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Abstract

Despite the vast empirical evidence supporting the efficacy of adaptive optimization1

methods in deep learning, their theoretical understanding is far from complete.2

In this work, we introduce novel SDEs for commonly used adaptive optimizers:3

SignSGD, RMSprop(W), and Adam(W). Our SDEs offer a quantitatively accurate4

description of these optimizers and help bring to light an intricate relationship5

between adaptivity, gradient noise, and curvature. Our novel analysis of SignSGD6

highlights a noteworthy and precise contrast to SGD in terms of convergence speed,7

stationary distribution, and robustness to heavy-tail noise. We extend this analysis8

to AdamW and RMSpropW, for which we observe that the role of noise is much9

more complex. Crucially, we support our theoretical analysis with experimental10

evidence by verifying our insights: this includes numerically integrating our SDEs11

using Euler-Maruyama discretization on various neural network architectures such12

as MLPs, CNNs, ResNets, and Transformers. Our SDEs accurately track the13

behavior of the respective optimizers, especially when compared to previous SDEs14

derived for Adam and RMSprop. We believe our approach can provide valuable15

insights into best training practices and novel scaling rules.16

1 Introduction17

Adaptive optimizers lay the foundation for effectively training of modern deep learning models.18

These methods are typically employed to optimize an objective function expressed as a sum across N19

individual data points: minx∈Rd [f(x) := 1
N

∑N
i=1 fi(x)], where f, fi : Rd → R, i = 1, . . . , N.20

Due to the practical difficulties of selecting the learning rate of stochastic gradient descent, adaptive21

methods have grown in popularity over the past decade. At a high level, these optimizers adjust the22

learning rate for each parameter based on the historical gradients. Popular optimizers that belong to23

this family are RMSprop (Tieleman and Hinton, 2012), Adam (Kingma and Ba, 2015), SignSGD24

(Bernstein et al., 2018), AdamW (Loshchilov and Hutter, 2019), and many other variants. SignSGD is25

often used for compressing gradients in distributed machine learning (Karimireddy et al., 2019a), but26

it also has gained popularity due to its connection to RMSprop and Adam (Balles and Hennig, 2018).27

The latter algorithms have emerged as the standard methods for training modern large language28

models, partly because of enhancements in signal propagation (Noci et al., 2022).29

Although adaptive methods are widely favored in practice, their theoretical foundations remain enig-30

matic. Recent research has illuminated some of their advantages: Zhang et al. (2020b) demonstrated31

how gradient clipping addresses heavy-tailed gradient noise, Pan and Li (2022) related the success of32

Adam over SGD to sharpness, and Yang et al. (2024) showed that adaptive methods handle large gra-33

dients better than SGD. At the same time, many optimization studies focus on worst-case convergence34

rates: These rates (e.g., Défossez et al. (2022)) are valuable, yet they provide an incomplete depiction35

of algorithm behavior, showing no quantifiable advantage over standard SGD. One particular aspect36

still lacking clarity is the precise role of noise in the algorithm trajectory.37

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



Our investigation aims to study how gradient noise influences the dynamics of adaptive optimizers38

and how it impacts their asymptotic behaviors in terms of expected loss and stationary distribution. In39

particular, we want to understand which algorithms are more resilient to high (possibly heavy-tailed)40

gradient noise levels. To do this, we rely on stochastic differential equations (SDEs) which have41

become popular in the literature to study the behavior of optimization algorithms (Li et al., 2017;42

Jastrzebski et al., 2018). These continuous-time models unlock powerful tools from Itô calculus,43

enabling us to establish convergence bounds, determine stationary distributions, unveil implicit44

regularization, and elucidate the intricate interplay between landscape and noise. Notably, SDEs45

facilitate direct comparisons between optimizers by explicitly illustrating how each hyperparameter46

and certain landscape features influence their dynamics (Compagnoni et al., 2024).47

We begin by analyzing SignSGD, showing how the signal-to-noise ratio affects its dynamics and48

elucidating the impact of noise at convergence. After analyzing the case where the gradient noise49

exhibits infinite variance, we extend our analysis to Adam and RMSprop with decoupled weight50

decay (Loshchilov and Hutter, 2019) – i.e. AdamW and RMSpropW: for both, we refine batch size51

scaling rules and compare the role of noise to SignSGD. Our analysis provides some theoretical52

grounding for the resilience of these adaptive methods to high noise levels. Importantly, we highlight53

that Adam and RMSprop are byproducts of our analysis and that our novel SDEs are derived under54

much weaker and more realistic assumptions than those in the literature (Malladi et al., 2022).55

Contributions We identify our key contributions as follows:56

1. We derive the first SDE for SignSGD under very general assumptions: We show that SignSGD57

exhibits three different phases of the dynamics and characterize the loss behavior in these phases,58

including the stationary distribution and asymptotic loss value.59

2. We demonstrate that for SignSGD, noise inversely affects the convergence rate of both the loss and60

the iterates. Differently, it has a linear impact on the asymptotic expected loss and the asymptotic61

variance of the iterates. This is in contrast to SGD, where noise does not influence the convergence62

speed, but it has a quadratic effect on the loss and variance of the iterates. Finally, we show63

that, even if the noise has infinite variance, SignSGD is very resilient: its performance is only64

marginally impacted. In the same conditions, SGD would diverge.65

3. We derive new, improved, SDEs for AdamW and RMSpropW and use them to (1) show a novel66

batch size scaling rule and (2) inspect the stationary distribution and stationary loss value in67

convex quadratics. In particular, we dive into the properties of weight decay: while for vanilla68

Adam and RMSprop the effect of noise at convergence mimics SignSGD, something different69

happens in AdamW and RMSpropW — Due to an intricate interaction between noise, curvature,70

and regularization, weight decay plays a crucial stabilization role at high noise levels near the71

minimizer.72

4. We empirically verify every theoretical insight we derive. Importantly, we integrate our SDEs73

with Euler-Maruyama to confirm that our SDEs faithfully track their respective optimizers. We do74

so on an MLP, a CNN, a ResNet, and a Transformer. For RMSprop and Adam, our SDEs exhibit75

superior modeling power than the SDEs already existing in the literature.76

2 Related work77

SDE approximations and applications. (Li et al., 2017) introduced a formal theoretical framework78

aimed at deriving SDEs that effectively model the inherent stochastic nature of optimizers. Ever since,79

SDEs have found several applications in the field of machine learning, for instance in connection80

with stochastic optimal control to select the stepsize (Li et al., 2017, 2019) and batch size (Zhao81

et al., 2022), the derivation of convergence bounds and stationary distributions (Compagnoni et al.,82

2023, 2024), implicit regularization (Smith et al., 2021), and scaling rules (Jastrzebski et al., 2018).83

Previous work by Malladi et al. (2022) has already made strides in deriving SDE models for RMSprop84

and Adam, albeit under certain restrictive assumptions. They establish a scaling rule which they85

assert remains valid throughout the entirety of the dynamics. Unfortunately, their derivation is based86

on the approach of Jastrzebski et al. (2018) which is problematic in the general case (See Appendix87

E for a detailed discussion). Indeed, we demonstrate that the SDEs derived in Malladi et al. (2022)88

are only accurate around minima, indicating that their scaling rule is not globally valid. (Zhou et al.,89

2020a) also claimed to have derived a Lévy SDE for Adam. Unfortunately, the quality of their90

SDE approximation does not come with theoretical guarantees. Additionally, their SDE has random91
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coefficients: an approach which is theoretically sound in very limited settings (Kohatsu-Higa et al.,92

1997; Bishop and Del Moral, 2019). Zhou et al. (2024) informally presented an SDE for (only) the93

parameters of AdamW: this is achieved under strong assumptions and various approximations, some94

of which are hard to motivate formally.95

Influence of noise on convergence. Several empirical papers demonstrate that adaptive algorithms96

adjust better to the noise during training. Specifically, (Zhang et al., 2020b) noticed a consistent gap97

in the performance of SGD and Adam on language models and connected that phenomenon with98

heavy-tailed noise distributions. (Pascanu et al., 2013) suggests using gradient clipping to deal with99

heavy tail noise, and consequently several follow-up works analyzed clipped SGD under heavy-tailed100

noise (Zhang et al., 2020a; Mai and Johansson, 2021; Puchkin et al., 2024). Kunstner et al. (2024)101

present thorough numerical experiments illustrating that a significant contributor to heavy-tailed noise102

during language model training is class imbalance, where certain words occur much more frequently103

than others. They demonstrate that adaptive optimization methods such as Adam and SignSGD can104

better adapt to such class imbalances. However, the theoretical understanding of the influence of105

noise in the context of adaptive algorithms is much more limited. The first convergence results on106

Adam and RMSprop were derived under bounded stochastic gradients assumption (De et al., 2018;107

Zaheer et al., 2018; Chen et al., 2019; Défossez et al., 2022). Later, this noise model was relaxed108

to weak growth condition (Zhang et al., 2022; Wang et al., 2022) and its coordinate-wise version109

(Hong and Lin, 2023; Wang et al., 2024) and sub-gaussian noise (Li et al., 2023a). SignSGD and110

its momentum version Signum were originally studied as a method for compressed communication111

(Bernstein et al., 2018) under bounded variance assumption, but with a requirement of large batches.112

Several works provided counterexamples where SignSGD fails to converge if stochastic and full113

gradients are not correlated enough (Karimireddy et al., 2019b; Safaryan and Richtarik, 2021). In114

the case of AdamW, (Zhou et al., 2022, 2024) provide convergence guarantees under restrictive115

assumptions such as bounded gradient and bounded noise. All aforementioned results only show116

that SignSGD, Adam, and RMSprop at least do not perform worse than vanilla SGD. None of them117

studied how noise affects the dynamics of the algorithm: In this work, we attempt to close this gap.118

3 Formal statements & insights: the SDEs119

This section provides the general formulations of the SDEs of SignSGD (Theorem 3.2) and AdamW120

(Theorem 3.12). Due to the technical nature of the analysis, we refer the reader to the appendix for121

the complete formal statements and proofs.122

Assumptions and notation. In this section, we assume that ∇fγ(x) = ∇f(x)+Z(x), E[Z(x)] = 0123

and, unless we study the cases where the gradient variance is unbounded, we write Cov(Z(x)) =124

Σ(x) where we omit the batch size unless relevant. To derive the stationary distribution around an125

optimum, we will approximate the loss function with a quadratic convex function f(x) = 1
2x

⊤Hx126

as commonly done in the literature (Ge et al., 2015; Levy, 2016; Jin et al., 2017; Poggio et al.,127

2017; Mandt et al., 2017; Compagnoni et al., 2023). Regarding the notation, η > 0 is the step128

size, the mini-batches {γk} are of size B ≥ 1 and modeled as i.i.d. random variables uniformly129

distributed on {1, . . . , N}. The β parameters refer to momentum parameters, γ > 0 is the (decoupled)130

L2-regularization parameter, and ϵ > 0 is a small scalar used for numerical stability.131

The following definition formalizes the idea that an SDE can be a “good model” to describe an132

optimizer. It is drawn from the field of numerical analysis of SDEs (see Mil’shtein (1986)) and it133

quantifies the disparity between the discrete and the continuous processes.134

Definition 3.1 (Weak Approximation). A continuous-time stochastic process {Xt}t∈[0,T ] is an order135

α weak approximation (or α-order SDE) of a discrete stochastic process {xk}⌊T/η⌋
k=0 if for every136

polynomial growth function g, there exists a positive constant C, independent of the stepsize η, such137

that maxk=0,...,⌊T/η⌋ |Eg (xk)− Eg (Xkη)| ≤ Cηα.138

3.1 SignSGD SDE139

In this section, we derive an SDE model for SignSGD, which we believe to be a novel addition to140

the existing literature. This derivation will reveal the unique manner in which noise influences the141

dynamics of SignSGD. First, we recall the update equation of SignSGD:142

xk+1 = xk − ηsign (∇fγk
(xk)) . (1)
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Figure 1: Comparison of SignSGD and its SDE in terms of f(x): Our SDE successfully tracks the
dynamics of SignSGD on several architectures: DNN on the Breast Cancer dataset (Left); CNN on
MNIST (Center-Left); Transformer on MNIST (Center-Right); ResNet on CIFAR-10 (Right).

The following theorem derives a formal continuous-time model for SignSGD.143

Theorem 3.2 (Informal Statement of Theorem C.5). Under sufficient regularity conditions, the144

solution of the following SDE is an order 1 weak approximation of the discrete update of SignSGD:145

dXt = −(1− 2P(∇fγ(Xt) < 0))dt+
√
η
√

Σ̄(Xt)dWt, (2)

where Σ̄(x) is the noise covariance Σ̄(x) = E[ξγ(x)ξγ(x)⊤] and ξγ(x) := sign(∇fγ(x)) − 1 +146

2P(∇fγ(x) < 0) the noise in the sample sign (∇fγ(x)).147

For didactic reasons, we next present a corollary of Theorem 3.2 that provides a more interpretable148

SDE. Figure 1 shows the empirical validation of this model for various neural network classes: All149

details are presented in Appendix F.150

Corollary 3.3 (Informal Statement of Corollary C.7). Under the assumptions of Theorem 3.2, and151

that the stochastic gradient is ∇fγ(x) = ∇f(x)+Z such that Z ∼ N (0,Σ), Σ = diag(σ2
1 , · · · , σ2

d),152

the following SDE provides a 1 weak approximation of the discrete update of SignSGD153

dXt = −Erf

(
Σ− 1

2∇f(Xt)√
2

)
dt+

√
η

√√√√Id − diag

(
Erf

(
Σ− 1

2∇f(Xt)√
2

))2

dWt, (3)

where the error function Erf(x) and the square are applied component-wise.154

While Eq. (3) may appear intricate at first glance, it becomes apparent upon closer inspection that155

the properties of the Erf(·) function enable a detailed exploration of the dynamics of SignSGD. In156

particular, we demonstrate that the dynamics of SignSGD can be categorized into three distinct157

phases. The left of Figure 2 empirically verifies this result on a convex quadratic function.158

Lemma 3.4. Under the assumptions of Corollary 3.3 and signal-to-noise ratio Yt :=
Σ− 1

2 ∇f(Xt)√
2

,159

1. Phase 1: If |Yt| > 3
2 , the SDE coincides with the ODE of SignGD:160

dXt = −sign(∇f(Xt))dt; (4)

2. Phase 2: If 1 < |Yt| < 3
2 :1161

(a) mYt + q− ≤ dE[Xt]
dt ≤ mYt + q+;162

(b) For any a > 0, P
[
∥Xt − E [Xt]∥22 > a

]
≤ η

a

(
d− ∥mYt + q−∥22

)
;163

3. Phase 3: If |Yt| < 1, the SDE is164

dXt = −
√

2

π
Σ− 1

2∇f(Xt)dt+
√
η

√
Id −

2

π
diag

(
Σ− 1

2∇f(Xt)
)2

dWt. (5)

1Let m and q1 are the slope and intercept of the line secant to the graph of Erf(x) between the points
(1,Erf(1)) and

(
3
2
,Erf

(
3
2

))
, while q2 is the intercept of the line tangent to the graph of Erf(x) and slope m,

(q+)i :=

{
q2 if ∂if(x) > 0

−q1 if ∂if(x) < 0
, (q−)i :=

{
q1 if ∂if(x) > 0

−q2 if ∂if(x) < 0
, and q̂ := max(q1, q2).
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Figure 2: Phases of SignSGD: The ODE of Phase 1 and the SDE of Phase 3 overlap with the “Full”
SDE as per Lemma 3.4 (Left); Phases of the Loss: The bounds derived in Lemma 3.5 for the loss
during Phase 1 and Phase 3 correctly track the loss evolution (Center-Left); The dynamics of the
moments of Xt predicted in Lemma 3.7 track the empirical ones (Center-Right); If the schedulers
satisfy the condition in Lemma 3.9, the loss decays to 0 as prescribed. Otherwise, the loss does not
converge to 0 (Right).

Remark: The behavior of SignSGD depends on the size of the signal-to-noise ratio. In particular, the165

SDE itself shows that in Phase 3, the inverse of the scale of the noise Σ− 1
2 premultiplies the gradient,166

thus affecting the rate of descent. This is not the case for SGD where Σ only influences the diffusion167

term.2 To better understand the role of the noise, we need to study how it affects the dynamics of the168

loss and compare it with SGD.169

Lemma 3.5. Let f be µ-strongly convex, Tr(∇2f(x)) ≤ Lτ , and St := f(Xt) − f(X∗). Then,170

during171

1. Phase 1, the loss will reach 0 before t∗ = 2
√

S0

µ because St ≤ 1
4

(√
µt− 2

√
S0

)2
;172

2. Phase 2 with ∆ :=
(

m√
2σmax

+ ηµm2

4σ2
max

)
: E[St] ≤ S0e

−2µ∆t + η
2

(Lτ−µdq̂2)
2µ∆

(
1− e−2µ∆t

)
;173

3. Phase 3 with ∆ :=
(√

2
π

1
σmax

+ η
π

µ
σ2

max

)
: E[St] ≤ S0e

−2µ∆t + η
2

Lτ

2µ∆

(
1− e−2µ∆t

)
.174

In Phase 1, the signal-to-noise ratio is large, meaning that SignSGD behaves like SignGD: Consistently175

with the analysis of SignGD in (Ma et al., 2022), this explains the fast initial convergence of the176

optimizer as well as of RMSprop and Adam. In this phase, the loss undergoes a steady decrease177

which ensures the emergence of Phase 2 which in turn triggers that of Phase 3 which is characterized178

by an exponential decay to an asymptotic loss level: As a practical example, we verify the dynamics179

of the expected loss around a minimum in the center-left of Figure 2.180

Lemma 3.6. For SGD, the expected loss satisfies: E[St] ≤ S0e
−2µt + η

2
Lτσ

2
max

2µ

(
1− e−2µt

)
.181

Remark: The two key observations are that:182

1. Both in Phase 2 and Phase 3, the noise level σmax inversely affects the exponential conver-183

gence speed, while this trend is not observed with SGD;184

2. The asymptotic loss of SignSGD is (almost) linear in σmax while that of SGD is quadratic.185

Additionally, we characterize the stationary distribution of SignSGD around a minimum: Empirical186

validation is provided in the center-right of Figure 2.187

Lemma 3.7. Let H = diag(λ1, . . . , λd) and Mt := e
−2

(√
2
πΣ− 1

2 H+ η
πΣ− 1

2 H2
)
t. Then,188

1. E [Xt] = e−
√

2
πΣ− 1

2 HtX0
t→∞→ 0;189

2. Cov [Xt] =
(
Mt − e−2

√
2
πΣ− 1

2 Ht
)
X2

0 + η
2

(√
2
π Id +

η
πH
)−1

H−1Σ
1
2 (Id −Mt) ,190

which as t → ∞ converges to η
2

(√
2
π Id +

η
πH
)−1

H−1Σ
1
2 .191

Lemma 3.8. Under the same assumptions as Lemma 3.7, the stationary distribution for SGD is:192

E [Xt] = e−HtX0
t→∞→ 0 and Cov [Xt] =

η
2H

−1Σ
(
Id − e−2Ht

) t→∞→ η
2H

−1Σ.193

2Ths SDE of SGD is dXt = −∇f(Xt)dt+
√
ηΣ

1
2 dWt.
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As we observed above, the noise inversely affects the convergence rate of the iterates of SignSGD194

while it does not impact that of SGD. Additionally, while both covariance matrices essentially scale195

inversely to the hessian, that of SignSGD scales with Σ
1
2 while that of SGD scales with Σ.196

We conclude this section by presenting a condition on the step size scheduler that ensures the197

asymptotic convergence of the expected loss to 0 in Phase 3. For general schedulers, we characterize198

precisely the speed of convergence and the factors influencing it. Empirical validation is provided in199

the right of Figure 2 for a convex quadratic.200

Lemma 3.9. Under the assumptions of Lemma 3.5, any step size scheduler ηt such that201 ∫ ∞

0

ηsds = ∞ and lim
t→∞

ηt = 0 =⇒ E[f(Xt)− f(X∗)]
t→∞→ ≲

Lτσmax

4µ

√
π

2
ηt

t→∞→ 0. (6)

Remark: Under the same conditions, SGD satisfies E[f(Xt)− f(X∗)]
t→∞→ ≲ Lτσ

2
max

4µ ηt
t→∞→ 0.202

Conclusion: As noted in Bernstein et al. (2018), the signal-to-noise ratio is key in determining
the dynamics of SignSGD. Our SDEs help clarify the mechanisms underlying the dynamics of
SignSGD: we show that the effect of noise is radically different from SGD: 1) It affects the rate
of convergence of the iterates, of the covariance of the iterates, and of the expected loss; 2) The
asymptotic loss value and covariance of the iterates scale in Σ

1
2 while for SGD it does so in

Σ. On the one hand, low levels of noise will ensure a faster and steadier loss decrease close to
minima for SignSGD than for SGD. On the other, SGD will converge to much lower loss values.
A symmetric argument holds for high levels of noise, which suggests that SignSGD is more
resilient to high levels of noise.

203

3.1.1 Heavy-tailed noise204

Interestingly, we can replicate the efforts above also in case the noise structure is heavy-tailed as it is205

distributed according to a Student’s t distribution. Notably, we derive the SDE for the case where the206

noise has infinite variance and show how little marginal effect this has on the dynamics of SignSGD.207

Lemma 3.10. Under the assumptions of Corollary 3.3 but the noise on the gradients U ∼ tν(0, Id)208

where ν ∈ Z+: The following SDE is a 1 weak approximation of the discrete update of SignSGD209

dXt = −2Ξ
(
Σ− 1

2∇f(Xt)
)
dt+

√
η

√
Id − 4 diag

(
Ξ
(
Σ− 1

2∇f(Xt)
))2

dWt, (7)

where Ξ(x) is defined as Ξ(x) := x
Γ( ν+1

2 )
√
πνΓ( ν

2 )
2F1

(
1
2 ,

ν+1
2 ; 3

2 ;−
x2

ν

)
and 2F1 (a, b; c;x) is the hyper-210

geometric function. Above, the function Ξ(x) and the square are applied component-wise.211

We now characterize the dynamics of SignSGD when the noise on the gradient has infinite variance.212

Corollary 3.11. Under the assumptions of Lemma 3.10 and ν = 2, the dynamics in Phase 3 is:213

dXt = −
√

1

2
Σ− 1

2∇f(Xt)dt+
√
η

√
Id −

1

2
diag

(
Σ− 1

2∇f(Xt)
)2

dWt. (8)

Conclusion: We observe that the dynamics of SignSGD when the noise is Gaussian (Eq. (5)) and
when the noise is heavy-tailed with unbounded variance (Eq. (8)) are very similar: By comparing
the constants in front of the drift terms Σ− 1

2∇f(Xt), they are only ∼ 10% apart, and the diffusion
coefficients are comparable. Not only do we once more showcase the resilience of SignSGD to
high levels of noise, but in alignment with (Zhang et al., 2020b), we provide theoretical support
to the success of Adam in such a scenario where SGD would diverge.

214

All the results derived above can be extended to this setting: this is left as an exercise for the reader.215

3.2 AdamW SDE216

In the last subsection, we showcased how SDEs can serve as powerful tools to understand the217

dynamics of the simplest among coordinate-wise adaptive methods: SignSGD. Here, we extend the218
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Figure 3: The first two images compare the SDEs of AdamW and RMSpropW with the respective
optimizers in terms of trajectories and f(x) for a convex quadratic function while the other two
figures provide a comparison for an embedded saddle. In all cases, we observe good agreements.

discussion to Adam with decoupled weight decay, i.e. AdamW:219

vk+1 = β2vk + (1− β2) (∇fγk
(xk))

2
, mk+1 = β1mk + (1− β1)∇fγk

(xk),

xk+1 = xk − η
m̂k+1√
v̂k+1 + ϵ

− ηγxk, m̂k =
mk

1− βk
1

, v̂k =
vk

1− βk
2

, (9)

which, of course, covers Adam, RMSprop, and RMSpropW depending on the values of γ and β1.220

The following result proves the SDE of AdamW which we validate in Figure 3 for two simple221

landscapes and in Figure 4 for a Transformer and a ResNet.222

Theorem 3.12 (Informal Statement of Theorem C.31). Under sufficient regularity conditions, ρ1 =223

O(η−ζ) s.t. ζ ∈ (0, 1), and ρ2 = O(1), the order 1 weak approximation of AdamW is:224

dXt = −
√
γ2(t)

γ1(t)
P−1
t (Mt + ηρ1 (∇f (Xt)−Mt))dt− γXtdt (10)

dMt = ρ1 (∇f (Xt)−Mt) dt+
√
ηρ1Σ

1/2 (Xt) dWt (11)

dVt = ρ2
(
(∇f(Xt))

2 + diag (Σ (Xt))− Vt

)
dt, (12)

where βi = 1− ηρi ∼ 1, γi(t) = 1− e−ρit, and Pt = diag
√
Vt + ϵ

√
γ2(t)Id.225

In contrast to Remark 4.3 of Malladi et al. (2022), which suggests that an SDE for RMSprop and226

Adam is only viable if σ ≫ ∥∇f(x)∥ and σ ∼ 1
η , our derivation that does not need these assumptions:227

See Remark C.25 for a deeper discussion, the implications, and the experimental comparison.228

The following result demonstrates how the asymptotic expected loss of AdamW scales with the noise229

level. Notably, it introduces the first scaling rule for AdamW, extending the one proposed for Adam230

in (Malladi et al., 2022) to include weight decay scaling. It is crucial to understand that, unlike the231

typical approach in the literature (see (Jastrzebski et al., 2018; Malladi et al., 2022)), our objective in232

deriving these rules is not to maintain the dynamics of the optimizers or the SDE unchanged. Instead,233

our goal is to offer a practical strategy for adjusting hyperparameters (e.g., from η to η̃) to retain234

certain performance metrics or optimizer properties as the batch size increases (e.g., from B to B̃).235

Therefore, in our upcoming analysis, we aim to derive scaling rules that preserve specific relevant236

aspects of the dynamics, such as the convergence bound on the loss or the speed. For a more detailed237

discussion motivating our approach, see Appendix E.238

Lemma 3.13. If f is µ-strongly convex and L-smooth, Lτ := Tr(∇2f(x)), and (∇f(x))2 = O(η),239

η̃ = κη, B̃ = Bδ, and ρ̃i = αiρi, and γ̃ = ξγ, AdamW satisfies240

E[f(Xt)− f(X∗)]
t→∞
≤ ηLτσL

2

κ

2µ
√
BδL+ σξγ(L+ µ)

. (13)

We derive the novel scaling rule by 1) Preserving the upper bound, which requires that κ =
√
δ and241

ξ = κ; 2) Preserving the relative speed of Mt, Vt and Xt, which requires that β̃i = 1− κ2(1− βi).242

The left of Figure 5 shows the empirical verification of the predicted loss value and scaling rule on243

a convex quadratic function.3 Interestingly, and consistently with Lemma 3.13, such a value is not244

3Table 1 in Appendix F.8 shows that our scaling rule works on DNNs: it confirms that failing to rescale the
weight decay parameter is suboptimal.
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Figure 4: The first two represent the comparison between AdamW and its SDE in terms of f(x). The
other two do the same for RMSpropW. In both cases, the first is a Transformer on MNIST and the
second a ResNet on CIFAR-10: Our SDEs match the respective optimizers.
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Figure 5: The loss predicted in Lemma 3.13 matches the experimental results on a convex quadratic
function. AdamW is run with regularization parameter γ = 1. AdamW R (AdamW Rescaled) is run
as we apply the scaling rule with κ = 2. AdamW NR (AdamW Not Rescaled) is run as we apply
the scaling rule with κ = 2 on all hyperparameters but γ, which is left unchanged: Our scaling rule
holds, and failing to rescale γ leads the optimizer not to preserve the asymptotic loss level. The same
happens for γ = 4 (Left); The same for RMSpropW (Center-Left); For AdamW, β1 and β2 influence
which basin will attract the dynamics and how fast this will converge, but not the asymptotic loss
level inside the basin (Center-Right). For both AdamW and RMSpropW, the variance at convergence
predicted in Lemma 3.14 matches the experimental results (Right).

influenced by the choice of βi: We argue that βi do not impact the asymptotic level of the loss, but245

rather drive the selection of the basin and speed at which AdamW converges to it — The center-right246

of Figure 5 exemplifies this on a simple nonconvex landscape.247

We conclude this section with the stationary distribution of AdamW around a minimum which we248

empirically validate on the right of Figure 5.249

Lemma 3.14. The stationary distribution of AdamW is250

(E[X∞], Cov[X∞]) =

(
0,

η

2

(
Id + γH−1Σ

1
2

)−1

H−1Σ
1
2

)
.

RMSpropW We derived the same results for RMSprop(W) and we reported them in Appendix251

C.4: importantly, we validate the SDE in Figure 3 for two simple landscapes and in Figure 4 for a252

Transformer and a ResNet. The results regarding the asymptotic loss level and stationary distributions253

are validated in the center-left and right of Figure 5 for a convex quadratic function.254

Conclusion: While for both SignSGD and Adam the asymptotic loss value and the covariance of
the iterates scale linearly with Σ

1
2 , we observe for AdamW this is more intricate: The interaction

between curvature, noise, and regularization implies that these two quantities are upper-bounded
in Σ

1
2 and increasing Σ to infinity does not lead to their explosion: Weight decay plays a crucial

stabilization role at high noise levels near the minimizer — See Figure 6 for a comparison across
optimizers. Finally, we argue that βi play a key role in selecting the basin and the convergence
speed to the asymptotic loss value rather than impacting the loss value itself.

255

4 Experiments: SDE validation256

The point of our experiments is to validate the theoretical results derived from the SDEs. Therefore,257

we first show that our SDEs faithfully represent the dynamics of their respective optimizers. To do258
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Figure 6: For SGD (Left), SignSGD (Center-Left), Adam (Center-Right), and AdamW: For each
optimizer, we plot the loss value on a convex quadratic and compare its asymptotic value with the
limits predicted by our theory. As we take Σ = σ2Id, we confirm that the loss of SGD scales
quadratically in σ (Lemma 3.6), and linearly for SignSGD (Lemma 3.5) and Adam (Lemma 3.13
with γ = 0). For AdamW, the maximum asymptotic loss value is bounded in σ (Lemma 3.13 with
γ > 0). In accordance with the experiments, our theory predicts that adaptive methods are more
resilient to noise.

so, we integrate the SDEs with Euler-Maruyama (Algorithm 1): This is particularly challenging and259

expensive as one needs to calculate the full gradients of the DNNs at each iteration.4 We present the260

first set of validation experiments on a variety of architectures and datasets: An MLP on the Breast261

Cancer dataset, a CNN and a Transformer on MNIST, and a ResNet on CIFAR-10. All details are in262

Appendix F.263

5 Conclusion264

We derived the first formal SDE for SignSGD, enabling us to demonstrate its dynamics traversing265

three discernible phases. We characterize how the signal-to-noise ratio drives the dynamics of the266

loss in each of these phases, and we derive the asymptotic value of the loss function, as well as the267

stationary distribution. Regarding the role of noise, we draw a straightforward comparison with268

SGD. For SignSGD, the noise level
√
Σ has an inverse linear effect on the convergence speed of the269

loss and the iterates. However, it linearly affects the asymptotic expected loss and the asymptotic270

variance of the iterates. In contrast, for SGD, noise does not influence the convergence speed but271

has a quadratic impact on the loss level and variance. We also examine the scenario where the noise272

has infinite variance and demonstrate the resilience of SignSGD, showing that its performance is273

only marginally affected. Finally, we generalize the analysis to include AdamW and RMSpropW.274

Specifically, we leverage our novel SDEs to derive the asymptotic value of the loss function, their275

stationary distribution on a convex quadratic, and a novel scaling rule. The key insight is that, similarly276

to SignSGD, the loss level and covariance matrix of the iterates of Adam and RMSprop scale linearly277

in the noise level Σ
1
2 . For AdamW and RMSpropW, the complex interaction of noise, curvature, and278

regularization implies that these two quantities are bounded in terms of Σ
1
2 , showing that weight279

decay plays a crucial stabilization role at high noise levels near the minimizer. Interestingly, the280

SDEs for Adam and RMSprop are straightforward corollary of our general results and were derived281

under much less restrictive and more realistic assumptions than those in the literature. Finally, we282

thoroughly validate all our theoretical results: We compare the dynamics of the various optimizers283

with the respective SDEs and find good agreement on simple landscapes and deep neural networks.284

For Adam and RMSprop, our SDEs track them better than those derived in (Malladi et al., 2022).285

Future work We believe that our results can be extended to other optimizers commonly used in286

practice such as Signum, AdaGrad, AdaMax, and Nadam. Additionally, inspired by the insights287

from our SDE analysis, there is potential for designing new optimization algorithms that combine the288

strengths of existing methods while mitigating their weaknesses. For example, developing hybrid289

optimizers that adaptively switch between different strategies based on the training phase or current290

state of the optimization process could offer superior performance.291

4Many papers derived SDEs to model optimizers: most of them do not validate them, some do so on quadratic
functions, and Paquette et al. (2021); Compagnoni et al. (2023) do it on NNs: See Appendix A for details.
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A Additional related works497

In this section, we list some papers that derived or used SDEs to model optimizers. In particular, we498

focus on the aspect of empirically verifying the validity of such SDEs in the sense that they indeed499

track the respective optimizers. We divide these into three categories: Those that did not carry out500

any type of validation, those that did it on simple landscapes (quadratic functions et similia), and501

those that did small experiments or neural networks.502

None of the following papers carried out any experimental validation of the approximating power of503

the SDEs they derived. Many of them did not even validate the insights derived from the SDEs: (Liu504

et al., 2021; Hu et al., 2019; Bercher et al., 2020; Zhu and Ying, 2021; Cui et al., 2020; Maulén Soto,505

2021; Wang and Wu, 2020; Lanconelli and Lauria, 2022; Ayadi and Turinici, 2021; Soto et al., 2022;506

Li and Wang, 2022; Wang and Mao, 2022; Bardi and Kouhkouh, 2022; Chen et al., 2022; Kunin507

et al., 2023; Zhang et al., 2023; Sun et al., 2023; Li et al., 2023b; Gess et al., 2024; Dambrine et al.,508

2024; Maulen-Soto et al., 2024).509

The following ones carried out validation experiments on artificial landscapes, e.g. quadratic or510

quartic function, or easy regression tasks: (Li et al., 2017, 2019; Zhou et al., 2020b; An et al., 2020;511

Fontaine et al., 2021; Gu et al., 2021; Su and Lau, 2023; Ankirchner and Perko, 2024).512

The following papers carried out some experiments which include neural networks: (Paquette et al.,513

2021; Compagnoni et al., 2023). In particular, they both simulate the SDEs with a numerical integrator514

and compare them with the respective optimizers: The first validates the SDE on a shallow MLP515

while the second does so on a shallow and a deep MLP. Regarding (Li et al., 2021; Malladi et al.,516

2022), they do not validate their SDEs: Rather, their approach conceptually proceeds as follows:517

1. Derive an SDE for an optimizer which we now dub “A”;518
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2. Notice that simulating the SDE is too expensive;519

3. Define another discrete-time algorithm called SVAG which also has the same SDE as “A”520

but does not numerically integrate the SDE as it does not even require access to it: It does521

not need access neither to the drift nor to the diffusion term;522

4. Simulate SVAG and show that it tracks “A” successfully;523

5. Conclude that the SDE is a good approximation for “A”.524

However, they never validated that the SDE is a good approximation for “A” or for SVAG either.525

With the same logic, they could have done the following:526

1. Derive an SDE for “A”;527

2. Notice that simulating the SDE is too expensive;528

3. Define another discrete-time algorithm called “B” which coincides with “A” and thus of529

course shares the same SDE;530

4. Simulate “B” and show that it tracks “A” perfectly;531

5. Conclude that the SDE is a good approximation for “A”.532

In particular, the only fact they prove is that SVAG is a discrete-time optimizer that shares the same533

SDE as “A” because it describes a discrete trajectory that is a 1st-order approximation of the SDE of534

“A”. Technically speaking, “A” also does the same. One cannot conclude that the SDE derived for “A”535

is a good model for “A” by simply comparing two algorithms “A” and “B” that share the same SDE.536

Otherwise, simply comparing an optimizer “A” with itself would do the trick. An SDE’s empirical537

validation can only occur if the SDE is simulated with a numerical integrator that requires access to538

the drift and diffusion terms (Higham, 2001; Milstein, 2013).539

B Stochastic calculus540

In this section, we summarize some important results in the analysis of Stochastic Differential541

Equations Mao (2007); Øksendal (1990). The notation and the results in this section will be used542

extensively in all proofs in this paper. We assume the reader to have some familiarity with Brownian543

motion and with the definition of stochastic integral (Ch. 1.4 and 1.5 in Mao (2007)).544

B.1 Itô’s Lemma545

We start with some notation: Let (Ω,F , {Ft}t≥0,P) be a filtered probability space. We say that an
event E ∈ F holds almost surely (a.s.) in this space if P(E) = 1. We call Lp([a, b],Rd), with p > 0,
the family of Rd-valued Ft-adapted processes {ft}a≤t≤b such that∫ b

a

∥ft∥pdt ≤ ∞.

Moreover, we denote by Mp([a, b],Rd), with p > 0, the family of Rd-valued processes {ft}a≤t≤b546

in L([a, b],Rd) such that E
[∫ b

a
∥ft∥pdt

]
≤ ∞. We will write h ∈ Lp

(
R+,Rd

)
, with p > 0, if547

h ∈ Lp
(
[0, T ],Rd

)
for every T > 0. Similar definitions hold for matrix-valued functions using the548

Frobenius norm ∥A∥ :=
√∑

ij |Aij |2.549

Let W = {Wt}t≥0 be a one-dimensional Brownian motion defined on our probability space and let550

X = {Xt}t≥0 be an Ft-adapted process taking values on Rd.551

Definition B.1. Let the drift be b ∈ L1
(
R+,Rd

)
and the diffusion term be σ ∈ L2

(
R+,Rd×m

)
.552

Xt is an Itô process if it takes the form553

Xt = x0 +

∫ t

0

bsds+

∫ t

0

σsdWs.
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We shall say that Xt has the stochastic differential554

dXt = btdt+ σtdWt. (14)

555

Theorem B.2 (Itô’s Lemma). Let Xt be an Itô process with stochastic differential dXt = btdt +556

σtdWt. Let f (x, t) be twice continuously differentiable in x and continuously differentiable in t,557

taking values in R. Then f(Xt, t) is again an Itô process with stochastic differential558

df(Xt, t) = ∂tf(Xt, t))dt+ ⟨∇f(Xt, t), bt⟩dt+
1

2
Tr
(
σtσ

⊤
t ∇2f(Xt, t)

)
dt+ ⟨∇f(Xt, t), σt⟩dWt.

(15)

B.2 Stochastic Differential Equations559

Stochastic Differential Equations (SDEs) are equations of the form560

dXt = b(Xt, t)dt+ σ(Xt, t)dWt.

First of all, we need to define what it means for a stochastic process X = {Xt}t≥0 with values in Rd561

to solve an SDE.562

Definition B.3. Let Xt be as above with deterministic initial condition X0 = x0. Assume b :563

Rd × [0, T ] → Rd and σ : Rd × [0, T ] → Rd×m are Borel measurable; Xt is called a solution to the564

corresponding SDE if565

1. Xt is continuous and Ft-adapted;566

2. b ∈ L1
(
[0, T ],Rd

)
;567

3. σ ∈ L2
(
[0, T ],Rd×m

)
;568

4. For every t ∈ [0, T ]

Xt = x0 +

∫ t

0

b(Xs, s)ds+

∫ t

0

σ(Xs, s)dW (s) a.s.

Moreover, the solution Xt is said to be unique if any other solution X⋆
t is such that

P {Xt = X⋆
t , for all 0 ≤ t ≤ T} = 1.

569
Notice that since the solution to an SDE is an Itô process, we can use Itô’s Lemma. The following570

theorem gives a sufficient condition on b and σ for the existence of a solution to the corresponding571

SDE.572

Theorem B.4. Assume that there exist two positive constants K̄ and K such that573

1. (Global Lipschitz condition) for all x, y ∈ Rd and t ∈ [0, T ]

max{∥b(x, t)− b(y, t)∥2, ∥σ(x, t)− σ(y, t)∥2} ≤ K̄∥x− y∥2;

2. (Linear growth condition) for all x ∈ Rd and t ∈ [0, T ]

max{∥b(x, t)∥2, ∥σ(x, t)∥2} ≤ K(1 + ∥x∥2).

Then, there exists a unique solution Xt to the corresponding SDE, and Xt ∈ M2([0, T ],Rd).574

Numerical approximation. Often, SDEs are solved numerically. The simplest algorithm to provide575

a sample path (x̂k)k≥0 for Xt, so that Xk∆t ≊ x̂k for some small ∆t and for all k∆t ≤ M is called576

Euler-Maruyama (Algorithm 1). For more details on this integration method and its approximation577

properties, the reader can check Mao (2007).578
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Algorithm 1 Euler-Maruyama Integration Method for SDEs

input The drift b, the volatility σ, and the initial condition x0.
Fix a stepsize ∆t;
Initialize x̂0 = x0;
k = 0;
while k ≤

⌊
T
∆t

⌋
do

Sample some d-dimensional Gaussian noise Zk ∼ N (0, Id);
Compute x̂k+1 = x̂k +∆t b(x̂k, k∆t) +

√
∆t σ(x̂k, k∆t)Zk;

k = k + 1;
end while

output The approximated sample path (x̂k)0≤k≤⌊ T
∆t⌋.

C Theoretical framework - Weak Approximation579

In this section, we introduce the theoretical framework used in the paper, together with its assumptions580

and notations.581

First of all, many proofs will use Taylor expansions in powers of η. For ease of notation, we introduce
the shorthand that whenever we write O (ηα), we mean that there exists a function K(x) ∈ G such
that the error terms are bounded by K(x)ηα. For example, we write

b(x+ η) = b0(x) + ηb1(x) +O
(
η2
)

to mean: there exists K ∈ G such that
|b(x+ η)− b0(x)− ηb1(x)| ≤ K(x)η2.

Additionally, we introduce the following shorthand:582

• A multi-index is α = (α1, α2, . . . , αn) such that αj ∈ {0, 1, 2, . . .};583

• |α| := α1 + α2 + · · ·+ αn;584

• α! := α1!α2! · · ·αn!;585

• For x = (x1, x2, . . . , xn) ∈ Rn, we define xα := xα1
1 xα2

2 · · ·xαn
n ;586

• For a multi-index β, ∂|β|
β f(x) := ∂|β|

∂
β1
x1

∂
β2
x2

···∂βn
xn

f(x);587

• We also denote the partial derivative with respect to xi by ∂ei .588

589

Definition C.1 (G Set). Let G denote the set of continuous functions Rd → R of at most polynomial590

growth, i.e. g ∈ G if there exists positive integers ν1, ν2 > 0 such that |g(x)| ≤ ν1
(
1 + |x|2ν2

)
, for591

all z ∈ Rd.592

The next results are inspired by Theorem 1 of Li et al. (2017) and are derived under some regularity593

assumption on the function f .594

Assumption C.2. Assume that the following conditions on f, fi, and their gradients are
satisfied:

• ∇f,∇fi satisfy a Lipschitz condition: there exists L > 0 such that

|∇f(u)−∇f(v)|+
n∑

i=1

|∇fi(u)−∇fi(v)| ≤ L|u− v|;

• f, fi and its partial derivatives up to order 7 belong to G;
• ∇f,∇fi satisfy a growth condition: there exists M > 0 such that

|∇f(x)|+
n∑

i=1

|∇fi(x)| ≤ M(1 + |x|).

595
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Lemma C.3 (Lemma 1 Li et al. (2017)). Let 0 < η < 1. Consider a stochastic process
Xt, t ≥ 0 satisfying the SDE

dXt = b (Xt) dt+
√
ησ (Xt) dWt

with X0 = x ∈ Rd and b, σ together with their derivatives belong to G. Define the one-step
difference ∆ = Xη − x, and indicate the i-th component of ∆ with ∆i. Then we have

1. E∆i = biη + 1
2

[∑d
j=1 bj∂ej bi

]
η2 +O

(
η3
)

∀i = 1, . . . , d;

2. E∆i∆j =
[
bibj + σσT

(ij)

]
η2 +O

(
η3
)

∀i, j = 1, . . . , d;

3. E
∏s

j=1 ∆(ij) = O
(
η3
)

for all s ≥ 3, ij = 1, . . . , d.

All functions above are evaluated at x.
596

Theorem C.4 (Theorem 2 and Lemma 5, Mil’shtein (1986)). Let Assumption C.2 hold and
let us define ∆̄ = x1 − x to be the increment in the discrete-time algorithm, and indicate the
i-th component of ∆̄ with ∆̄i. If in addition there exists K1,K2,K3,K4 ∈ G so that

1.
∣∣E∆i − E∆̄i

∣∣ ≤ K1(x)η
2, ∀i = 1, . . . , d;

2.
∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(x)η
2, ∀i, j = 1, . . . , d;

3.
∣∣∣E∏s

j=1 ∆ij − E
∏s

j=1 ∆̄ij

∣∣∣ ≤ K3(x)η
2, ∀s ≥ 3, ∀ij ∈ {1, . . . , d};

4. E
∏3

j=1

∣∣∆̄ij

∣∣ ≤ K4(x)η
2, ∀ij ∈ {1, . . . , d}.

Then, there exists a constant C so that for all k = 0, 1, . . . , N we have

|Eg (Xkη)− Eg (xk)| ≤ Cη.

597

C.1 Limitations598

Modeling of discrete-time algorithms using SDEs relies on Assumption C.2. As noted by Li et al.599

(2021), the approximation can fail when the stepsize η is large or if certain conditions on ∇f and the600

noise covariance matrix are not met. Although these issues can be addressed by increasing the order601

of the weak approximation, we believe that the primary purpose of SDEs is to serve as simplification602

tools that enhance our intuition: We would not benefit significantly from added complexity.603

C.2 Formal derivation - SignSGD604

In this subsection, we provide the first formal derivation of an SDE model for SignSGD. Let us605

consider the stochastic process Xt ∈ Rd defined as the solution of606

dXt = −(1− 2P(∇fγ(Xt) < 0))dt+
√
η
√

Σ̄(Xt)dWt, (16)

where607

Σ̄(x) = E[ξγ(x)ξγ(x)⊤], (17)

and ξγ(x) := sign(∇fγ(x)) − 1 + 2P(∇fγ(x) < 0) the noise in the sample sign (∇fγ(x)). The608

following theorem guarantees that such a process is a 1-order SDE of the discrete-time algorithm of609

SignSGD610

xk+1 = xk − ηsign (fγk
(xk)) , (18)

with x0 ∈ Rd, η ∈ R>0 is the step size, the mini-batches {γk} are modelled as i.i.d. random variables611

uniformly distributed on {1, · · · , N}, and of size B ≥ 1.612
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Theorem C.5 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋.
Let xk ∈ Rd, 0 ≤ k ≤ N denote a sequence of SignSGD iterations defined by Eq. (18).
Consider the stochastic process Xt defined in Eq. (16) and fix some test function g ∈ G and
suppose that g and its partial derivatives up to order 6 belong to G.
Then, under Assumption C.2, there exists a constant C > 0 independent of η such that for all
k = 0, 1, . . . , N , we have

|Eg (Xkη)− Eg (xk)| ≤ Cη.

That is, the SDE (16) is an order 1 weak approximation of the SignSGD iterations (18).
613

Lemma C.6. Under the assumptions of Theorem C.5, let 0 < η < 1 and consider xk, k ≥ 0
satisfying the SignSGD iterations

xk+1 = xk − ηsign (∇fγk
(xk))

with x0 ∈ Rd. From the definition the one-step difference ∆̄ = x1 − x, then we have

1. E∆̄i = − (1− 2P (∂ifγ < 0)) η ∀i = 1, . . . , d;
2. E∆̄i∆̄j =

(
(1− 2P (∂ifγ < 0)) (1− 2P (∂jfγ < 0)) + Σ̄(ij)

)
η2 ∀i, j =

1, . . . , d;
3. E

∏s
j=1 ∆̄ij = O

(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , d}.

All the functions above are evaluated at x.
614

Proof of Lemma C.6. First of all, we have that by definition615

E
[
xi
1 − xi

]
= −ηE [sign (∂ifγ(x) < 0)] , (19)

which implies616

E∆̄i = − (1− 2P (∂ifγ(x) < 0)) η ∀i = 1, . . . , d. (20)

Second, we have that by definition617

E
[
(x1 − x) (x1 − x)

⊤
]
=E
[
(sign (∂ifγ(x) < 0)− 1 + 2P (∂ifγ(x) < 0)) (21)

(sign (∂ifγ(x) < 0)− 1 + 2P (∂ifγ(x) < 0))
⊤
]
η2, (22)

which implies that618

E∆̄i∆̄j = (1− 2P (∂ifγ < 0)) (1− 2P (∂jfγ < 0)) η2 + Σ̄(ij)η
2 ∀i, j = 1, . . . , d. (23)

Finally, by definition619

E
s∏

j=1

∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , d}, (24)

which concludes our proof.620

Proof of Theorem C.5. To prove this result, all we need to do is check the conditions in Theorem C.4.621

As we apply Lemma C.3, we make the following choices:622

• b(x) = −(1− 2P (∇fγ(x) < 0));623

• σ(x) =
√
Σ̄(x).624
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First of all, we notice that ∀i = 1, . . . , d, it holds that625

• E∆̄i
1. Lemma C.6

= − (1− 2P (∂ifγ(x) < 0)) η;626

• E∆i
1. Lemma C.3

= − (1− 2P (∂ifγ(x) < 0)) η +O
(
η2
)
.627

Therefore, we have that for some K1(x) ∈ G,628 ∣∣E∆i − E∆̄i

∣∣ ≤ K1(x)η
2, ∀i = 1, . . . , d. (25)

Additionally, we notice that ∀i, j = 1, . . . , d, it holds that629

• E∆̄i∆̄j
2. Lemma C.6

= (1− 2P (∂ifγ(x) < 0)) (1− 2P (∂jfγ(x) < 0)) η2 + Σ̄(ij)(x)η
2;630

• E∆i∆j
2. Lemma C.3

=
(
(1− 2P (∂ifγ(x) < 0)) (1− 2P (∂jfγ(x) < 0)) + Σ̄(ij)(x)

)
η2 +631

O
(
η3
)
.632

Therefore, we have that for some K2(x) ∈ G,633 ∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(x)η
2, ∀i, j = 1, . . . , d. (26)

Additionally, we notice that ∀s ≥ 3,∀ij ∈ {1, . . . , d}, it holds that634

• E
∏s

j=1 ∆̄ij
3. Lemma C.6

= O
(
η3
)
;635

• E
∏s

j=1 ∆ij
3. Lemma C.3

= O
(
η3
)
.636

Therefore, we have that for some K3(x) ∈ G,637 ∣∣∣∣∣∣E
s∏

j=1

∆ij − E
s∏

j=1

∆̄ij

∣∣∣∣∣∣ ≤ K3(x)η
2. (27)

Additionally, for some K4(x) ∈ G, ∀ij ∈ {1, . . . , d},638

E
3∏

j=1

∣∣∆̄(ij)

∣∣ 3. Lemma C.6
≤ K4(x)η

2. (28)

To conclude, Eq. (25), Eq. (26), Eq. (27), and Eq. (28) allow us to conclude the proof.639

Corollary C.7. Let us take the same assumptions of Theorem C.5, and that the stochastic
gradient is ∇fγ(x) = ∇f(x) + U such that U ∼ N (0,Σ) that does not depend on x. Then,
the following SDE provides a 1 weak approximation of the discrete update of SignSGD

dXt = −Erf

(
Σ− 1

2∇f(Xt)√
2

)
dt+

√
η

√√√√Id − diag

(
Erf

(
Σ− 1

2∇f(Xt)√
2

))2

dWt, (29)

where the error function Erf(x) and the square are applied component-wise, and Σ =
diag

(
σ2
1 , · · · , σ2

d

)
.

640

Proof of Corollary C.7. First of all, we observe that641

1− 2P (∇fγ(x) < 0) = 1− 2P
(
∇f(x) + Σ

1
2U < 0

)
= 1− 2Φ

(
−Σ− 1

2∇f(x)
)
, (30)
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where Φ is the cumulative distribution function of the standardized normal distribution. Remembering642

that643

Φ(x) =
1

2

(
1 + Erf

(
x√
2

))
, (31)

we have that644

1− 2P (∇fγ(x) < 0) = 1− 2
1

2

(
1 + Erf

(
−Σ− 1

2∇f(x)√
2

))
= Erf

(
Σ− 1

2∇f(x)√
2

)
. (32)

Similarly, one can prove that Σ̄ defined in (17) becomes645

Σ̄ = Id − diag

(
Erf

(
Σ− 1

2∇f(Xt)√
2

))2

. (33)

646

Corollary C.8. Let us take the same assumptions of Theorem C.5, and that the stochastic
gradient is ∇fγ(x) = ∇f(x) +

√
ΣU such that U ∼ tν(0, Id) that does not depend on x

and ν is a positive integer number. Then, the following SDE provides a 1 weak approximation
of the discrete update of SignSGD

dXt = −2Ξ
(
Σ− 1

2∇f(Xt)
)
dt+

√
η

√
Id − 4 diag

(
Ξ
(
Σ− 1

2∇f(Xt)
))2

dWt, (34)

where Ξ(x) is defined as

Ξ(x) := x
Γ
(
ν+1
2

)
√
πνΓ

(
ν
2

) 2F1

(
1

2
,
ν + 1

2
;
3

2
;−x2

ν

)
, (35)

and 2F1 (a, b; c;x) is the hypergeometric function. Above, function Ξ(x) and the square are
applied component-wise, and Σ = diag

(
σ2
1 , · · · , σ2

d

)
.

647

Proof of Corollary C.8. First of all, we observe that648

1− 2P (∇fγ(x) < 0) = 1− 2P
(
∇f(x) + Σ

1
2U < 0

)
= 1− 2Fν

(
−Σ− 1

2∇f(x)
)
, (36)

where Fν (x) is the cumulative function of a t distribution with ν degrees of freedom. Remembering649

that650

Fν (x) =
1

2
+ Ξ(x), (37)

we have that651

1− 2P (∇fγ(x) < 0) = 1− 2

(
1

2
+ Ξ(x)

)
= −2Ξ(x). (38)

Similarly, one can prove that Σ̄ defined in (17) becomes652

Σ̄ = Id − 4 diag
(
Ξ
(
Σ− 1

2∇f(Xt)
))2

. (39)

653

Lemma C.9. Under the assumptions of Corollary C.7 and signal-to-noise ratio Yt :=
Σ− 1

2 ∇f(Xt)√
2

,654

1. Phase 1: If |Yt| > 3
2 , the SDE coincides with the ODE of SignGD:655

dXt = −sign(∇f(Xt))dt; (40)

2. Phase 2: If 1 < |Yt| < 3
2 :656

(a) mYt + q− ≤ dE[Xt]
dt ≤ mYt + q+;657

21



(b) P
[
∥Xt − E [Xt]∥22 > a

]
≤ η

a

(
d− ∥mYt + q−∥22

)
;658

3. Phase 3: If |Yt| < 1, the SDE is659

dXt = −
√

2

π
Σ− 1

2∇f(Xt)dt+
√
η

√
Id −

2

π
diag

(
Σ− 1

2∇f(Xt)
)2

dWt. (41)

Proof of Lemma C.9. Exploiting the regularity of the Erf function, we approximate the SDE in (29)660

in three different regions:661

1. Phase 1: If |x| > 3
2 , Erf(x) ∼ sign(x). Therefore, if

∣∣∣∣Σ− 1
2 ∇f(Xt)√

2

∣∣∣∣ > 3
2 ,662

(a) Erf
(

Σ− 1
2 ∇f(Xt)√

2

)
∼ sign

(
Σ− 1

2 ∇f(Xt)√
2

)
= sign (∇f(Xt));663

(b) Erf
(

Σ− 1
2 ∇f(Xt)√

2

)2

∼ sign
(

Σ− 1
2 ∇f(Xt)√

2

)2

= (1, . . . , 1).664

Therefore,665

dXt = −Erf

(
Σ− 1

2∇f(Xt)√
2

)
dt+

√
η

√√√√Id − diag

(
Erf

(
Σ− 1

2∇f(Xt)√
2

))2

dWt

∼ −sign(∇f(Xt)); (42)

2. Phase 2: Let m and q1 are the slope and intercept of the line secant to the graph of Erf(x)666

between the points (1,Erf(1)) and
(
3
2 ,Erf

(
3
2

))
, while q2 is the intercept of the line tangent667

to the graph of Erf(x) and slope m. If 1 < x < 3
2 , we have that668

mx+ q1 < Erf(x) < mx+ q2. (43)

Analogously, if − 3
2 < x < −1669

mx− q2 < Erf(x) < mx− q1. (44)

Therefore, we have that if 1 <

∣∣∣∣Σ− 1
2 ∇f(Xt)√

2

∣∣∣∣ < 3
2 , then670

(a)

m√
2
Σ− 1

2∇f(Xt) + q− < Erf

(
Σ− 1

2∇f(Xt)√
2

)
<

m√
2
Σ− 1

2∇f(Xt) + q+, (45)

where671

(q+)i :=

{
q2 if ∂if(x) > 0

−q1 if ∂if(x) < 0 ,
(46)

and672

(q−)i :=

{
q1 if ∂if(x) > 0

−q2 if ∂if(x) < 0 ,
(47)

Therefore,673

m√
2
Σ− 1

2∇f(Xt) + q− ≤ dE [Xt]

dt
≤ m√

2
Σ− 1

2∇f(Xt) + q+; (48)

(b) Similar to the above,674 (
m√
2
Σ− 1

2∇f(Xt) + q−
)2

≤ Erf

(
Σ− 1

2∇f(Xt)√
2

)2

≤
(

m√
2
Σ− 1

2∇f(Xt) + q+

)2

.
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Therefore,675

P
[
∥Xt − E [Xt]∥22 > a

]
≤ P

[
∃i s.t. |Xi

t − E
[
Xi

t

]
|2 > a

]
(49)

≤
∑
i

P
[
|Xi

t − E
[
Xi

t

]
| >

√
a
]

≤ η

a

∑
i

1− Erf

(
Σ

− 1
2

i ∂if(Xt)√
2

)2
 (50)

<
η

a

(
d− ∥ m√

2
Σ− 1

2∇f(Xt) + q−∥22
)
. (51)

3. Phase 3: If |x| < 1, Erf(x) ∼ 2√
π

. Therefore, if
∣∣∣∣Σ− 1

2 ∇f(Xt)√
2

∣∣∣∣ < 1,676

(a) Erf
(

Σ− 1
2 ∇f(Xt)√

2

)
∼
√

2
πΣ

− 1
2∇f(Xt);677

(b)
(

Erf
(

Σ− 1
2 ∇f(Xt)√

2

))2

∼ 2
π

(
Σ− 1

2∇f(Xt)
)2

.678

Therefore,679

dXt = −Erf

(
Σ− 1

2∇f(Xt)√
2

)
dt+

√
η

√√√√Id − diag

(
Erf

(
Σ− 1

2∇f(Xt)√
2

))2

dWt

∼ −
√

2

π
Σ− 1

2∇f(Xt)dt+
√
η

√
Id −

2

π
diag

(
Σ− 1

2∇f(Xt)
)2

dWt. (52)

680

Lemma C.10 (Dynamics of Expected Loss). Let f be µ-strongly convex, Tr(∇2f(x)) ≤ Lτ , and681

St := f(Xt)− f(X∗). Then, during682

1. Phase 1, the dynamics will stop before t∗ = 2
√

S0

µ because St ≤ 1
4

(√
µt− 2

√
S0

)2
;683

2. Phase 2 with ∆ :=
(

m√
2σmax

+ ηµm2

4σ2
max

)
: E[St] ≤ S0e

−2µ∆t + η
2

(Lτ−µdq̂2)
2µ∆

(
1− e−2µ∆t

)
;684

3. Phase 3 with ∆ :=
(√

2
π

1
σmax

+ η
π

µ
σ2

max

)
: E[St] ≤ S0e

−2µ∆t + η
2

Lτ

2µ∆

(
1− e−2µ∆t

)
.685

Proof of Lemma C.10. We prove each point by leveraging the shape of the law of Xt derived in686

Lemma C.9:687

1. Phase 1:688

d(f(Xt)− f(X∗)) = −∇f(Xt)sign(∇f(Xt)) = −∥∇f(Xt)∥1 ≤ −∥∇f(Xt)∥2 (53)

Since f is µ − PL, we have that −∥∇f(Xt)∥22 < −2µ(f(Xt) − f(X∗)), which implies689

that690

f(Xt)− f(X∗) ≤
1

4

(√
µt− 2

√
f(X0)− f(X∗)

)2
, (54)

meaning that the dynamics will stop before t∗ = 2
√

f(X0)−f(X∗)
µ ;691

2. Phase 2: By applying the Itô Lemma to f(Xt)− f(X∗) and that692

m√
2
Σ− 1

2∇f(Xt) + q− < Erf

(
Σ− 1

2∇f(Xt)√
2

)
<

m√
2
Σ− 1

2∇f(Xt) + q+, (55)
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we have that if q̂ := max(q1, q2),693

d(f(Xt)− f(X∗)) ≤−
(

m√
2
Σ− 1

2∇f(Xt) + q−
)⊤

∇f(Xt)dt+O(Noise) (56)

+
η

2
Tr

[
∇2f(Xt)

(
Id − diag

(
m√
2
Σ− 1

2∇f(Xt) + q−
)2
)]

(57)

≤− m√
2

1

σmax
∥∇f(Xt)∥22dt− q̂∥∇f(Xt)∥1dt+

ηLτ

2
dt (58)

− ηµ

2
∥ m√

2
Σ− 1

2∇f(Xt) + q−∥22dt+O(Noise) (59)

≤− m√
2

1

σmax
∥∇f(Xt)∥22dt− q̂∥∇f(Xt)∥1dt+

ηLτ

2
dt (60)

− ηµm2

4σ2
max

∥∇f(Xt)∥22dt−
ηµdq̂2

2
dt−

√
2mq̂

σmax
∥∇f(Xt)∥1dt (61)

+O(Noise) (62)

≤− 2µ

(
m√
2σmax

+
ηµm2

4σ2
max

)
(f(Xt)− f(X∗))dt (63)

+
η

2

(
Lτ − µdq̂2

)
dt+O(Noise), (64)

which implies that if k := 2µ
(

m√
2σmax

+ ηµm2

4σ2
max

)
,694

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗)))e
−kt +

η
(
Lτ − µdq̂2

)
2k

(
1− e−kt

)
. (65)

3. Phase 3: By applying the Itô Lemma to f(Xt)− f(X∗), we have that:695

d(f(Xt)− f(X∗)) =−
√

2

π
∇f(Xt)

⊤Σ− 1
2∇f(Xt)dt+O(Noise) (66)

+
η

2
Tr
((

Id −
2

π
diag

(
Σ− 1

2∇f(Xt)
)2)

∇2f(Xt)

)
dt (67)

≤ −
√

2

π

1

σmax
∥∇f(Xt)∥22dt+O(Noise) (68)

+
η

2
Tr
(
∇2f(Xt)

)
dt− η

π

µ

σ2
max

∥∇f(Xt)∥22dt (69)

≤ −

(√
2

π

1

σmax
+

η

π

µ

σ2
max

)
∥∇f(Xt)∥22dt (70)

+
η

2
Tr(∇2f(Xt))dt+O(Noise) (71)

Since f is µ-Strongly Convex, f is also µ-PL. Therefore, we have696

d(f(Xt)− f(X∗)) ≤− 2µ

(√
2

π

1

σmax
+

η

π

µ

σ2
max

)
(f(Xt)− f(X∗))dt (72)

+
η

2
Tr(∇2f(Xt))dt+O(Noise). (73)

Therefore,697

dE[f(Xt)− f(X∗)] ≤ −2µ

(√
2

π

1

σmax
+

η

π

µ

σ2
max

)
(E[f(Xt)− f(X∗)])dt+

η

2
Lτdt,

(74)
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which implies that if k := 2µ
(√

2
π

1
σmax

+ η
π

µ
σ2

max

)
,698

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗)))e
−kt +

ηLτ

2k

(
1− e−kt

)
. (75)

699

Lemma C.11. Under the assumptions of Lemma 3.5, for any step size scheduler ηt such that700 ∫ ∞

0

ηsds = ∞ and lim
t→∞

ηt = 0 =⇒ E[f(Xt)− f(X∗)]
t→∞→ 0. (76)

Proof of Lemma C.11. For any scheduler ηk used in701

xk+1 = xk − ηηksign (fγk
(xk)) , (77)

the SDE of Phase 3 is702

dXt = −
√

2

π
Σ− 1

2∇f(Xt)ηtdt+
√
ηηt

√
Id −

2

π
diag

(
Σ− 1

2∇f(Xt)
)2

dWt. (78)

Therefore, analogously to the calculations in Lemma C.10, we have that703

E[f(Xt)− f(X∗)] ≤
f(X0)− f(X∗) +

ηLτ

2

∫ t

0
e
2µ

∫ s
0

(√
2
π

1
σmax

ηl+
η
π

µ

σ2
max

η2
l

)
dl
η2sds

e
2µ

∫ t
0

(√
2
π

1
σmax

ηs+
η
π

µ

σ2
max

η2
s

)
ds

. (79)

Therefore, using l’Hôpital’s rule we have that704 ∫ ∞

0

ηsds = ∞ and lim
t→∞

ηt = 0 =⇒ E[f(Xt)− f(X∗)]
t→∞→ 0. (80)

705

Lemma C.12. Let H = diag(λ1, . . . , λd) and Mt := e
−2

(√
2
πΣ− 1

2 H+ η
πΣ− 1

2 H2
)
t. Then,706

1. E [Xt] = e−
√

2
πΣ− 1

2 HtX0;707

2. V ar [Xt] =
(
Mt − e−2

√
2
πΣ− 1

2 Ht
)
X2

0 + η
2

(√
2
π Id +

η
πH
)−1

H−1Σ
1
2 (Id −Mt).708

Proof of Lemma C.12. The proof is banal: The expected value derivation leverages the martingale709

property of the Brownian motion while that of the variance uses the Ito Isomerty.710

Lemma C.13. Let H = diag(λ1, . . . , λd). Then, E
[
X⊤

t HXt

2

]
is equal to711

d∑
i=1

λi(X
i
0)

2

2
e
−2λi

(√
2
π

1
σi

+
λiη

πσ2
i

)
t
+

η

4
(√

2
π

1
σi

+ λiη
πσ2

i

) (1− e
−2λi

(√
2
π

1
σi

+
λiη

πσ2
i

)
t

)
. (81)

Proof of Lemma C.13. Since the matrix H is diagonal, we focus on a single component. We apply712

the Ito Lemma to λi(X
i
t)

2

2 :713

d

(
λi(X

i
t)

2

2

)
= −2

√
2

π

λi

σi

λi(X
i
t)

2

2
dt+

ηλi

2
dt− 2λ2

i η

πσ2
i

λi(X
i
t)

2

2
+O(Noise), (82)

which implies that714

E
[
λi(X

i
t)

2

2

]
=

λi(X
i
0)

2

2
e
−2

(√
2
π

λi
σi

+
λ2
i η

πσ2
i

)
t
+

η

4
(√

2
π

1
σi

+ λiη
πσ2

i

) (1− e
−2

(√
2
π

λi
σi

+
λ2
i η

πσ2
i

)
t

)
.

(83)
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Therefore,715

E
[
X⊤

t HXt

2

]
=

d∑
i=1

λi(X
i
0)

2

2
e
−2λi

(√
2
π

1
σi

+
λiη

πσ2
i

)
t
+

η

4
(√

2
π

1
σi

+ λiη
πσ2

i

) (1− e
−2λi

(√
2
π

1
σi

+
λiη

πσ2
i

)
t

)
.

(84)
716

Lemma C.14. Under the assumptions of Corollary C.8, where ∇fγ(x) = ∇f(x) +
√
ΣU , we have717

that the dynamics of SignSGD in Phase 3 is:718

dXt = −
√

1

2
Σ− 1

2∇f(Xt)dt+
√
η

√
Id −

1

2
diag

(
Σ− 1

2∇f(Xt)
)2

dWt. (85)

Proof of lemma C.14. We apply Eq. (34) with ν = 2 and linearly approximate Ξ(x) as |x| < 1,719

where 2Ξ(x) ∼ x√
2

.720

C.3 Formal derivation - RMSprop721
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Figure 7: The first two subfigures on the left compare our SDE, that from Malladi et al. (2022), and
RMSprop in terms of trajectories and f(x), respectively, for a convex quadratic function. The others
subfigures do the same for an embedded saddle and one clearly observes that our derived SDE better
matches RMSprop.

In this subsection, we provide our formal derivation of an SDE model for RMSprop. Let us consider722

the stochastic process Lt := (Xt, Vt) ∈ Rd × Rd defined as the solution of723

dXt = −P−1
t (∇f(Xt)dt+

√
ηΣ(Xt)

1
2 dWt) (86)

dVt = ρ((∇f(Xt))
2 + diag(Σ(Xt))− Vt))dt, (87)

where β = 1− ηρ, ρ = O(1), and Pt := diag (Vt)
1
2 + ϵId.724

Remark C.15. We observe that the term in blue is the only difference w.r.t. the SDE derived in725

(Malladi et al., 2022) (see Theorem D.2): This is extremely relevant when the gradient size is not726

negligible. Figure 7 shows the comparison between our SDE, the one derived in (Malladi et al., 2022),727

and RMSprop itself: It is clear that even on simple landscapes, our SDE matches the algorithm much728

better. Importantly, one can observe that the SDE derived in (Malladi et al., 2022) is only slightly729

worse than ours at the end of the dynamics: As we show in Lemma C.17, Theorem D.2 is a corollary730

of Theorem C.16 when ∇f(x) = O(
√
η): It only describes the dynamics where the gradient is731

vanishing. In Figure 8, we compare the two SDEs in question with RMSprop on an MLP, a CNN, a732

ResNet, and a Transformer: Our SDE exhibits a superior description of the dynamics.733
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Figure 8: We compare our SDE, that from Malladi et al. (2022), and RMSprop in terms of f(x): The
first is an MLP on the Breast Cancer dataset, the second a CNN on MNIST, the third a Transformer
on MNIST, and the last a ResNet on CIFAR-10: Ours match the algorithms better.

The following theorem guarantees that such a process is a 1-order SDE of the discrete-time algorithm734

of RMSprop735

xk+1 = xk − η
∇fγk

(xk)√
vk+1 + ϵId

(88)

vk+1 = βvk + (1− β) (∇fγk
(xk))

2 (89)

with (x0, v0) ∈ Rd ×Rd, η ∈ R>0 is the step size, β = 1− ρη for ρ = O(1), the mini-batches {γk}736

are modelled as i.i.d. random variables uniformly distributed on {1, · · · , N}, and of size B ≥ 1.737

Theorem C.16 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋.
Let lk := (xk, vk) ∈ Rd × Rd, 0 ≤ k ≤ N denote a sequence of RMSprop iterations defined
by Eq. (88). Consider the stochastic process Lt defined in Eq. (86) and fix some test function
g ∈ G and suppose that g and its partial derivatives up to order 6 belong to G.
Then, under Assumption C.2 and ρ = O(1) there exists a constant C > 0 independent of η
such that for all k = 0, 1, . . . , N , we have

|Eg (Lkη)− Eg (lk)| ≤ Cη.

That is, the SDE (86) is an order 1 weak approximation of the RMSprop iterations (88).
738

Proof. The proof is virtually identical to that of Theorem C.5. Therefore, we only report the key739

steps necessary to conclude the thesis. First of all, we observe that since β = 1− ηρ740

vk+1 − vk = −ηρ
(
vk − (∇fγk

(xk))
2
)
. (90)

Then,741

1
√
vk+1

=

√
vk

vk+1

1

vk
=

√
vk+1 +O(η)

vk+1

1

vk
=

√
1 +

O(η)

vk+1

√
1

vk
∼
√

1

vk
(1 +O(η)). (91)

Therefore, we work with the following algorithm as all the approximations below only carry an742

additional error of order O(η2), which we can ignore. Therefore, we have that743

xk+1 − xk = −η
∇fγk

(xk)√
vk + ϵId

(92)

vk − vk−1 = −ηρ
(
vk−1 −

(
∇fγk−1

(xk−1)
)2)

. (93)

Therefore, if ∇fγj
(xj) = ∇f(xj) + Zj(xj), E[Zj(xj)] = 0, and Cov(Zj(xj)) = Σ(xj)744

1. E[xk+1 − xk] = −η diag(vk + ϵId)
− 1

2∇f(xk) ;745

2. E[vk − vk−1] = ηρ
[
(∇f(xk−1))

2
+ diag(Σ(xk))− vk−1

]
.746
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Then, we have that if Φk := ∇f(xk)√
vk+ϵId

− ∇fγk (xk)√
vk+ϵId

747

1.

E[(xk+1 − xk)(xk+1 − xk)
⊤] = E[(xk+1 − xk)]E[(xk+1 − xk)]

⊤ (94)

+ η2E
[
(Φk) (Φk)

⊤
]

(95)

= E[(xk+1 − xk)]E[(xk+1 − xk)]
⊤ (96)

+ η2(diag(vk) + ϵId)
−1Σ(xk); (97)

2. E[(vk − vk−1)(vk − vk−1)
⊤] = E[(vk − vk−1)]E[(vk − vk−1)]

⊤ +O(ρη2);748

3. E[(xk+1 − xk)(vk − vk−1)
⊤] = E[(xk+1 − xk)]E[(vk − vk−1)

⊤] + 0.749

Therefore750

dXt = −P−1
t (∇f(Xt)dt+

√
ηΣ(Xt)

1
2 dWt) (98)

dVt = ρ(((∇f(Xt))
2 + diag(Σ(Xt))− Vt))dt. (99)

751

Lemma C.17. If (∇f(x))2 = O(η), Theorem D.2 is a Corollary of Theorem C.16.752

Proof. In the proof of Theorem C.16, one drops the term η(∇f(x))2 as it is of order η2.753

Corollary C.18. Under the assumptions of Theorem C.16 with Σ(x) = σ2Id, η̃ = κη, B̃ = Bδ, and754

ρ̃ = αρ,755

dXt = κdiag(Vt)
− 1

2

(
−∇f(Xt)dt+

1√
δ

√
η

B
σIddWt

)
(100)

dVt =
α

κ
ρ

(
(∇f(Xt))

2 +
σ2

Bδ
1− Vt

)
dt. (101)

Lemma C.19 (Scaling Rule at Convergence). Under the assumptions of Corollary C.18, f is µ-756

strongly convex, Lτ := Tr(∇2f(x)), and (∇f(x))2 = O(η), the asymptotic dynamics of the iterates757

of RMSprop satisfies the classic scaling rule κ =
√
δ because758

E[f(Xt)− f(X∗)]
t→∞
≤ ησLτ

4µ
√
B

κ√
δ
. (102)

By enforcing that the speed of Vt matches that of Xt, one needs ρ̃ = κ2ρ, which implies β̃ =759

1− κ2(1− β).760

Proof of Lemma C.19. In order to recover the scaling of β, we enforce that the rate at which Vt761

converges to its limit matches the speed of Xt: We need ρ̃ = κ2ρ, which recovers the classic scaling762

β̃ = 1− κ2(1− β). Additionally, since (∇f(x))2 = O(η) we have that763

dXt = κdiag(Vt)
− 1

2

(
−∇f(Xt)dt+

1√
δ

√
η

B
σIddWt

)
(103)

dVt = κρ

(
σ2

Bδ
1− Vt

)
dt. (104)

Therefore, Vt
t→∞→ σ2

Bδ1, meaning that under these conditions:764

dXt = −
√
Bδκ

σ
∇f(Xt)dt+ κ

√
ηIddWt, (105)

which satisfies the following for µ-strongly convex functions765

dE[f(Xt)− f(X∗)] ≤ −2κµ

√
Bδ

σ
E[f(Xt)− f(X∗)]dt+

κ2ηLτ

2
dt, (106)
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meaning that E[f(Xt)− f(X∗)]
t→∞
≤ ησLτ

4µ
√
B

κ√
δ

.766

Since the asymptotic the loss is η
2

Lτσ

2µ
√
B

κ√
δ

does not depend on κ and δ if κ√
δ
= 1, we recover the767

classic scaling rule.768

Remark: Under the same conditions, SGD satisfies769

dXt = −κ∇f(Xt)dt+ κ
1√
δ

√
η

B
σIddWt (107)

and therefore770

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗))e
−2µκt +

η

2

Lτσ
2

2µB

κ

δ

(
1− e−2µκt

)
, (108)

meaning that asymptotically the loss is η
2
Lτσ

2

2µB
κ
δ which does not depend on κ and δ if κ

δ = 1.771

Lemma C.20. For f(x) := x⊤Hx
2 , the stationary distribution of RMSprop is (E[X∞]], Cov(X∞)) =772 (

0, η
2Σ

1
2H−1

)
.773

Proof. As (∇f(x))2 = O(η) and t → ∞, we have774

dXt = −Σ− 1
2HXtdt+

√
ηIddWt (109)

which implies that775

Xt = e−Σ− 1
2 Ht

(
X0 +

√
η

∫ t

0

eΣ
− 1

2 HsdWs

)
. (110)

The thesis follows from the martingale property of Brownian motion and the Itô isometry.776

C.4 RMSpropW777
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Figure 9: The first two represent the comparison between AdamW and its SDE in terms of f(x).
The other two do the same for RMSpropW. In both cases, the first is an MLP on the Breast Cancer
Dataset and the second a CNN on MNIST: Our SDEs match the respective optimizers.

In this subsection, we derive the SDE of RMSpropW defined as778

xk+1 = xk − η
∇fγk

(xk)√
vk+1 + ϵId

− ηγxk (111)

vk+1 = βvk + (1− β) (∇fγk
(xk))

2 (112)

with (x0, v0) ∈ Rd×Rd, η ∈ R>0 is the step size, β = 1−ρη for ρ = O(1), γ > 0, the mini-batches779

{γk} are modelled as i.i.d. random variables uniformly distributed on {1, · · · , N}, and of size B ≥ 1.780

Theorem C.21. Under the same assumptions as Theorem C.16, the SDE of RMSpropW is781

dXt = −P−1
t (∇f(Xt)dt+

√
ηΣ(Xt)

1
2 dWt)− γXtdt (113)

dVt = ρ((∇f(Xt))
2 + diag(Σ(Xt))− Vt))dt, (114)

where β = 1− ηρ, ρ = O(1), γ > 0, and Pt := diag (Vt)
1
2 + ϵId.782
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Proof. The proof is the same as the of Theorem C.16 and the only difference is that ηγxk is783

approximated with γXtdt.784

Figure 4 and Figure 9 validate this result on a variety of architectures and datasets.785

Corollary C.22. Under the assumptions of Theorem C.21 with Σ(x) = σ2Id, η̃ = κη, B̃ = Bδ, and786

ρ̃ = αρ, and γ̃ = ξγ,787

dXt = κdiag(Vt)
− 1

2

(
−∇f(Xt)dt+

1√
δ

√
η

B
σIddWt

)
− ξγκXtdt (115)

dVt =
α

κ
ρ

(
(∇f(Xt))

2 +
σ2

Bδ
1− Vt

)
dt. (116)

Lemma C.23 (Scaling Rule at Convergence). Under the assumptions of Corollary C.22, f is µ-788

strongly convex and L-smooth, Lτ := Tr(∇2f(x)), and (∇f(x))2 = O(η), the asymptotic dynamics789

of the iterates of RMSpropW satisfies the novel scaling rule if κ =
√
δ and ξ = κ because790

E[f(Xt)− f(X∗)]
t→∞
≤ ηLτσL

2

κ

2µ
√
BδL+ σξγ(L+ µ)

. (117)

By enforcing that the speed of Vt matches that of Xt, one needs ρ̃ = κ2ρ, which implies β̃ =791

1− κ2(1− β).792

Proof of Lemma C.23. In order to recover the scaling of β, we enforce that the rate at which Vt793

converges to its limit matches the speed of Xt: We need ρ̃ = κ2ρ, which recovers the classic scaling794

β̃ = 1− κ2(1− β). Additionally, since (∇f(x))2 = O(η) we have that795

dXt = κdiag(Vt)
− 1

2

(
−∇f(Xt)dt+

1√
δ

√
η

B
σIddWt

)
− κξγXtdt (118)

dVt = κρ

(
σ2

Bδ
1− Vt

)
dt. (119)

Therefore, Vt
t→∞→ σ2

Bδ1, meaning that under these conditions:796

dXt = −
√
Bδκ

σ
∇f(Xt)dt+ κ

√
ηIddWt − κξγXtdt, (120)

which satisfies the following for µ-strongly convex and L-smooth functions797

dE[f(Xt)− f(X∗)] ≤ κ

(
2µ

√
Bδ

σ
+ ξγ

(
1 +

µ

L

))
E[f(Xt)− f(X∗)]dt+

κ2ηLτ

2
dt, (121)

meaning that E[f(Xt)− f(X∗)]
t→∞
≤ ηLτσL

2
κ

2µ
√
BδL+σξγ(L+µ)

.798

Since the asymptotic the loss ηLτσL
2

κ
2µ

√
BδL+σξγ(L+µ)

does not depend on κ and δ and ξ if κ = ξ =799
√
δ, we recover the novel scaling rule.800

Lemma C.24. For f(x) := x⊤Hx
2 , the stationary distribution of RMSpropW is801

(E[X∞]], Cov(X∞)) =
(
0, η

2 (HΣ− 1
2 + γId)

−1
)

.802

Proof. As (∇f(x))2 = O(η) and t → ∞, we have803

dXt = −Σ− 1
2HXtdt+

√
ηIddWt − γXtdt (122)

which implies that804

Xt = e−(Σ− 1
2 H+γId)t

(
X0 +

√
η

∫ t

0

e(Σ
− 1

2 H+γId)sdWs

)
. (123)

The thesis follows from the martingale property of Brownian motion and the Itô isometry.805
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Figure 10: The first two on the left compare our SDE, that from Malladi et al. (2022), and Adam in
terms of trajectories and f(x), respectively, for a convex quadratic function. The others do the same
for an embedded saddle: Ours clearly matches Adam better.

C.5 Formal derivation - Adam806

In this subsection, we provide our formal derivation of an SDE model for Adam. Let us consider the807

stochastic process Lt := (Xt,Mt, Vt) ∈ Rd × Rd × Rd defined as the solution of808

dXt = −
√
γ2(t)

γ1(t)
P−1
t (Mt + ηρ1 (∇f (Xt)−Mt))dt (124)

dMt = ρ1 (∇f (Xt)−Mt) dt+
√
ηρ1Σ

1/2 (Xt) dWt (125)

dVt = ρ2
(
(∇f(Xt))

2 + diag (Σ (Xt))− Vt

)
dt, (126)

where βi = 1 − ηρi, γi(t) = 1 − e−ρit, ρ1 = O(η−ζ) s.t. ζ ∈ (0, 1), ρ2 = O(1), and Pt =809

diag
√
Vt + ϵ

√
γ2(t)Id.810

Remark C.25. The terms in purple and in blue are the two differences w.r.t. that of (Malladi et al.,811

2022) which is reported in Theorem D.5. The first appears because we assume realistic values of β1812

while the second appears because we allow the gradient size to be non-negligible. For two simple813

landscapes, Figure 10 compares our SDE and that of Malladi et al. (2022) with Adam: In both814

cases, the first part of the dynamics is perfectly represented only by our SDE. While the discrepancy815

between the SDE of (Malladi et al., 2022) and Adam is asymptotically negligible in the convex816

setting, we observe that in the nonconvex case, it converges to a different local minimum than ours817

and of Adam. Finally, Theorem D.5 is a corollary of ours when (∇f(x))2 = O(η) and ρ1 = O(1):818

It only describes the dynamics where the gradient to noise ratio is vanishing and only for unrealistic819

values of β1 = 1− ηρ1. In Figure 11, we compare the dynamics of our SDE, that of Malladi et al.820

(2022), and Adam on an MLP, a CNN, a ResNet, and a Transformer. One can clearly see that our821

SDE more accurately captures the dynamics. Details on these experiments are available in Appendix822

F.823

The following theorem guarantees that such a process is a 1-order SDE of the discrete-time algorithm824

of Adam825

vk+1 = β2vk + (1− β2) (∇fγk
(xk))

2 (127)
mk+1 = β1mk + (1− β1)∇fγk

(xk) (128)

m̂k = mk

(
1− βk

1

)−1
(129)

v̂k = vk
(
1− βk

2

)−1
(130)

xk+1 = xk − η
m̂k+1√

v̂k+1 + ϵId
, (131)

with (x0,m0, v0) ∈ Rd × Rd × Rd, η ∈ R>0 is the step size, βi = 1 − ρiη for ρ1 = O(η−ζ) s.t.826

ζ ∈ (0, 1), ρ2 = O(1), the mini-batches {γk} are modelled as i.i.d. random variables uniformly827

distributed on {1, · · · , N}, and of size B ≥ 1.828
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Figure 11: We compare our SDE, that from Malladi et al. (2022), and Adam in terms of f(x): The
first is an MLP on the Breast Cancer dataset, the second a CNN on MNIST, the third a Transformer
on MNIST, and the last a ResNet on CIFAR-10: Ours match the algorithms better.

Theorem C.26 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋.
Let lk := (xk,mk, vk) ∈ Rd × Rd × Rd, 0 ≤ k ≤ N denote a sequence of Adam iterations
defined by Eq. (127). Consider the stochastic process Lt defined in Eq. (124) and fix some
test function g ∈ G and suppose that g and its partial derivatives up to order 6 belong to G.
Then, under Assumption C.2 ρ1 = O(η−ζ) s.t. ζ ∈ (0, 1), while ρ2 = O(1), there exists a
constant C > 0 independent of η such that for all k = 0, 1, . . . , N , we have

|Eg (Lkη)− Eg (lk)| ≤ Cη.

That is, the SDE (124) is an order 1 weak approximation of the Adam iterations (127).
829

Proof. The proof is virtually identical to that of Theorem C.5. Therefore, we only report the key830

steps necessary to conclude the thesis. First of all, we observe that since β1 = 1− ηρ1831

vk+1 − vk = −ηρ1

(
vk − (∇fγk

(xk))
2
)
. (132)

Then,832

1
√
vk+1

=

√
vk

vk+1

1

vk
=

√
vk+1 +O(η)

vk+1

1

vk
=

√
1 +

O(η)

vk+1

√
1

vk
∼
√

1

vk
(1 +O(η)). (133)

Therefore, we work with the following algorithm as all approximations only carry an additional error833

of order O(η2), which we can ignore. Therefore, we have that834

vk − vk−1 = −ηρ2

(
vk−1 −

(
∇fγk−1

(xk−1)
)2)

(134)

mk+1 −mk = −ηρ1 (mk −∇fγk
(xk)) (135)

m̂k = mk

(
1− βk

1

)−1
(136)

v̂k = vk
(
1− βk

1

)−1
(137)

xk+1 − xk = − η
√
vk + ϵId

√
1− (1− ηρ2)k

1− (1− ηρ1)k+1
(mk + ηρ1(∇fγk

(xk)−mk)). (138)

Therefore, if ∇fγj (xj) = ∇f(xj) + Zj(xj) and E[Zj(xj)] = 0, and Cov(Zj(xj)) = Σ(xj), we835

have that836

1. E[vk − vk−1] = ηρ2

[
(∇f(xk−1))

2
+ diag(Σ(xk))− vk−1

]
;837

2. E[mk+1 −mk] = ηρ1 [∇f(xk)−mk] ;838

3. E[xk+1 − xk] = − η√
vk+ϵId

√
1−(1−ηρ2)k

1−(1−ηρ1)k+1 (mk + ηρ1(∇f(xk)−mk)) .839

Then, we have840
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1. E[(xk+1 − xk)(xk+1 − xk)
⊤] = E[(xk+1 − xk)]E[(xk+1 − xk)]

⊤ +O(η4ρ21);841

2. E[(xk+1 − xk)(mk −mk−1)
⊤] = E[(xk+1 − xk)]E[(mk −mk−1)]

⊤ + 0;842

3. E[(xk+1 − xk)(vk − vk−1)
⊤] = E[(xk+1 − xk)]E[(vk − vk−1)]

⊤ + 0;843

4. E[(vk − vk−1)(vk − vk−1)
⊤] = E[(vk − vk−1)]E[(vk − vk−1)]

⊤ +O(η2ρ22);844

5. E[(mk −mk−1)(mk −mk−1)
⊤] = E[(mk −mk−1)]E[(mk −mk−1)]

⊤ + η2ρ21Σ(xk−1);845

6. E[(vk − vk−1)(mk −mk−1)
⊤] = E[(vk − vk−1)]E[(mk −mk−1)]

⊤ +O(η2ρ1ρ2).846

Since in real-world applications, ρ1 = O(η−ζ) s.t. ζ ∈ (0, 1), while ρ2 = O(1), we have847

dXt = −
√
γ2(t)

γ1(t)
P−1
t (Mt + ηρ1 (∇f (Xt)−Mt))dt (139)

dMt = ρ1 (∇f (Xt)−Mt) dt+
√
ηρ1Σ

1/2 (Xt) dWt (140)

dVt = ρ2
(
(∇f(Xt))

2 + diag (Σ (Xt))− Vt

)
dt. (141)

where βi = 1− ηρi, γi(t) = 1− e−ρit, and Pt = diag
√
Vt + ϵ

√
γ2(t)Id.848

Corollary C.27. Under the assumptions of Theorem C.26 with Σ(x) = σ2Id, η̃ = κη, B̃ = Bδ,849

ρ̃1 = α1ρ1, and ρ̃2 = α2ρ2850

dXt = −κ

√
γ2(t)

γ1(t)
P−1
t (Mt + ηα1ρ1 (∇f (Xt)−Mt))dt (142)

dMt =
α1ρ1
κ

(∇f (Xt)−Mt) dt+
√
η
α1ρ1
κ

σ√
Bδ

IddWt (143)

dVt =
α2ρ2
κ

(
(∇f(Xt))

2 +
σ2

Bδ
Id − Vt

)
dt. (144)

Lemma C.28. Under the assumptions of Corollary C.27, f is µ-strongly convex, Lτ := Tr(∇2f(x)),851

and (∇f(x))2 = O(η), the asymptotic dynamics of the iterates of Adam satisfies the classic scaling852

rule κ =
√
δ because E[f(Xt)]

t→∞
≤ ησLτ

4
√
B

κ√
δ

. To enforce that the speed of Mt and Vt match that of853

Xt, one needs ρ̃i = κ2ρi, which implies β̃i = 1− κ2(1− βi).854

Proof. First of all, we need to ensure that the relative speeds of Xt, Mt, and Vt match. Therefore,855

we select αi = κ2, which recovers the scaling rules for β̃i = 1− κ2(1− βi). Then, recalling that856

(∇f(x))2 = O(η), we have that as t → ∞, Vt → σ2

Bδ , and Mt → ∇f(Xt) with high probability.857

Therefore,858

dXt = −κ

√
Bδ

σ
∇f(Xt)dt (145)

dMt = κ
√
ηρ1

σ√
Bδ

dWt (146)

dVt = 0. (147)

Therefore, if H(Xt, Vt) := f(Xt) +
LτδB
ρ2σ2

∥Mt∥2
2

2 and ξ ∈ (0, 1) we have that by Itô’s lemma,859
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dH(Xt, Vt) = −(∇f(Xt))
⊤

(
κ

√
Bδ

σ
∇f(Xt)

)
dt+

(
LτδB

ρ2σ2
Mt

)
κ
√
ηρ1

σ√
Bδ

dWt (148)

+
1

2

(
LτδB

ρ2σ2

)
κ2ηρ2

σ2

Bδ
dt (149)

= −

(
κ

√
Bδ

σ

)
∥∇f(Xt)∥22dt+ Noise +

κ2ηλ

2
dt (150)

= −

(
κ

√
Bδ

σ

)(
ξ∥∇f(Xt)∥22 + (1− ξ)∥∇f(Xt)∥22

)
dt+ Noise +

κ2ηλ

2
dt (151)

≤ −2κµ

√
Bδ

σ
ξ

(
f(Xt) +

1− ξ

µξ

∥∇f(Xt)∥22
2

)
dt+ Noise +

κ2ηλ

2
dt. (152)

Let us now select ξ such that 1−ξ
µξ = LτδB

ρ2σ2 , this means that ξ = σ2ρ2

σ2ρ2+µLτσB
∈ (0, 1) and 1

ξ =860

1 + µLτδB
ρ2σ2 . Since Mt → ∇f(Xt), we have that861

dH(Xt, Vt) ≤ −2κµ

√
Bδ

σ
ξH(Xt, Vt)dt+

κ2ηλ

2
dt+ Noise. (153)

Therefore,862

E[f(Xt)]

ξ
=

(
1 + µ

LτδB

ρ2σ2

)
E[f(Xt)] ≤ E[H(Xt, Vt)]

t→∞
≤ 1

ξ

ησLτ

4µ
√
B

κ√
δ
, (154)

which implies that863

E[f(Xt)]
t→∞
≤ ησLτ

4µ
√
B

κ√
δ
. (155)

Analogously,864

E[f(Xt)− f(X∗)]
t→∞
≤ ησLτ

4µ
√
B

κ√
δ
. (156)

which gives the square root scaling rule.865

Lemma C.29. Under the assumptions of Corollary C.27, f(x) = x⊤Hx
2 s.t. H = diag(λ1, · · · , λd)866

and (∇f(x))2 = O(η), the dynamics of Adam implies that f(Xt) → ησd

4
√
B

κ√
δ

.867

Proof. Recalling that (∇f(x))2 = O(η), we have that as t → ∞, Vt → σ2

Bδ , and Mt → λXt with868

high probability. Therefore, in the one-dimensional case869

dXt = −κ

√
Bδ

σ
λXtdt (157)

dMt = κ
√
ηρ1

σ√
Bδ

dWt (158)

dVt = 0. (159)

Therefore, if H(Xt, Vt) :=
λX2

t

2 + λδB
ρ2σ2

M2
t

2 , 5 we have that by Itô’s lemma,870

5Inspired by (Barakat and Bianchi, 2021)
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dH(Xt, Vt) = −(λXt)

(
κ

√
Bδ

σ
λXt

)
dt+

(
λδB

ρ2σ2
Mt

)
κ
√
ηρ1

σ√
Bδ

dWt (160)

+
1

2

(
λδB

ρ2σ2

)
κ2ηρ2

σ2

Bδ
dt (161)

= −2κλ

√
Bδ

σ
f(Xt)dt+

κ2ηρ2σ2

2Bδ

λδB

ρ2σ2
dt+ Noise. (162)

= −2κλ

√
Bδ

σ
f(Xt)dt+

κ2ηλ

2
dt+ Noise. (163)

Once again, since Mt → λXt, we have that871

H(Xt, Vt) =
λX2

t

2
+

λδB

ρ2σ2

M2
t

2
→ λX2

t

2
+ λ

λδB

ρ2σ2

λX2
t

2
=

(
1 + λ

λδB

ρ2σ2

)
λX2

t

2
=: Kf(Xt).

(164)
Therefore,872

KdE[f(Xt)] = −2κλ

√
Bδ

σ
E[f(Xt)]dt+

κ2ηλ

2
dt, (165)

which implies that E[f(Xt)] → ησ

4
√
B

κ√
δ

, which also gives the square root scaling rule. The general-873

ization to d dimension is analogous and one needs to sum across all the dimensions.874

Lemma C.30. Let f(x) := x⊤Hx
2 where H = diag(λ1, . . . , λd). The stationary distribution of875

Adam is (E[X∞]], Cov(X∞)) =
(
0, η

2Σ
1
2H−1

)
.876

Proof. The expected value follows immediately from the fact that877

dXt = −Σ− 1
2Xtdt (166)

For the covariance, we focus on the one-dimensional case. We define H(Xt, Vt) :=
X2

t

2 + λ2

2σ2ρ2

M2
t

2 .878

With the same arguments as Lemma C.29, we have879

d(Xt)
2 = −λ

σ
X2

t dt+
η

2
dt+ Noise, (167)

which implies that880

E[X2
t ]

t→0→ η

2

σ

λ
. (168)

The thesis follows by applying the same logic to multiple dimensions.881

C.6 AdamW882

In this subsection, we derive the SDE of AdamW defined as defined as883

vk+1 = β2vk + (1− β2) (∇fγk
(xk))

2 (169)
mk+1 = β1mk + (1− β1)∇fγk

(xk) (170)

m̂k = mk

(
1− βk

1

)−1
(171)

v̂k = vk
(
1− βk

2

)−1
(172)

xk+1 = xk − η
m̂k+1√

v̂k+1 + ϵId
− ηγxk (173)

with (x0,m0, v0) ∈ Rd × Rd × Rd, η ∈ R>0 is the step size, βi = 1 − ρiη for ρ1 = O(η−ζ)884

s.t. ζ ∈ (0, 1), ρ2 = O(1), γ > 0, the mini-batches {γk} are modelled as i.i.d. random variables885

uniformly distributed on {1, · · · , N}, and of size B ≥ 1.886
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Theorem C.31. Under the same assumptions as Theorem C.26, the SDE of AdamW is887

dXt = −
√

γ2(t)

γ1(t)
P−1
t (Mt + ηρ1 (∇f (Xt)−Mt))dt− γXtdt (174)

dMt = ρ1 (∇f (Xt)−Mt) dt+
√
ηρ1Σ

1/2 (Xt) dWt (175)

dVt = ρ2
(
(∇f(Xt))

2 + diag (Σ (Xt))− Vt

)
dt. (176)

where βi = 1− ηρi, γ > 0, γi(t) = 1− e−ρit, and Pt = diag
√
Vt + ϵ

√
γ2(t)Id.888

Proof. The proof is the same as the of Theorem C.26 and the only difference is that ηγxk is889

approximated with γXtdt.890

Figure 4 and Figure 9 validate this result on a variety of architectures and datasets.891

Corollary C.32. Under the assumptions of Theorem C.31 with Σ(x) = σ2Id, η̃ = κη, B̃ = Bδ,892

ρ̃1 = α1ρ1, γ̃ : ξγ, and ρ̃2 = α2ρ2893

dXt = −κ

√
γ2(t)

γ1(t)
P−1
t (Mt + ηα1ρ1 (∇f (Xt)−Mt))dt− κξγXtdt (177)

dMt =
α1ρ1
κ

(∇f (Xt)−Mt) dt+
√
η
α1ρ1
κ

σ√
Bδ

IddWt (178)

dVt =
α2ρ2
κ

(
(∇f(Xt))

2 +
σ2

Bδ
Id − Vt

)
dt. (179)

Lemma C.33 (Scaling Rule at Convergence). Under the assumptions of Corollary C.32, f is µ-894

strongly convex and L-smooth, Lτ := Tr(∇2f(x)), and (∇f(x))2 = O(η), the asymptotic dynamics895

of the iterates of AdamW satisfies the novel scaling rule if κ =
√
δ and ξ = κ because896

E[f(Xt)− f(X∗)]
t→∞
≤ ηLτσL

2

κ

2µ
√
BδL+ σξγ(L+ µ)

(180)

By enforcing that the speed of Vt matches that of Xt, one needs ρ̃ = κ2ρ, which implies β̃i =897

1− κ2(1− βi).898

Proof. The proof is the same as Lemma C.28 where we also use L-smoothness as in Lemma C.23.899

Lemma C.34. For f(x) := x⊤Hx
2 , the stationary distribution of AdamW is (E[X∞]], Cov(X∞)) =900 (

0, η
2 (HΣ− 1

2 + γId)
−1
)

.901

Proof. The proof is the same as Lemma C.30.902

D SDEs from the literature903

Theorem D.1 (Original Malladi’s Statement). Let σ0 := ση, ϵ0 := ϵη, and c2 := 1−β
η2 . Define the904

state of the SDE as Lt = (Xt, ut) and the dynamics as905

dXt = −P−1
t

(
∇f (Xt) dt+ σ0Σ

1/2 (Xt) dWt

)
(181)

dut = c2 (diag (Σ (Xt))− ut) dt (182)

where Pt := σ0 diag (ut)
1/2

+ ϵ0Id.906

Theorem D.2 (Informal Statement of Theorem C.2 Malladi et al. (2022)). Under sufficient regularity907

conditions and ∇f(x) = O(
√
η), the following SDE is an order 1 weak approximation of RMSprop:908

dXt = −P−1
t (∇f(Xt)dt+

√
ηΣ(Xt)

1
2 dWt) (183)

dVt = ρ(diag(Σ(Xt))− Vt))dt, (184)

where β = 1− ηρ, ρ = O(1), and Pt := diag (Vt)
1
2 + ϵId.909
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Lemma D.3. Theorem D.1 and Theorem D.2 are equivalent.910

Proof. It follows applying time rescaling t := ηξ and observing that Wt = Wηξ =
√
ηWξ.911

Theorem D.4 (Original Malladi’s Statement). Let c1 := (1− β1) /η
2, c2 := (1− β2) /η

2 and define912

σ0, ϵ0 in Theorem D.1. Let γ1(t) := 1− exp (−c1t) and γ2(t) := 1− exp (−c2t). Define the state913

of the SDE as Lt = (Xt,mt, ut) and the dynamics as914

dXt = −
√

γ2(t)

γ1(t)
P−1
t mtdt (185)

dmt = c1 (∇f (Xt)−mt) dt+ σ0c1Σ
1/2 (Xt) dWt, (186)

dut = c2 (diag (Σ (Xt))− ut) dt, (187)

where Pt := σ0 diag (ut)
1/2

+ ϵ0
√

γ2(t)Id.915

Theorem D.5 (Informal Statement of Theorem D.2 Malladi et al. (2022)). Under sufficient regularity916

conditions and ∇f(x) = O(
√
η), the following SDE is an order 1 weak approximation of Adam:917

dXt = −
√
γ2(t)

γ1(t)
P−1
t Mtdt (188)

dMt = ρ1 (∇f (Xt)−Mt) dt+
√
ηρ1Σ

1/2 (Xt) dWt (189)
dVt = ρ2 (diag (Σ (Xt))− Vt) dt. (190)

where βi = 1− ηρi, γi(t) = 1− e−ρit, ρi = O(1), and Pt = diag
√
Vt + ϵ

√
γ2(t)Id.918

Lemma D.6. Theorem D.4 and Theorem D.5 are equivalent.919

Proof. It follows applying time rescaling t := ηξ and observing that Wt = Wηξ =
√
ηWξ.920

E SDE cannot be derived nor used naively921

In this section, we provide a gentle introduction to the meaning of deriving an SDE model for an922

optimizer and discuss how SDEs have been used to derive scaling rules. To aid the intuition of the923

reader, we informally derive an SDE for SGD with learning rate η, mini-batches γB of size B, and924

starting point x0 = x, which we dub SGD(η,B). The iterates are given by:925

xk+1 = xk − η∇fγB
k
(xk) (191)

which for Uk :=
√
η(∇f(xk)−∇fγB

k
(xk)), we rewrite as926

xk − η∇f(xk) +
√
ηUk, (192)

where E[Uk] = 0 and Cov(Uk) =
η
BΣ(xk) =

η
B

1
n

∑B
i=0(∇f(xk)−∇fi(xk))(∇f(x)−∇fi(xk))

⊤.927

If we now consider the SDE928

dXt = −∇f(Xt)dt+

√
η

B
Σ(Xt)

1
2 dWt, (193)

its Euler-Maruyama discretization with pace ∆t = η and Zk ∼ N (0, Id) is929

Xk+1 = Xk − η∇f(Xk) +
√
η

√
η

B
Σ(Xt)

1
2Zk. (194)

Since the Eq. (191) and Eq. (194) share the first two moments, it is reasonable that by identifying930

t = kη, the SDE in Eq. (193) is a good model to describe the iterates of SGD in Eq. (191).931

Informally, we need a “good model”, which is an SDE that is close to the real optimizer. This is932

formalized in the following definition which comes from the field of numerical analysis of SDEs (see933

Mil’shtein (1986)) and bounds the disparity between the the discrete and the continuous process.934

Definition E.1 (Weak Approximation). A continuous-time stochastic process {Xt}t∈[0,T ] is an order935

α weak approximation (or α-order SDE) of a discrete stochastic process {xk}⌊T/η⌋
k=0 if for every936

polynomial growth function g, there exists a positive constant C, independent of the stepsize η, such937

that maxk=0,...,⌊T/η⌋ |Eg (xk)− Eg (Xkη)| ≤ Cηα.938
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To see if an SDE satisfies such a definition, one has to check that for ∆̄ = x1 − x and ∆ = Xη − x,939

1.
∣∣E∆i − E∆̄i

∣∣ = O(η2), ∀i = 1, . . . , d;940

2.
∣∣E∆i∆j − E∆̄i∆̄j

∣∣ = O(η2), ∀i, j = 1, . . . , d.941

Example: Let us prove that the SDE in Eq. (193) is a valid approximation of SGD(η,B): The first942

condition is easily verified. Coming to the second condition we have that943

1. E∆i∆j = η2∂if(x)∂jf(x) +
η2

B Σ(x);944

2. E∆̄i∆̄j = η2∂if(x)∂jf(x) +
η2

B Σ(x) +O(η3);945

whose difference is of order η3 and thus satisfies the condition. However, we observe that if the946

scale of the noise is too small w.r.t η, i.e. Σ(x) = O(ηα) for α ≥ 0, then the simplest SDE model947

describing SGD(η,B) is the ODE dXt = −∇f(Xt)dt as in that case948

1. E∆i∆j = η2∂if(x)∂jf(x) +O(η2+α);949

2. E∆̄i∆̄j = η2∂if(x)∂jf(x) +O(η2),950

whose difference is also of order η2. Much differently, if Σ(x) = O(η−α) for α > 0, the simplest951

model is the SDE in Eq. (193). We highlight that simplest does not mean best: The SDE is more952

accurate than the ODE even in a regime with low noise, but this observation serves as a provocation.953

One has to pay attention when deriving SDEs: Some models are more realistic than others.954

Let us dig deeper into this thought as we derive two SDEs for SGD with learning rate η̃ := κη and955

batch size B̃ := δB for κ > 1 and δ > 1, which we dub SGD(η̃,B̃). The first is derived considering956

that the learning rate is η̃ and carries an error of order O(η̃) w.r.t. SGD(η̃,B̃)
957

dXt = −∇f(Xt)dt+

√
η̃

B̃
Σ(Xt)

1
2 dWt = −∇f(Xt)dt+

√
ηκ

Bδ
Σ(Xt)

1
2 dWt. (195)

The second one instead is derived considering η as the learning rate and κ as a constant “scheduler”.958

Consistently with (Li et al., 2017), the SDE which carries an error of order O(η) w.r.t SGD(η̃,B̃) is959

dXt = −κ∇f(Xt)dt+ κ

√
η

Bδ
Σ(Xt)

1
2 dWt. (196)

While they both are valid models, there are three reasons why one should prefer the latter:960

1. It fully reflects the fact that a larger learning rate results in a faster and noisier dynamics961

2. It has intrinsically less error than the other;962

3. It is consistent with the optimizer in that there is no combination of κ and δ that can ever963

leave the dynamics unchanged.964

E.1 Deriving scaling rules965

Jastrzebski et al. (2018) observed that only the ratio between η and B matters in determining the966

dynamics of Eq. (194). Therefore, they argue that for κ = δ the SDE for SGD(κη,δB) coincides with967

that of SGD(η,B) and that this implies that the path properties of the optimizers are the same. On the968

contrary, the path of SGD(η,B) strongly depends on the hyperparameters: The speed and volatility of969

the dynamics are driven by η, and no choice of B can undo this. We remind the reader that the goal of970

these rules is not to keep the dynamics of the optimizers unaltered, but rather to give a practical way971

to change a hyperparameter, e.g. η, and have a principled way to adjust the others, e.g. B, such that972

the performance of the optimizer is preserved. Therefore, we propose deriving scaling rules as we973

preserve certain relevant quantities of the dynamics such as the convergence bound on the expected974

loss or the speed. To show this quantitative, we use this rationale to derive the scaling rule of SGD as975

we aim at preserving the asymptotic loss level.976

Lemma E.2. If f is a µ strongly convex function, Lτ ≤ Tr(∇2f(x)) and Σ(x) = σ2Id, then:977
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1. Under the dynamics of Eq. (193) we have:978

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗))e
−2µt +

η

2

Lτσ
2

2µB

(
1− e−2µt

)
; (197)

2. Under the dynamics of Eq. (195) we have:979

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗))e
−2µt +

η

2

Lτσ
2

2µB

κ

δ

(
1− e−2µt

)
; (198)

3. Under the dynamics of Eq. (196) we have:980

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗))e
−2µκt +

η

2

Lτσ
2

2µB

κ

δ

(
1− e−2µκt

)
. (199)

The first bound implies that the asymptotic limit of the expected loss for SGD(η,B) is η
2
Lτσ

2

2µB . The981

last two bounds predict that the asymptotic loss level for SGD(η̃,B̃) is η
2
Lτσ

2

2µB
κ
δ . Since the objective982

of the scaling rule is to find κ and δ such that SGD(η̃,B̃) achieves the same loss level as SGD(η,B),983

we recover the linear scaling rule setting κ = δ. However, only the last bound can correctly capture984

the fact that the dynamics of SGD(η̃,B̃) is κ times faster than that of SGD(η,B).985

We conclude the discussion with a simple sample of how deriving a scaling rule from the SDE itself986

inevitably leads to the wrong conclusion. We define the following algorithm which is inspired by987

AdamW and which we dub SGDW:988

xk+1 = xk − η∇fγk
(xk)− ηγxk. (200)

Lemma E.3. The SDE of SGDW is989

dXt = −∇f(Xt)dt+

√
η

B
Σ(Xt)

1
2 dWt − γXtdt. (201)

Therefore, one would naively deduce that to keep the SDE unchanged, one can simply use the linear990

scaling rule of SGD and leave γ unaltered. However, one can easily derive the upper bound on the991

expected loss for a convex quadratic function and observe that to preserve that, it is imperative to992

scale γ by κ as well.993

We thus conclude that:994

1. Eq. (196) is a better model for SGD(η̃,B̃) as it represents the dynamics more accurately;995

2. Maintaining the shape of the SDE does not preserve the path properties of the optimizer;996

3. Deriving a scaling rule uniquely from the SDE might lead to the wrong conclusions in the997

general case.998

Remark E.4. We highlight that Theorem 5.3 of Malladi et al. (2022) claimed to have formally derived999

one for RMSprop: In line with (Jastrzebski et al., 2018), they argue that if they were to find a scaling1000

rule that would leave their SDE unchanged, this would imply that even the dynamics of the iterates of1001

RMSprop itself would be unchanged. First, we remind the reader that an SDE is formally defined1002

as an equation that drives the dynamics plus an initial condition (See (Karatzas and Shreve, 2014),1003

Section 5). While their scaling rule does leave the equation unchanged, it alters the initial condition,1004

thus changing the SDE itself: This invalidates their claim and proof. Second, contrary to their claim,1005

the rule is only valid near convergence as their SDE is only valid there. Third, Lemma E.2 offers a1006

shred of concrete evidence that keeping the SDE unchanged does not imply that the path properties1007

of the optimizers are preserved. Fourth, Lemma E.3 is a piece of concrete evidence that deriving1008

scaling rules directly and naively from the SDE might lead to the wrong conclusions.1009

F Experiments1010

In this section, we provide the modeling choices and instructions to replicate our experiments. All1011

experiments we run on one NVIDIA GeForce RTX 3090 GPU. The code is implemented in Python 31012

(Van Rossum and Drake, 2009) mainly using Numpy (Harris et al., 2020), scikit-learn (Pedregosa1013

et al., 2011), and JAX (Bradbury et al., 2018).1014
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F.1 SignSGD: SDE validation (Figure 1)1015

In this subsection, we describe the experiments we run to produce Figure 1: The loss dynamics of1016

SignSGD and that of our SDE match on average.1017

DNN on Breast Cancer Dataset (Dua and Graff, 2017) This paragraph refers to the left of Figure1018

1. The DNN has 10 dense layers with 20 neurons each activated with a ReLu. We minimize the binary1019

cross-entropy loss. We run SignSGD for 50000 epochs as we calculate the full gradient and inject it1020

with Gaussian noise Z ∼ N (0, σ2Id) where σ = 1. The learning rate is η = 0.001. Similarly, we1021

integrate the SignSGD SDE (Eq. (7)) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are1022

averaged over 3 runs and the shaded areas are the average ± the standard deviation.1023

CNN on MNIST (Deng, 2012) This paragraph refers to the center-left of Figure 1. The CNN1024

has a (3, 3, 32) convolutional layer with stride 1, followed by a ReLu activation, a (2, 2) max pool1025

layer with stride (2, 2), a (3, 3, 32) convolutional layer with stride 1, a ReLu activation, a (2, 2) max1026

pool layer with stride (2, 2). Then the activations are flattened and passed through a dense layer that1027

compresses them into 128 dimensions, a final ReLu activation, and a final dense layer into the output1028

dimension 10. The output finally goes through a softmax as we minimize the cross-entropy loss. We1029

run SignSGD for 40000 epochs as we calculate the full gradient and inject it with Gaussian noise1030

Z ∼ N (0, σ2Id) where σ = 1. The learning rate is η = 0.001. Similarly, we integrate the SignSGD1031

SDE (Eq. (7)) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over 3 run1032

and the shaded areas are the average ± the standard deviation.1033

Transformer on MNIST This paragraph refers to the center-right of Figure 1. The Architecture is1034

a scaled-down version of (Dosovitskiy et al., 2021), where the hyperparameters are patch size=28,1035

out features=10, width=48, depth=3, num heads=6, and dim ffn=192. We minimize the cross-entropy1036

loss as we run SignSGD for 5000 epochs as we calculate the full gradient and inject it with Gaussian1037

noise Z ∼ N (0, σ2Id) where σ = 1. The learning rate is η = 0.001. Similarly, we integrate the1038

SignSGD SDE (Eq. (7)) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged1039

over 3 runs and the shaded areas are the average ± the standard deviation.1040

ResNet on CIFAR-10 (Krizhevsky et al., 2009) This paragraph refers to the right of Figure 1.1041

The ResNet has a (3, 3, 128) convolutional layer with stride 1, followed by a ReLu activation, a1042

second (3, 3, 64) convolutional layer with stride 1, followed by a residual connection from the first1043

convolutional layer, then a (2, 2) max pool layer with stride (2, 2). Then the activations are flattened1044

and passed through a dense layer that compresses them into 128 dimensions, a final ReLu activation,1045

and a final dense layer into the output dimension 10. The output finally goes through a softmax as we1046

minimize the cross-entropy loss. We run SignSGD for 5000 epochs as we calculate the full gradient1047

and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 1. The learning rate is η = 0.001.1048

Similarly, we integrate the SignSGD SDE (Eq. (7)) with Euler-Maruyama (Algorithm 1) with ∆t = η.1049

Results are averaged over 3 runs and the shaded areas are the average ± the standard deviation.1050

F.2 SignSGD: insights validation (Figure 2)1051

In this subsection, we describe the experiments we run to produce Figure 2: We successfully validate1052

them all.1053

Phases: Lemma 3.4 and Lemma 3.5 In this paragraph, we describe how we validated the existence1054

of the phases of SignSGD as predicted in Lemma 3.4 and Lemma 3.5. To produce the left of Figure1055

2), we simulated the full SDE (Eq. (16)) and the one describing Phase 3 (Eq. (5)). The optimized1056

function is f(x) = x⊤Hx
2 for H = diag(1, 2), x0 drawn (and fixed for all runs) from a normal1057

distribution N (0, 0.01), η = 0.001, and Σ = σ2Id where σ = 0.1. We integrate the SDEs with1058

Euler-Maruyama (Algorithm 1) with ∆t = η and for 3000 iterations. Results are averaged over 5001059

runs and the shaded areas are the average ± the standard deviation. Clearly, the two SDEs share the1060

same dynamics.1061

To produce the center-left of Figure 2, we repeat the above as x0 drawn (and fixed for all runs) from1062

a normal distribution N (0, 1). Then, we plot the average loss values together with the theoretical1063

prediction of Phase 1 and Phase 3: They perfectly overlap.1064
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Stationary distribution: Lemma 3.7 In this paragraph, we describe how we validated the conver-1065

gence behavior predicted in Lemma 3.7. To produce the center-right of Figure 2), we run SignSGD on1066

f(x) = x⊤Hx
2 for H = diag(1, 2), x0 = (0.001, 0.001), η = 0.001 and Σ = σ2Id where σ = 0.1.1067

We run this for 5000 times and report the evolution of the moments. Then, we add lines representing1068

the theoretical predictions derived in Lemma 3.7: They match.1069

Schedulers: Lemma 3.9 In this paragraph, we describe how we validated the convergence behavior1070

predicted in Lemma 3.9. To produce the right of Figure 2, we run SignSGD on f(x) = x⊤Hx
2 for1071

H = diag(1, 2), x0 = (0.01, 0.01), η = 0.01 and Σ = σ2Id where σ = 0.1. We used the scheduler1072

ηγt = 1
(t+1)γ for γ ∈ {0.1, 0.5, 1.5}. For the first two choices of γ, ηγt satisfies our sufficient1073

condition for the convergence of SignSGD: In the figure, we observe that indeed SignSGD converges1074

to 0 with the same speed as the one predicted in the Lemma. For γ = 1.5, we observe that SignSGD1075

does not converge following the theoretical curve because it does not satisfy our sufficient condition.1076

Results are averaged over 500 runs.1077

F.3 RMSprop: SDE validation (Figure 7 and Figure 8)1078

In this subsection, we describe the experiments we run to produce Figure 7 and Figure 8: The1079

dynamics of our SDE matches that of RMSprop better than the SDE derived in (Malladi et al., 2022).1080

Quadratic convex function This paragraph refers to the left and center-left of Figure 7. We1081

optimize the function f(x) = x⊤Hx
2 where H = diag(10, 2). We run RMSprop for 2000 epochs as1082

we calculate the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 0.1. The1083

learning rate is η = 0.01, β = 0.99. Similarly, we integrate our RMSprop SDE (Eq. (86)) and that of1084

Malladi (Eq. (183)) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over1085

500 runs and the shaded areas are the average ± the standard deviation: Our SDE matches RMSprop1086

much better.1087

Embedded saddle This paragraph refers to the center-right and right of Figure 7. We optimize the1088

function f(x) = x⊤Hx
2 + 1

4λ
∑2

i=1 x
4
i −

ξ
3

∑2
i=1 x

3
i where H = diag(−1, 2), λ = 1, and ξ = 0.1.1089

We run RMSprop for 1600 epochs as we calculate the full gradient and inject it with Gaussian noise1090

Z ∼ N (0, σ2Id) where σ = 0.01. The learning rate is η = 0.01, β = 0.99. Similarly, we integrate1091

our RMSprop SDE (Eq. (86)) and that of Malladi (Eq. (183)) with Euler-Maruyama (Algorithm 1)1092

with ∆t = η. Results are averaged over 500 runs and the shaded areas are the average ± the standard1093

deviation: Our SDE matches RMSprop much better.1094

DNN on Breast Cancer Dataset This paragraph refers to the left of Figure 8. The architecture and1095

loss are the same as used above for SignSGD. We run RMSprop for 2000 epochs as we calculate the1096

full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 10−2. The learning rate1097

is η = 10−4, β = 0.9995. Similarly, we integrate our RMSprop SDE (Eq. (86)) and that of Malladi1098

(Eq. (183)) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over 3 runs and1099

the shaded areas are the average ± the standard deviation: Our SDE matches RMSprop much better.1100

CNN on MNIST This paragraph refers to the center-left of Figure 8. The architecture and loss1101

are the same as used above for SignSGD. We run RMSprop for 2000 epochs as we calculate the full1102

gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 10−2. The learning rate is1103

η = 10−3, β = 0.995. Similarly, we integrate our RMSprop SDE (Eq. (86)) and that of Malladi (Eq.1104

(183)) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over 3 run and the1105

shaded areas are the average ± the standard deviation: Our SDE matches RMSprop much better.1106

Transformer on MNIST This paragraph refers to the center-right of Figure 8. The architecture1107

and loss are the same as used above for SignSGD. We run RMSprop for 2000 epochs as we calculate1108

the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 10−2. The learning1109

rate is η = 10−3, β = 0.995. Similarly, we integrate our RMSprop SDE (Eq. (86)) and that of1110

Malladi (Eq. (183)) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over1111

3 runs and the shaded areas are the average ± the standard deviation: Our SDE matches RMSprop1112

much better.1113
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ResNet on CIFAR-10 This paragraph refers to the right of Figure 8. The architecture and loss1114

are the same as used above for SignSGD. We run RMSprop for 500 epochs as we calculate the full1115

gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 10−4. The learning rate is1116

η = 10−4, β = 0.9999. Similarly, we integrate our RMSprop SDE (Eq. (86)) and that of Malladi1117

(Eq. (183)) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over 3 runs and1118

the shaded areas are the average ± the standard deviation: Our SDE matches RMSprop much better.1119

F.4 Adam: SDE validation (Figure 10 and Figure 11)1120

In this subsection, we describe the experiments we run to produce Figure 11 and Figure 10: The1121

dynamics of our SDE matches that of Adam better than that derived in (Malladi et al., 2022).1122

Quadratic convex function This paragraph refers to the left and center-left of Figure 10. We1123

optimize the function f(x) = x⊤Hx
2 where H = diag(10, 2). We run Adam for 50000 epochs as we1124

calculate the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 0.01. The1125

learning rate is η = 0.001, β1 = 0.9, and β2 = 0.999. Similarly, we integrate our Adam SDE (Eq.1126

(124)) and that of Malladi (Eq. (188)) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results1127

are averaged over 500 runs and the shaded areas are the average ± the standard deviation: Our SDE1128

matches Adam much better.1129

Embedded saddle This paragraph refers to the center-right and right of Figure 10. We optimize the1130

function f(x) = x⊤Hx
2 + 1

4λ
∑2

i=1 x
4
i −

ξ
3

∑2
i=1 x

3
i where H = diag(−1, 2), λ = 1, and ξ = 0.1.1131

We run Adam as we calculate the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id)1132

where σ = 0.1. The learning rate is η = 0.001, β1 = 0.9, and β2 = 0.999. Similarly, we integrate1133

our Adam SDE (Eq. (124)) and that of Malladi (Eq. (188)) with Euler-Maruyama (Algorithm 1) with1134

∆t = η. Results are averaged over 500 runs and the shaded areas are the average ± the standard1135

deviation: Our SDE matches Adam much better.1136

DNN on Breast Cancer Dataset This paragraph refers to the left of Figure 11. The architecture1137

and loss are the same as used above for SignSGD. We run Adam for 2000 epochs as we calculate the1138

full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 10−2. The learning rate1139

is η = 10−4, β1 = 0.99, and β2 = 0.999. Similarly, we integrate our Adam SDE (Eq. (124)) and1140

that of Malladi (Eq. (188)) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged1141

over 3 runs and the shaded areas are the average ± the standard deviation: Our SDE matches Adam1142

much better.1143

CNN on MNIST This paragraph refers to the center-left of Figure 11. The architecture and loss are1144

the same as used above for SignSGD. We run Adam for 2000 epochs as we calculate the full gradient1145

and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 10−2. The learning rate is η = 10−2,1146

β1 = 0.9, and β2 = 0.99. Similarly, we integrate our Adam SDE (Eq. (124)) and that of Malladi (Eq.1147

(188)) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over 3 runs and the1148

shaded areas are the average ± the standard deviation: Our SDE matches Adam much better.1149

Transformer on MNIST This paragraph refers to the center-right of Figure 11. The architecture1150

and loss are the same as used above for SignSGD. We run Adam for 2000 epochs as we calculate the1151

full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 10−2. The learning rate1152

is η = 10−2, β1 = 0.9, and β2 = 0.99. Similarly, we integrate our Adam SDE (Eq. (124)) and that1153

of Malladi (Eq. (188)) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over1154

3 runs and the shaded areas are the average ± the standard deviation: Our SDE matches Adam much1155

better.1156

ResNet on CIFAR-10 This paragraph refers to the right of Figure 11. The architecture and loss are1157

the same as used above for SignSGD. We run Adam for 2000 epochs as we calculate the full gradient1158

and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 10−5. The learning rate is η = 10−5,1159

β1 = 0.99, and β2 = 0.9999. Similarly, we integrate our Adam SDE (Eq. (124)) and that of Malladi1160

(Eq. (188)) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over 3 runs and1161

the shaded areas are the average ± the standard deviation: Our SDE matches Adam much better.1162
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F.5 RMSpropW & AdamW: SDE validation (Figure 3, Figure 4)1163

The settings are exactly the same as those for RMSprop and Adam. The regularization parameter1164

used is always γ = 0.01. We observe that our SDEs match the respective algorithm with a good1165

agreement.1166

F.6 RMSpropW & AdamW: insights validation (Figure 5)1167

In this subsection, we describe the experiments we run to produce Figure 5: The theoretically1168

predicted asymptotic loss value and moments of RMSpropW and AdamW match those empirically1169

found.1170

Asymptotic loss & scaling rule of AdamW This paragraph refers to the left of Figure 5. We1171

optimize the function f(x) = x⊤Hx
2 where H = diag(1, 3). We run AdamW for 20000 epochs as1172

we calculate the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 1. The1173

learning rate is η = 0.001, β1 = 0.9, and β2 = 0.999. Experiments are run for both γ = 1 and1174

γ = 4. The rescaled versions of the algorithms AdamW R follow the novel scaling rule with κ = 2.1175

AdamW NR follows the scaling rule but not for γ which is left unchanged. We plot the evolution of1176

the loss values with the theoretical predictions of Lemma C.28: Results are averaged over 500 runs.1177

Asymptotic loss & scaling rule of RMSpropW This paragraph refers to the center-left of Figure1178

5: The only difference with the previous paragraph is that we use RMSpropW with β = 0.999.1179

AdamW: the role of the βs This paragraph refers to the center-right of Figure 5. We optimize1180

the function f(x) = x⊤Hx
2 + 1

4λ
∑2

i=1 x
4
i − ξ

3

∑2
i=1 x

3
i where H = diag(−1, 2), λ = 1, and1181

ξ = 0.1. We run AdamW as we calculate the full gradient and inject it with Gaussian noise1182

Z ∼ N (0, σ2Id) where σ = 0.1. The learning rate is η = 0.001, γ = 0.1, β1 ∈ {0.99, 0.999},1183

and β2 ∈ {0.992, 0.996, 0.998}: Clearly, three combinations go into a minimum and three go into1184

the other. For each minimum, the three optimizers converge to the same asymptotic loss value1185

independently on the values of β1 and β2. We argue that β1, and β2 select the basin and the speed of1186

convergence, not the asymptotic loss value: This is consistent with Lemma 3.13.1187

Stationary distribution This paragraph refers to the right of Figure 5. We optimize the function1188

f(x) = x⊤Hx
2 where H = diag(1, 3). We run Adam for 20000 epochs as we calculate the full1189

gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 0.01. The learning rate is1190

η = 0.001, γ = 4, β = 0.999, β1 = 0.9, and β2 = 0.999. We plot the evolution of the average1191

variances with the theoretical predictions of Lemma C.24 and Lemma 3.14: Results are averaged1192

over 100 runs.1193

F.7 Effect of noise - validation (Figure 6)1194

In this subsection, we describe the experiments run to produce Figure 6: All bounds on the asymptotic1195

expected loss value for SGD, SignSGD, Adam, and AdamW are perfectly verified.1196

We optimize the loss f(x) = x⊤Hx
2 where H = diag(1, 1) as we run each optimizer for 1000001197

iterations with η = 0.01. We repeat this procedure five times, one for each σ ∈ {0.01, 0.1, 1, 10, 100}.1198

As we train, we inject noise on the gradient as distributed as N (0, σ2Id). We plot the average loss1199

together with the respective limits predicted by our Lemmas. For each optimizer and each σ, the1200

average asymptotic loss matches the predicted limit. Therefore, we verify that the loss of SGD scales1201

quadratically in σ, that of Adam and SignSGD scales linearly, and that of AdamW is limited in σ.1202

F.8 Increasing weight decay with the batch size1203

The analysis of Malladi et al. (2022) suggests that, when scaling batch size B by a factor κ one has1204

to scale up (↑) the learning rate η by a factor
√
κ and scale down (↓) β2 to the value 1− κ(1− β2).1205

Our SDE analysis confirms similar rules (Lemma 3.13) but additionally suggests scaling up the1206

decoupled weight decay parameter γ by a factor
√
κ. We test this in two settings: VGG11 and1207

ResNet34 (convolutional networks) on CIFAR-10 classification. We select a base batch size of 256,1208
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and run AdamW with η = 0.001, β2 = 0.99, and γ = 0.1. We consider scaling the batch by a factor1209

4: In Table 1, we show the effect of updating each hyperparameter with the proposed rule and we1210

denote by a “·” the model parameters of the base run with B = 256. We train for 150 epochs the1211

model with B = 256, and 150× 4 the model with B = 4× 256. Experiments are repeated 3 times.1212

We find that, while improvements are marginal, they are consistent with our theoretical results.1213

B η β2 λ VGG11 (Test Acc ↑) ResNet 34 (Test Acc ↑)
· · · · 90.581 ± 0.295 94.396 ± 0.126
↑ · · · 90.502 ± 0.093 94.296 ± 0.220
↑ ↑ · · 90.767 ± 0.119 94.507 ± 0.148
↑ ↑ ↓ · 90.703 ± 0.271 94.590 ± 0.188
↑ ↑ ↓ ↑ 90.966 ± 0.252 94.639 ± 0.192

Table 1: Scaling with the batch size: Effect of adapting AdamW hyperparameters.

1214
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NeurIPS Paper Checklist1215

1. Claims1216

Question: Do the main claims made in the abstract and introduction accurately reflect the1217

paper’s contributions and scope?1218

Answer: [Yes]1219

Justification: The abstract is a high-level description of what we achieve. The results are1220

clearly presented in Section 3 and validated in the figures. Details are in the appendix.1221

Guidelines:1222

• The answer NA means that the abstract and introduction do not include the claims1223

made in the paper.1224

• The abstract and/or introduction should clearly state the claims made, including the1225

contributions made in the paper and important assumptions and limitations. A No or1226

NA answer to this question will not be perceived well by the reviewers.1227

• The claims made should match theoretical and experimental results, and reflect how1228

much the results can be expected to generalize to other settings.1229

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1230

are not attained by the paper.1231

2. Limitations1232

Question: Does the paper discuss the limitations of the work performed by the authors?1233

Answer: [Yes]1234

Justification: See Section C.1.1235

Guidelines:1236

• The answer NA means that the paper has no limitation while the answer No means that1237

the paper has limitations, but those are not discussed in the paper.1238

• The authors are encouraged to create a separate ”Limitations” section in their paper.1239

• The paper should point out any strong assumptions and how robust the results are to1240

violations of these assumptions (e.g., independence assumptions, noiseless settings,1241

model well-specification, asymptotic approximations only holding locally). The authors1242

should reflect on how these assumptions might be violated in practice and what the1243

implications would be.1244

• The authors should reflect on the scope of the claims made, e.g., if the approach was1245

only tested on a few datasets or with a few runs. In general, empirical results often1246

depend on implicit assumptions, which should be articulated.1247

• The authors should reflect on the factors that influence the performance of the approach.1248

For example, a facial recognition algorithm may perform poorly when image resolution1249

is low or images are taken in low lighting. Or a speech-to-text system might not be1250

used reliably to provide closed captions for online lectures because it fails to handle1251

technical jargon.1252

• The authors should discuss the computational efficiency of the proposed algorithms1253

and how they scale with dataset size.1254

• If applicable, the authors should discuss possible limitations of their approach to1255

address problems of privacy and fairness.1256

• While the authors might fear that complete honesty about limitations might be used by1257

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1258

limitations that aren’t acknowledged in the paper. The authors should use their best1259

judgment and recognize that individual actions in favor of transparency play an impor-1260

tant role in developing norms that preserve the integrity of the community. Reviewers1261

will be specifically instructed to not penalize honesty concerning limitations.1262

3. Theory Assumptions and Proofs1263

Question: For each theoretical result, does the paper provide the full set of assumptions and1264

a complete (and correct) proof?1265

Answer: [Yes]1266
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Justification: In the main paper, Theorems, Lemmas, and Corollaries state the assumptions1267

and theses. Sometimes, these are simplified for the sake of clarity: Complete and formal1268

statements including proofs are in the Appendices.1269

Guidelines:1270

• The answer NA means that the paper does not include theoretical results.1271

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1272

referenced.1273

• All assumptions should be clearly stated or referenced in the statement of any theorems.1274

• The proofs can either appear in the main paper or the supplemental material, but if1275

they appear in the supplemental material, the authors are encouraged to provide a short1276

proof sketch to provide intuition.1277

• Inversely, any informal proof provided in the core of the paper should be complemented1278

by formal proofs provided in appendix or supplemental material.1279

• Theorems and Lemmas that the proof relies upon should be properly referenced.1280

4. Experimental Result Reproducibility1281

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1282

perimental results of the paper to the extent that it affects the main claims and/or conclusions1283

of the paper (regardless of whether the code and data are provided or not)?1284

Answer: [Yes]1285

Justification: We provide all the hyperparameters necessary to replicate our experiments.1286

Datasets are all publicly available: Breast Cancer, MNIST, and CIFAR-10.1287

Guidelines:1288

• The answer NA means that the paper does not include experiments.1289

• If the paper includes experiments, a No answer to this question will not be perceived1290

well by the reviewers: Making the paper reproducible is important, regardless of1291

whether the code and data are provided or not.1292

• If the contribution is a dataset and/or model, the authors should describe the steps taken1293

to make their results reproducible or verifiable.1294

• Depending on the contribution, reproducibility can be accomplished in various ways.1295

For example, if the contribution is a novel architecture, describing the architecture fully1296

might suffice, or if the contribution is a specific model and empirical evaluation, it may1297

be necessary to either make it possible for others to replicate the model with the same1298

dataset, or provide access to the model. In general. releasing code and data is often1299

one good way to accomplish this, but reproducibility can also be provided via detailed1300

instructions for how to replicate the results, access to a hosted model (e.g., in the case1301

of a large language model), releasing of a model checkpoint, or other means that are1302

appropriate to the research performed.1303

• While NeurIPS does not require releasing code, the conference does require all submis-1304

sions to provide some reasonable avenue for reproducibility, which may depend on the1305

nature of the contribution. For example1306

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1307

to reproduce that algorithm.1308

(b) If the contribution is primarily a new model architecture, the paper should describe1309

the architecture clearly and fully.1310

(c) If the contribution is a new model (e.g., a large language model), then there should1311

either be a way to access this model for reproducing the results or a way to reproduce1312

the model (e.g., with an open-source dataset or instructions for how to construct1313

the dataset).1314

(d) We recognize that reproducibility may be tricky in some cases, in which case1315

authors are welcome to describe the particular way they provide for reproducibility.1316

In the case of closed-source models, it may be that access to the model is limited in1317

some way (e.g., to registered users), but it should be possible for other researchers1318

to have some path to reproducing or verifying the results.1319

5. Open access to data and code1320
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Question: Does the paper provide open access to the data and code, with sufficient instruc-1321

tions to faithfully reproduce the main experimental results, as described in supplemental1322

material?1323

Answer: [Yes]1324

Justification: Most of the codes have been released in the supplementary material. The1325

missing ones are simply the implementations of the numerical integration of the SDEs,1326

which consist of applying Euler-Maruyama: All code will be released in an appropriate1327

GitHub repository upon publication.1328

Guidelines:1329

• The answer NA means that paper does not include experiments requiring code.1330

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1331

public/guides/CodeSubmissionPolicy) for more details.1332

• While we encourage the release of code and data, we understand that this might not be1333

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1334

including code, unless this is central to the contribution (e.g., for a new open-source1335

benchmark).1336

• The instructions should contain the exact command and environment needed to run to1337

reproduce the results. See the NeurIPS code and data submission guidelines (https:1338

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1339

• The authors should provide instructions on data access and preparation, including how1340

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1341

• The authors should provide scripts to reproduce all experimental results for the new1342

proposed method and baselines. If only a subset of experiments are reproducible, they1343

should state which ones are omitted from the script and why.1344

• At submission time, to preserve anonymity, the authors should release anonymized1345

versions (if applicable).1346

• Providing as much information as possible in supplemental material (appended to the1347

paper) is recommended, but including URLs to data and code is permitted.1348

6. Experimental Setting/Details1349

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1350

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1351

results?1352

Answer: [Yes]1353

Justification: We describe all the experimental settings in Section F.1354

Guidelines:1355

• The answer NA means that the paper does not include experiments.1356

• The experimental setting should be presented in the core of the paper to a level of detail1357

that is necessary to appreciate the results and make sense of them.1358

• The full details can be provided either with the code, in appendix, or as supplemental1359

material.1360

7. Experiment Statistical Significance1361

Question: Does the paper report error bars suitably and correctly defined or other appropriate1362

information about the statistical significance of the experiments?1363

Answer: [Yes]1364

Justification: Our figures report error bars when relevant.1365

Guidelines:1366

• The answer NA means that the paper does not include experiments.1367

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-1368

dence intervals, or statistical significance tests, at least for the experiments that support1369

the main claims of the paper.1370
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• The factors of variability that the error bars are capturing should be clearly stated (for1371

example, train/test split, initialization, random drawing of some parameter, or overall1372

run with given experimental conditions).1373

• The method for calculating the error bars should be explained (closed form formula,1374

call to a library function, bootstrap, etc.)1375

• The assumptions made should be given (e.g., Normally distributed errors).1376

• It should be clear whether the error bar is the standard deviation or the standard error1377

of the mean.1378

• It is OK to report 1-sigma error bars, but one should state it. The authors should1379

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1380

of Normality of errors is not verified.1381

• For asymmetric distributions, the authors should be careful not to show in tables or1382

figures symmetric error bars that would yield results that are out of range (e.g. negative1383

error rates).1384

• If error bars are reported in tables or plots, The authors should explain in the text how1385

they were calculated and reference the corresponding figures or tables in the text.1386

8. Experiments Compute Resources1387

Question: For each experiment, does the paper provide sufficient information on the com-1388

puter resources (type of compute workers, memory, time of execution) needed to reproduce1389

the experiments?1390

Answer: [Yes]1391

Justification: As we state in Section F, we run our experiments on an NVIDIA GeForce1392

RTX 3090.1393

Guidelines:1394

• The answer NA means that the paper does not include experiments.1395

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1396

or cloud provider, including relevant memory and storage.1397

• The paper should provide the amount of compute required for each of the individual1398

experimental runs as well as estimate the total compute.1399

• The paper should disclose whether the full research project required more compute1400

than the experiments reported in the paper (e.g., preliminary or failed experiments that1401

didn’t make it into the paper).1402

9. Code Of Ethics1403

Question: Does the research conducted in the paper conform, in every respect, with the1404

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1405

Answer: [Yes]1406

Justification: All we do is derive some convergence bounds and similar results.1407

Guidelines:1408

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1409

• If the authors answer No, they should explain the special circumstances that require a1410

deviation from the Code of Ethics.1411

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1412

eration due to laws or regulations in their jurisdiction).1413

10. Broader Impacts1414

Question: Does the paper discuss both potential positive societal impacts and negative1415

societal impacts of the work performed?1416

Answer: [Yes]1417

Justification: It can have a positive impact as it helps understand adaptive optimizers better.1418

Possibly, it might help reduce the cost of fine-tuning thanks to our novel scaling law.1419

Guidelines:1420

• The answer NA means that there is no societal impact of the work performed.1421
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• If the authors answer NA or No, they should explain why their work has no societal1422

impact or why the paper does not address societal impact.1423

• Examples of negative societal impacts include potential malicious or unintended uses1424

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1425

(e.g., deployment of technologies that could make decisions that unfairly impact specific1426

groups), privacy considerations, and security considerations.1427
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to particular applications, let alone deployments. However, if there is a direct path to1429

any negative applications, the authors should point it out. For example, it is legitimate1430

to point out that an improvement in the quality of generative models could be used to1431

generate deepfakes for disinformation. On the other hand, it is not needed to point out1432

that a generic algorithm for optimizing neural networks could enable people to train1433

models that generate Deepfakes faster.1434

• The authors should consider possible harms that could arise when the technology is1435

being used as intended and functioning correctly, harms that could arise when the1436

technology is being used as intended but gives incorrect results, and harms following1437

from (intentional or unintentional) misuse of the technology.1438

• If there are negative societal impacts, the authors could also discuss possible mitigation1439

strategies (e.g., gated release of models, providing defenses in addition to attacks,1440

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1441

feedback over time, improving the efficiency and accessibility of ML).1442

11. Safeguards1443

Question: Does the paper describe safeguards that have been put in place for responsible1444

release of data or models that have a high risk for misuse (e.g., pretrained language models,1445

image generators, or scraped datasets)?1446

Answer: [NA]1447

Justification: The paper poses no such risks.1448

Guidelines:1449

• The answer NA means that the paper poses no such risks.1450

• Released models that have a high risk for misuse or dual-use should be released with1451

necessary safeguards to allow for controlled use of the model, for example by requiring1452

that users adhere to usage guidelines or restrictions to access the model or implementing1453

safety filters.1454

• Datasets that have been scraped from the Internet could pose safety risks. The authors1455

should describe how they avoided releasing unsafe images.1456

• We recognize that providing effective safeguards is challenging, and many papers do1457

not require this, but we encourage authors to take this into account and make a best1458

faith effort.1459

12. Licenses for existing assets1460

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1461

the paper, properly credited and are the license and terms of use explicitly mentioned and1462

properly respected?1463

Answer: [Yes]1464

Justification: We cite the used datasets. The rest is all our code and we cite the most relevant1465

libraries used.1466

Guidelines:1467

• The answer NA means that the paper does not use existing assets.1468

• The authors should cite the original paper that produced the code package or dataset.1469

• The authors should state which version of the asset is used and, if possible, include a1470

URL.1471

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1472

• For scraped data from a particular source (e.g., website), the copyright and terms of1473

service of that source should be provided.1474
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• If assets are released, the license, copyright information, and terms of use in the1475

package should be provided. For popular datasets, paperswithcode.com/datasets1476

has curated licenses for some datasets. Their licensing guide can help determine the1477

license of a dataset.1478

• For existing datasets that are re-packaged, both the original license and the license of1479

the derived asset (if it has changed) should be provided.1480

• If this information is not available online, the authors are encouraged to reach out to1481

the asset’s creators.1482

13. New Assets1483

Question: Are new assets introduced in the paper well documented and is the documentation1484

provided alongside the assets?1485

Answer: [NA]1486

Justification: The paper does not release new assets1487

Guidelines:1488

• The answer NA means that the paper does not release new assets.1489

• Researchers should communicate the details of the dataset/code/model as part of their1490

submissions via structured templates. This includes details about training, license,1491

limitations, etc.1492

• The paper should discuss whether and how consent was obtained from people whose1493

asset is used.1494

• At submission time, remember to anonymize your assets (if applicable). You can either1495

create an anonymized URL or include an anonymized zip file.1496

14. Crowdsourcing and Research with Human Subjects1497

Question: For crowdsourcing experiments and research with human subjects, does the paper1498

include the full text of instructions given to participants and screenshots, if applicable, as1499

well as details about compensation (if any)?1500

Answer: [NA]1501

Justification: The paper does not involve crowdsourcing nor research with human subjects.1502

Guidelines:1503

• The answer NA means that the paper does not involve crowdsourcing nor research with1504

human subjects.1505

• Including this information in the supplemental material is fine, but if the main contribu-1506

tion of the paper involves human subjects, then as much detail as possible should be1507

included in the main paper.1508

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1509

or other labor should be paid at least the minimum wage in the country of the data1510

collector.1511

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1512

Subjects1513

Question: Does the paper describe potential risks incurred by study participants, whether1514

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1515

approvals (or an equivalent approval/review based on the requirements of your country or1516

institution) were obtained?1517

Answer: [NA]1518

Justification: The paper does not involve crowdsourcing nor research with human subjects1519

Guidelines:1520

• The answer NA means that the paper does not involve crowdsourcing nor research with1521

human subjects.1522

• Depending on the country in which research is conducted, IRB approval (or equivalent)1523

may be required for any human subjects research. If you obtained IRB approval, you1524

should clearly state this in the paper.1525
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• We recognize that the procedures for this may vary significantly between institutions1526

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1527

guidelines for their institution.1528

• For initial submissions, do not include any information that would break anonymity (if1529

applicable), such as the institution conducting the review.1530
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