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Abstract

Image restoration aims to recover content from inputs001
degraded by various factors, such as adverse weather, blur,002
and noise. Perceptual Image Restoration (PIR) methods im-003
prove visual quality but often do not support downstream004
tasks effectively. On the other hand, Task-oriented Image005
Restoration (TIR) methods focus on enhancing image utility006
for high-level vision tasks, sometimes compromising visual007
quality. This paper introduces UniRestore, a unified image008
restoration model that bridges the gap between PIR and TIR009
by using a diffusion prior. The diffusion prior is designed to010
generate images that align with human visual quality pref-011
erences, but these images are often unsuitable for TIR sce-012
narios. To solve this limitation, UniRestore utilizes encoder013
features from an autoencoder to adapt the diffusion prior014
to specific tasks. We propose a Complementary Feature015
Restoration Module (CFRM) to reconstruct degraded en-016
coder features and a Task Feature Adapter (TFA) module to017
facilitate adaptive feature fusion in the decoder. This design018
allows UniRestore to optimize images for both human per-019
ception and downstream task requirements, addressing dis-020
crepancies between visual quality and functional needs. In-021
tegrating these modules also enhances UniRestore’s adapt-022
ability and efficiency across diverse tasks. Extensive experi-023
ments demonstrate the superior performance of UniRestore024
in both PIR and TIR scenarios.025

1. Introduction026

Image restoration [44, 57] aims to restore content degraded027
by various factors, such as adverse weather, blur, and028
noise. These factors often reduce image perceptual visibil-029
ity [29, 62] and negatively impact the performance of high-030
level vision applications, such as object detection [68, 76]031
and semantic segmentation [45, 51]. Various restoration032
methods have been developed and studied over the past033
decades to address this wide range of image restoration034
challenges. These include methods focused on improving035
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Figure 1. Illustration of UniRestore’s capabilities: (a) PIR
- Comparison with existing methods (e.g., URIE [54], Promp-
tIR [44]) under adverse conditions. (b) TIR - Demonstrating
UniRestore’s robustness for downstream tasks such as classifica-
tion and segmentation. (c) Unified Restoration - UniRestore’s ver-
satility in addressing PIR and TIR.

perceptual quality [46, 74] as well as those designed to en- 036
hance the performance of downstream tasks [54, 71]. 037

Perceptual image restoration (PIR) algorithms focus on 038
improving visual clarity and fidelity of images by remov- 039
ing or reducing visible artifacts that affect their aesthetic 040
quality. These methods focus on dealing with noise re- 041
duction [8, 74], low-light enhancement [72, 78], deblur- 042
ring [40, 46], dehazing [6, 74], deraining [59, 69], and 043
desnowing [7, 37, 61]. While these algorithms can enhance 044
the visual quality of images, they do not always improve 045
performance in downstream tasks [4, 5, 21]. This is be- 046
cause the factors contributing to visual quality often differ 047
from those determining recognition quality [43, 54, 71]. 048
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On the other hand, task-oriented image restoration049
(TIR) [54, 71] is specifically designed to optimize images050
for applications that rely on computer vision, such as object051
detection [68, 76], classification [53, 54], and autonomous052
driving systems [45, 51]. This approach aligns the restora-053
tion process with the specific requirements of neural net-054
work models used in these applications, ensuring that the055
restored images are suitable for effective machine interpre-056
tation. Although these methods improve the performance057
of downstream tasks, they often produce results that are less058
visually appealing [36, 76].059

Based on the analysis above, existing image restoration060
algorithms often face a trade-off, highlighting the challenge061
of balancing technical functionality with aesthetic quality.062
This dual functionality is crucial because real-world appli-063
cations often require restoration processes to be specifically064
adapted to different scenarios. Thus, developing a model065
that can simultaneously enhance perceptual quality and im-066
prove performance for downstream tasks is essential. Such067
a unified image restoration framework can effectively per-068
form across diverse settings, reducing system redundancy069
and boosting operational efficiency, as shown in Figure 1.070

In this paper, we propose a unified image restoration071
paradigm, UniRestore, which simultaneously improves the072
performance of downstream tasks and the human percep-073
tual quality of degraded images. UniRestore leverages a074
diffusion prior [47] as the backbone, recognized for its gen-075
erative capabilities in producing high-quality images. How-076
ever, these images are typically optimized for human aes-077
thetics, which may not align with downstream task require-078
ments. UniRestore addresses this limitation by adapting079
the diffusion prior to meet both perceptual and functional080
needs, enabling the model to effectively bridge the gap be-081
tween visual quality and downstream task performance.082

To bridge this gap, we exploit the encoder features from083
the autoencoder within the diffusion model as complemen-084
tary elements to tailor the diffusion prior to specific tasks.085
We introduce a Complementary Feature Restoration Mod-086
ule designed to reconstruct degraded features in the encoder.087
Subsequently, we propose a Task Feature Adapter, which088
harmonizes the diffusion features with the restored features089
within the decoder for various downstream tasks. Given the090
diversity of downstream tasks and the frequent necessity to091
adapt these tasks within existing models, the TFA module092
offers extendability to accommodate new tasks. Extensive093
experiments validate UniRestore’s effectiveness, demon-094
strating enhancements in both PIR and TIR, with the po-095
tential for expansion to additional downstream tasks.096

The contributions of this work are:097

• We introduce UniRestore, a unified image restoration098
model that addresses both perceptual image restora-099
tion and task-oriented image restoration within a sin-100
gle framework. Experimental results show that UniRe-101

store surpasses existing methods in both visual quality 102
and downstream task performance. 103

• We propose two components for UniRestore: the 104
CFRM and the TFA. These modules work together to 105
adaptively complement the diffusion prior, enabling si- 106
multaneous restoration across diverse tasks. 107

2. Related Work 108

2.1. Perceptual Image Restoration 109

Perceptual image restoration aims to enhance the visual 110
quality of images as perceived by humans, and it can be 111
categorized into single degradation and multiple degrada- 112
tion restoration. Early work in single degradation restora- 113
tion, such as SRCNN [13], focused on specific degradations 114
to improve image quality, leading to significant advance- 115
ments in super-resolution [25, 32, 79], denoising [8, 74], 116
dehazing [6, 74], deraining [59, 69], low-light enhance- 117
ment [72, 78], and deblurring [40, 46]. To tackle multiple 118
degradations simultaneously, methods like MPRNet [74] 119
and NAFNet [2] introduced unified solutions. Recently, 120
transformer-based approaches, such as SwinIR [30] and 121
Restormer [73], have gained traction for their versatil- 122
ity. Additionally, holistic approaches like All-in-One [29], 123
TransWeather [57], and PromptIR [44] have focused on im- 124
proving visual quality across a wide range of conditions 125
while providing enhanced adaptability and performance. 126
While these methods excel in enhancing visual quality, they 127
do not always guarantee improved performance in down- 128
stream vision tasks. 129

2.2. Task-oriented Image Restoration 130

Task-oriented image restoration aims to enhance down- 131
stream task performance, as studies [4, 26, 71] show that 132
image degradation significantly impairs high-level task ac- 133
curacy. DDP [64] aligns feature representations between 134
low- and high-quality images to improve classification ac- 135
curacy. SFDUnet [70] employs self-feature distillation and 136
uncertainty modeling to extract high-quality-like features 137
from degraded images, enhancing recognition in challeng- 138
ing regions. URIE [54] integrates image enhancement and 139
recognition tasks in an end-to-end framework to mitigate 140
degradation effects. DIP [36] adapts image processing dy- 141
namically based on degradation factors for better recogni- 142
tion outcomes. VDR-IR [71] unifies semantic representa- 143
tions of diverse degraded images to recover intrinsic seman- 144
tics effectively. While these methods enhance downstream 145
task performance, they may result in images that are less 146
visually pleasing. 147

2.3. Diffusion Model 148

Diffusion Models (DMs) [18] leverage a parameterized 149
Markov chain to optimize the lower variational bound on 150
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Figure 2. Overview of UniRestore. UniRestore augments the diffusion model by integrating a CFRM and a TFA. The training process is
divided into two stages: In the first stage, CFRM, Controller, and SC-Tuner are trained to restore clear encoder and latent features. In the
second stage, the TFA is trained to adapt the restored encoder features and latent features for various downstream tasks, using task-specific
prompts at the decoder to control the output restoration.

the likelihood function, achieving state-of-the-art results151
in sample quality[23, 47, 55, 56] and various applica-152
tions [52, 67, 81]. ControlNet [77] further refines this ar-153
chitecture by optimizing it for conditional image genera-154
tion tasks. It incorporates conditions such as segmentation155
maps or textual prompts directly into the diffusion process156
through a specialized encoder, which modifies the latent157
representation of the input, enabling ControlNet to generate158
images that closely align with specified conditions [75, 80].159

Recently, DMs have become integral to image restora-160
tion, including tasks such as super-resolution [28, 48], in-161
painting [10, 38, 47], and degradation restoration [42, 66,162
83]. StableSR [60] effectively leverages diffusion priors163
for real-world super-resolution, resulting in superior recon-164
struction quality. DiffUIR [82] utilizes a specialized hour-165
glass architecture to map degraded inputs to high-quality166
outputs, enhancing both global and local features effec-167
tively. DiffBIR [35] follows a two-stage restoration strat-168
egy, first addressing specific degradations and then refining169
the image quality through a diffusion generation model. De-170
spite these advances, adopting pre-trained diffusion models171
for both PIR and TIR remains an open challenge.172

3. Proposed Method173

3.1. Architecture of UniRestore174

UniRestore is built upon Stable Diffusion [47], leveraging175
its diffusion prior known for generating high-quality im-176
ages. However, these images are optimized for human per-177
ception, which may not align with the requirements of ma-178
chine vision tasks. To bridge this gap, we introduce two179
components: the Complementary Feature Restoration Mod-180

ule (CFRM) and the Task Feature Adapter (TFA). These 181
modules adapt the diffusion prior to address diverse objec- 182
tives, ensuring suitability for PIR and TIR tasks. 183

As illustrated in Figure 2, the input degraded image is 184
processed through a modified encoder of VAE enhanced 185
with the CFRM. The latent features produced by the final 186
layer of this encoder are then fed into the Controller [77], 187
equipped with an SC-Tuner [23]. The SC-Tuner, an en- 188
hanced module within the Controller architecture, inte- 189
grates control signals efficiently with the Denoising U-Net. 190
Subsequently, the noisy latent features are denoised to pro- 191
duce clear latent features, which are then passed to the de- 192
coder of the VAE augmented with the TFA. The restored 193
features from the CFRM are input into the TFA, which 194
adapts these features, enabling the decoder to generate out- 195
puts optimized for specific tasks. 196

3.2. Complementary Feature Restoration Module 197

The objective of the CFRM is to restore and enhance fea- 198
tures within the encoder, thereby providing complementary 199
inputs to the decoder. As shown in Figure 3, the CFRM is 200
integrated into the output of each encoder layer and consists 201
of four steps: 202
Feature Enhancement:The enhancement begins with a 203
NAFBlock [9], followed by a convolutional layer and 204
group normalization [65]. Input features have dimensions 205
(C

′
, H,W ), where C

′
denotes the number of channels, H 206

the height, and W the width. These features are expanded 207
fourfold to dimensions (4C

′
, H,W ) and subsequently di- 208

vided into l groups, resulting in (C
′′
, H,W ), where C

′′
= 209

4C
′
/l. 210

Intra-group Channel Attention: In this stage, group con- 211
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Figure 3. Schematic diagrams of (a) the Complementary Fea-
ture Restoration Module and (b) the Task Feature Adapter.

volution is employed to model learning from diverse degra-212
dation types. Initially, features are processed through a213
group convolution [24] and Gate Linear Unit (GELU) [17],214
followed by average pooling. Subsequently, a subsequent215
group convolution operation calculates the intra-group216
channel weightsW i

intra, each with dimensions (C ′′, 1, 1), for217
groups indexed from 0 to l-1. This module sharpens the218
model’s emphasis on pivotal intra-group features.219
Inter-group Channel Integration: This module enhances220
contextual awareness by applying average pooling and221
a convolutional layer, yielding the inter-group channel222
weights Winter with dimension (l, 1, 1).223
Feature Recovery: In the final stage, a convolution layer224
merges the refined group features. These are then combined225
with the enhanced features via a skip connection.226

The output feature of the CFRM serves as a complemen-227
tary feature to the subsequent TFA.228

3.3. Task Feature Adapter229

The TFA leverages the restored features from the CFRM to230
adapt the original diffusion features for various objectives.231
The core idea is to integrate the CFRM output features at232
each layer with the corresponding output from the decoder233
at the same scale, enabling feature fusion for the targeted234
purpose. To achieve this, a straightforward approach in-235
volves designing a distinct feature adapter module for each236
task, which is then individually optimized using the relevant237
objectives and datasets. However, given the wide range of238
TIR tasks, this approach requires extensive model parame-239
ters and faces scalability challenges.240

To address this limitation, we draw inspiration from241
prompt tuning [22] and LSTM [19] and propose an efficient242

architecture that reuses TFA, relying only on a lightweight, 243
learnable prompt vector to adapt to different tasks effec- 244
tively. As shown in Figure 3, for each task, we initialize 245
a lightweight learnable prompt vector Ck

0 , where k repre- 246
sents the task index. This vector controls the weights of the 247
CFRM features Fenc,i in each decoder layer i, dynamically 248
combining them with the decoder’s output features F k

latent,i. 249
This prompt is updated within layer i and passed to the next 250
layer i+ 1 as the input prompt for TFA. The procedure can 251
be formulated as: 252

fi = σ (ϑ (Fenc,i, θf,i))

ii = σ (ϑ (Fenc,i, θi,i))

Ck
i+1 = fi ⊗ Ck

i + ii ⊗ tanh (ϑ (Fenc,i, θc,i))

oi = tanh(ξ(Ck
i+1, θo,i))

F k
enc,i = ψ(Fenc,i, oi, θt,i) + Fenc,i

F k
latent,i+1 = ω((F k

enc,i, F
k
latent,i), θl,i) + F k

latent,i

(1) 253

where σ and tanh represent the softmax and tanh acti- 254
vate function, ⊗ denotes the element-wise multiplication. 255
ϑ (·, θx,i) is the prompt updating project function, involving 256
instance normalization, convolution operation, GELU, and 257
global average pooling. ξ(·, θo,i)) and ω(·, θl,i)) are simple 258
projection layers. ψ(·, c, θo,i) is a tuner-operator [23] with 259
a channel attention based on condition c. Through this pro- 260
cess, the restored features adapt to the diffusion features at 261
each scale through different prompts, ultimately producing 262
images suitable for downstream tasks. 263

3.4. Training Pipeline 264

Our training pipeline consists of three stages: 265
Stage 1 primarily focuses on adapting stable diffusion for 266
the image restoration context. In this stage, we utilize the 267
PIR dataset to train the CFRM, Controller [77], and SC- 268
Tuner [23]. The loss function, LCFRM, is designed to enable 269
the CFRM to learn the restoration of degraded features to 270
their clear states. Specifically, clear latent features fClear

i 271
are extracted from the ith layer of the vanilla encoder using 272
a clean image. Similarly, restored latent features fRestored

i 273
are derived by inputting a degraded image into the encoder 274
integrated with the CFRM. The loss function is defined as: 275

LCFRM =

M∑
i=1

λi(f
Clear
i − fRestored

i ), (2) 276

where M denotes the number of layers in the encoder, and 277
λi represents the scaling weight for the ith layer. 278

Additionally, the Controller and SC-Tuner are trained us- 279
ing the loss function LControl. This function is designed to 280
align the clear latent features z0 of the clear image with the 281
reconstructed latent features ẑt0 at any given sampled step t. 282
The loss function can be expressed as: 283

LControl = ∥z0 − ẑt0∥22. (3) 284
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The total loss at Stage 1 is:285

LStage 1 = LCFRM + LControl. (4)286

During this stage, TFA is not integrated into the decoder.287

Stage 2 aims to optimize TFA to adapt the diffusion prior to288
different objectives. Therefore, CFRM, Controller, and SC-289
Tuner do not undergo parameter updates during this stage.290

We optimize the network using objectives specific to291
each task, defined as:292

LStage 2 =

N∑
i=1

βi
TaskLi

Task, (5)293

where N represents the number of tasks, and βi
Task are the294

weighting coefficients that adjust the importance of each295
task-specific loss Li

Task on the overall multi-task learning296
objective.297

In this paper, we aim to address both PIR and TIR tasks298
simultaneously, selecting semantic segmentation and im-299
age classification as representative TIR tasks. For seman-300
tic segmentation, we employ cross-entropy loss using seg-301
mentation labels, while for classification, we also use cross-302
entropy loss but with class labels. For the PIR task, Mean303
Squared Error is applied to compare the reconstructed im-304
ages against their corresponding ground truths.305

The overall loss for Stage 2 of UniRestores formulated306
as:307

LStage 2 = βPIRLPIR + βSegLSeg + βClsLCls (6)308

These tasks may originate from different datasets, and we309
distribute images from these tasks across each batch. Losses310
are calculated based on the input and its corresponding task311
before the model parameters are updated.312
Introducing Additional Tasks. After training UniRestore313
with the two-stage process, adding more tasks in TIR re-314
quires only the introduction of a new task-specific prompt,315
which can then be optimized with the corresponding objec-316
tive and training data. This process does not require data317
or loss functions from the original tasks, as only the new318
task-specific prompt is updated.319

4. Implementation Details320

To evaluate the effectiveness of the proposed UniRestore,321
experiments are conducted in PIR and TIR. Within TIR, im-322
age classification and semantic segmentation are chosen as323
downstream tasks. Detailed descriptions of the implemen-324
tation details are provided in the Supplementary Material.325

4.1. Training Dataset326

We reference the dataset configurations from previous327
PIR [66] and TIR [54] studies. Specifically, we use a blend328
of the DIV2K [1], FlickrK [31], and OST [63] datasets329

for PIR tasks. For image classification, we randomly se- 330
lect 80,000 images from the training set of ImageNet [12], 331
and for semantic segmentation, we use the training set from 332
the Cityscapes datasets [11]. These datasets are synthesized 333
with 15 types of degradation, including blur, noise, adverse 334
weather conditions, etc., following the procedures outlined 335
in [16] to create our training set. 336

4.2. Evaluation Dataset 337

For PIR evaluation, UniRestore is evaluated on the test set 338
of DIV2K [1] using the same degradation synthesis pro- 339
cedure as in training. To further assess the robustness of 340
UniRestore on unseen data, we utilize multiple benchmarks 341
with synthetic degradations. These benchmarks include var- 342
ious tasks such as image denoising, which uses a com- 343
posite dataset labeled ’Noise’—comprising Urban100 [20], 344
BSD68 [39], CBSD68 [39], Kodak [39], McMaster [39], 345
and Set12 [39]. Additionally, we utilize Rain100L [69] for 346
deraining, RESIDE [27] for dehazing, UHDSnow [61] for 347
desnowing, and GoPro [40] for deblurring. 348

In the TIR context, UniRestore is evaluated as follows: 349
For classification, we sample 20,000 images from the test 350
set ImageNet and utilize the entire CUB dataset [58] for 351
validation of unseen data, applying the same degradation 352
synthesis method as during training. For semantic segmen- 353
tation, UniRestore is assessed on the test set of Cityscapes 354
using identical degradation synthesis. Additionally, UniRe- 355
store is tested on the FoggyCityscapes dataset [49], specif- 356
ically the subsets Fog1, Fog2, and Fog3, with results re- 357
ported as the average across these three subsets. Further 358
evaluations include the unseen ACDC dataset [50]. 359

4.3. Evaluation Protocol 360

For the evaluation of PIR, we utilize multiple metrics, in- 361
cluding Peak Signal-to-Noise Ratio (PSNR) and Structural 362
Similarity Index Measure (SSIM). For image classification, 363
we measure performance using accuracy (ACC), and for 364
semantic segmentation, we use the mean Intersection over 365
Union (mIoU). 366

5. Experiments 367

5.1. Baselines 368

To evaluate the effectiveness of UniRestore, we compare 369
it against multiple TIR methods, including DIP [36] and 370
URIE [54], as well as PIR methods such as NAFNet [2], and 371
PromptIR [44]. Furthermore, we include comparisons with 372
diffusion-based approaches including DiffBIR [35] and Dif- 373
fUIR [82]. We report results across two settings: First, 374
models are trained only for their intended purpose (i.e., PIR 375
or TIR) using the corresponding dataset from our training 376
set. Second, for a fair comparison and following the train- 377
ing pipeline of UniRestore, all baseline models are initially 378
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Seen Dataset Unseen Datasets
Average

Methods DIV2K [1] Rain100L [69] RESIDE [27] UHDSnow [61] Noise [20, 39] GoPro [40]

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DIP [36] 18.47 0.5810 22.65 0.7884 21.30 0.7819 19.03 0.8089 15.41 0.2494 23.08 0.8041 17.13 0.5734
DIP* [36] 18.62 0.5516 23.16 0.8097 19.83 0.7586 16.77 0.7830 14.51 0.2328 21.05 0.7624 16.28 0.5569
URIE [54] 17.72 0.5202 20.97 0.7293 18.30 0.7449 18.11 0.7626 18.57 0.5180 19.21 0.5683 18.81 0.6406
URIE* [54] 17.98 0.5967 19.97 0.6993 20.37 0.7694 16.18 0.7526 17.41 0.3624 18.57 0.4624 18.41 0.6071
NAFNet [2] 22.23 0.7905 24.57 0.8178 25.13 0.8632 20.71 0.8672 23.22 0.6951 22.18 0.8042 23.01 0.8063
NAFNet* [2] 19.81 0.7005 20.51 0.7314 21.24 0.8178 18.39 0.7958 20.38 0.6019 19.79 0.7293 20.02 0.7295
PromptIR [44] 23.90 0.8321 28.17 0.9034 27.26 0.8957 22.10 0.8877 23.72 0.7269 23.93 0.8221 24.85 0.8447
PromptIR* [44] 21.94 0.7421 24.76 0.8134 24.16 0.8317 19.13 0.8265 19.68 0.6283 20.18 0.7657 21.64 0.7680
DiffBIR [35] 22.76 0.8053 27.25 0.8695 26.97 0.8770 20.84 0.8785 23.67 0.7661 23.49 0.8076 24.16 0.8340
DiffBIR* [35] 18.32 0.6847 23.48 0.8143 23.13 0.8068 18.29 0.8167 21.59 0.6419 20.13 0.7413 20.82 0.7510
DiffUIR [82] 23.79 0.8397 28.25 0.9154 27.12 0.8820 20.74 0.8753 24.27 0.7481 23.93 0.8241 24.68 0.8474
DiffUIR* [82] 21.47 0.7742 25.44 0.8276 23.58 0.8174 18.62 0.8318 22.76 0.6691 21.71 0.7649 22.26 0.7808
UniRestore 24.32 0.8434 30.02 0.9237 27.91 0.9043 23.44 0.8943 24.37 0.7811 25.94 0.8541 26.00 0.8668

Table 1. Performance comparison of existing methods on one seen and five unseen PIR datasets.

LQ URIE PromptIR DiffUIR UniRestore HQ

Figure 4. Qualitative analysis of perceptual image restoration: A visual comparison on unseen datasets highlighting the performance
improvements of the UniRestore over existing methods.

trained on the PIR training set and then fine-tuned on mul-379
tiple downstream tasks (i.e., PIR and TIR) using the loss380
function in (6), indicated by the suffix ”*”.381

5.2. Perceptual Image Restoration382

The results presented in Table 1 show that UniRestore383
achieves the best overall performance on the seen dataset.384
Additionally, it highlights UniRestore’s generalizability385
across several unseen datasets, especially in high-resolution386
scenarios (UHDSnow) and dynamic scenes (GoPro). More-387
over, TIR methods generally show limited performance in388
PIR task, as their learning objectives are optimized for spe-389
cific downstream tasks. Additionally, in scenarios involv-390
ing multiple downstream tasks, both PIR and TIR meth-391
ods exhibit limited performance in due to the absence of392

a mechanism to learn different objectives simultaneously. 393
We also present a qualitative comparison in Figure 4, where 394
UniRestore reconstructs more details and delivers better vi- 395
sual quality. 396

5.3. Task-oriented Image Restoration 397

Image Classification. During training, UniRestore em- 398
ploys ResNet-50 [15] as the recognition model. For eval- 399
uation, both ResNet-50 [15] and ViT-B [14] serve as recog- 400
nition backbones on the restored images. All recognition 401
models are pre-trained on the training sets of their cor- 402
responding classification datasets without the degradation 403
synthesis process. 404

Table 2 demonstrates UniRestore’s effectiveness in en- 405
hancing image classification performance compared to ex- 406
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Inputs
Seen Dataset Unseen Dataset

ImageNet [12] CUB [58]

ResNet-50 [15] ↑ ViT-B [14] ↑ ResNet-50 [15] ↑ ViT-B [14] ↑
LQ 51.75 67.65 33.69 44.83
DIP [36] 61.55 72.05 47.91 54.10
DIP* [36] 59.80 70.35 45.99 52.48
URIE [54] 66.65 73.95 49.64 57.24
URIE* [54] 65.20 72.15 46.89 54.93
NAFNet [2] 60.35 70.80 46.47 53.82
NAFNet* [2] 57.65 68.25 43.17 51.88
PromptIR [44] 65.25 73.90 49.52 58.04
PromptIR* [44] 64.05 73.00 48.52 57.39
DiffBIR [35] 59.30 68.05 41.68 52.38
DiffBIR* [35] 57.55 66.85 40.65 51.34
DiffUIR [82] 62.35 72.10 46.75 57.28
DiffUIR* [82] 61.15 71.60 45.44 56.31
UniRestore 71.65 77.05 53.70 60.79
HQ 72.80 78.70 58.22 64.41

Table 2. Performance comparison of existing methods on seen
and unseen datasets for image classification. Results are re-
ported in terms of accuracy.

LQ URIE PromptIR UniRestore HQ

Figure 5. Qualitative analysis of image classification. The first
and third rows display the input images, while the second and
fourth rows show their corresponding activation maps.

isting image restoration models, achieving accuracy com-407
parable to that obtained using high-quality ground truth in-408
puts (i.e., HQ). Moreover, PIR methods show limited per-409
formance in classification tasks because they are optimized410
for human perception, which does not guarantee recogni-411
tion accuracy. However, when these methods are trained412
on multiple downstream tasks, classification performance413
decreases. This decline may be due to these methods’ po-414
tential inability to effectively handle multiple downstream415
tasks simultaneously. As detailed in Table 2, on the CUB416
dataset [58], UniRestore enhances classification accuracy417
by 20.01% for ResNet-50 [15] and by 15.96% for ViT-418
B [14] in scenarios involving unseen images. Figure 5 visu-419
ally demonstrates that when images restored by UniRestore420
are used as inputs for recognition, their activation maps421
align more closely with those from high-quality ground422

Inputs
Seen Dataset Unseen Dataset

Cityscapes [49] FoggyCityscapes [49] ACDC [50]

DeepLabv3+ [3] RefineNet-lw [41] RefineNet-lw [41] RefineNet-lw [41]

LQ 40.36 40.75 65.20 28.30
DIP [36] 57.17 57.67 67.81 38.19
DIP* [36] 51.81 50.35 67.16 32.98
URIE [54] 55.88 51.45 65.93 37.90
URIE* [54] 50.56 48.23 65.93 32.71
NAFNet [2] 58.41 58.19 66.06 37.59
NAFNet* [2] 51.91 53.29 65.40 36.03
PromptIR [44] 58.05 57.54 66.76 37.86
PromptIR* [44] 54.67 52.25 63.44 35.51
DiffBIR [35] 52.49 53.68 66.29 36.28
DiffBIR* [35] 48.90 48.56 63.26 33.12
DiffUIR [82] 51.28 51.46 66.24 35.78
DiffUIR* [82] 47.92 45.01 62.82 34.83
UniRestore 66.05 65.73 70.77 39.27
HQ 75.64 75.66 75.66 -

Table 3. Performance comparison of existing methods on seen
and unseen datasets for semantic segmentation. Results are re-
ported in terms of mIoU.

LQ URIE PromptIR UniRestore HQ

Figure 6. Qualitative analysis of semantic segmentation. The
first and third rows present the input images, while the second and
fourth rows display the corresponding segmentation results.

truth images used as inputs for recognition. 423
Semantic Segmentation. In the training stage, we adopt 424
DeepLabv3+ [3] as the segmentation model, while for eval- 425
uation, we employ both DeepLabv3+ [3] and RefineNet- 426
lw [41]. Both models are pretrained on the training set of 427
Cityscapes dataset [11]. As shown in Table 3, UniRestore 428
achieves decent performance in semantic segmentation on 429
both seen datasets and the unseen dataset. These results un- 430
derscore UniRestore’s ability to restore fine-grained details 431
crucial for semantic segmentation tasks, demonstrating that 432
the TFA modules integrate diffusion features with restored 433
features to produce restored images with high-quality fea- 434
ture representations. Similar to the results observed in clas- 435
sification, PIR methods show limited performance in se- 436
mantic segmentation compared to TIR methods, with per- 437
formance decreasing in multiple downstream task scenar- 438
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Methods PIR Cls Seg
PSNR ↑ ACC ↑ mIoU ↑

Baseline 19.35 57.65 46.76
UniRestore w/o CFRM 21.43 63.10 55.48
UniRestore w/o TFA 22.16 64.25 58.13
UniRestore 24.32 71.65 66.05

Table 4. Effectiveness of CFRM and TFA in UniRestore.

Methods # of Tuned Parameters PIR Cls Seg
PSNR ↑ ACC ↑ mIoU ↑

Multiple Adapters 65.17M 23.06 68.95 64.64
Multiple TFAs 63.03M 25.48 71.20 65.78
UniRestore-SP 21.01M 23.91 70.05 64.99
UniRestore 21.03M 24.32 71.65 66.05

Table 5. Comparative analysis of different TFA variants.

Method LQ DIP [36] PromptIR [44] UniRestore

mAP ↑ 45.63 54.29 50.61 58.06

Table 6. Performance of Extendability Tested on Object Detec-
tion Using the RTTS [27] Dataset.

ios. A qualitative comparison in Figure 6 shows that im-439
ages restored by UniRestore enable segmentation models to440
generate more accurate object boundaries in the segmented441
results.442

5.4. Ablation Study443

To verify the effectiveness of the proposed modules, we444
conduct an ablation study. All experiments are evaluated445
on the DIV2K [1] test set for PIR, the ImageNet [12] test446
set for image classification, and the Cityscapes [49] test set447
for semantic segmentation, with degradation synthesis ap-448
plied in the above tasks. These three sets are the same as we449
used in the evaluation dataset.450

Effectiveness of Proposed Modules. We have established451
several configurations for our experiments: (i) Baseline:452
training the controller with a pre-trained Stable Diffusion453
model; (ii) UniRestore w/o CFRM: using the vanilla en-454
coder features without any restoration; (iii) UniRestore w/o455
TFA: employing only the latent features from the denoising456
U-Net without adapting the encoder features; (iv) UniRe-457
store: incorporating all modules. Table 4 demonstrates that458
both CFRM and TFA significantly enhance performance459
across PIR and TIR scenarios.460

Investigation of TFA. To further investigate the effec-461
tiveness of the TFA module in multi-task scenarios, we462
conducted experiments with four variants: (i) Multiple463
Adapters: concatenates the output of the denoising U-Net464
with the restored features from CFRM and processes them465
through the same number of convolutional blocks as in466
TFA; (ii) Multiple TFAs: optimizes each task with its own467
TFA; (iii) UniRestore-SP: employs a single TFA with a sin-468

gle prompt for all tasks; (iv) UniRestore: utilizes one TFA 469
with specific prompts for each task. 470

The results are shown in Table 5. The Multi-TFA out- 471
performs Multi-Adapter, indicating the importance of dy- 472
namically fusing features by utilizing an updated prompt 473
from the previous layer. Although UniRestore-SP requires 474
the fewest parameters to be tuned, its performance is infe- 475
rior to that of UniRestore, highlighting the significance of 476
having a specific prompt for each task. UniRestore deliv- 477
ers performance comparable to Multi-TFA in PIR tasks and 478
better performance in TIR tasks. This may be attributed to 479
the single TFA block’s ability to update using different ob- 480
jectives simultaneously, unlike in Multi-TFA, where each 481
TFA is updated with only one objective. This also suggests 482
that knowledge from various TIR tasks can potentially ben- 483
efit other TIR tasks. Additionally, the number of parame- 484
ters needing updates does not significantly increase with the 485
number of tasks, indicating that the proposed TFA structure 486
effectively balances scalability and performance. 487
Extendability Evaluation. To validate the extensibility 488
of UniRestore, we incorporate an additional downstream 489
task—object detection based on the model trained for PIR, 490
image classification, and semantic segmentation. Specifi- 491
cally, we use a RetinaNet [33] pre-trained on the COCO 492
[34] as the backbone. We randomly select 69,242 images 493
from the COCO training set and synthetic the degradation 494
as our training set. As outlined in Section 3.4, we utilize 495
the current model configuration and update only with a new 496
learnable prompt, optimizing it using the object detection 497
loss. We then evaluate the object detection performance of 498
UniRestore on the RTTS [27] dataset in comparison with 499
other methods optimized concurrently for PIR, image clas- 500
sification, semantic segmentation, and object detection. As 501
shown in Table 6, UniRestore achieves promising results in 502
object detection. Additionally, compared to existing meth- 503
ods that require retraining models on complete task datasets, 504
UniRestore only needs fine-tuning of a prompt with new 505
downstream data and optimizing with its specific objective. 506
This highlights UniRestore’s potential for extensibility to 507
other downstream tasks using our designed TFA module. 508

6. Conclusion 509

This paper introduces UniRestore, an approach capable of 510
addressing PIR and TIR simultaneously. Building on dif- 511
fusion models, we propose adapting diffusion features for 512
diverse applications. To achieve this, we introduce a com- 513
plementary feature restoration module that restores features 514
within the encoder and a task feature adapter that dynami- 515
cally and efficiently combines these restored features with 516
diffusion features for downstream tasks. Experimental re- 517
sults validate the effectiveness and extendability of UniRe- 518
store, demonstrating its ability to alleviate the trade-offs as- 519
sociated with existing PIR and TIR methods. 520
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