as LLaVA-OneVision-7B
and InternVL2.5-2B maintain high error rates across all lengths, indicating persistent difficulty in
progress estimation regardless of path complexity.

Real-World Validation To assess the feasibility of our real-world deployment pipeline, we conduct a
pilot study in an indoor environment using GPT-40 and Qwen2.5-VL-7B, the top proprietary and
open-source models from our benchmark. Each model is tested on 10 cases, achieving success rates
of 60% and 40%, respectively. These results show that both can handle simple navigation tasks in
real-world settings. Their success trends mirror execution performance in Table[I] where both models
outperform others in their categories. This suggests that NavBench’s simulation-based evaluation
reliably reflects real-world embodied performance.

6 Conclusion

This paper presents NavBench, a diagnostic benchmark designed to evaluate MLLMs in embodied
navigation under zero-shot settings. It decomposes the evaluation into two components: Navigation
Comprehension, which evaluates global instruction alignment, temporal progress estimation, and local
observation-action reasoning through three cognitively grounded tasks, and Navigation Execution,
which examines step-by-step decision-making across varying levels of difficulty. Additionally, we
develop a pipeline for real-world deployment of MLLM-driven agents. Through evaluation and
targeted analysis, NavBench reveals limitations in temporal understanding and action grounding that
are not captured by standard success metrics. It also shows that lightweight open-source models can
be effective in simpler navigation scenarios. We hope NavBench can serve as a useful resource for
analyzing the embodied capabilities of MLLMs and supporting future work in this direction.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions of the paper,
including the design of NavBench, task decomposition, difficulty stratification, and real-
world deployment, all of which are substantiated by experiments. (See Section 1 and
Abstract)

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses limitations of the proposed benchmark in the supplemen-
tary material.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include any theoretical results or formal proofs; it is purely
empirical and benchmarking-based.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes sufficient implementation details and describes benchmark
construction, task setup, and evaluation procedures. (See Sections 3-5)

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the dataset and code. Anonymized supplementary material
includes reproduction instructions. (Details in Supplementary)

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper details all relevant settings, including model types, deployment
methods, simulator configuration, robot setup, and evaluation metrics. (See Section 5.1)

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not report error bars or significance tests. The evaluation focuses on
average performance across tasks and difficulty levels.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the hardware setup (e.g., A6000 GPU, robot platform), and
simulator environments used for training and testing. (See Section 5.1)

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the NeurIPS Code of Ethics. All data used are
from publicly available benchmarks.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work presents a benchmark for evaluating MLLMs in embodied naviga-
tion using publicly available data in simulated and controlled lab environments. It does not
involve human subjects, private data, or direct deployment scenarios, and we do not foresee
any immediate societal impact.
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12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any models or datasets that pose a high risk for
misuse. All evaluated models are publicly available, and the benchmark is constructed from
existing datasets with no sensitive content.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All used datasets (e.g., R2R, RxR, GEL-R2R) and models (e.g., GPT-4o0,
Qwen2.5-VL) are publicly available and properly cited in the paper. We respect their terms
of use and follow the licenses specified by their original creators.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new benchmark, NavBench, constructed from existing
datasets but reorganized into new evaluation tasks with structured question-answer pairs and
difficulty annotations. We provide documentation and plan to release anonymized assets
upon acceptance.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any new crowdsourcing or research with human
participants. All data used were sourced from publicly available datasets that already contain
necessary annotations.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]

Justification: The paper does not involve research with human subjects as defined by IRB
standards. All human judgments were conducted internally by the authors without collecting
personal or sensitive data.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: This work systematically evaluates the embodied reasoning capabilities of
existing LLMs (e.g., GPT-40, Qwen2.5-VL) in navigation tasks. These models are not
developed by the authors, but they are central to the paper’s evaluation design and analysis.
Their usage is described in detail throughout the paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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