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Abstract

Autonomous and multimodal AI agents have
emerged as transformative tools in biomedi-
cal and biochemical research. These Al co-
scientists are capable of autonomously perform-
ing a range of complex tasks in the scientific re-
search lifecycle, while interacting with diverse
modalities (e.g., molecular structures, biomed-
ical images, omics sequences, and structured
clinical records). This survey presents the first
systematic review of over 80 papers on multi-
modal agentic Al in biomedical and chemical
research. We propose a taxonomy of biomedi-
cal and chemical multimodal agents, covering
model modalities, multimodal agent learning,
multimodal agent inference, existing applica-
tions, and the current landscape of benchmarks
and metrics. We provide a detailed review
of representative approaches and datasets in
each category. This survey serves as a valuable
resource for researchers interested in interdis-
ciplinary collaboration within biomedical and
chemical agentic workflows.

1 Introduction

Agentic Als in the biomedical and chemical do-
main are autonomous systems powered by ma-
chine learning, particularly large language mod-
els (LLMs), to perform complex tasks in re-
search (Wang et al., 2023a; Gao et al., 2024; Huang
et al., 2025b; Ghareeb et al., 2025). These agents
can understand, design, and manipulate biologi-
cal and chemical molecules and systems (M. Bran
et al., 2024; Ghafarollahi and Buehler, 2024; Visan
and Negut, 2024) by interacting with their envi-
ronment (Tom et al., 2024), reducing information
overload (Landhuis, 2016). Compared to tradi-
tional Al, agentic systems integrate sophisticated
reasoning capabilities and can interact dynamically
with multimodal datasets, including textual data,
molecular structures, biomedical images, omics se-
quences, and structured clinical records, thereby
greatly enhancing research efficiency and reducing

human workload (Ghafarollahi and Buehler, 2024;
Ghareeb et al., 2025; M. Bran et al., 2024).

In biomedical and chemical domains, these Al
agents face unique challenges due to the complex-
ity and scarcity of high-quality, domain-specific
datasets. For instance, the long-tail distributions
and the specialized jargon present difficulties for
general-purpose LLMs, requiring agents that can
handle precise domain knowledge and multimodal
data integration (Barnett and Doubleday, 2020;
Wang et al., 2024c; Lucy et al., 2023). Addition-
ally, the complex biomedical and chemical contexts
during agent inference time require models to in-
tegrate multifaceted information (Dehghani and
Levin, 2024). Recent developments emphasize spe-
cialized multimodal agentic Al that simultaneously
processes and integrates heterogeneous data types,
significantly outperforming their unimodal coun-
terparts (Kim et al., 2024; Huang et al., 2025a;
Schouten et al., 2025). In particular, biomedi-
cal Al agents are frequently tasked with complex
workflows such as automated clinical decision sup-
port (Tang et al., 2024; Li et al., 2024a), precision
diagnostic reasoning (Fan et al., 2025b), bioinfor-
matics analyses of multi-omics data (Zhou et al.,
2024a; Huang et al., 2025a), and clinical trial rea-
soning (Yue et al., 2024). Chemical Al agents,
on the other hand, predominantly focus on drug
discovery (M. Bran et al., 2024; Ivanenkov et al.,
2023), molecular synthesis planning (Ma, 2025),
protein engineering and optimization (Ghafarollahi
and Buehler, 2024; Liu et al., 2025), and mate-
rials discovery (Ghafarollahi and Buehler, 2024).
These applications require agents to interpret ex-
perimental outcomes, design scientific hypotheses,
and execute complex experimental plans.

While existing surveys have extensively covered
general-purpose LLM-based agents or applications
in broader scientific contexts (Durante et al., 2024,
Luo et al., 2025; Zheng et al., 2025), a dedicated
and comprehensive review focusing specifically
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Figure 1: Taxonomy of Biomedical and chemical Multimodal Agents.

on multimodal biomedical and chemical agents re- Al agents in the biomedical and chemical domains.

mains absent. Current surveys often overlook the
critical aspects unique to biomedical and chemical
research (Ren et al., 2025; Gridach et al., 2025;
Schouten et al., 2025), such as multimodal data in-
tegration, stringent experimental validation require-
ments, and domain-specific evaluation methodolo-
gies. Gao et al. (2024) presents a vision of “Al
scientists” as collaborative partners in the biomed-
ical domain, but their focus remains on vision
rather than concrete implementation or applica-
tions. Ramos et al. (2025) discusses LLM-driven
agents with a scope limited to chemistry and ma-
terials science. To bridge this gap, this paper sys-
tematically surveys over 80 papers on multimodal

Figure 1 shows the taxonomy of multimodal Al
agents in the biomedical and chemical domains.

2 Preliminaries

2.1 Why AI agents in both Biomedicine and
Chemistry?

We cover the progress of Al agents across both
biomedicine and chemistry because of the deep
connections between these fields, especially in
drug discovery, where chemical innovations di-
rectly lead to biomedical breakthroughs. In chem-
istry, the current spotlight is on autonomous, Al-
driven laboratories (self-driving labs) that design,
plan, execute, and analyze experiments with min-



imal human intervention (Szymanski et al., 2023;
Boiko et al., 2023; M. Bran et al., 2024). These
systems integrate LL.Ms with robotic platforms to
handle everything from synthesis planning to exper-
iment optimization. Despite their chemistry orien-
tation, these Al agents are designed to work across
shared biological and chemical modalities, includ-
ing molecules, proteins, and genes, making them
adaptable for biomedical tasks like protein engi-
neering (de Almeida et al., 2025; Liu et al., 2025),
genetic analysis (Huang et al., 2024, 2025a), and
therapeutic design (Shi et al., 2024; Wang et al.,
2025a). For instance, a molecular property pre-
dictor developed for reaction optimization can be
repurposed for predicting drug-target interactions
in biomedicine (Kang and Kim, 2024). Mean-
while, in biomedicine, there is a growing trend
toward autonomous biomedical discovery. includ-
ing generating hypotheses (Qi et al., 2024; Baek
et al., 2025), designing and running in silico ex-
periments (Huang et al., 2025a), and even execut-
ing laboratory assays for biomarker identification
and drug screening (Swanson et al., 2024). Be-
cause these agents share core components, such
as molecule understanding, protein sequence in-
terpretation, experimental planning, and robotic
execution, the transition between chemistry and
biomedicine is natural and seamless. We provide an
overview of representative agentic systems in chem-
istry in Table E.8, and a comprehensive summary
of biomedical agentic systems in Tables E.9-E.11.

2.2 Modalities Covered by Agents in
Biomedical and Chemical Research
(Table E.1)

Early agentic Al efforts focus on utilizing a sin-
gle modality to process and analyze data in the
biomedical and chemical domain (Roohani et al.,
2024; ALMutairi et al., 2024; Li et al., 2024b;
Pandey et al., 2024; Fan et al., 2025b). How-
ever, in the real world, scientists usually process
data from diverse sources in their research (Acosta
et al., 2022), since unimodal agents often face re-
porting bias (Gordon and Van Durme, 2013). Re-
cently, researchers have been shifting towards mul-
timodal agentic Al, which can process and integrate
data from multiple data types simultaneously (Kim
et al., 2024; Huang et al., 2025a), such as text,
images, molecular structures, etc. Compared to
their unimodal counterparts, multimodal models
perform much better (Schouten et al., 2025). Mul-
timodal foundation models (Moor et al., 2023; Pei

et al., 2024; Zhang et al., 2024a,b; Hu and Quon,
2024; Luo et al., 2025) form the backbone of mul-
timodal biomedical agents (Li et al., 2024a; Visan
and Negut, 2024; Ghafarollahi and Buehler, 2024)
for integrating domain knowledge across various
modalities. These modalities include textual de-
scriptions (Fan et al., 2025a), tabular data (Shi
et al., 2024; Zhou et al., 2024a; Wang et al., 2025c),
chemical small molecules (M. Bran et al., 2024,
Ma, 2025; Smbatyan et al., 2025), DNA/RNA nu-
cleotide sequence (de Almeida et al., 2025; Wang
et al., 2025a), visual information (Lu et al., 2024b;
Lei et al., 2024; Li et al., 2024a; Royer, 2024),
protein amino acid sequences (Ghafarollahi and
Buehler, 2024; Liu et al., 2025), and knowledge
graphs (Wang et al., 2024g; Selinger et al., 2024;
Aamer et al., 2025; Lu et al., 2024¢; Matsumoto
et al., 2025).

3 Multimodal Agentic AI Learning
(Table E.2)

Multimodal integration is the foundational step for
utilizing data from different modalities in Agen-
tic Als, as it aims to create meaningful correspon-
dences and relationships between information de-
rived from various modalities.

Data-level Integration. Due to the recent dramatic
advances in LLMs, a straightforward method is to
convert other modalities into text-based representa-
tions. For example, sequential biological data are
commonly formatted using FASTA (Lipman and
Pearson, 1985), which encodes DNA and RNA
as nucleotide sequences and proteins as amino
acid chains. Additionally, researchers often sim-
plify small molecules as linear sequences, such
as SMILES (Weininger, 1988), SELFIES (Krenn
etal., 2020). A notable application of this approach
is TxGemma (Wang et al., 2025a), the backbone
LLM of Agentic-Tx. TxGemma is instruction-
finetuned on a comprehensive dataset, the Ther-
apeutic Data Commons (TDC) (Huang et al., 2021,
2022), which includes small molecules, proteins,
nucleic acids, diseases, and cell lines. However,
this strategy requires extensive multimodal corpora
for pretraining or finetuning, which in turn needs
significant computational and data resources.
Joint Embedding Alignment via Contrastive
Learning. Many multimodal agents rely on con-
trastive learning, which brings representations of
positive pairs of multimodal data closer together
in the embedding space, while simultaneously



pushing representations of negative pairs farther
apart (Chen et al., 2020). Notably, CLIP (Radford
et al., 2021) architecture is widely used to align em-
beddings across different modalities. For example,
MMedAgent (Li et al., 2024a) relies on Biomed-
CLIP (Zhang et al., 2025) for biomedical image
classification by aligning biomedical images with
corresponding textual descriptions. Similarly, Phar-
magents (Gao et al., 2025) utilizes DrugCIIP (Gao
et al., 2023) to align representations of binding
proteins and molecules.

Feature-level Integration. To achieve better
alignment across modalities, multimodal agents
typically extract features from each modality in-
dependently before integrating them into a uni-
fied multimodal representation (Guarrasi et al.,
2025). A common approach involves projecting
features from a specialized encoder into the tex-
tual embedding space. For example, AutoPro-
teinEngine (Liu et al., 2025) combines sequence
and graph representations of proteins with a late
fusion strategy by applying different encoders. Sim-
ilarly, PathChat (Lu et al., 2024b) utilizes LLaVA-
Med (Li et al., 2023) to project image features,
encoded by a vision encoder, into the language em-
bedding space. ChatNT (de Almeida et al., 2025)
adopts a separate DNA encoder to project DNA
representations into the textual space.
Model-level Integration. Apart from the above
methods, multimodal Al agents improve accuracy
by integrating the outputs from multiple domain-
specific agents. A backbone LLM agent, such
as GPT-4 (OpenAl, 2023), often functions as the
“brain” or controller, which serves as a bridge
between users and expertise-specialized agents.
This backbone agent can interpret natural language
instructions, perform reasoning, plan action se-
quences, interface with diverse external tools, and
synthesize their outputs into coherent results. For
instance, ProtAgents (Ghafarollahi and Buehler,
2024) is a multi-agent framework for protein de-
sign and analysis that employs GPT-4 as a coordi-
nator to manage a suite of tools spanning various
disciplines, including physics simulators and pro-
tein folding models. Similarly, using GPT-4 as a
coordinator, MedAgent-Pro (Wang et al., 2025d) in-
tegrates specialized components, such as segmenta-
tion models (e.g., Medical SAM Adapter (Wu et al.,
2025b)), grounding models (e.g., Maira-2 (Bannur
et al., 2024)), and LL.M-based coding tools (e.g.,
Copilot (GitHub, 2021)), to perform comprehen-
sive quantitative analyses.

4 Multimodal Agentic AI Inference
(Table E.3)

Prompt Enginnering (Radford et al., 2019), such
as Chain-of-Thought (Wei et al., 2022), In-context
learning (Brown et al., 2020), and ReAct (Yao et al.,
2023), leverage the inherent capabilities of large
pretrained foundation models without requiring di-
rect modifications to model weights. They rely on
carefully crafted input prompts, including task de-
scriptions, examples, and specific instructions to
guide the model’s reasoning and output generation.

4.1 Tool Learning

Despite the impressive performance of LLMs in
general tasks, they face challenges when applied to
biomedical and chemical domains, such as predict-
ing drug-target interactions and planning retrosyn-
thesis. To bridge this gap, Al agents utilize external
tools to enhance their capabilities. Such external
tools can be categorized into two categories (Ren
et al., 2025): (1) Application Programming Inter-
faces (APIs) and code libraries, and (2) simulators
or physical platforms. APIs and code libraries are
typically developed by domain experts (Jin et al.,
2024b; Yue et al., 2024; Fallahpour et al., 2025).
For instance, GeneGPT (Jin et al., 2024b) and
TRIAGEAGENT(Lu et al., 2024a) utilize NCBI
Web APIs to access biomedical databases. In chem-
istry, CACTUS (McNaughton et al., 2024) uses RD-
Kit (Bento et al., 2020) to perform molecule prop-
erty prediction. Recently, code-generating LLMs
have also been used to create novel tools tailored
to specific problems. For example, AgentMD (Jin
et al., 2024a) and MeNTi (Zhu et al., 2025) gen-
erates clinical calculators from GPT-4 (OpenAl,
2023) for medical risk prediction. Simulators
and physical environments offer platforms for Al
agents to validate and test their outputs. For ex-
ample, AtomAgents (Ghafarollahi and Buehler,
2025) analyzes molecule structures by physics
simulations. In the chemical domain, Coscien-
tist (Boiko et al., 2023) leverages GPT-4 with capa-
bilities, including information retrieval, code exe-
cution, and robotic experiment automation. Simi-
larly, ChemCrow (M. Bran et al., 2024) integrates
18 expert-designed tools with GPT-4 (OpenAl,
2023) as the LLM, enabling interaction with IBM
RoboRXN (Pyzer-Knapp et al., 2022) in the phys-
ical world to discover and synthesize novel chro-
mophores.

Reasoning and Acting. A widely adopted prompt-



ing framework is ReAct (Yao et al., 2023), which
guides LLMs to interleave reasoning with prede-
fined actions that interact with the external envi-
ronment. The downstream applications ranging
from protein discovery (Ghafarollahi and Buehler,
2024), drug discovery (McNaughton et al., 2024;
Liu et al., 2024), material discovery (M. Bran et al.,
2024; Ansari and Moosavi, 2024; Gao et al., 2025),
gene analysis (Jin et al., 2024b), clinical trial analy-
sis (Yue et al., 2024; Fallahpour et al., 2025), thera-
peutic development (Wang et al., 2025a), and bioin-
formatic analysis (Xin et al., 2024). Besides ReAct,
recent Al agents also use code as a universal in-
terface to interact with tools (Wang et al., 2024e).
Biomni (Huang et al., 2025a) and EHRAgent (Shi
et al., 2024) leverage the LLM’s ability to generate
code as the mechanism to interact with tools or
execute complex, multi-step actions, because code
enables complex logic, sequential operations, con-
ditional execution, and interaction with diverse soft-
ware environments and data. Given that LLMs are
increasingly proficient at code generation, this ap-
proach provides a flexible and extensible means of
granting agents new capabilities (Jin et al., 2024b).
Retrieval-Augmented Generation. Retrieval-
augmented generation (RAG) (Lewis et al., 2020)
represents a special case of tool learning by em-
ploying search engine for LLMs (Qu et al., 2025),
where agents retrieve relevant information from
external knowledge bases before generating a re-
sponse. Since the generated response can be
grounded in domain-specific or up-to-date data, it
mitigates issues like hallucination and knowledge
cutoffs (Agrawal et al., 2024). RAG is widely used
in medical domain. ClinicalRAG (Lu et al., 2024c¢)
establishes the foundation as a medical multi-agent
pipeline that incorporates heterogeneous structured
and unstructured medical knowledge into LLMs to
reduce hallucination and improve diagnostic accu-
racy. Building on that, MedAgent-Pro (Wang et al.,
2025d) advances this paradigm by including an
RAG agent that retrieves up-to-date medical guide-
lines from MedlinePlus (Miller et al., 2000) during
diagnostic plan generation. Escargot (Matsumoto
et al., 2025) utilizes RAG pipelines to better sup-
port clinical decision-making and biomedical re-
search by grounding model outputs in Alzheimer’s
knowledge graph (Romano et al., 2024). Simi-
larly, TriageAgent (Lu et al., 2024a) uses RAG to
fetch precise clinical criteria from the Emergency
Severity Index handbook to support triage decision-
making in the emergency department. Fan et al.

(2025a) leverages RAG to expand the short medi-
cal texts into knowledge cards containing enhanced
descriptive information and medical knowledge.
Finally, i-MedRAG (Xiong et al., 2024b) extends
standard RAG by enabling LLMs to ask iterative
follow-up questions during the process.

4.2 Multi-Agent Collaboration

Interactions between multiple Al agents can lead
to improved performance or collective learn-
ing (Wang et al., 2024f). For example, Al Hos-
pital (Fan et al., 2025b) proposes a LLM-powered
multi-agent framework that simulates medical in-
teractions through collaborative diagnosis with
dispute resolution to enhance diagnostic accu-
racy across multiple discussion iterations. Co-
laCare (Wang et al., 2025¢) presents a multi-agent
framework to integrates LLM with domain-specific
expert models to collaboratively analyze structured
EHR data and bridge it with text-based reason-
ing for improved medical record modeling. Sim-
ilarly, MDAgents (Kim et al., 2024) utilizes an
adaptive decision-making framework through dy-
namic collaboration among Al agents based on the
complexity of the medical task. Beyond that, Agent
Hospital (Li et al., 2024b) constructs a virtual hos-
pital environment by simulating patients, nurses,
and doctors as LLM-powered agents. Within this
simulacrum, doctor agents progressively evolve by
treating vast numbers of simulated patient cases
which are designed and documented by the system
itself, thereby refining their diagnostic and treat-
ment capabilities over time.

4.3 Self-Correction and Iterative Refinement

Self-correction and iterative refinement (Madaan
et al., 2023; Kamoi et al., 2024) refers to the pro-
cess by which an LLM refines its own output
during inference to improve accuracy iteratively.
ProtAgents (Ghafarollahi and Buehler, 2024) uses
“Critic” agent to identify mistakes in plan proposals
or execution and suggest fixes for errors. Simi-
larly, ResearchAgent (Baek et al., 2025) proposes
“ReviewingAgents” to iteratively refine research
ideas based on feedback from collaborative LLM-
powered reviewing agents. EHRAgent (Shi et al.,
2024) and Biolnformatics Agent (BIA) (Xin et al.,
2024) learn from error messages and iteratively
improves originally generated code by integrating
feedback. Eunomia (Ansari and Moosavi, 2024)
employs an iterative chain-of-verification process,
systematically reviewing and correcting its own



reasoning to ensure each step logically supports
accurate predictions of water stability in materials.

S Applications (Table E.5)

With the recent breakthroughs in LLMs, Al agents
tackle a wide range of tasks in research and health-
care. By integrating conversation ability with mul-
timodal interfaces, they automate workflows that
traditionally require substantial human expertise.

5.1 Scientific Discovery and Experiment
Automation

Al agents are increasingly engaged in critical sci-
entific tasks, such as hypothesis generation, ther-
apeutic target identification, molecular and pro-
tein design, gene editing setups, and bioinformat-
ics analyses. For example, Robin (Ghareeb et al.,
2025) identifies novel therapeutic candidates such
as ROCK inhibitors for dry age-related macular de-
generation (AMD). In parallel, ClinicalAgent (Yue
et al., 2024) focuses on clinical trial reasoning
and drug development by simulating multi-agent
collaboration for outcome prediction and failure
analysis. In gene engineering, BioDiscoveryA-
gent (Roohani et al., 2024) applies genetic pertur-
bation experiments to uncover new gene targets,
while GeneAgent (Wang et al., 2024¢g) performs
gene set knowledge discovery for advancing hu-
man functional genomics. CRISPR-GPT (Huang
et al., 2024) simplifies the experimental setup for
gene editing. Protein engineering is also being rev-
olutionized. AutoProteinEngine (Liu et al., 2025)
and ProtAgents (Ghafarollahi and Buehler, 2024)
streamline protein engineering, covering tasks from
mutation prediction to property optimization.

In chemistry, ChemCrow (M. Bran et al., 2024)
and GVIM (Ma, 2025) support molecular synthesis
and retrosynthesis planning. DeepThought (Sm-
batyan et al., 2025), TxGemma (Wang et al.,
2025a), and Chemistry42 (Ivanenkov et al., 2023)
advance drug discovery through virtual screening
and molecular design. Selinger et al. (2024) sup-
ports autonomous drug target discovery through
biomedical knowledge graphs. A-Lab (Szyman-
ski et al., 2023) accelerates materials discovery by
bridging computational predictions and laboratory
synthesis. CACTUS (McNaughton et al., 2024)
supports molecular property prediction and drug
design by connecting LLMs with cheminformat-
ics tools. In summary, these agents illustrate Al’s
growing role in enhancing efficiency and innova-

tion in scientific research, showing how Al agents
effectively streamline complex scientific tasks with
minimal human intervention.

5.2 Clinical Decision Support and Reasoning

Clinical AI agents are evolving to help healthcare
professionals interpret patient data and enhance
diagnostic and therapeutic decision-making. Sys-
tems such as MMedAgent (Li et al., 2024a) and
ClinicalRAG (Lu et al., 2024¢) combine medi-
cal images, structured EHR data, and retrieval-
augmented generation to improve accuracy and
transparency in diverse diagnostic tasks. Mean-
while, MeNTi (Zhu et al., 2025) enables quantita-
tive clinical assessment by operating medical calcu-
lators through nested tool calls. Several platforms
go further by simulating full clinical workflows.
To expand agent competence safely, Agent Hospi-
tal (Li et al., 2024b) and AI Hospital (Fan et al.,
2025b) simulate virtual clinical ecosystems where
multi-role agents interact with patients and col-
laborate on complex diagnoses through iterative
dialogues and consensus reports. In specialized
applications, PathChat (Lu et al., 2024b) supports
slide interpretation and pathology consultation; Co-
laCare (Wang et al., 2025c) taps into guidelines
and structured knowledge to advise on oncology
staging trial eligibility, and treatment recommen-
dations; AgentMD (Jin et al., 2024a) automates
ICU risk stratification directly from clinical notes
using curated calculators. For critical workflows,
TriageAgent (Lu et al., 2024a) improves emergency
triage by combining LL.M-driven reasoning with
clinical handbook retrieval and public triage bench-
marks, while MedRAX (Fallahpour et al., 2025)
integrates chest X-ray analysis with multimodal
LLMs to handle complex diagnostic queries.

To make medical AI more accessible, agents
are now being taught to follow step-by-step clini-
cal instructions and speak multiple languages. For
low-resource contexts, ArabicAgent (ALMutairi
et al., 2024) generates culturally grounded Najdi
dialect medical dialogues to support doctor-patient
interactions. Several multi-agent frameworks, in-
cluding MDAgents (Kim et al., 2024) and Medical
Necessity Justification (Pandey et al., 2024), tackle
collaborative clinical decision-making, administra-
tive justification, and argument-based reasoning
by simulating multi-role discussions. Additionally,
MedMax (Bansal et al., 2025) expands instruction-
following capabilities to multimodal biomedical
tasks for domains like radiology and pathology.



5.3 Biomedical and Chemical Question
Answering and Data Analysis

Terminology normalization and biomedical knowl-
edge grounding are the foundation of biomedi-
cal data analysis. For example, RankNorm (Fan
et al., 2025a) proposes a training-free multi-agent
framework that normalizes informal health men-
tions from social media into standard biomedical
terms. Once terms are normalized, Question An-
swering (QA) agents can answer biological and
clinical questions accurately, safely, and with clear
justification. Unlike general-purpose QA systems,
these agents ground their responses in biomedical
knowledge, integrate tool usage, and often explain
their reasoning in high-stakes scenarios. For ex-
ample, i-MedRAG (Xiong et al., 2024b) enhances
medical QA by enabling LLMs to iteratively gen-
erate follow-up queries, supporting multi-hop re-
trieval over clinical knowledge sources. Addition-
ally, powered by NCBI Web APIs, GeneGPT (Jin
et al., 2024b) allows precise retrieval of gene, vari-
ant, and sequence information for genomics tasks.

To support more complex workflows in biomedi-
cal research, recent systems integrate LLM agents
with external tools to support multimodal data anal-
ysis. For example, Biolmage (Lei et al., 2024)
and Omega (Royer, 2024) help users with natu-
ral language-driven bioimage analysis, covering
tasks such as processing, segmentation, and in-
teractive visualization. ESCARGOT (Matsumoto
et al., 2025) enhances biomedical reasoning and
research design by integrating knowledge graphs
and multi-agent collaboration. In bioinformatics,
AutoBA (Zhou et al., 2024a) and Biomni (Huang
et al., 2025a) automate complex multi-omic anal-
ysis, variant annotation, and phenotypic profiling.
Tools like scBaseCount (Youngblut et al., 2025)
offer vast, curated single-cell RNA-seq reposito-
ries, while BIA (BioInformatics Agent) (Xin et al.,
2024) can execute full pipelines, automating tasks
like single-cell RNA-seq data processing and re-
porting. These agents highlight the potential of
agent-tool integration to accelerate biomedical re-
search and analysis by enabling end-to-end automa-
tion through conversational interfaces.

6 Evaluations and Benchmark

6.1 Objective Evaluation (Table E.6)

Core Knowledge Reasoning. The first step is to
evaluate the core knowledge and reasoning capabil-
ities of Al agents.

In the clinical domain, a common method is to
test Al systems against the same standards used
for human physicians. For instance, MedQA (Jin
et al., 2021) is based on the US medical licensing
exams, MedMCQA (Pal et al., 2022) draws from
Indian medical entrance exams, while CliMed-
Bench (Ouyang et al., 2024) and CMB (Wang
et al., 2024d) are based on Chinese medical licens-
ing exams and clinical cases. Beyond those, QA
datasets also focus on an agent’s ability to retrieve
and synthesize information from scientific litera-
ture, databases, and its parametric knowledge. For
instance, PubMedQA (Jin et al., 2019) evaluates
reading comprehension of PubMed abstracts, Gene-
Hop (Jin et al., 2024b) tests multi-hop reasoning via
API calls, and LAB-Bench (Laurent et al., 2024)
challenges models to interact with structured bio-
logical databases and reason over DNA and protein
sequences. Recently, ChemBench (Mirza et al.,
2025) curated more than 2,700 question—answer
pairs from academic sources to evaluate the chemi-
cal knowledge and reasoning abilities of state-of-
the-art LLMs against the expertise of chemists. In
addition to QA tasks, models are also evaluated us-
ing classification and regression benchmarks, such
as MoleculeNet (Wu et al., 2018), which includes
over 700,000 compounds assessed across various
properties for both classification and regression
tasks. While strong performance on these bench-
marks is essential, it does not guarantee proficiency
in complex, real-world tasks (Fan et al., 2025b).
Task-Oriented Evaluation. While earlier bench-
marks focus on what an Al agent knows, its real-
world utility depends on what it can do. There-
fore, researchers have moved beyond static knowl-
edge tests to evaluate agents on complex, multi-step
tasks that mimic real scientific and clinical work-
flows. These evaluations follow a clear progression
of difficulty: the evaluation of task completion,
the performance within interactive, simulated envi-
ronments, and real-world outcomes. Task-specific
benchmarks aim to assess an agent’s ability to per-
form a complete, end-to-end task (Roohani et al.,
2024; Huang et al., 2025a; Wang et al., 2025b; Lu
et al., 2024a). The interactive benchmarks assess
not just the final outcome but the entire process
of interaction, decision-making, and adaptation for
Al agents (Li et al., 2024b; Fan et al., 2025b). Fi-
nally, real-world outcomes, such as wet-lab experi-
ments, represent the ultimate benchmark for testing
Al agents (Huang et al., 2025a; Tom et al., 2024;
Boiko et al., 2023; Ruan et al., 2024; M. Bran et al.,



2024). They evaluate agents that interact with phys-
ical laboratory hardware, grounding evaluation in
real-world outcomes by designing a Self-Driving
Laboratory (SDL).

6.2 Subjective Evaluation (Table E.7)

Because Al agent applications are highly complex,
there can be cases where no evaluation datasets
exist, or where obtaining quantitative evaluation
metrics proves difficult (Wang et al., 2024a). There-
fore, researchers often depend on human judgment
or employ LLMs as judges to evaluate agent ef-
fectiveness. Researchers use Human or LLMs to
test and compare top-performing LLMs on their
performance, such as MedArena (Wu et al., 2025a)
and Decentralized Arena (Yin et al., 2024). Ad-
ditionally, for many complex agentic tasks, where
purely quantitative metrics are insufficient or non-
existent, their evaluation relies on direct, structured
judgment by human experts (Ethayarajh and Ju-
rafsky, 2022; Wang et al., 2024g; M. Bran et al.,
2024). To scale up the evaluation, researchers also
rely on LLM-as-a-Judge to assess the quality of Al-
generated responses (Zheng et al., 2023; Qi et al.,
2024; Mitchener et al., 2025).

7 Challenges and Future Directions

While Al agents indicate a new era in biomedical
and chemical research, their deployment faces criti-
cal challenges in data quality, reliability, reasoning,
evaluation, and safety governance.

Data Quality and Scarcity. Training multimodal
Al systems requires large, well-annotated datasets
pairing diverse modalities. However, data scarcity
remains pervasive due to experimental variabil-
ity, fragmented documentation, and limited dataset
sizes. For example, over 20% of Therapeutics Data
Commons datasets contain fewer than 1,000 data
points (Huang et al., 2021, 2022). Data biases
and errors further complicate reliability. For in-
stance, Walters (2023) shows that the BBB dataset
in MoleculeNet (Wu et al., 2018) has data curation
errors, including duplicate structures with different
labels. Therefore, Al agents will simulate humans
by applying nuanced scientific intuition, weighing
the strength of the evidence, and forming a rea-
soned judgment with limited data.

Hallucination and Reliability. Al models, partic-
ularly LLMs, often hallucinate plausible but false
information (Li et al., 2024c; Sui et al., 2024), un-
dermining their scientific credibility by fabricating

or misrepresenting outcomes. For example, Sahoo
et al. (2024) shows foundation models hallucina-
tion across modalities, including text, image, video,
and audio. They also struggle to reason logically
about complex biomedical and chemical tasks and
are susceptible to simplistic biases or positional
fallacies (DeLong et al., 2024; Joshi et al., 2024).
Existing Al agents utilize external tools to address
this problem. However, orchestrating tools reliably
is non-trivial. For example, Yu et al. (2025) shows
that tool augmentation does not always help chem-
istry questions. Therefore, we need to develop Al
agents that can engage scientists in bidirectional,
real-time collaboration, where dialogue, idea gen-
eration, and experimental design flow seamlessly
between humans and machines.

Evaluation and Safety Evaluation is problematic,
since their reasoning procedure and outputs might
contain modalities other than text, making tradi-
tional text-based evaluation inadequate (Abramson
et al., 2022). Furthermore, the vast, opaque train-
ing corpora of LLMs create a significant risk of
data contamination (Magar and Schwartz, 2022).
For example, Golchin and Surdeanu (2024) shows
that GPT-4 exhibits significant data contamination
across all evaluated datasets. Finally, Al safety con-
cerns have intensified, highlighted by vulnerabili-
ties like adversarial manipulation of medical lan-
guage models and biosecurity risks posed by mod-
els generating harmful biological designs (Yang
et al., 2024b; Brent and McKelvey Jr, 2025). Ro-
bust governance frameworks emphasizing truthful-
ness, resilience, fairness, robustness, and privacy
are urgently required (Yang et al., 2024c).
Robotic Laboratory Automation An Al-
generated experimental plan may be theoretically
sound but practically infeasible due to physical
factors. Physical lab setups often impose equip-
ment limitations. Additionally, a more common
obstacle is the software integration gap due to
fragmented laboratory software that is difficult to
scale or adapt (Scitara, 2023). As a result, current
autonomous labs are limited to certain reactions,
including solid-state synthesis(Szymanski et al.,
2023), palladium-catalyzed cross-couplings (Boiko
et al., 2023), and the synthesis of known small
molecules (M. Bran et al., 2024), where hardware,
software, and procedures have been tightly
controlled and standardized. Future research can
focus on creating agents that can generate robust,
real-world experimental protocols that account for
these practical constraints.



8 Limitation

In this survey, we present a comprehensive review
of biomedical and chemical multimodal agents.
However, due to the rapid evolution of this domain,
a small portion of emergent methods and datasets
may have been overlooked, especially those pub-
lished close to our submission deadline. Addition-
ally, due to space limitations, we acknowledge that
there are areas closely related to our survey that
have not been discussed in depth. For instance,
diffusion-based models for drug discovery, such
as ALIDIFF (Gu et al., 2024) and ABDPO (Zhou
et al., 2024b), are not discussed in depth, though
they represent a growing and important line of
work. Furthermore, some Al Agents may belong to
more than one category, given our classification cri-
teria in the paper. For example, Agentic-Tx (Wang
et al., 2025a) belongs to the ReAct framework (Yao
et al., 2023) and instruction tuning.

Ethic Consideration

This study is a literature-based survey synthesiz-
ing publicly available information from previously
published academic works. It does not involve hu-
man participants, animal subjects, newly collected
datasets, or the use of private or identifiable data.
All datasets and tools reviewed in this work were
obtained from open-access sources. While we ac-
knowledge that Al agents in biomedical and chem-
ical domains may raise ethical concerns, this work
itself does not pose direct ethical risks. Therefore,
institutional ethical approval was not required.
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A Related Work

Scientific discovery is an inherently multimodal
process, involving data formats beyond text, such
as molecular structures, clinical images, protein
interaction networks, and biomedical sensor sig-
nals. Foundational paper (Durante et al., 2024)
introduces multimodal agentic Al as systems that
perceive diverse environmental modalities and exe-
cute embodied actions. While their work focuses
primarily on classical modalities such as language,
vision, and action, our study broadens the scope
to include domain-specific modalities central to
biomedicine and chemistry. In parallel, Wang et al.
(2024a) provides a general overview of LLM-based
agent frameworks and their applications, but re-
mains domain-agnostic. Recently, researchers are
increasingly interested in Al agents designed for
scientific discovery. Luo et al. (2025) and (Zheng
et al., 2025) offer a comprehensive examination of
how LLMs are being integrated across the entire
scientific research pipeline in general science do-
mains, from hypothesis discovery and experiment
planning through writing and peer review. Com-
pared to it, Ren et al. (2025); Gridach et al. (2025)
survey architectural taxonomies and system-level
insights into scientific Al agents. Following Du-
rante et al. (2024), (Ren et al., 2025) divides the
agent architecture into three core modules: a Plan-
ner for task decomposition, a Memory system for
context retention and learning, and a Tool Set for
executing actions. Compared to us, it only cov-
ers some papers about Al agents in biomedical
and chemical domains, and most of its papers talk
about general scientific research Al agents. Gri-
dach et al. (2025) discusses existing Agentic Al
systems, frameworks, and methods in chemistry,
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biology, and materials science. However, it fails to
provide detailed guidance on how researchers can
practically integrate Agentic Al into their work-
flows. On the position side, Gao et al. (2024)
presents a vision of “Al scientists” as collabora-
tive partners that combine human creativity with
AT’s ability to analyze large datasets and navigate
vast hypothesis spaces in the biomedical domain by
integrating with experimental platforms, planning,
and evaluating experiments, and leveraging human-
Al collaboration. However, their work emphasizes
vision over concrete implementation or domain ap-
plications. Ramos et al. (2025) covers LLM-driven
agents applied to chemistry, highlighting document
processing, synthesis planning, and lab tool inte-
gration. While it reflects on challenges such as
data quality, interpretability, and benchmarking, its
scope remains focused on chemistry and materials
science. Building on this prior work, our paper
brings together developments in Al agents across
both biomedical and chemical domains, two areas
that have rarely been studied in combination. We
take a deep dive into the unique data types (modal-
ities), learning methods, reasoning abilities, and
real-world applications of multimodal agentic Al
in these fields. To support this, we curated and
analyzed over 80 relevant papers, providing a com-
prehensive overview of how these agents are being
developed, utilized, and evaluated in practice. We
summarize the aims and domains of these and other
recent survey papers in Table E.12.

B Multimedia Modalities Covered by
Biomedical and Chemical Research

Sequential Data + Text. Sequential encoding is
essential in the development of biomedical and
chemical Al agents, since chemical sequences (i.e.,
DNA, RNA, and proteins) provide complemen-
tary chemical properties that are difficult to cap-
ture in descriptive text. Recent research is in-
creasingly emphasizing omics sequence data over
biomedical text (Acosta et al., 2022; Gao et al.,
2024; Benegas et al., 2025), driven by the growing
availability of large-scale omics datasets (Boeck-
mann et al., 2003; Biobank, 2014; GreSova et al.,
2023) and the structural properties of biological
sequences (Wang et al., 2023b; Guo et al., 2023;
Abramson et al., 2024). A common strategy is
to steer LLMs by natural language in analyzing
biological sequences (Jiang et al., 2025). For ex-
ample, ChatNT (de Almeida et al., 2025) uses En-
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glish prompts to perform 27 genomics-related tasks,
while AutoProteinEngine (Liu et al., 2025) applies
LLMs to automate protein engineering. Compared
to previous multimodal foundation models (Pei
et al., 2023; Zhang et al., 2023; Garau-Luis et al.,
2024; Pei et al., 2024; Chen et al., 2024), both
agents offer a conversational interface that is partic-
ularly useful for users with no coding capabilities.
Visual Data + Text. Images provide visual repre-
sentations of biological structures and processes.
Existing papers primarily focus on medical re-
ports and figure-caption pairs extracted from pa-
pers (Zhang et al., 2024b). Most biomedical vision-
language agents leverage GPT-4V (OpenAl, 2023),
retrieval-augmented generation (RAG) (Lewis
et al., 2020), and prompt engineering (Chen et al.,
2025a) for agent-driven conversational bioimage
analysis (Royer, 2024; Lei et al., 2024). In ad-
dition to GPT-4V, some papers enhance domain-
specific performance by instruction-tuning open-
source vision-language models (Lu et al., 2024b; Li
et al., 2023) for human pathology analysis, which
aligns the models more closely with biomedical
tasks by using curated prompts and task-specific
training objectives. For example, MMedAgent (Li
et al., 2024a), PathChat (Lu et al., 2024b), and Med-
Max (Bansal et al., 2025), have demonstrated supe-
rior performance compared to GPT-4 on multiple
medical tasks by combining specialized medical
vision encoders with large language models.

Structured Data + Text. Structured data trans-
forms complex datasets into organized, accessi-
ble formats. In the biomedical and chemical do-
mains, structured data can be divided into several
types, including tabular data (Inskip et al., 2017;
Sriram et al., 2025), knowledge bases (Chandak
et al., 2023), and Omics Data (Olivier-Jimenez
etal., 2025). Tabular data are organized in rows and
columns, which are used for storing clinical mea-
surements, electronic health records (Wang et al.,
2025c; Shi et al., 2024; Zhu et al., 2025), labora-
tory test results (Boiko et al., 2023), and chemical
properties (M. Bran et al., 2024). Al agents for
other applications also benefit from external knowl-
edge bases (Ansari and Moosavi, 2024; Wang et al.,
2024b; Selinger et al., 2024; Wang et al., 2024g;
Aamer et al., 2025; Lu et al., 2024c; Matsumoto
et al., 2025), by strengthening the reasoning pro-
cess with domain knowledge, which provides more
accurate, explainable, and context-aware responses.
For example, Intelliscope (Aamer et al., 2025) and
GeneAgent (Wang et al., 2024g) combine LLMs
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with structured biological databases to improve sci-
entific hypothesis generation and gene set analy-
sis. Omics datasets are large-scale, comprehen-
sive datasets that capture various layers of biologi-
cal information in genes, proteins, transcripts, etc.
Previous analysis of different omics datasets re-
quires professional skills and domain knowledge.
To solve this problem, Automated Bioinformat-
ics Analysis (Zhou et al., 2024a) fully automates
multi-omic analyses based on LLMs through code
generation. Additionally, Youngblut et al. (2025)
proposes a hierarchical multi-agent collaborative
pipeline to discover datasets and curate metadata
from the Sequence Read Archive automatically.

C Additional Strategies for Multimodal
Agentic AI Learning

C.1 Domain-specific Tuning (Table E.4)

To adapt models to a particular field, researchers
usually perform domain-specific tuning. Gururan-
gan et al. (2020) shows that task-adaptive pretrain-
ing on a smaller but task-relevant corpus can boost
performance.

Instruction Tuning. Instruction tuning, also
known as supervised finetuning (SFT), is a promi-
nent sub-category where models are finetuned on
datasets of instruction—output pairs. The goal is to
infuse models with domain-specific knowledge and
enhance their ability to follow instructions effec-
tively. MMedAgent (Li et al., 2024a), for instance,
is trained on a curated instruction-tuning dataset
that includes six medical tools designed to solve
seven tasks across five different modalities, which
explicitly teaches the agent to choose the most suit-
able tools for a given medical task. A more exten-
sive example is TxGemma (Wang et al., 2025a),
which finetunes the Gemma-2 base models (Team
et al., 2024) on a comprehensive dataset from the
Therapeutic Data Commons (TDC) (Huang et al.,
2021, 2022), covering 66 Al-ready drug discovery
datasets formatted as prompts with an instruction,
context, a question on therapeutic properties, and
an answer. This large-scale instruction tuning, with
approximately 7 million training examples, aims
to create specialized therapeutic LLMs. Similarly,
in the chemical domain, GVIM (Ma, 2025) equips
the model with specialized chemical knowledge
and reasoning by finetuning open-source LLMs,
such as LLaMA-3 (Grattafiori et al., 2024), on in-
structional data collected from the field of chemical
science.



Reinforcement Learning Instruction tuning en-
ables Al agents to follow human directives, but
it falls short in enhancing their ability to interact
with external environments or autonomously ex-
plore and learn new tasks. In biomedical and chem-
ical domains, task evaluation typically involves
multiple abstract criteria (e.g., balancing imme-
diate clinical benefits with long-term patient out-
comes). To address this complexity, reinforcement
learning with well-crafted reward functions em-
powers Al agents to iteratively interact with an
environment and learn optimal policies. These
reward functions guide agents toward desired be-
haviors by providing feedback over time, shaping
their learning process to handle the nuanced, multi-
objective nature of these tasks. For example, ACE-
GEN (Bou et al., 2024) is a reinforcement learn-
ing toolkit for generative chemical agents in drug
discovery based on drug design relevant scoring
functions. Chemistry42 (Ivanenkov et al., 2023)
uses multiple sets of reward modules to dynam-
ically evaluate the properties of generated struc-
tures in 2D and 3D against user-defined criteria.
Szymanski et al. (2023) trains agent with proxi-
mal policy optimization (Schulman et al., 2017),
which can interact with GSAS-II software pack-
age (Toby and Von Dreele, 2013). ChatMOF (Kang
and Kim, 2024) leverages reinforcement learning
(Park et al., 2024) to select building blocks for
metal-organic frameworks. Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023) is a reward-
free finetuning strategy previously used in natural
language processing.

D Additional Evaluation and
Benchmarks

We summarize the recent benchmark papers in Ta-
ble E.13.

D.1 Task-Oriented Evaluation

Task-specific Benchmarks. Task-specific bench-
marks aim to assess an agent’s ability to per-
form a complete, end-to-end task. For example,
BioDiscoveryAgent (Roohani et al., 2024) defines
“hits” as genes whose perturbation leads to a de-
sired phenotype. Its performance is measured
via Hit Rate (Recall), reflecting the proportion
of true positive hits identified within a dataset.
Similarly, Biomni (Huang et al., 2025a) is eval-
uated on a suite of eight newly curated, realistic
biomedical tasks, including variant prioritization,
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GWAS causal gene detection, CRISPR perturba-
tion screen design, rare disease diagnosis, patient
gene prioritization, drug repurposing, microbiome
disease-taxa analysis, and single-cell RNA-seq an-
notation. Evaluation metrics are tailored to each
task, ranging from classification accuracy and av-
erage post-perturbation effect to semantic match-
ing accuracy verified by human experts. In bioin-
formatics, BioDSA-1K (Wang et al., 2025b) pro-
vides 1,029 hypothesis-centric tasks paired with
1,177 analysis plans, curated from over 300 pub-
lished biomedical studies to reflect the structure
and reasoning found in authentic research work-
flows. It evaluates Al agents for the full research
workflow, including hypothesis formulation, data
analysis, evidence alignment, and code execution.
Notably, it also includes non-verifiable cases, re-
quiring agents to recognize when available data
are insufficient to support or refute a claim. In
the medical domain, AgentMD (Jin et al., 2024a)
introduces a benchmark, RiskQA, specifically for
evaluating an agent’s ability to perform clinical
risk prediction that assesses both tool creation (via
quality-check accuracy and unit-test pass rate) and
tool usage (via RiskQA task accuracy). Finally,
TriageAgent (Lu et al., 2024a) provides the first
publicly available benchmark dataset of notes an-
notated with Emergency Severity Index (ESI) lev-
els and human-expert performance. The study
evaluates model safety and accuracy using Discor-
dance Rate as the primary metric, complemented
by under-triage and over-triage rates.

Interactive Benchmarks. Recent evaluation meth-
ods focus on interactive benchmarks that require
agents to operate over time. Those benchmarks
assess not just the final outcome but the entire pro-
cess of interaction, decision-making, and adapta-
tion for Al agents. For example, Agent Hospital (Li
et al., 2024b) simulates a fully functioning hospital,
where LLM-powered agents play the roles of pa-
tients, nurses, and doctors. Instead of a static score,
the evaluation focuses on how the doctor agent im-
proves over time, regarding diagnostic accuracy,
the appropriateness of selected medical tests, and
the quality of treatment recommendations. Simi-
larly, Al Hospital (Fan et al., 2025b) introduces the
Multi-View Medical Evaluation (MVME) bench-
mark to assess LLM-driven “Doctor” agents in a
simulated clinical environment. It computes entity
overlap-based automated metrics for the Diagnostic
Results section of medical records.

Real-world Evaluation. Real-world outcomes,



such as wet-lab experiments, represent the ultimate
benchmark for testing Al agents. For example,
in Biomni (Huang et al., 2025a), a scientist as-
signed Biomni an RNA cloning task and followed
its protocol exactly to perform the wet-lab experi-
ment. The results show how scientists can rely on
Biomni to autonomously design complex molecu-
lar biology experiments with accuracy comparable
to human experts. A more ambitious goal is to
evaluate agents that interact with physical labora-
tory hardware, grounding evaluation in real-world
outcomes by designing a Self-Driving Laboratory
(SDL). In this context, key evaluation metrics are
tightly coupled to scientific objectives, such as
yield, purity, reaction mass efficiency, space-time
yield, and E-factor (Tom et al., 2024). For exam-
ple, Coscientist (Boiko et al., 2023) frames reaction
optimization as a game aimed at maximizing reac-
tion yield, measured through normalized advantage
over iterative loops. Similarly, LLM-RDF (Ruan
et al., 2024) tracks both yield and probability of im-
provement (PI) during closed-loop optimization to
decide when experiments should stop. Meanwhile,
ChemCrow (M. Bran et al., 2024) compares auto-
mated protocol performance against expert bench-
marks in both task success rates and qualitative
expert assessments.

D.2 Subjective Evaluation

Human/LLMs Ranking Existing benchmarks fo-
cus on scientific knowledge, which leads to a
“benchmark mirage” (Aggarwal, 2025): the illusion
that high performance on benchmarks translates
directly to real-world effectiveness of Al agents.
In reality, these benchmarks fall short of evaluat-
ing what truly defines an autonomous agent: the
ability to operate over time, manage memory and
internal state, interact with tools and APIs, and
adapt continuously to changing environments. To
solve this, researchers propose interactive arenas
to test and compare top-performing Al agents. For
example, MedArena (Wu et al., 2025a) is a free,
interactive arena for clinicians to test and compare
top-performing LLMs on their medical queries.
Each annotator in the arena is required to provide
a National Provider Identifier (NPI) or a Doxim-
ity account. The ranking algorithm is based on
the Bradley—Terry (BT) model (Bradley and Terry,
1952). As of March 2025, MedArena had collected
over 1,200 preferences from more than 300 clin-
icians across 11 top-performing LLMs. Due to
the limited scalability of human annotations, re-
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searchers leverage the collective intelligence of
LLMs to evaluate and compare themselves. For
instance, Decentralized Arena (Yin et al., 2024)
automates and scales Chatbot Arena (Chiang et al.,
2024) for LLM evaluation across various fine-
grained dimensions (e.g., biology, chemistry, ...).
The proposed arena achieves 95% correlation to
Chatbot Arena, which relies on extensive human
judges.

Human Qualitative Evaluation For many com-
plex agentic tasks, purely quantitative metrics are
insufficient or non-existent. In these cases, evalua-
tion relies on direct, structured judgment by human
experts (Ethayarajh and Jurafsky, 2022; Starace
et al.,, 2025). This human-in-the-loop approach
provides the gold standard for assessing qualities
such as scientific soundness, practical utility, and
interpretability. For example, in Biomni (Huang
et al., 2025a), blinded expert reviewers evaluate
protocols generated by a LLM (Claude (Anthropic,
2024)), Biomni, a human trainee, and a senior hu-
man expert. This evaluation procedure enables an
unbiased, expert-driven comparison of the agent’s
capabilities. GeneAgent (Wang et al., 2024g)
uses manual review to confirm the effectiveness
of the self-verification module. Similarly, in Chem-
Crow (M. Bran et al., 2024), four human evaluators
directly compare its outputs to GPT-4’s and indi-
cate their preference.

LLM-as-Judge Relying only on human domain
experts for evaluation is often expensive, time-
consuming, and difficult to scale. At the same
time, simple automated metrics are too crude to
capture the details required for these assessments.
To bridge this gap, researchers rely on LLM-as-
a-Judge to assess the quality of Al-generated re-
sponses (Zheng et al., 2023). The Judge LLMs are
usually guided by a carefully engineered frame-
work of prompts, detailed rubrics, and specific
evaluation criteria. For example, Al Hospital (Fan
et al., 2025b) employs GPT-4 (OpenAl, 2023) as
an evaluator to score diagnostic reports generated
by the agent based on a predefined set of options
on a discrete 1-4 scale. A parallel human eval-
uation shows less than a 4% difference from the
GPT-4 scores. ResearchAgent (Baek et al., 2025)
prompts GPT-4 with human-annotated examples
to induce a detailed, 5-point Likert scale rubric
for a variety of metrics, including Clarity, Rele-
vance, Originality, Feasibility, and Significance.
Similarly, LLM4BioHypoGen (Qi et al., 2024)
uses GPT-4 to evaluate the quality of generated



hypotheses regarding novelty, relevance, signifi-
cance, and verifiability. Both papers observe high
human-model agreement based on Spearman’s cor-
relation coefficient (Zar, 2005) and Cohen’s kappa
coefficient (Vieira et al., 2010). In bioinformat-
ics, Bixbench (Mitchener et al., 2025) offers 53
real-world analytical scenarios and 296 open-ended
questions to evaluate the performance of Al agents
in biological data analysis. The generation results
for open-ended questions are then evaluated by
Claude 3.5 Sonnet (Anthropic, 2024).

D.3 Evaluation Metrics

Traditional task-specific benchmarks typically rely
on well-defined, quantitative metrics, including ac-
curacy, precision, recall, F1 Score, and ROC-AUC.
Since Al agents usually have planning ability, re-
searchers are increasingly shifting their evaluation
focus from just final outcomes to examining the
process and behavior of the agent (Durante et al.,
2024). The emergence of agents that use code as
their primary mode of action has also introduced
a powerful new dimension for evaluation: the cor-
rectness and efficiency of the code itself. Therefore,
researchers can design evaluation metrics to sep-
arate an agent’s procedural competence from its
declarative knowledge (Li et al., 2024d). Proce-
dural competence refers to the agent’s ability to
formulate valid plans or generate executable code,
while declarative knowledge concerns the factual
accuracy of the final outputs. Metrics such as code
executability (Shi et al., 2024; Huang et al., 2025a),
goal completion rate (Boiko et al., 2023; M. Bran
et al., 2024), and resource efficiency (Kim et al.,
2024) offer direct ways to evaluate procedural com-
petence, independent of whether the end result is
factually correct. Conversely, metrics like scientific
validity (Wang et al., 2024g; Huang et al., 2025a),
novelty (Wang et al., 2024b; Baek et al., 2025),
and verifiability (ALMutairi et al., 2024) assess the
quality and impact of the agent’s final conclusions,
reflecting its declarative knowledge. Additionally,
behavioral metrics such as adaptability (Shi et al.,
2024) and interpretability (Roohani et al., 2024)
further contextualize an agent’s procedural abil-
ities, highlighting how it handles errors or com-
municates its reasoning. Together, these metrics
provide a more nuanced and comprehensive frame-
work for evaluating Al agents beyond traditional
outcome-based benchmarks.
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Modality

Strengths

Limitations

Use Cases

Textual Descriptions

Tabular Data (EHR,
Lab, Chemistry)

Biochemical
Sequences
(DNA/RNA/Protein)

Visual Data
(Bioimages, Slides)

Knowledge Graphs /
Structured KBs

Omics Datasets /
Metadata Repositories

- Universally interpretable by
LLMs

- Directly compatible with natural
language prompting

- Supports integration with other
modalities

- Structured, machine-readable
clinical and experimental
information

- Enables precise reasoning and
code generation

- Widely adopted in biomedical
informatics

- Encodes structural and
functional biological information
- Availability of large-scale omics
datasets

- Supports automated sequence
analysis and engineering

- Captures spatial and
morphological context crucial for
biomedical analysis

- Enables agent-driven,
conversational image
interpretation

- Supports multi-modal integration
with text

- Encodes explicit relationships
among biomedical entities

- Enables knowledge-grounded
and explainable reasoning

- Facilitates hypothesis generation
- Enables large-scale, multi-layer
biological analysis

- Rich source of patient- and
population-level signals

- Facilitates automated data
curation and integration

- Ambiguity and incompleteness
in clinical narratives affect
reasoning accuracy

- Requires external validation for
reliability

- Requires schema and context
understanding

- Limited in capturing complex
temporal or contextual
relationships

- Integration with unstructured
data can be challenging

- Requires specialized
tokenization and domain
adaptation

- State-of-the-art performance
often needs instruction-tuning or
hybrid models

- Interpretation often requires
expert input

- Vision encoder and LLM
alignment is technically
challenging

- Limited availability of large,
well-annotated biomedical
datasets

- Often incomplete or outdated

- Domain-specific ontologies are
hard to align and integrate

- Construction and curation
require substantial effort

- Requires complex preprocessing
and normalization

- Biological interpretation depends
on expert knowledge

- Data heterogeneity and quality
issues are common

Medical report
summarization,
question answering,
guideline retrieval

Risk score
computation,
treatment response
prediction, trial
eligibility reasoning

Gene variant
annotation, protein
engineering,
chromatin accessibility
analysis

Pathology/radiology
interpretation, figure
captioning, bioimage
triage, question
answering

Disease-gene
association analysis,
Hypothesis generation,
Biomedical entity
linking

Multi-omics analysis,
metadata curation,
single-cell and
population studies

Table E.1: Strengths and limitations of major data modalities in biomedical and chemical Al Agents.
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Integration Strategy

Strengths

Limitations

Use Cases

Data-level Integration

Contrastive Learning

Feature-level Fusion

Model-level
Integration

- Straightforward implementation
leveraging text modality

- Utilizes standardized sequence
and chemical formats

- Fully compatible with LLM
pretraining and prompting
pipelines

- Highly scalable with large
corpora

- Enables robust cross-modal
alignment and zero-shot transfer
- Effective for retrieval and
embedding-based tasks

- Well-suited for aligning
biomedical or chemical modalities

- Supports modality-specific
encoders (e.g., sequence, graph,
vision)

- Flexible, allows tailored feature
extraction and late fusion

- Facilitates integration of
heterogeneous biomedical data

- Modular and extensible
system-level design

- Enables orchestration of
domain-specialized agents and
external computational tools

- Supports complex reasoning,
planning, and workflow
automation

- Discards modality-specific
inductive biases

- Susceptible to loss of structural
information

- Requires comprehensive and
well-curated multimodal corpora
for effective pretraining/finetuning

- Highly dependent on large,
high-quality paired datasets

- Limited applicability in domains
with scarce aligned data

- Cross-modal interactions is weak
with late fusion

- Fusion strategy requires careful
design and hyperparameter tuning
- Reduce interpretability

- Overall performance
bottlenecked by controller LLM

- Increased system complexity and
engineering overhead

- Risk of error propagation across
components

Encoding biological
sequences and small
molecules as text for
LLM-based modeling,
e.g., protein,
molecules; TxGemma
on Therapeutic Data
Commons (TDC)

Biomedical image-text
alignment,
molecule-protein
binding representation,
radiology report
generation, molecular
captioning

Integrating protein
sequence and graph
features, projecting
image features via
vision encoders,
mapping DNA
features into language
model space
LLM-coordinated
multi-agent
frameworks for protein
engineering,
integrating
segmentation,
grounding, and coding
tools for quantitative
analysis

Table E.2: Strengths and limitations of multimodal integration strategies, with representative biomedical and
chemical domain use cases.
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Paradigm Method Strengths Limitations Use Cases
API/Code - Direct access to - Integration overhead = Database querying,
Library domain-specific - Maintenance burden  automated data retrieval,
Tool Learning Integration knowledge property prediction
- High precision
Simulator/Physical - Enables - Simulation Virtual screening,
Platform validation/testing in virtual ~ accuracy/setup molecular simulation,
or real environments complexity robotics-based

experimentation

Reasoning and - Flexible and extensible - Error propagation Automating analysis

Acting - Automates complex logic - Security and pipelines, workflow
and tool interaction reliability concerns customization, code-based
automation
Retrieval- - Reduces hallucination - Corpus quality Evidence-grounded
Augmented - Provides up-to-date and critical reasoning, literature-aware
Generation domain-specific info - Adds latency and diagnosis, knowledge
(RAG) complexity augmentation
. Role- - Emulates team decision - Role confusion Group decision making,
Multl—Agept playing/Expert making - Coordination simulated expert
Collaboration Simulation - Promotes diversity of overhead discussion, virtual
opinion consultation
Consensus/Dispute - Increases diagnostic - Needs consensus Consensus-driven analysis,
Resolution accuracy protocol dispute resolution, group
- Reduces individual bias validation
Adaptive/Task- - Dynamically adjusts - Less transparent Adaptive resource
based collaboration to task allocation, task-dependent
Collaboration complexity teamwork
Self-correction &  Self-correction & - Improves - Increases Error correction, iterative
Iterative Iterative reliability/accuracy computation cost plan refinement, automatic
Refinement Refinement - Enables continual - Needs feedback code/debug improvement
improvement mechanisms

Table E.3: Overview of major paradigms and representative methods for agentic Al in biomedical and chemical
domains, highlighting their strengths, limitations, and typical use cases.

Tuning Strategy

Strengths

Limitations

Use Cases

Instruction Tuning
(SFT)

Reinforcement /
Preference-based
Tuning (RL, DPO)

- Infuses domain-specific
knowledge via task-relevant
instructions

- Enhances instruction-following
and tool selection capabilities

- Straightforward to implement for
various biomedical and chemical

- Enables interaction with external
environments for autonomous
policy learning

- Supports optimization for
multi-objective or delayed rewards
- Preference-based tuning (e.g.,
DPO) allows alignment with
expert or human feedback without
explicit reward design

- Requires high-quality
labeled instruction—output
pairs

- Limited generalization to
unseen tasks or new tools

- RL is sensitive to reward
function design and can be
computationally expensive
- Exhibits instability in
complex or
high-dimensional tasks

- Preference-based tuning
requires curated pairwise
preference data and has
limited interpretability

Multi-tool and multi-modal
instruction tuning for
medical agents

Specialized chemical or
therapeutic models finetuned
with domain-specific
prompts

RL: Chemical generation
and property optimization,
environment interaction
Preference-based:
Energy/structure
optimization via DPO or
related methods

Table E.4: Strengths and limitations for domain-specific tuning strategies in biomedical and chemical Al agents.

26



Application Area Representative Task Types Typical Input Modalities

Scientific Discovery & Experiment
Automation

- Hypothesis generation

- Molecular/protein design

- Gene editing setup

- Variant analysis

- Bioinformatics automation
- Drug/material design

- Property prediction

- Molecular graphs

- Biological sequences

- Omics tables

- Natural language instructions
- Virtual environment

- Robotic tools

Clinical Decision Support & Reasoning - Diagnosis assistance - Clinical notes (EHR)
- ICU risk scoring - Structured patient data
- Emergency triage - Medical imaging
- Pathology interpretation - Guidelines

- Multilingual doctor-patient - User instructions (multi-language)
communication - Structured checklists
" Biomedical and Chemical Question - Answering clinical/Chemical queries - Medical/Chemical questions
Answering (QA) and Data Analysis - Multi-hop retrieval - Domain literature
- Justified reasoning grounded in - Knowledge bases
medical knowledge - Biomedical APIs
- Information Extraction - Bioimage files
- Visual analytics coordination - Calculator inputs
- Interface instructions

Table E.5: Task types and input modalities for different application areas.

Section Type What is Typical Strengths Limitations Examples
Measured Metrics
Core QA Domain Accuracy, F1I,  Quantitative, Limited to MedQA,
Knowledge Benchmarks knowledge ROC-AUC objective static MedMCQA,
Reasoning reasoning knowledge PubMedQA,
MMLU
Classification/  Property Accuracy, Standardized Not reflective MoleculeNet,
Regression prediction Precision, tasks of real LAB-Bench
Benchmarks Recall, workflows
ROC-AUC
Task-Oriented  Task-specific End-to-end Task-specific Captures Benchmark BioDiscoveryAgent,
Evaluation Benchmarks workflow / accuracy, Hit real-world construction is  Biomni,
task Rate, Human process expensive BioDSA-1K
completion evaluation
Interactive Agent Diagnostic Measures Scenario Agent
Benchmarks interaction, accuracy over  dynamic design impacts  Hospital, Al
adaptation, time, Entity behavior result Hospital
process overlap
improvement
Real-world Real-world Yield, Purity, Highest Expensive, Biomni
Evaluation task success, Task success ecological low (wet-lab),
(Wet-lab) lab experiment  rate, Expert validity throughput Coscientist,
outcomes assessment ChemCrow

Table E.6: Summary of objective evaluation strategies, measured abilities, metrics, and representative benchmarks

for biomedical and chemical Al agents.
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Method How it Works Strengths Limitations Examples
Human/LLMs - Interactive arenas with - Direct comparative - Expensive and slow  MedArena,
Ranking head-to-head ranking of agent  assessment for human annotation  Decentralized
outputs by clinicians or LLMs; - Captures - LLM judges Arena,
- Uses pairwise comparisons user/clinician introduce bias Chatbot Arena
and statistical ranking models  preferences
(e.g., Bradley—Terry) - Scalable via LLM
annotators
“Human =~ - Experts (often blinded) =~ - Gold standard for ~ - Notscalable Biomni (expert
Qualitative qualitatively review complex and - Resource-intensive review),
Evaluation - Score agent outputs using open-ended tasks ChemCrow,
rubrics or structured protocols - Assesses utility and GeneAgent
interpretability
" LLM-as-Judge ~ -LLMs (e.g., GPT-4, Claude) ~ - Scalable & -Dependenton ~ AlHospital,
are prompted to review and Systematic rubric/prompt quality ~ ResearchAgent,
score outputs using detailed - High agreement with - Possible model bias ~ LLM4BioHypoGen,
rubrics or Likert scales expert humans Bixbench

- Assess clarity, relevance,
novelty, etc.

Table E.7: Comparison of mainstream subjective evaluation strategies for agentic Al systems in biomedical and

chemical domains, summarizing workflows, strengths, limitations, and representative systems.
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Agent Name Type Modality Agent Ability
ProtAgents Multi-agent Protein structure Interacts with simulated protein environments through
(Ghafarollahi and (3D), Sequence, natural language by selecting sequences, proposing

Buehler, 2024)
A-Lab (Szymanski
etal., 2023)

Chemistry42
(Ivanenkov et al.,

Eunomia (Ansari
and Moosavi, 2024)

CACTUS
(McNaughton et al.,
2024)

ACEGEN (Bou

et al., 2024)
ChemLangAgent
(Boiko et al., 2023)
ChemCrow

(M. Bran et al.,

ChatMOF (Kang
and Kim, 2024)

LLM-RDF (Ruan
etal., 2024)
Deep Thought
(Smbatyan et al.,

AtomAgents
(Ghafarollahi and
Buehler, 2025)
X-LoRA-Gemma
(Stewart and
Buehler, 2025)

MT-MOL (Kim
et al., 2025)

DrugAgent (Liu
et al., 2024)

TxGemma /
Agentic-Tx (Wang
et al., 2025a)

PharmAgents (Gao
et al., 2025)

ResearchAgent
(Baek et al., 2025)

Agentic-Tx:
Multi-agent
TxGemma:
Single-agent

Multi-agent

Text

Molecular (2D,
3D), structural data

Text, SMILES,
SELFIES

Tools

Text, Code,
Instrument control
Structured data,
Code, and Text

Text, Code, Image,
Simulation

Text, Molecular
Structures,
Scientific Data

Text, Structured
data

Structured
(SMILES,
protein/nucleotide
sequences), Text

Text, Molecular
Structure

Text, Tools

mutations, and optimizing structural outcomes

Autonomously proposes, executes, and optimizes the
synthesis of materials using robotics and active learning

Autonomously generates de novo drug-like molecules with
desired properties using 30+ generative models,
reinforcement learning, and medicinal chemistry filters

Extracts structured materials datasets (e.g., doping
relationships, MOF formulas, water stability) from
unstructured scientific text

Integrates cheminformatics tools with LLMs via LangChain
to answer chemistry questions, estimate molecular
descriptors, and assist drug discovery through zero-shot
reasoning and tool selection

Generates and optimizes drug-like molecules using
reinforcement learning with customizable scoring functions

Integrates an LLM with tools to plan reactions, select
reagents, analyze properties, and assess safety

Calls 18 chemistry tools to perform reagent lookup,
synthesis planning, property retrieval, safety assessment,
and explain reasoning in natural language

Predicts properties, searches database info, and generates
MOF structures with target properties using
LLM-coordinated tools

Automates synthesis tasks like literature mining, experiment
design, execution, and result interpretation

Autonomously performs end-to-end virtual screening: plans
strategy, writes and executes code, selects molecules to
query, and submits results iteratively

Automates alloy design by integrating multimodal data,
running atomistic simulations, analyzing plots, retrieving
knowledge, and validating hypotheses

Analyzes, designs, and validates molecules with desired
properties through human—AI and AI-AI interaction,
performs inverse design by tuning properties such as dipole
moment and polarizability, and generates candidate
molecular structures using generative modeling

Designs molecules using tool-guided, stepwise reasoning
across four roles: tool selection, molecule generation,
consistency verification, and structured review feedback

Autonomously identifies domain-specific requirements,
builds reusable tools, explores and refines multiple
modeling strategies, performs code execution and
debugging, and ultimately selects the most effective solution

TxGemma predicts therapeutic properties across 66 tasks,
including toxicity, ADME, drug synergy, and AE prediction;
enables reasoning via natural language with scientific
explanations

Agentic-Tx orchestrates complex workflows using 18 tools
for property prediction, literature retrieval, molecule
analysis, and trial planning.

Simulates the full drug discovery pipeline using
LLM-driven agents integrated with ML tools, performing
disease-target mapping, compound generation/optimization,
and in silico preclinical assessment with explainable and
evolving outputs.

Automatically generates, evaluates, and iteratively refines
research ideas (problem, method, experiment) using
literature, entity knowledge, and multi-agent reviewing
feedback

Table E.8: Overview of representative Al agents applied in chemical research, highlighting their design paradigms,
core functionalities, and integration of language models with domain-specific tools and data.
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Agent Name

Type

Modality

Agent Ability

ArabicAgent
(ALMutairi et al.,

AutoBA (Zhou
et al., 2024a)

Omega (Royer,
2024)

AutoPE (Liu et al.,
2025)

GeneAgent (Wang
et al., 2024g)

FG-RAG (Selinger
et al., 2024)
GeneGPT (Jin et al.,
2024b)

CRISPR-GPT
(Huang et al., 2024)

BIA (Xin et al.,
2024)

Biomni (Huang
et al., 2025a)

(de Almeida et al.,
2025)

ESCARGOT
(Matsumoto et al.,
2025)

MedMax (Bansal
et al., 2025)

BioDiscoveryAgent
(Roohani et al.,

Biolmage (Lei
et al., 2024)

LLM4BioHypoGen
(ALMutairi et al.,

Virtual Lab
(Swanson et al.,
2024)

Single-agent

Multi-agent

Multilingual text

Text, Structured
omics data

Protein sequence
and Protein
structure

Text, Omics,
Chemical structure

Text, RNA
sequences

Structured data,
Text, Code,
Multi-omics

Text, DNA
sequences

Text, Structured
knowledge graphs

Text, Tools

Generates plausible biomedical hypotheses from
background knowledge and research questions and is
evaluated for novelty, validity, and relevance

Enables end-to-end multi-omics data analysis by
autonomously planning, coding, executing, and debugging
bioinformatics workflows with minimal user input.

Interactively analyzes bioimages; segments cell nuclei,
counts and measures objects, debugs and edits code, creates
custom widgets, and executes follow-up analyses; supports
visual inspection, tool invocation, and on-demand UI / code
generation through conversational input

Automates multimodal AutoML (model selection,
hyperparameter tuning, data retrieval) for protein
engineering via natural language input

Generates and verifies biological process names for gene
sets by autonomously interacting with 18 domain-specific
biomedical databases, reducing hallucinations and
improving reliability

Autonomously plans, executes, and interprets focal graph
searches using LLMs

Executes real-time Web API calls to NCBI tools to answer
genomics-related queries, including multi-hop reasoning via
chain-of-thought API sequences

Supports researchers in CRISPR experiment planning by
automating key steps like system selection, guide RNA
design, and validation setup, using modular interactive
workflows

Executes end-to-end single-cell RNA-seq pipelines:
retrieves datasets, extracts structured metadata, generates
bioinformatics workflows, adapts code, and reports results
autonomously

Executes biomedical tasks autonomously, including gene
prioritization, variant analysis, protocol generation,
multi-omics integration, and hypothesis generation from
real-world data

Performs English-based classification and regression across
27 biological sequence tasks (DNA, RNA, protein);
supports multitask inference and interpretable predictions
via a conversational interface

Dynamically generates and executes reasoning strategies
over biomedical knowledge graphs using
Graph-of-Thoughts and Cypher queries to improve
factuality and reduce hallucinations

Understands and generates interleaved biomedical
image-text content; performs multimodal VQA, generates
medical reports, images, and answers visual queries across
diverse biomedical tasks

Assists biomedical research by answering complex
questions through literature retrieval, table analysis, and
reasoning

Navigates bioimaging resources, answers technical
questions, generates and executes code, performs image
segmentation, queries databases, and analyzes results
autonomously using tool-calling and vision

Generates novel biomedical hypotheses from literature by
multi-agent collaboration and tool learning

Designs nanobody candidates for SARS-CoV-2 variants via
interdisciplinary collaboration, performs reasoning, code
writing, and experimental planning for protein engineering

Table E.O: Part 1: Overview of Al agents in biomedical, medical, and clinical domains, highlighting their application
areas, interaction modalities, and agent design strategies.
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Agent Name

Type

Modality

Agent Ability

RankNorm (Fan
et al., 2025a)

Intelliscope Agent
System (Aamer
et al., 2025)

scBaseCount
(Youngblut et al.,

Al co-scientist
(Gottweis et al.,
2025)

ROBIN (Ghareeb
et al., 2025)

EHRAgent (Shi

et al., 2024)
PathChat (Lu et al.,
2024b)

ClinicalRAG (Lu
et al., 2024c¢)

AgentMD (Jin
et al., 2024a)

1-MedRAG (Xiong
et al., 2024b)

MedLingua (Himel
et al., 2024)

MeNTi (Zhu et al.,
2025)

MMedAgent (Li
et al., 2024a)

Agent hospital (Li
et al., 2024b)

Medical Necessity
Justification
(Pandey et al.,

MDAgents (Kim
et al., 2024)

Al Hospital (Fan
et al., 2025b)

Multi-agent

Multi-agent

Text, Database

graphs

Text, Tools,
Knowledge graphs

Text, Knowledge
bases, Tools

Data

Text, Structured
Data

Performs terminology normalization by retrieving and
ranking candidate terms using multi-agent LLM
collaboration, addressing ambiguity in short social media
texts without training

Explores biomedical knowledge graphs using semantic
search, designs Al predictors via multi-agent deliberation
(Analyst, Scientist, Reviewer), and refines research
proposals iteratively

Constructs a large-scale single-cell transcriptomics data
repository for modeling by automated data mining, metadata
extraction, and uniform gene expression processing

Generates, critiques, evolves, and ranks novel scientific
hypotheses; collaborates with scientists to propose research
plans, especially for drug repurposing, target discovery, and
mechanistic explanations

Multi-step biomedical reasoning agent that plans, retrieves
evidence, reasons, and integrates results for research
insights.

Translates clinical questions into executable code for
multi-table EHR reasoning with minimal supervision

Answers pathology-related questions using histology
images and natural language, suggests differential diagnoses
and IHC tests, interprets image morphology, and supports
interactive multi-turn dialogue for clinical decision-making
and education.

Enhances clinical diagnosis by extracting medical entities,
retrieving heterogeneous knowledge, generating natural
language summaries, and integrating references to support
LLM reasoning.

Automatically curates clinical calculators from literature,
selects and applies appropriate tools to patient notes for risk
estimation, and answers risk-related clinical questions

Iteratively generates and answers follow-up queries to
enhance LLM reasoning in complex medical QA scenarios,
improving accuracy beyond vanilla RAG methods.

Understands symptoms in multiple languages, provides
treatment and doctor recommendations, resolves
ambiguities in similar-sounding terms, supports automatic
translation, and interacts via text or voice.

Selects appropriate medical calculators, fills parameters,
performs unit conversions, and computes results via nested
tool calling using a specialized medical toolkit

Interprets medical images and texts, retrieves domain
knowledge, performs diagnosis and treatment reasoning,
and solves complex medical QA tasks with tool assistance.

Simulates roles of healthcare workers to collaboratively
diagnose and treat virtual patients via multi-round dialogue
and tool use

Collaboratively analyze patient records, identify supporting
evidence, and justify medical procedures using agent-role
coordination

Dynamically forms LLM teams (solo or collaborative)
based on medical query complexity; performs complexity
classification, specialist recruitment, collaborative
discussion, and final decision-making.

Simulates multi-turn clinical diagnosis using LLM-powered
Doctor agents interacting with Patient and Examiner agents
to collect symptoms, recommend tests, and generate
diagnostic reports

Table E.10: Part 2: Overview of Al agents in biomedical, medical, and clinical domains, highlighting their
application areas, interaction modalities, and agent design strategies.
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Agent Name Type Modality Agent Ability
MedAgent-Pro Multi-agent Text, Medical Implements a structured, evidence-based workflow for
(Wang et al., Image medical diagnosis, combining guideline-driven planning
2025d) with patient-specific step-by-step reasoning using RAG,
segmentation tools, coding modules, and VLMs
TMedRAX T T T T % Singleagent  ~ Text, Image ~ _ ~ _ Dynamically integrates specialized tools to perform ~ ~
(Fallahpour et al., step-wise reasoning and tool-based decision making for
2025) complex chest X-ray interpretation, including disease
detection, localization, diagnosis, and report generation
* Clinicalagent (Yue ~ Multi-agent ~ Text, Structured =~ Decomposes complex clinical trial queries into subproblems
et al., 2024) data and solves them using specialized agents and external tools
to generate accurate and explainable results
" TRIAGEAGENT ~ Multi-agent ~ Text, Databases ~ Enables zero-shot triage through role-playing agents using

(Lu et al., 2024a)

retrieval-augmented generation, multi-stage collaboration,
and confidence-based consensus

ColaCare (Wang
et al., 2025¢)

Structured data,
Text

Simulates multidisciplinary clinical consultations by
combining expert EHR models and LLM agents to generate
interpretable, personalized clinical predictions

Multi-Agent
Conversation (Chen
et al., 2025b)

Multi-agent

Text, Databases

Simulates a team of doctor agents and a supervisor agent to
collaboratively reason through complex, rare disease cases,
improving diagnostic accuracy and test recommendations
over single-agent LLMs

Table E.11: Part 3: Overview of Al agents in biomedical, medical, and clinical domains, highlighting their
application areas, interaction modalities, and agent design strategies.

Survey Domain Scientific Aim
Gao et al. (2024) Medical Proposes Al agents that act as Al scientists by integrating large language
models, machine learning tools, and experimental platforms to support and
automate biomedical research
" Visan and Negut =~ Medical/Chemical =~ Reviews the multifaceted role of Al in accelerating and optimizing the drug ~
(2024) discovery and delivery process, including Al applications in target
identification, virtual screening, drug design, property prediction, drug
repurposing, and combination therapy
" Tometal. (2024)  ~ Chemical =~ Reviews the emerging field of self-driving laboratories that integrate =~~~

automation, machine learning, and closed-loop experimentation for
accelerating discovery and optimization in chemistry and materials science

Multi-domain
(across biomedical,
chemical, clinical,

Summarizes the design, architecture, applications, benchmarks, and ethical
considerations of LLM-based scientific agents designed to automate complex
research tasks, including hypothesis generation, experimental design, data
analysis, and simulation

Summarizes the use of LLMs and autonomous agents in accelerating molecule
design, property prediction, synthesis planning, and automation in chemistry,
and discusses their architectures, capabilities, challenges, and broader
scientific applications.

Schouten et al.
(2025)

Analyzes 432 papers (2018-2024) on deep learning-based multimodal Al in
medicine, summarizing its development, clinical applications, fusion methods,
and key challenges, aiming to guide its integration into clinical practice

Zheng et al. (2025)

Multi-domain
(across biomedical,
chemical, clinical,
etc.)

Categorizes the evolving roles of LLMs in scientific discovery through a
three-level autonomy framework (Tool, Analyst, Scientist) and maps their
applications to the six stages of the scientific method, highlighting the shift
from automation tools to autonomous research agents

Table E.12: Summary of recent survey papers on Al agents in research, outlining their domains of focus and core
objectives in advancing automation and autonomy across disciplines.
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Dataset Domain Modality Size Task
BioTrove (Yang et al.,  Biology Image + Text 161.9 million images Fine-grained image
2024a) classification
" VLM4Bio (Maruf =~ Biology =~ Image+Text = ~30K images, ~469K QA ~ Species classification, trait
etal., 2024) pairs identification, trait
grounding, trait referring,
trait counting, VQA,
multimodal reasoning
" LLM4BioHypoGen ~ Clinical ~~  Text 207 dialogue-note pairs +  Medical dialogue generation
(ALMutairi et al., synthetic Arabic dialogues from clinical notes;
2024) Training/evaluating Arabic
NLP models
" MIRAGE (Xiong =~ Medical ~  Text 7,663 QAexamples from5 ~ Multiple-choice medical
et al., 2024a) datasets question answering (QA)
" CliMedBench ¢ Clinical =~ Text 33,735 QAinstances clinical QA, reasoning,

(Ouyang et al., 2024)

BIOMEDICA
(Lozano et al., 2025)

MicroVQA (Burgess
et al., 2025)

MedAgentGym (Xu
et al., 2025)

ReasonMed (Sun
et al., 2025)

ChemBench (Mirza
et al., 2025)

BixBench (Mitchener
et al., 2025)

BioDSA-1K (Wang
et al., 2025b)

Biomedical /
Medical /
Clinical /
Biology

Biomedical

Tabular, Text,
Code, Sequences

Text, Code,
Tabular data

Structured data

24,076,288 image-caption
pairs from 6,042,494
articles

72,413 instances across 129
categories

53 analytical capsules, 296
open-ended questions

1,029 hypotheses, 1,177
tasks from 328 publications

summarization, knowledge
application, info retrieval,
hallucination detection,
toxicity detection

Image classification,
retrieval (image-to-text,
text-to-image), zero-shot
classification, pretraining
for VLMs

Multimodal visual question
answering (VQA)

Code generation for medical
reasoning

Medical question answering
with complex reasoning
QA; human preference
judgment

Complex analytical
reasoning, scientific data
analysis, multi-step
problem-solving, agentic
code execution, QA
Hypothesis validation using
code generation, reasoning,
statistical analysis, and data
interpretation

Table E.13: Summary of recent datasets on Al agents in biomedicine and chemistry domains.
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