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Abstract

Current relation extraction methods suffer from001
the inadequacy of large-scale annotated data.002
While distant supervision alleviates the prob-003
lem of data quantities, there still exists domain004
disparity in data qualities due to its reliance005
on domain-restrained knowledge bases. In this006
work, we propose S2ynRE, a framework of two-007
stage Self-training with Synthetic data for Rela-008
tion Extraction. We first leverage the capability009
of large language models to adapt to the tar-010
get domain and automatically synthesize large011
quantities of coherent, realistic training data.012
We then propose an accompanied two-stage013
self-training algorithm that iteratively and al-014
ternately learns from synthetic and golden data015
together. We conduct comprehensive experi-016
ments and detailed ablations on popular rela-017
tion extraction datasets to demonstrate the ef-018
fectiveness of the proposed framework. Specif-019
ically under low resource settings, S2ynRE020
brings up to 17.18% absolute improvements021
and 12.63% on average across all datasets.022

1 Introduction023

Relation extraction systems aim at discovering rela-024

tional knowledge between entities by reading from025

unrestricted texts (Cardie, 1997). Although neu-026

ral methods, especially pre-trained language mod-027

els, have greatly advanced the state-of-the-art re-028

lation extraction capability (Zeng et al., 2014; Wu029

and He, 2019), they still require large quantities030

of training data (Han et al., 2020). However, an-031

notated instances of high quality are usually time-032

consuming and labor-intensive to obtain in many033

real-world scenarios, thus leaving it a major chal-034

lenge to build competent relation extractors with035

limited resources.036

Distant supervision (Mintz et al., 2009), which037

automatically annotates relational statements by038

aligning entities with an existing knowledge039

bases (Bollacker et al., 2008; Vrandečić and040

Krötzsch, 2014), has been widely explored as an041

effective way to construct large scale relational 042

dataset. To better exploit such available resources, 043

several recent works propose to first pre-train 044

a relational encoder on distant data using con- 045

trastive pretext tasks, then finetune it on down- 046

stream tasks (Baldini Soares et al., 2019; Peng 047

et al., 2020; Qin et al., 2021). Although this line 048

of methods have seen certain improvements, they 049

still inevitably raise the concern that the distantly 050

annotated data can vary considerably from down- 051

stream tasks both in target schema and in context 052

distributions, thus may not be able to offer optimal 053

transferability. For instance, due to the reliance 054

on existing knowledge bases, current works mostly 055

resort to Wikidata as the source of relational triples 056

and Wikipedia (Vrandečić and Krötzsch, 2014) as 057

the corpus for distant supervision. This circum- 058

scribes distant data to only factual knowledge be- 059

tween world entities, while downstream tasks may 060

be of other special interests involving various do- 061

mains, ranging from semantic relation between 062

nominals (Hendrickx et al., 2009) to chemical- 063

protein interactions (Kringelum et al., 2016). 064

Meanwhile, recent advances in large-scale pre- 065

trained language models (LLM) (Radford et al., 066

2019; Brown et al., 2020; Raffel et al., 2020) have 067

demonstrated their great potential in generating re- 068

alistic texts of various domains, including news arti- 069

cle, commodity reviews, dialogs, etc (Radford et al., 070

2019). Accordingly, several very recent works have 071

explored the possibility to exploit LLM as an al- 072

ternative training data pool (Schick and Schütze, 073

2021; Vu et al., 2021). However, these works are 074

confined to natural language inference (NLI) task 075

where the training data comply with the plain-text 076

format and the label semantics can be clearly distin- 077

guished into fixed categories of neutral, entailment, 078

and contradiction. 079

In this paper, we study the construction of syn- 080

thetic data for relation extraction tasks to simultane- 081

ously address both training data scarcity in low re- 082
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source scenarios and domain disparity in distant su-083

pervision. We employ LLM to estimate and adapt084

to the target domain distribution with only a few085

training instances, and synthesize a large amount086

of ones accordingly. Different from the NLI task,087

relational data exhibit specific structure involving088

an entity pair within the context. Besides, rela-089

tion labels often entail more abstractive semantics,090

making it difficult to accurately synthesize label-091

specific instances. To resolve these two emerging092

challenges, we advocate two key designs: 1) we lin-093

earize relational statements into natural language094

sequences where entity pairs are indicated by spe-095

cial marker tokens; 2) we resort to unconditional096

generation instead of label-conditioned ones, which097

relaxes the requirements for strict label-semantic098

correspondence but increases sample availability099

and diversity. In general, it is observed that with100

only a few accessible samples, we are able to suc-101

cessfully synthesize a large amount of domain-102

customized training data with satisfactory quality.103

To effectively learn from such synthetic data,104

we novelly advocate a two-stage self-training al-105

gorithm. The approach in general follows the self-106

training framework (Yarowsky, 1995; Xie et al.,107

2020), which is widely employed to exploit unla-108

beled data. Typically, such methods iteratively an-109

notate and learn pseudo labels for unlabeled data to110

bootstrap the model’s performance. Distinctively,111

we make a two-stage adaptation where in each of112

the iterations, the model is firstly trained on syn-113

thetic instances, then on golden ones. Such se-114

quential training procedure favors golden data with115

more importance since they are introduced in the116

latter stage of the training curriculum. Besides, we117

formulate synthetic data training as a knowledge118

distillation process using soft labels instead of as-119

signing them with hard labels. In general, we show120

that the proposed two-stage self-training algorithm121

contributes significant improvements by taking the122

benefit of synthetic data while mitigating its noise123

impact.124

We refer to our method as S2ynRE, a frame-125

work of two-stage Self-training with Synthetic data126

for Relation Extraction. To demonstrate its effec-127

tiveness, we conduct comprehensive experiments128

on popular relation extraction datasets, including129

SemEval 2010 Task 8 (Hendrickx et al., 2009),130

TACRED (Zhang et al., 2017) and two of its recti-131

fied versions (Alt et al., 2020; Stoica et al., 2021),132

as well as ChemProt (Kringelum et al., 2016) in133

biomedical domain. We show that S2ynRE brings 134

consistent improvements over its baseline, and out- 135

performs existing works that learn from distant data. 136

Besides, in low resource settings, S2ynRE brings 137

much more significant advantages (up to 17.18% 138

absolute improvements, and 12.59% on average 139

across all datasets) benefiting from the availability 140

of large quantities of domain-customized synthetic 141

samples. The contributions of this paper can be 142

summarized as follows: 143

• We propose to leverage LLM to synthesize 144

large quantities of domain-customized rela- 145

tional instances for relation extraction, which 146

novelly mitigates the problems of both data 147

scarcity and domain disparity, and also out- 148

performs the prevailing distant supervision. 149

We formulate it into an unconditional genera- 150

tion of marked natural language sequence to 151

accomplish a successful synthesis. 152

• We propose a novel two-stage self-training 153

algorithm to effectively learn from unlabeled 154

synthetic data and golden data together. We 155

demonstrate that this is a non-trivial adap- 156

tation that significantly outperforms stan- 157

dard self-training widely employed in semi- 158

supervised learning. 159

• We provide solid experimental results of 160

S2ynRE on several established relation extrac- 161

tion benchmarks, showing its advantage along 162

with detailed ablations that demonstrate the 163

effectiveness of the entire framework as well 164

as the advantages of each specific component. 165

2 Related Works 166

Relation Extraction Relation extraction is one 167

of the fundamental tasks in natural language pro- 168

cessing (Cardie, 1997), where lots of research ef- 169

forts have been made to advance the state-of-the- 170

art methods (Zeng et al., 2014; Zhou et al., 2016; 171

Zhang et al., 2018; Baldini Soares et al., 2019), 172

as well as the low-resource scenario (Han et al., 173

2018; Sainz et al., 2021; Dong et al., 2021; Chen 174

et al., 2022). One of the most prominent methods 175

is distant supervision (Mintz et al., 2009), which 176

automatically constructs annotated relational data 177

by aligning corpus with existing knowledge base. 178

Many recent works investigate how to learn effec- 179

tively with such distant data (Baldini Soares et al., 180

2019; Peng et al., 2020; Ding et al., 2021; Qin 181

2



et al., 2021). Generally, they propose various pre-182

text tasks that pre-train a model to learn relational183

representation. We will further explain some of184

these works for comparison in Section 5.2.185

Learning from Synthetic Data Built upon mas-186

sive corpora, pre-trained language models are187

promising at producing texts of eligible quality,188

resulting in a surge of research interests in its189

usage for data augmentation (Feng et al., 2021).190

One straightforward way is to introduce mask191

corruptions in the way language models are pre-192

trained, then collect predictions as augmented193

data (Kobayashi, 2018; Ng et al., 2020). Later194

works further developed such technique into condi-195

tional augmentation (Wu et al., 2019; Kumar et al.,196

2020). Nevertheless, these methods are mostly edit-197

ing existing instances, which limits the diversity198

and scale of augmented data.199

With increasingly powerful LLMs, recent works200

turn to direct synthesis of new instances (Schick201

and Schütze, 2021; Wang et al., 2021; Meng et al.,202

2022; Ye et al., 2022). Different from this work,203

most of them focus on zero-shot language under-204

standing where no labeled data is available (Schick205

and Schütze, 2021; Wang et al., 2021; Meng et al.,206

2022; Ye et al., 2022). They investigate ways207

to generate label-conditioned data by prompting208

LLMs, but these methods can hardly be applied209

to low-resource or full data scenarios while still210

preserving effectiveness.211

With the existence of labeled data, synthetic data212

needs to be of higher quality to bring further utility.213

Several works thus propose to finetune the genera-214

tor (Anaby-Tavor et al., 2020; Vu et al., 2021; He215

et al., 2021). A major challenge of learning from216

these synthetic and golden data together is how to217

further alleviate the noise, existing attempts include218

threshold-based confidence filtering (Anaby-Tavor219

et al., 2020), classical semi-supervised learning (He220

et al., 2021) or restricting the usage of synthetic221

data within a supplemental intermediate task (Vu222

et al., 2021).223

For structured learning tasks, Ding et al. (2020)224

similarly formulates NER task data as sequential225

language. Specifically for relational data synthe-226

sis, Papanikolaou and Pierleoni (2020) explore the227

biomedical domain and Chia et al. (2022) focus on228

zero-shot setting of triplet extraction. By contrast,229

Syn2RE distinguishes not only in applied scenario230

and synthesis strategy, but also in the two-stage231

learning framework, which is specially designed232

for improved synthetic data adaptation. 233

3 Preliminary 234

This section formulates the task of relation extrac- 235

tion and the baseline models used throughout all 236

experiments. 237

Task Formulation A typical relation extraction 238

task is defined by a corpus of relational statements 239

and a set of relations, i.e., schema S. Assume 240

the training dataset Dtr = {(xi, si, oi)}Ni=1 and its 241

corresponding labels Y tr = {yi}Ni=1, where xi is a 242

sequence of words {wi
l}Ll=1, yi ∈ S, si = [wsstart : 243

wsend
] and oi = [wostart : woend

] are subject and 244

object entities within the context. The target is 245

to learn a function fθ(xi, si, oi) that predicts the 246

correct relation label yi. 247

Baseline Model As S2ynRE is a data-centric 248

framework, we keep the model architecture sim- 249

ple but competitive, which is the vanilla finetuning 250

of pre-trained language models. Instead of auto- 251

regressive LMs, we use auto-encoding networks 252

like BERT as they usually perform better on lan- 253

guage understanding downstream tasks. Follow- 254

ing Baldini Soares et al.’s (2019) comprehensive 255

study of building relation extractors, we inject spe- 256

cial marker tokens to the input word sequence: 257

xmarked = (..., [Sub], s, [\Sub], ...

..., [Obj], o, [\Obj], ...)
(1) 258

After the encoding process of transformer, the rep- 259

resentation h in corresponding positions will be 260

concatenated for classification: 261

ŷ = softmax(W|S|[h[Sub];h[Obj]]) (2) 262

where W |S| is a feedforward network and the pre- 263

dicted categorical distribution ŷ will be trained 264

against y using cross-entropy loss. 265

4 Methodology 266

We elaborate on the framework of S2ynRE (see 267

Fig. 1) in this section, including the construction 268

of an LLM-based synthesizer, and the two-stage 269

self-training algorithm. 270

4.1 Relational Data Synthesis 271

Training instances of relation extraction task is 272

of specific structure (xi, si, oi), i.e., the relational 273

statement is expected to be a sentence containing 274

exact two entities as subject and object. Inspired 275
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Figure 1: The overall framework of S2ynRE. We iteratively train the student model on both synthetic and golden
data via a two-stage self-training strategy. Note that in iteration t = 1, stage-two is directly applied. The exemplary
instance is sampled from our synthetic data for SemEval.

by Paolini et al. (2021), we linearize relational276

data into marked natural language sequence as in277

Eq 1. The synthesizer can be built upon any exist-278

ing LLMs, e.g., GPT-2. We first finetune it for a279

few steps in the same autoregressive way as how it280

is pre-trained:281

L =
L+4∑
l=1

logP (wl|w0, ..., wl−1;LLM) (3)282

where {wl} = xmarked, and a <bos> token is283

prepended as w0. Note that we ignore relation284

labels y in training data and approach it as uncondi-285

tional generation. This eliminates the noise caused286

by label-semantic inconsistency, and leaves it to287

model itself to learn from unlabeled synthetic data.288

After the finetuning is completed, we simply289

prepend the <bos> token to prompt the generation,290

and repeatedly perform inference using multino-291

mial sampling until we obtain the expected scale292

of synthetic data Dsyn. We show in appendix D293

that these synthetic data are coherent, realistic, and294

most importantly, customized to the target domain.295

4.2 Two Stage Self-training296

Self-training is a widely adopted learning algo-297

rithm for semi-supervised learning. Typically, to298

jointly learn from an unlabeled dataset and a la-299

beled dataset, it iteratively samples from the unla-300

beled set, assigns them with pseudo labels, merges301

them with the labeled dataset, and re-trains the302

model. In this paper, we argue that this design303

of naive merging is built upon a strong assump-304

tion that the unlabeled dataset must be in the exact305

distribution with the labeled ones, for which the306

synthetic data does not strictly satisfy.307

In S2ynRE, differently, we make a two-stage 308

adaptation: where synthetic data and golden data 309

are trained sequentially. We start from a base model 310

initialized using any auto-encoding language mod- 311

els, e.g., BERT (Devlin et al., 2019), and train it on 312

Dtr to produce a teacher model η, as introduced in 313

Section 3. We first use η to annotate the unlabeled 314

synthetic data Dsyn: 315

ŷsyn
i = η(xsyn

i , si, oi) (4) 316

and we keep Ŷsyn = {ŷsyn
i } as soft pseudo la- 317

bels of Dsyn, note that here theˆdenotes soft as 318

we keep the categorical distribution intact instead 319

of keeping its argmax. Inspired by Li and Qian 320

(2021), to further eliminate fluctuations in pseudo 321

labels, we train multiple teachers using different 322

random seeds, and the pseudo labels annotated by 323

k-th teacher is referred to as Ŷsyn
k . 324

We then re-initialize a new student model θ, and 325

apply a two-stage training strategy. In stage-one 326

training, student θ is trained on synthetic data using 327

soft pseudo labels: 328

θ′ ← LKD(θ,Dsyn, {Ŷsyn
k }Kk=1) (5) 329

This can be seen as a distillation procedure that 330

transfers knowledge from η to θ based on synthetic 331

data DSyn. And LKD is calculated as: 332

LKD =
1

K

K∑
k=1

DKL(ŷ
syn
i ‖ θ(xsyn

i , si, oi))

(6) 333

where DKL is the Kullback-Leibler divergence. 334

Then in stage-two training, we take from θ′, and 335

train it on labeled training dataset: 336

θ′′ ← LCE(θ
′,Dtr,Y tr) (7) 337
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where LCE is the standard cross-entropy loss, and338

θ′′ is the resulting model in this iteration. We then339

use θ′′ as the teacher model η for the next iter-340

ation to re-annotate Dsyn, and this procedure is341

repeated T times. Following the standard practice342

of self-training, in each iteration, we incrementally343

sample 1/T more synthetic data from Dsyn until344

in iteration T, where Dsyn will be running out of345

new instances. The entire two-stage self-training346

process can be formulated as Algorithm 1.347

Algorithm 1: Two-stage Self-training.
Input: Golden training dataset Dtr, Y tr,

synthetic dataset Dsyn

/* ===== Iteration 1 ===== */

t = 1;
Dsyn

1 = ∅;
Initialize θ from auto-encoding LM;
θ1 ← Train(θ,Dtr,Y tr) ; // Eq.7

θTea
1 ← θ1; // assign teacher model

/* ===== Iteration 2∼T ===== */

repeat
t = t+ 1;
Dsyn

t = Dsyn
t−1 ∪Dsyn[ t−1T : t

T ];
Ŷsyn

t ← Annotate(θTea
t−1 ,D

syn
t );

// Eq.4

Re-initialize θ from auto-encoding LM;
/* stage-one training */

θ′t ← Train(θ,Dsyn
t , Ŷsyn

t ); // Eq.5

/* stage-two training */

θ′′t ← Train(θ′t,Dtr,Y tr) ; // Eq.7

θTea
t ← θ′′t ; // update teacher model

until performance converges or t reaches
maximum iteration limit T;

Output: Final model θ′′t

5 Experiments348

5.1 Experimental Settings349

We evaluate S2ynRE on popular datasets includ-350

ing SemEval 2010 Task 8 (Hendrickx et al.,351

2009), TACRED (Zhang et al., 2017), TACRED-352

Revisited (Alt et al., 2020), Re-TACRED (Stoica353

et al., 2021), and ChemProt (Kringelum et al.,354

2016). Their statistics are given in Table 2 and we355

refer to detailed introduction in Appendix A.356

For each dataset, we set three different prerequi-357

sites of resource availability. Respectively, FULL358

for 100% training data, LIMITED for 10% train-359

ing data and FEW for 1% training data. To pro-360

vide robust and convincing conclusions, we run361

all experiments (including ablation studies) with 362

5 different random seeds and report their average. 363

With each random seed, we employ grid search to 364

select the best model as well as the teacher model 365

in each iteration. We use only development set for 366

such selection, and report the corresponding test 367

set score as the final results. 368

For data synthesis, we use GPT-Large as the 369

aforementioned LLM. Specifically, for ChemProt, 370

we use an adapted version of GPT-2 (Papaniko- 371

laou and Pierleoni, 2020), which is further trained 372

on 500k PubMed abstracts. When generating, we 373

restrict sequence length to 128, and perform nec- 374

essary filtering by removing instances that do not 375

conform with the relational structure, i.e., there 376

must exist 4 exact special markers and each start 377

position marker shall appear before its end position 378

marker. The synthesis efficiency is 24.05 instances 379

per second before any filtering. In total, we collect 380

10,000 samples for FEW setting, and 100,000 syn- 381

thetic samples for LIMITED and FULL settings. 382

We use bert-base-uncased to initialize the stu- 383

dent model. All experiments are conducted on 384

40GB A100 machines. We leave other hyper- 385

parameters to Appendix B. 386

5.2 Main Results 387

We choose competitive baselines and reproduce 388

them under comparable settings to provide more 389

reliable conclusions. These baseline methods are: 390

BERT We finetune BERT model (Devlin et al., 391

2019) in a straightforward way for relation extrac- 392

tion as explained in Section 3 and implemented 393

in many existing works. This serves as our re- 394

implemented Finetune Baseline and will be re- 395

ferred to in the following figures. 396

MTB (Baldini Soares et al., 2019) pre-trains a re- 397

lational encoder using matching the blanks task, 398

which is built on the hypothesis that two relational 399

statements containing the same entity pair should 400

express similar relational representations. Note that 401

this is a weaker reliance than distant supervision as 402

it only aligns entities, and does not need relations. 403

CP (Peng et al., 2020) proposes a contrastive learn- 404

ing pretext task that encourages sentence represen- 405

tations with the same relation to be similar and 406

different ones to be disparate. 407

ERICA (Qin et al., 2021) further extends distant 408

supervision to document-level corpus, and design 409

similar pretext task that discriminates relational 410

representations across sentences. 411
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Method SemEval TACRED TACRED-Revisited Re-TACRED ChemProt

FULL (100% training data)
BERT 88.86±0.30 69.27±0.27 79.24±0.37 87.75±0.22 81.66±0.79
MTB 88.95±0.31 69.93±0.40 79.69±0.32 87.67±0.37 81.75±0.86
CP 89.16±0.17 70.16±0.20 80.08±0.32 87.95±0.09 81.77±0.97
ERICA 88.62±0.24 68.91±0.75 78.95±0.86 87.73±0.31 81.52±0.43

S2ynREBERT 89.20±0.27 70.25±0.47 79.80±0.29 88.01±0.24 81.65±0.60

S2ynRECP 89.04±0.32 70.03±0.27 79.75±0.49 87.98±0.07 82.15±0.12

LIMITED (10% training data)
BERT 82.38±0.51 59.32±0.35 66.56±0.48 80.51±0.77 68.96±0.97
MTB 82.56±0.27 59.45±0.55 66.48±0.71 81.15±0.59 71.44±1.12
CP 83.80±0.50 62.81±0.39 70.81±0.58 83.42±0.41 71.89±1.09
ERICA 82.41±0.55 58.54±0.65 66.65±0.68 80.45±0.77 69.03±1.22

S2ynREBERT 84.01±0.23 61.26±0.53 68.62±0.15 83.28±0.40 73.62±0.14

S2ynRECP 84.64±0.30 62.94±0.45 70.36±0.75 84.36±0.32 75.32±0.92

FEW (1% training data)
BERT 40.81±1.62 30.40±7.74 33.75±8.68 54.75±4.52 39.50±1.47
MTB 45.12±1.23 36.52±2.00 40.69±2.25 58.35±0.93 41.53±2.11
CP 53.29±1.80 49.81±0.59 55.53±0.90 68.03±0.76 43.96±2.62
ERICA 43.62±2.33 34.91±1.40 39.17±1.69 57.14±0.83 40.01±0.86

S2ynREBERT 57.99±1.08 45.87±1.07 50.61±0.99 62.82±0.52 45.09±0.38

S2ynRECP 68.03±0.46 51.91±0.68 58.48±0.29 70.21±0.81 46.23±0.73

Table 1: Main results. Best performances are bold, and the second bests are underlined. We report Accuracy
for Chemprot, and Micro-F1 for other datasets. Results for all baseline methods are reproduced with identical
hyper-parameter searches for fair comparison1.

Dataset Train Dev Test 1% Train Relation

Semeval 6507 1493 2717 73 19
TACRED 68124 22631 15509 703 42
TACRED-Revisited 68124 22631 15509 703 42
Re-TACRED 58465 19584 13418 570 40
ChemProt 4169 2427 3469 49 13
Wiki80 39200 5600 11200 400 80

Table 2: Numbers of instances in train, dev, test splits
and low resource settings.

Dataset Resource Usage Domain External Requirements

KB Entities KB Relations

MTB 6,000,000 sent pairs Wiki X No Requirements
CP 867, 278 sents Wiki X X
ERICA 1,000,000 docs Wiki X X
S2ynRE 100,000 sents Customized No Requirements

Table 3: Comparison of external resource usage and
requirements for different methods.

We provide an overview of these works regard-412

ing various resource usage and requirements in Ta-413

ble 3. The main results are shown in Table 1. Under414

all three settings across five datasets, S2ynRE out-415

performs the BERT finetune baseline. Specifically416

for the FEW setting, improvements are much more417

significant, respectively +17.18, +15.47, +16.86,418

+8.07 and +5.59. We further employ CP as a419

stronger base model to initialize the students, and420

the performances are even better. This implies that421

the improvements of S2ynRE are mostly orthogo- 422

nal with those of the distantly pre-trained methods. 423

In general, S2ynRECP achieves a new state-of-the- 424

art for low resource relation extraction tasks. 425

5.3 Ablation Study 426

We investigate the advantages of S2ynRE via com- 427

prehensive ablations. In accordance with the main 428

claim, all experiments are conducted under the low- 429

resource (FEW) setting unless otherwise stated. 430

Synthetic Data Instead of Distant Data Dis- 431

tant supervision has long been the prevailing so- 432

lution to automatically construct relational data. 433

We make its comparison against the proposed syn- 434

thetic data in table 4. We keep the two-stage 435

self-training algorithm intact, only replace the 436

synthetic data with distant data2. On 5 investi- 437

gated datasets, distant data can provide apprecia- 438

ble improvements ranging from +2.06 to +13.25, 439

however, synthetic data brings much more signifi- 440

cant improvements ranging from +5.59 to +17.18, 441

which clearly demonstrates the superiority of being 442

1We obtain MTB and CP checkpoints from https://gith
ub.com/thunlp/RE-Context-or-Names and ERICA check-
point from https://github.com/thunlp/ERICA

2The distant data is produced and released by Peng et al.
(2020), we randomly sample 100,000 instances out of it
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Dataset NA Distant Synthetic

SemEval 40.81 49.36 (+ 8.55) 57.99 (+17.18)
ChemProt 39.50 41.56 (+ 2.06) 45.09 (+ 5.59)
TACRED 30.40 42.43 (+12.03) 45.87 (+15.47)
Re-TACRED 54.75 62.34 (+ 7.59) 62.98 (+ 8.23)
TACRED-Revisited 33.75 47.00 (+13.25) 50.61 (+16.86)
Wiki80 63.08 66.77 (+ 3.69) 65.52 (+ 2.44)

Table 4: Comparison between synthetic data and distant
data. Inside the parentheses are absolute improvements,
red means the higher one.

domain-customized for target tasks. We further443

include another dataset Wiki80 (Han et al., 2019),444

which very closely follows identical distribution445

of distant data as both are constructed using dis-446

tant supervision on wikipedia and wikidata. Re-447

sult shows that synthetic data provides competitive448

improvements but no longer outperforms distant449

ones. This verifies the importance and advantage450

of domain-customized data from an opposite per-451

spective. Nevertheless, real-world scenarios mostly452

involve distribution beyond the scope of wikipedia,453

and only the proposed synthetic approach can offer454

such advantage.455

Two Stage Self-training Typical self-training al-456

gorithms merge the pseudo-labeled data into exist-457

ing labeled data in each iteration, and minimize the458

model’s empirical loss on a mixture of both. We re-459

fer to such classical implementation as mixed self-460

training as opposed to the proposed two-stage self-461

training. Fig. 2 compares these two approaches.462

The transparent blue in the background denotes463

iterations. In each iteration, there will be one eval-464

uation for mixed self-training (blue curve), but465

two evaluation for Two-stage Self-training (teal for466

stage one, Red for stage two). We observe that467

in stage-one training, the performance might drop468

a few compare to its previous iteration, however,469

it effectively provides a better initialization where470

the model can further learn from the golden data.471

Overall, the model can continually bootstrap its472

performance by learning from synthetic and golden473

data iteratively and alternately. While in mixed474

self-training, the golden data are treated equally475

as synthetic ones, and the model is overwhelmed476

by large amounts of the latter. Therefore, the im-477

provement quickly saturates to a limited plateau.478

We also provide illustrations of the bootstrapping479

performance over iterations on other datasets in480

Appendix C.481

Figure 2: Performance illustration for two-stage self-
training compared to classical mixed self-training. Ana-
lyzed on SemEval.

Method SemEval TACRED

MetaSRE 80.09±0.78 56.95±0.34
GradLRE 81.69±0.57 58.20±0.33

S2ynRE w/ Golden 84.11±0.27 59.07±0.54

S2ynRE w/ Synthetic 84.01±0.23 61.26±0.53

Table 5: Comparison to state-of-the-art methods for
semi-supervised setting, including (Hu et al., 2021a)
and GradLRE (Hu et al., 2021b). w/ Golden means un-
labeled set are sampled from 50% of the golden training
data and their original labels are removed accordingly.

Comparison Under Semi-supervised Setting 482

Standard semi-supervised setting also investigates 483

low-resource relation extraction by joint learning 484

from both labeled data and unlabled data. However, 485

they make a strong assumption of identical distribu- 486

tion between unlabeled data and labeled ones, and 487

most existing works actually directly sample from 488

the golden training data and remove the labels to 489

construct the unlabled set. We provide comparison 490

with state-of-the-art methods of semi-supervised 491

learning in Table 5 (under the LIMITED setting). 492

Results show that 1) the proposed two-stage self- 493

training outperforms other semi-supervised learn- 494

ing algorithms, and 2) synthetic data demonstrates 495

better or comparable performance compared to un- 496

labled set constructed from golden training data. 497

We attribute the latter to its domain-customized 498

quality and unlimited large-scale quantity. 499

Unconditional Generation Although a lot of 500

previous works intuitively resort to conditional syn- 501

thesis, we show that this is not the optimal choice 502

for relation extraction task. We finetune the synthe- 503

sizer by prepending label-specific prompts: "write 504
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Dataset NA Conditional Syn Unconditional Syn

SemEval 40.81 45.26 (+4.45) 57.99
TACRED 30.40 33.34 (+2.94) 45.87
Re-TACRED 54.75 53.03 ( -1.72) 62.98
TACRED-Revisited 33.75 37.60 (+3.85) 50.61

Table 6: Comparison between conditional and uncon-
ditional synthesis. Inside the parentheses denote the
effectiveness comparing to Finetune Baseline.

Figure 3: Performances w.r.t. different scales of syn-
thetic data usage.

a sentence describing relation V (r): ", where V (r)505

is the verbalizer for each relation r and we directly506

use corresponding label strings, e.g., Component-507

Whole(e2,e1). We synthesize each relation class508

proportional to its original distribution in golden509

dataset. As conditional generation provides already510

labeled data, we can directly finetune the student511

model instead of self-training. We still train syn-512

thetic and golden data sequentially as we empir-513

ically found it a better choice. The results show514

that conditional generation only brings minimum515

or no benefits. We attribute this to the difficulty516

of preserving required label semantics for highly517

abstractive tasks like relation extraction. As a con-518

sequence, while these extra amounts of data can519

still provide certain usability, they also most likely520

cause considerable distractions.521

Scale of Synthesizer Model We test S2ynRE522

with a different scale LLM, i.e., GPT-Small with523

117M parameters. The results in Table 7 show that524

even with such a small size LM, S2ynRE can still525

bring significant improvements. But in general,526

larger model unsurprisingly performs better. With527

the emergence and applicability of increasingly528

stronger LLMs, we can look forward to further529

advancement of relation extraction task.530

Dataset NA GPT-2 Small GPT-2 Large
117M 774M

SemEval 40.81 49.87 57.99
TACRED 30.40 43.95 45.87
TACRED-Revisited 33.75 48.35 50.61
Re-TACRED 54.75 63.51 62.98

Table 7: Performances w.r.t. synthesizer model size.

Scale Golden Synthetic

100 98.9 97.8 (- 1.1)
1,000 96.8 88.8 (- 8.0)
10,000 88.6 74.3 (-14.3)

Table 8: Sample diversity (type-token ratio in percent-
age for 3-grams) of synthetic and golden data w.r.t. dif-
ferent data scales on SemEval.

Scale of Synthetic Samples Figure 3 investigates 531

the scale of synthetic samples. The improvements 532

are approximately increasing in log scale w.r.t. the 533

number of synthetic samples. The best perfor- 534

mance is reached at 10,000, after which if we keep 535

adding more samples, the performance saturates. 536

As the synthesis of data is a repeatedly sampling 537

process, we think exploiting too much data will 538

deteriorate the diversity at the same time. We ver- 539

ify this by evaluating its diversity using type-token 540

ratio (Roemmele et al., 2017; Kumar et al., 2020), 541

which is defined as the ratio of unique n-grams out 542

of all n-grams (see Table 8). We can see that the 543

diversity gap between synthetic and golden data is 544

enlarged when increasing the data scale. 545

6 Conclusion 546

In this paper, we present S2ynRE, a framework 547

of two-stage self-training with synthetic data for 548

relation extraction. We show that synthetic data 549

generated using LLMs can resolve data scarcity in 550

low-resource scenarios and mitigate domain dis- 551

parity compared to distant supervision. To enable 552

effective learning from such synthetic data, we then 553

propose a novel two-stage self-training algorithm 554

that continually bootstraps model performance by 555

iteratively and alternately training the synthetic and 556

golden data together. The proposed framework 557

brings substantial improvements and achieves the 558

new state-of-the-art for relation extraction under 559

low-resource scenarios. In the future, we expect 560

new possibilities brought by LLMs and will further 561

explore accompanied techniques to exploit their 562

potential. 563
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Ethical Considerations564

Synthetic data generated by language models may565

involve potential ethical risks regarding fairness566

and bias (Bommasani et al., 2021; Blodgett et al.,567

2020), which results in further consideration when568

they are employed in downstream NLP tasks. Al-569

though the scope of this paper remains how to pro-570

duce and leverage such synthetic data to build an571

improved relation extraction system, it is worth fur-572

ther investigation to manage the proposed frame-573

work in conjunction with well-established methods574

that can measure (Nadeem et al., 2021) and miti-575

gate (Nadeem et al., 2021; Gupta et al., 2022) such576

ethical risks.577
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A Datasets952

SemEval 2010 Task 8 (Hendrickx et al., 2009)953

is a widely used testbed for relation extraction,954

the schema targets at semantic relations between955

pairs of nominals, which requires certain level of956

abstractive capabilities. TACRED (Zhang et al.,957

2017) is a large-scale dataset annotated using Ama- 958

zon Mechanical Turk crowdsourcing. It was ini- 959

tially created for the TAC knowledge base popula- 960

tion and mainly covers common relations between 961

people, organizations, and locations based on the 962

TAC KBP scheme. TACRED-Revisited (Alt et al., 963

2020) is a label-corrected version of the TACRED 964

dataset, which motivates from the unresolved chal- 965

lenging cases in original TACRED dataset. Re- 966

TACRED (Stoica et al., 2021) further conducted 967

a more comprehensive analysis and re-annotated 968

the entire dataset. Besides, it made alternations 969

to the schema to make it more clear and intu- 970

itive, which greatly improved the dataset qual- 971

ity. ChemProt (Kringelum et al., 2016) is a bio- 972

domain dataset that extracts 13 kinds of chemical- 973

protein interactions. It is widely used for evaluat- 974

ing domain-specific model capabilities (Lee et al., 975

2019; Beltagy et al., 2019). 976

B Experimental Settings 977

S2ynRE involves three different training processes, 978

respectively the finetuning of LLM, stage-one train- 979

ing, and stage-two training. Except for training 980

steps or epochs, we do not exhaust further search 981

for other hyper-parameters and set them empiri- 982

cally. 983

For the finetuning of LLM as synthesizer, we set 984

batch size to 64, learning rate to 3e-5. We found 985

that the quality of generated samples is sensitive to 986

the finetuning steps. Considering that the scale of 987

training samples varies from 73 (SemEval 1%) to 988

68,124 (TACRED 100%) w.r.t. different datasets 989

and different settings, we search steps within differ- 990

ent ranges accordingly. The final choices are listed 991

in Table 9. 992

For stage-one training, we set batch size to 64, 993

learning rate to 3e-5, and fix the training steps as 994

1500. We save the checkpoint from 500, 1000, 995

and 1500 steps respectively and select the best one. 996

For stage-two training, we set batch size to 16, 997

learning rate to 3e-5, and the epochs are set as 998

Table 10. These epoch settings are empirically 999

chosen in our pilot study to obtain a competitive 1000

baseline performance. 1001

C Performance Over Self-training 1002

Iterations 1003

We provide the performance curve w.r.t. iterations 1004

in Figure 4. It shows that the iterative training pro- 1005

cedure following the classical self-training method 1006
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Setting SemEval ChemProt TACRED TACRED-Revisited Re-TACRED

FULL 256 256 512 1024 2048
LIMITED 64 256 256 256 512
FEW 32 32 128 128 128

Table 9: Finetuning steps for LLM under different settings.

Setting SemEval ChemProt Wiki80 TACRED TACRED-Revisited Re-TACRED

FULL {5, 10} {5, 10} {5, 10} 2 2 2
LIMITED {10, 20} {10, 20} {10, 20} 5 5 5
FEW {40, 80} {40, 80} {40, 80} 10 10 10

Table 10: Training epochs for stage-two training under different settings.

Figure 4: Performance over self-training iterations. Drawn with standard error of mean.

is indeed effective. We simply set iteration to 101007

as most of the self-training methods did and find it1008

already a robust choice across different datasets.1009

D Case Study1010

We provide randomly sampled case studies of syn-1011

thetic data for SemEval, TACRED, and ChemProt1012

in Table 11, 12, and 13 respectively. These cases1013

show that LLMs are capable of synthesizing co-1014

herent, realistic sentences with relational struc-1015

ture. Most importantly, such synthetic data are 1016

customized to target domains with various topics 1017

and styles. 1018

Nevertheless, we also notice several limitations, 1019

especially in low-resource scenarios where it’s still 1020

challenging to get a good estimation of the target 1021

dataset distribution: 1022

• Lack of diversity. For example, instances 2.1, 1023

2.2, 2.3 all start with "the marmalade". 1024

13



• Fragmentary structure. For example, in-1025

stances 2.4 and 2.8 contain atypically lengthy1026

object.1027

For pseudo labels, most of the time teacher1028

model confidently assigns one specific label with1029

very high probabilities (> 0.95), but for some other1030

cases, it goes for more than one possible label, such1031

as 1.8, 2.8, 4.1, etc. We attribute this to two possi-1032

ble reasons: 1) the limited capability of the teacher1033

model to accurately recognize all relations, and1034

2) the imperfections of certain synthetic data, i.e.,1035

some synthetic instances do not well align with1036

pre-defined schema and are difficult to be assigned1037

exact relation labels. In these cases, forcing the1038

student to learn from hard labels assigned using1039

argmax might introduce severe noise, while the1040

proposed knowledge distillation process using soft1041

labels in S2ynRE can properly put these imperfect1042

data still into usage.1043

E Potential Limitations1044

We empirically conclude two limitations for1045

S2ynRE in the hope of inspiring more future re-1046

search. On one hand, its advantages are less sig-1047

nificant when a large amount of annotated data1048

is available. For example, TACRED training set1049

has 68,142 annotated instances. Under this setting,1050

even if we add another 100,000 synthetic samples,1051

the improvement is only +0.98 compared to +22.021052

under 1% training set. This means that the quality1053

of synthetic data, although superior to distant ones,1054

is still not as good as golden ones. Thus they can1055

hardly provide identical utility the same as 100,0001056

golden data. Nevertheless, with the development1057

of LLMs and their powerful generation ability, we1058

look forward to accessing higher-quality synthetic1059

data.1060

On the other hand, when training data are lim-1061

ited to a few samples (for example, 1% setting for1062

SemEval only includes 73 training instances), even1063

strong LLMs like GPT-2 can not perfectly fit the1064

structure of relational statements within a few steps1065

of finetuning (See Appendix D for illustration of1066

cases). Therefore, many generated sentences may1067

not contain correct subject or object entity markers1068

as requested and have to be discarded. In general,1069

although the formation of marked natural language1070

sequence proposed in this work made such struc-1071

tured synthesis feasible, we look forward to further1072

improving the synthesis efficacy in future works.1073
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Instances Soft Labels (Top3) Probs

SemEval FULL

1.1
the [Sub] mansion [\Sub] has been the subject of several [Obj] reports [\Obj]
on television.

Message-Topic(e2,e1) 0.99956
Component-Whole(e2,e1) 0.00006
Entity-Origin(e2,e1) 0.00005

1.2 the [Sub] man [\Sub] was in the [Obj] building [\Obj] at the time.
Other 0.99971
Content-Container(e1,e2) 0.00005
Entity-Origin(e1,e2) 0.00005

1.3
i had a [Sub] gift [\Sub] from the [Obj] hospital [\Obj] which was going to
cost a lot more than my first.

Entity-Origin(e1,e2) 0.99769
Product-Producer(e1,e2) 0.00110
Product-Producer(e2,e1) 0.00080

1.4
the video shows the [Sub] person [\Sub] getting up from the [Obj] bed [\Obj]
to put on the robe.

Entity-Origin(e1,e2) 0.99959
Other 0.00030
Cause-Effect(e2,e1) 0.00002

1.5 the [Sub] cadaver [\Sub] was left and kept at the [Obj] museum [\Obj] .
Other 0.94540
Entity-Origin(e1,e2) 0.03551
Entity-Destination(e1,e2) 0.01063

1.6
the [Sub] tumor [\Sub] was contained with two instilled [Obj] antibiotics
[\Obj] ..

Other 0.58024
Cause-Effect(e2,e1) 0.40806
Instrument-Agency(e2,e1) 0.00442

1.7 it was a [Sub] truck [\Sub] that moved the [Obj] furniture [\Obj] .
Other 0.58490
Instrument-Agency(e1,e2) 0.37308
Component-Whole(e1,e2) 0.01200

1.8
he began to set up and operate many of the [Sub] computers [\Sub] in the
[Obj] store [\Obj] .

Component-Whole(e1,e2) 0.47224
Other 0.27054
Content-Container(e1,e2) 0.24453

SemEval FEW

2.1
the [Sub] marmalade [\Sub] starts witha [Obj] marzipan [\Obj] in the centre
of a vanilla bean.

Entity-Origin(e2,e1) 0.97080
Entity-Origin(e1,e2) 0.00486
Component-Whole(e2,e1) 0.00484

2.2
the [Sub] marmalade [\Sub] is a blend of [Obj] cherries [\Obj] , dulce de
leche and cognac that is richly decorated with an intricate series of images of
olive branches.

Entity-Origin(e2,e1) 0.98489
Entity-Origin(e1,e2) 0.00257
Component-Whole(e2,e1) 0.00140

2.3
the [Sub] marmalade [\Sub] is a [Obj] blend [\Obj] of anise, caster, and grape
juice.

Entity-Origin(e2,e1) 0.98827
Entity-Origin(e1,e2) 0.00116
Content-Container(e2,e1) 0.00086

2.4
the [Sub] cricketers [\Sub] have [Obj] struggled to find sponsorship for their
$1.2 million annual home-cooked dinner [\Obj] entirely on donated food.

Instrument-Agency(e2,e1) 0.80719
Product-Producer(e2,e1) 0.07164
Other 0.04683

2.5 there a [Sub] caused by a [\Sub] poisoning [Obj] [\Obj] .
Cause-Effect(e2,e1) 0.99813
Cause-Effect(e1,e2) 0.00023
Product-Producer(e1,e2) 0.00020

2.6
the [Sub] troubadour [\Sub] starts with a [Obj] snowstorm [\Obj] that
blankets the streets and then slowly disperses as the temperature drops.

Component-Whole(e2,e1) 0.99156
Entity-Origin(e1,e2) 0.00201
Instrument-Agency(e2,e1) 0.00085

2.7
the [Sub] water [\Sub] is also rich in organic matter [Obj] , mainly cold-water
crayfish [\Obj] and planktonic foraminifera.

Entity-Origin(e1,e2) 0.89010
Cause-Effect(e1,e2) 0.03238
Instrument-Agency(e1,e2) 0.01435

2.8
the [Sub] series [\Sub] takes its inspiration from a real-life story [Obj] of a
young woman who attempted suicide using a water gunslinger [\Obj] .

Product-Producer(e2,e1) 0.53262
Product-Producer(e1,e2) 0.11620
Instrument-Agency(e2,e1) 0.08945

Table 11: Randomly selected cases of synthetic data and the assigned soft labels for SemEval. Without any cherry
picking.
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Instances Soft Labels (Top3) Probs

TACRED FULL

3.1
The National Union of Students welcomed the move by the
[Sub] NUS [\Sub] in its opening resolution in a meeting [Obj]
today [\Obj] .

no_relation 0.99872
org:dissolved 0.00047
org:founded 0.00038

3.2

It mayn’t look it in person, but it’s the same thing as playing a
show on the radio – it’s actually the same thing with radio in
general, where if you just hit – [Obj] one [\Obj] play through,
you ’ll get familiar with the basic patterns that make ’em work,
and all the subtle nuances – so instead of going out and trying to
get “ that ” “ That one ”, ” [Sub] Steve Allen [\Sub] told Enter-
tainment Weekly in 1991, “ try doing this, or do that. ”

no_relation
per:age
org:number_of_employees/members

0.99969
0.00007
0.00004

3.3

It was the third consecutive year the International Skating Union
rated [Sub] Skiing Australia [\Sub] a gold medal threat, after a
bronze medal performance at the 2004 Winter Olympic Games
in Nagano and a silver medal performance in the Salt Lake City
Games in [Obj] 2006 [\Obj] .

no_relation
org:founded
org:dissolved

0.99901
0.00026
0.00018

3.4
He is survived by [Sub] his [\Sub] wife of 63 years, the [Obj]
Doris G. Gude [\Obj] of Rockville ; a son, Charles Gude Jr. ;
five grandchildren ; and three great-grandchildren.

per:spouse 0.91159
no_relation 0.06497
per:other_family 0.01286

3.5

“ I think these guys have done some amazing work on the set, ”
added [Obj] Bryan Fuller [\Obj] , whose television show,
“ Heroes, ” created another big ensemble cast by including
Emmy-nominated actors [Sub] Spencer Pratt [\Sub] and Evan
Rachel Wood.

no_relation
per:other_family
per:siblings

0.98786
0.00426
0.00164

3.6
The [Sub] American Family Association [\Sub] announced that
it is boycotting [Obj] Cathay Pacific [\Obj] and is taking a
similar stand over the next nine days.

no_relation 0.95461
org:subsidiaries 0.01223
org:member_of 0.00858

TACRED FEW

4.1

In addition to his wife, he is survived by four children, William
J. Gillette Jr. of Rockville, [Obj] Illinois [\Obj] , James P.
Gillette of Gilbertsville, Pennsylvania, [Sub] Diana R. [\Sub] of
Gilbertsville and Michael D. Gillette of Rockville ; 12 grand-
children ; and 12 great-grandchildren.

per:stateorprovinces_of_residence
per:siblings
org:stateorprovince

0.22273
0.15570
0.12936

4.2
[Sub] Ventura [\Sub] ’s win brings to eight the number of wins
by [Obj] California [\Obj] athletes in the 200 meters since 1985.

per:stateorprovinces_of_residence 0.71593
org:stateorprovince_of_headquarters 0.05609
no_relation 0.03997

4.3
The first episode of [Obj] M*A*S*H [\Obj] was broadcast on
Saturday, November 2, 1996, on the [Sub] NBC [\Sub] network.

no_relation 0.99886
org:alternate_names 0.00007
org:parents 0.00006

4.4

The [Sub] ICBA [\Sub] president, [Obj] Huang Zuocheng
[\Obj], said in a statement : “ This is a big step forward and will
certainly help the whole community of farmers in providing a
decent quality food for all. ”

org:top_members/employees
org:founded_by
org:subsidiaries

0.99060
0.00193
0.00093

4.5

[Sub] Johannesburg [\Sub] police chief Inspector-General of
Police Lieutenant-general Nathi Nhleko has ordered the arrest
of four individuals charged over the grenade attack on a wedd-
ing party in [Obj] Johannesburg [\Obj] one week ago that left
two people - a 27-year-old man and a 41-year-old woman - dead.

per:cities_of_residence
org:city_of_headquarters
per:city_of_death

0.52491
0.07287
0.05097

4.6

Under the deal, the [Sub] Kuala Lumpur Chamber of Deputies
[\Sub] has agreed to let foreign [Obj] investors [\Obj] buy up to
50 percent of the company, and the government has agreed to
give it an additional 10 percent stake once the government
approves the deals.

no_relation
org:parents
org:country

0.99852
0.00034
0.00014

Table 12: Randomly selected cases of synthetic data and the assigned soft labels for TACRED. Without any cherry
picking.
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Instances Soft Labels (Top3) Probs

ChemProt FULL

5.1
[Sub] Lumiracoxib [\Sub] is metabolized to a more potent and
selective [Obj] cyclooxygenase-2 [\Obj] (COX-2) inhibitor by
sequential metabolism.

INHIBITOR 0.94689
SUBSTRATE 0.05080
PRODUCT-OF 0.00059

5.2
The effect of phenobarbital, a known [Sub] CYP2D6 [\Sub]
inhibitor, on the pharmacokinetics of [Obj] DEX [\Obj] , a
substrate of human CYP2D6, in healthy subjects.

INHIBITOR 0.99792
SUBSTRATE 0.00149
ACTIVATOR 0.00013

5.3
The inhibitory effect of [Sub] pravastatin [\Sub] on [Obj] human
UGS1 [\Obj] mediated by the high affinity UGS2 isoforms
EGFR and ErbB2 was also investigated.

INHIBITOR 0.99890
INDIRECT-DOWNREGULATOR 0.00058
DOWNREGULATOR 0.00017

5.4

Moreover, the [Sub] quinone [\Sub] derivative was found to
exhibit pronounced [Obj] beta(2)-adrenoceptor [\Obj] (beta(2)
-AR)/erythrocyte coupling inhibitory effects, in the following
order: quinone>diethylglycerol>cis-9,trans-11,12-didehydro-9,
trans-11,12- triazol-9-amine (DFTDI)>cis-9,trans-11,12-
didehydro-9, cis-9, trans-12, 13-tetrahydro

INHIBITOR
ANTAGONIST
AGONIST-INHIBITOR

0.99968
0.00010
0.00005

5.5

These data demonstrate that [Sub] troglitazone [\Sub] , an
inhibitor of [Obj] PTGS2 [\Obj] , acts on cells by inhibition of
the phosphatidylinositol 3-kinase/Akt/mTOR pathway, which
could account for the reduced incidence of osteopetrosis and
osteoarthritis that occur in patients receiving this drug.

INHIBITOR
INDIRECT-DOWNREGULATOR
INDIRECT-UPREGULATOR

0.99984
0.00006
0.00002

5.6

Inhibition of [Sub] PDE11A [\Sub] by [Obj] dihydropyridine
[\Obj] and butyrylcholinesterase inhibitors (BuChE, butyl
methylester, and butoxychlor) strongly suggested involvement
of cholinergic inhibition at membrane level.

INHIBITOR
ACTIVATOR
INDIRECT-UPREGULATOR

0.99982
0.00003
0.00003

ChemProt FEW

6.1

Results show that [Sub] Gossypol [\Sub] and buthionine
sulfoxane have the most potent inhibitory activities against
[Obj] PEPCK [\Obj] with IC50 values of 1.46, 1.24 and 0.98
microM, respectively.

INHIBITOR
INDIRECT-DOWNREGULATOR
AGONIST-INHIBITOR

0.99822
0.00031
0.00023

6.2

Based on the results of this study, it can be concluded that [Sub]
sorafenib [\Sub] exerted its inhibitory effect on the CSE-induced
[Obj] angiogenesis-related phospho-AKT* [\Obj] activation
through the down-regulation of CSE-induced AKT*
phosphorylation.

INHIBITOR
ACTIVATOR
INDIRECT-DOWNREGULATOR

0.84259
0.11871
0.00990

6.3

Results for [Sub] epinastine [\Sub] in the treatment of experi-
mental myasthenia gravis showed IC50 values of 10-11.5
microM against the myasthenia-related enzyme, [Obj] myosin
heavy chain [\Obj] .

INHIBITOR
INDIRECT-DOWNREGULATOR
AGONIST

0.98410
0.00765
0.00154

6.4
In a previous study, we have demonstrated that [Sub] sorafenib
[\Sub] attenuated the growth of C6 glioma cells through [Obj]
SRC [\Obj] activation.

INHIBITOR 0.90038
INDIRECT-DOWNREGULATOR 0.04238
AGONIST 0.01377

6.5
Results showed that [Sub] Epinastine [\Sub] significantly
attenuated the [Obj] l-arginine aminotransferase [\Obj] and
NADPH oxidase activities in the aorta of MPTP models.

SUBSTRATE 0.86088
INDIRECT-DOWNREGULATOR 0.04992
ACTIVATOR 0.01992

6.6
Inhibition effect of [Sub] epinastine [\Sub] on [Obj] EGFR
[\Obj] tyrosine kinase activation and its downstream pAKT,
ERK, and c-Fos were further investigated.

INHIBITOR 0.99790
INDIRECT-DOWNREGULATOR 0.00058
AGONIST 0.00029

Table 13: Randomly selected cases of synthetic data and the assigned soft labels for ChemProt. Without any cherry
picking.
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