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Abstract

Image restoration aims to recover content from inputs
degraded by various factors, such as adverse weather, blur,
and noise. Perceptual Image Restoration (PIR) methods im-
prove visual quality but often do not support downstream
tasks effectively. On the other hand, Task-oriented Image
Restoration (TIR) methods focus on enhancing image utility
for high-level vision tasks, sometimes compromising visual
quality. This paper introduces UniRestore, a unified image
restoration model that bridges the gap between PIR and TIR
by using a diffusion prior. The diffusion prior is designed to
generate images that align with human visual quality pref-
erences, but these images are often unsuitable for TIR sce-
narios. To solve this limitation, UniRestore utilizes encoder
features from an autoencoder to adapt the diffusion prior
to specific tasks. We propose a Complementary Feature
Restoration Module (CFRM) to reconstruct degraded en-
coder features and a Task Feature Adapter (TFA) module to
facilitate adaptive feature fusion in the decoder. This design
allows UniRestore to optimize images for both human per-
ception and downstream task requirements, addressing dis-
crepancies between visual quality and functional needs. In-
tegrating these modules also enhances UniRestore’s adapt-
ability and efficiency across diverse tasks. Extensive experi-
ments demonstrate the superior performance of UniRestore
in both PIR and TIR scenarios.

1. Introduction

Image restoration [44, 57] aims to restore content degraded
by various factors, such as adverse weather, blur, and
noise. These factors often reduce image perceptual visibil-
ity [29, 62] and negatively impact the performance of high-
level vision applications, such as object detection [68, 76]
and semantic segmentation [45, 51]. Various restoration
methods have been developed and studied over the past
decades to address this wide range of image restoration
challenges. These include methods focused on improving
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Figure 1. Illustration of UniRestore’s capabilities: (a) PIR
- Comparison with existing methods (e.g., URIE [54], Promp-
tIR [44]) under adverse conditions. (b) TIR - Demonstrating
UniRestore’s robustness for downstream tasks such as classifica-
tion and segmentation. (c) Unified Restoration - UniRestore’s ver-
satility in addressing PIR and TIR.

perceptual quality [46, 74] as well as those designed to en-
hance the performance of downstream tasks [54, 71].
Perceptual image restoration (PIR) algorithms focus on
improving visual clarity and fidelity of images by remov-
ing or reducing visible artifacts that affect their aesthetic
quality. These methods focus on dealing with noise re-
duction [8, 74], low-light enhancement [72, 78], deblur-
ring [40, 46], dehazing [6, 74], deraining [59, 69], and
desnowing [7, 37, 61]. While these algorithms can enhance
the visual quality of images, they do not always improve
performance in downstream tasks [4, 5, 21]. This is be-
cause the factors contributing to visual quality often differ
from those determining recognition quality [43, 54, 71].
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On the other hand, task-oriented image restoration
(TIR) [54, 71] is specifically designed to optimize images
for applications that rely on computer vision, such as object
detection [68, 76], classification [53, 54], and autonomous
driving systems [45, 51]. This approach aligns the restora-
tion process with the specific requirements of neural net-
work models used in these applications, ensuring that the
restored images are suitable for effective machine interpre-
tation. Although these methods improve the performance
of downstream tasks, they often produce results that are less
visually appealing [36, 76].

Based on the analysis above, existing image restoration
algorithms often face a trade-off, highlighting the challenge
of balancing technical functionality with aesthetic quality.
This dual functionality is crucial because real-world appli-
cations often require restoration processes to be specifically
adapted to different scenarios. Thus, developing a model
that can simultaneously enhance perceptual quality and im-
prove performance for downstream tasks is essential. Such
a unified image restoration framework can effectively per-
form across diverse settings, reducing system redundancy
and boosting operational efficiency, as shown in Figure 1.

In this paper, we propose a unified image restoration
paradigm, UniRestore, which simultaneously improves the
performance of downstream tasks and the human percep-
tual quality of degraded images. UniRestore leverages a
diffusion prior [47] as the backbone, recognized for its gen-
erative capabilities in producing high-quality images. How-
ever, these images are typically optimized for human aes-
thetics, which may not align with downstream task require-
ments. UniRestore addresses this limitation by adapting
the diffusion prior to meet both perceptual and functional
needs, enabling the model to effectively bridge the gap be-
tween visual quality and downstream task performance.

To bridge this gap, we exploit the encoder features from
the autoencoder within the diffusion model as complemen-
tary elements to tailor the diffusion prior to specific tasks.
We introduce a Complementary Feature Restoration Mod-
ule designed to reconstruct degraded features in the encoder.
Subsequently, we propose a Task Feature Adapter, which
harmonizes the diffusion features with the restored features
within the decoder for various downstream tasks. Given the
diversity of downstream tasks and the frequent necessity to
adapt these tasks within existing models, the TFA module
offers extendability to accommodate new tasks. Extensive
experiments validate UniRestore’s effectiveness, demon-
strating enhancements in both PIR and TIR, with the po-
tential for expansion to additional downstream tasks.

The contributions of this work are:

* We introduce UniRestore, a unified image restoration
model that addresses both perceptual image restora-
tion and task-oriented image restoration within a sin-
gle framework. Experimental results show that UniRe-

store surpasses existing methods in both visual quality
and downstream task performance.

* We propose two components for UniRestore: the
CFRM and the TFA. These modules work together to
adaptively complement the diffusion prior, enabling si-
multaneous restoration across diverse tasks.

2. Related Work
2.1. Perceptual Image Restoration

Perceptual image restoration aims to enhance the visual
quality of images as perceived by humans, and it can be
categorized into single degradation and multiple degrada-
tion restoration. Early work in single degradation restora-
tion, such as SRCNN [13], focused on specific degradations
to improve image quality, leading to significant advance-
ments in super-resolution [25, 32, 79], denoising [8, 74],
dehazing [6, 74], deraining [59, 69], low-light enhance-
ment [72, 78], and deblurring [40, 46]. To tackle multiple
degradations simultaneously, methods like MPRNet [74]
and NAFNet [2] introduced unified solutions. Recently,
transformer-based approaches, such as SwinIR [30] and
Restormer [73], have gained traction for their versatil-
ity. Additionally, holistic approaches like All-in-One [29],
TransWeather [57], and PromptIR [44] have focused on im-
proving visual quality across a wide range of conditions
while providing enhanced adaptability and performance.
While these methods excel in enhancing visual quality, they
do not always guarantee improved performance in down-
stream vision tasks.

2.2. Task-oriented Image Restoration

Task-oriented image restoration aims to enhance down-
stream task performance, as studies [4, 26, 71] show that
image degradation significantly impairs high-level task ac-
curacy. DDP [64] aligns feature representations between
low- and high-quality images to improve classification ac-
curacy. SFDUnet [70] employs self-feature distillation and
uncertainty modeling to extract high-quality-like features
from degraded images, enhancing recognition in challeng-
ing regions. URIE [54] integrates image enhancement and
recognition tasks in an end-to-end framework to mitigate
degradation effects. DIP [36] adapts image processing dy-
namically based on degradation factors for better recogni-
tion outcomes. VDR-IR [71] unifies semantic representa-
tions of diverse degraded images to recover intrinsic seman-
tics effectively. While these methods enhance downstream
task performance, they may result in images that are less
visually pleasing.

2.3. Diffusion Model

Diffusion Models (DMs) [18] leverage a parameterized
Markov chain to optimize the lower variational bound on
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Figure 2. Overview of UniRestore. UniRestore augments the diffusion model by integrating a CFRM and a TFA. The training process is
divided into two stages: In the first stage, CFRM, Controller, and SC-Tuner are trained to restore clear encoder and latent features. In the
second stage, the TFA is trained to adapt the restored encoder features and latent features for various downstream tasks, using task-specific

prompts at the decoder to control the output restoration.

the likelihood function, achieving state-of-the-art results
in sample quality[23, 47, 55, 56] and various applica-
tions [52, 67, 81]. ControlNet [77] further refines this ar-
chitecture by optimizing it for conditional image genera-
tion tasks. It incorporates conditions such as segmentation
maps or textual prompts directly into the diffusion process
through a specialized encoder, which modifies the latent
representation of the input, enabling ControlNet to generate
images that closely align with specified conditions [75, 80].

Recently, DMs have become integral to image restora-
tion, including tasks such as super-resolution [28, 48], in-
painting [10, 38, 47], and degradation restoration [42, 66,
83]. StableSR [60] effectively leverages diffusion priors
for real-world super-resolution, resulting in superior recon-
struction quality. DiffUIR [82] utilizes a specialized hour-
glass architecture to map degraded inputs to high-quality
outputs, enhancing both global and local features effec-
tively. DiffBIR [35] follows a two-stage restoration strat-
egy, first addressing specific degradations and then refining
the image quality through a diffusion generation model. De-
spite these advances, adopting pre-trained diffusion models
for both PIR and TIR remains an open challenge.

3. Proposed Method
3.1. Architecture of UniRestore

UniRestore is built upon Stable Diffusion [47], leveraging
its diffusion prior known for generating high-quality im-
ages. However, these images are optimized for human per-
ception, which may not align with the requirements of ma-
chine vision tasks. To bridge this gap, we introduce two
components: the Complementary Feature Restoration Mod-

ule (CFRM) and the Task Feature Adapter (TFA). These
modules adapt the diffusion prior to address diverse objec-
tives, ensuring suitability for PIR and TIR tasks.

As illustrated in Figure 2, the input degraded image is
processed through a modified encoder of VAE enhanced
with the CFRM. The latent features produced by the final
layer of this encoder are then fed into the Controller [77],
equipped with an SC-Tuner [23]. The SC-Tuner, an en-
hanced module within the Controller architecture, inte-
grates control signals efficiently with the Denoising U-Net.
Subsequently, the noisy latent features are denoised to pro-
duce clear latent features, which are then passed to the de-
coder of the VAE augmented with the TFA. The restored
features from the CFRM are input into the TFA, which
adapts these features, enabling the decoder to generate out-
puts optimized for specific tasks.

3.2. Complementary Feature Restoration Module

The objective of the CFRM is to restore and enhance fea-
tures within the encoder, thereby providing complementary
inputs to the decoder. As shown in Figure 3, the CFRM is
integrated into the output of each encoder layer and consists
of four steps:

Feature Enhancement:The enhancement begins with a
NAFBIlock [9], followed by a convolutional layer and
group normalization [65]. Input features have dimensions
(C', H,W), where C" denotes the number of channels, H
the height, and W the width. These features are expanded
fourfold to dimensions (4C", H, W) and subsequently di-
vided into [ groups, resulting in (C", H, W), where C =
4C’ 1.

Intra-group Channel Attention: In this stage, group con-
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Figure 3. Schematic diagrams of (a) the Complementary Fea-
ture Restoration Module and (b) the Task Feature Adapter.

volution is employed to model learning from diverse degra-
dation types. Initially, features are processed through a
group convolution [24] and Gate Linear Unit (GELU) [17],
followed by average pooling. Subsequently, a subsequent
group convolution operation calculates the intra-group
channel weights W, each with dimensions (C”, 1, 1), for
groups indexed from O to [-1. This module sharpens the
model’s emphasis on pivotal intra-group features.
Inter-group Channel Integration: This module enhances
contextual awareness by applying average pooling and
a convolutional layer, yielding the inter-group channel
weights Wi, ¢, with dimension (1, 1, 1).
Feature Recovery: In the final stage, a convolution layer
merges the refined group features. These are then combined
with the enhanced features via a skip connection.

The output feature of the CFRM serves as a complemen-
tary feature to the subsequent TFA.

3.3. Task Feature Adapter

The TFA leverages the restored features from the CFRM to
adapt the original diffusion features for various objectives.
The core idea is to integrate the CFRM output features at
each layer with the corresponding output from the decoder
at the same scale, enabling feature fusion for the targeted
purpose. To achieve this, a straightforward approach in-
volves designing a distinct feature adapter module for each
task, which is then individually optimized using the relevant
objectives and datasets. However, given the wide range of
TIR tasks, this approach requires extensive model parame-
ters and faces scalability challenges.

To address this limitation, we draw inspiration from
prompt tuning [22] and LSTM [19] and propose an efficient

architecture that reuses TFA, relying only on a lightweight,
learnable prompt vector to adapt to different tasks effec-
tively. As shown in Figure 3, for each task, we initialize
a lightweight learnable prompt vector C%, where k repre-
sents the task index. This vector controls the weights of the
CFRM features Fg, ; in each decoder layer 4, dynamically
combining them with the decoder’s output features Flatem 5

This prompt is updated within layer ¢ and passed to the next
layer ¢ + 1 as the input prompt for TFA. The procedure can
be formulated as:

fi = 0'(19 (Fenc uef, ))

ii = 0'('19 (Fenc 79 ,Z))
z+1_fz®ck+ll®tanh(’lg<Fencw 1)) (1)

= tanh(&(CF 1, 0,,:))

k
Fenc i w(Fenc,ia 0i, ot,i) + Fenc,i
k _ k k k
Eatent,i+1 - w((Fenc Rl Eatent,i)a 0l7i) + Ealent,i

where o and tanh represent the softmax and tanh acti-
vate function, ® denotes the element-wise multiplication.
9 (-, 05,;) is the prompt updating project function, involving
instance normalization, convolution operation, GELU, and
global average pooling. £(-, 6, ;)) and w(-, 6; ;)) are simple
projection layers. (-, c, 0, ;) is a tuner-operator [23] with
a channel attention based on condition c. Through this pro-
cess, the restored features adapt to the diffusion features at
each scale through different prompts, ultimately producing
images suitable for downstream tasks.

3.4. Training Pipeline

Our training pipeline consists of three stages:

Stage 1 primarily focuses on adapting stable diffusion for
the image restoration context. In this stage, we utilize the
PIR dataset to train the CFRM, Controller [77], and SC-
Tuner [23]. The loss function, Lcpry, is designed to enable
the CFRM to learn the restoration of degraded features to
their clear states. Specifically, clear latent features fCl
are extracted from the i" layer of the vanilla encoder using
a clean image. Similarly, restored latent features fRestored
are derived by inputting a degraded image into the encoder
integrated with the CFRM. The loss function is defined as:

M
Lerrm = Y Ni(f — oo, 2
i=1
where M denotes the number of layers in the encoder, and
\; represents the scaling weight for the i layer.
Additionally, the Controller and SC-Tuner are trained us-
ing the loss function Lcongor. This function is designed to
align the clear latent features zg of the clear image with the
reconstructed latent features 2, at any given sampled step t.
The loss function can be expressed as:

Lcontrol = ||ZO - 28”% 3)
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The total loss at Stage 1 is:

£Slag61 = »CCFRM + »CControL “4)

During this stage, TFA is not integrated into the decoder.

Stage 2 aims to optimize TFA to adapt the diffusion prior to
different objectives. Therefore, CFRM, Controller, and SC-
Tuner do not undergo parameter updates during this stage.

We optimize the network using objectives specific to
each task, defined as:

N
ESlage 2 = Z B’i‘askﬁ%ask7 o)

i=1

where N represents the number of tasks, and 5%, are the
weighting coefficients that adjust the importance of each
task-specific loss L%, on the overall multi-task learning
objective.

In this paper, we aim to address both PIR and TIR tasks
simultaneously, selecting semantic segmentation and im-
age classification as representative TIR tasks. For seman-
tic segmentation, we employ cross-entropy loss using seg-
mentation labels, while for classification, we also use cross-
entropy loss but with class labels. For the PIR task, Mean
Squared Error is applied to compare the reconstructed im-
ages against their corresponding ground truths.

The overall loss for Stage 2 of UniRestores formulated
as:

Lstage2 = BpRLpIR + Pseg Lseg + BeisLcs (6)

These tasks may originate from different datasets, and we
distribute images from these tasks across each batch. Losses
are calculated based on the input and its corresponding task
before the model parameters are updated.

Introducing Additional Tasks. After training UniRestore
with the two-stage process, adding more tasks in TIR re-
quires only the introduction of a new task-specific prompt,
which can then be optimized with the corresponding objec-
tive and training data. This process does not require data
or loss functions from the original tasks, as only the new
task-specific prompt is updated.

4. Implementation Details

To evaluate the effectiveness of the proposed UniRestore,
experiments are conducted in PIR and TIR. Within TIR, im-
age classification and semantic segmentation are chosen as
downstream tasks. Detailed descriptions of the implemen-
tation details are provided in the Supplementary Material.

4.1. Training Dataset

We reference the dataset configurations from previous
PIR [66] and TIR [54] studies. Specifically, we use a blend
of the DIV2K [1], FlickrK [31], and OST [63] datasets

for PIR tasks. For image classification, we randomly se-
lect 80,000 images from the training set of ImageNet [12],
and for semantic segmentation, we use the training set from
the Cityscapes datasets [11]. These datasets are synthesized
with 15 types of degradation, including blur, noise, adverse
weather conditions, etc., following the procedures outlined
in [16] to create our training set.

4.2. Evaluation Dataset

For PIR evaluation, UniRestore is evaluated on the test set
of DIV2K [1] using the same degradation synthesis pro-
cedure as in training. To further assess the robustness of
UniRestore on unseen data, we utilize multiple benchmarks
with synthetic degradations. These benchmarks include var-
ious tasks such as image denoising, which uses a com-
posite dataset labeled *Noise’—comprising Urban100 [20],
BSD68 [39], CBSD68 [39], Kodak [39], McMaster [39],
and Setl2 [39]. Additionally, we utilize Rain100L [69] for
deraining, RESIDE [27] for dehazing, UHDSnow [61] for
desnowing, and GoPro [40] for deblurring.

In the TIR context, UniRestore is evaluated as follows:
For classification, we sample 20,000 images from the test
set ImageNet and utilize the entire CUB dataset [58] for
validation of unseen data, applying the same degradation
synthesis method as during training. For semantic segmen-
tation, UniRestore is assessed on the test set of Cityscapes
using identical degradation synthesis. Additionally, UniRe-
store is tested on the FoggyCityscapes dataset [49], specif-
ically the subsets Fogl, Fog2, and Fog3, with results re-
ported as the average across these three subsets. Further
evaluations include the unseen ACDC dataset [50].

4.3. Evaluation Protocol

For the evaluation of PIR, we utilize multiple metrics, in-
cluding Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM). For image classification,
we measure performance using accuracy (ACC), and for
semantic segmentation, we use the mean Intersection over
Union (mloU).

5. Experiments
5.1. Baselines

To evaluate the effectiveness of UniRestore, we compare
it against multiple TIR methods, including DIP [36] and
URIE [54], as well as PIR methods such as NAFNet [2], and
PromptIR [44]. Furthermore, we include comparisons with
diffusion-based approaches including DiffBIR [35] and Dif-
fUIR [82]. We report results across two settings: First,
models are trained only for their intended purpose (i.e., PIR
or TIR) using the corresponding dataset from our training
set. Second, for a fair comparison and following the train-
ing pipeline of UniRestore, all baseline models are initially
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Seen Dataset Unseen Datasets Average

Methods DIV2K [1] Rainl00L [69] | RESIDE[27] | UHDSnow [61] | Noise[20,39] |  GoPro [40]

| PSNRT SSIM? | PSNRT  SSIM{ | PSNRT  SSIM{ | PSNRT SSIM? | PSNRT  SSIMf | PSNRt  SSIM{ | PSNRT  SSIM?
DIP [36] 1847 0.5810 | 2265 0.7884 | 2130 0.7819 | 19.03 0.8089 | 1541 02494 | 23.08 0.8041 | 17.13  0.5734
DIP* [36] 18.62 0.5516 | 23.16  0.8097 | 19.83 0.7586 | 16.77 0.7830 | 14.51 02328 | 21.05 07624 | 1628  0.5569
URIE [54] 1772 05202 | 2097 0.7293 | 1830 0.7449 | 18.11 0.7626 | 1857 05180 | 1921 0.5683 | 18.81  0.6406
URIE* [54] 17.98 05967 | 1997 0.6993 | 2037 07694 | 16.18 0.7526 | 17.41 03624 | 1857 04624 | 1841  0.6071
NAFNet [2] 2223 0.7905 | 2457 0.8178 | 25.13  0.8632 | 2071 0.8672 | 23.22 0.6951 | 22.18 0.8042 | 23.01  0.8063
NAFNet* [2] 19.81  0.7005 | 20.51 0.7314 | 21.24 0.8178 | 1839 0.7958 | 20.38 0.6019 | 19.79  0.7293 | 20.02  0.7295
PromptIR [44] | 23.90 0.8321 | 28.17 009034 | 27.26 0.8957 | 22.10 0.8877 | 23.72 0.7269 | 23.93  0.8221 | 24.85 0.8447
PromptIR* [44] | 21.94 0.7421 | 24.76  0.8134 | 24.16 0.8317 | 19.13 0.8265 | 19.68 0.6283 | 20.18 0.7657 | 21.64  0.7680
DiffBIR [35] 2276 0.8053 | 2725 0.8695 | 2697 0.8770 | 20.84 0.8785 | 23.67 0.7661 | 2349 0.8076 | 24.16  0.8340
DiffBIR* [35] 1832 0.6847 | 2348 0.8143 | 23.13 0.8068 | 1829 0.8167 | 21.59 0.6419 | 20.13 0.7413 | 20.82 0.7510
DiffUIR [82] 2379  0.8397 | 2825 09154 | 27.12  0.8820 | 20.74 0.8753 | 24.27 0.7481 | 23.93 0.8241 | 24.68 0.8474
DiffUIR* [82] 2147 07742 | 2544 0.8276 | 23.58 0.8174 | 18.62 0.8318 | 22.76  0.6691 | 21.71  0.7649 | 2226  0.7808
UniRestore 2432 0.8434 | 30.02 09237 | 2791 0.9043 | 2344 0.8943 | 2437 0.7811 | 2594 0.8541 26.00 0.8668

Table 1. Performance comparison of existing methods on one seen and five unseen PIR datasets.

URIE

DiffUIR UniRestore

Figure 4. Qualitative analysis of perceptual image restoration: A visual comparison on unseen datasets highlighting the performance

improvements of the UniRestore over existing methods.

trained on the PIR training set and then fine-tuned on mul-
tiple downstream tasks (i.e., PIR and TIR) using the loss
function in (6), indicated by the suffix ”*”.

5.2. Perceptual Image Restoration

The results presented in Table 1 show that UniRestore
achieves the best overall performance on the seen dataset.
Additionally, it highlights UniRestore’s generalizability
across several unseen datasets, especially in high-resolution
scenarios (UHDSnow) and dynamic scenes (GoPro). More-
over, TIR methods generally show limited performance in
PIR task, as their learning objectives are optimized for spe-
cific downstream tasks. Additionally, in scenarios involv-
ing multiple downstream tasks, both PIR and TIR meth-
ods exhibit limited performance in due to the absence of

a mechanism to learn different objectives simultaneously.
We also present a qualitative comparison in Figure 4, where
UniRestore reconstructs more details and delivers better vi-
sual quality.

5.3. Task-oriented Image Restoration

Image Classification. During training, UniRestore em-
ploys ResNet-50 [15] as the recognition model. For eval-
uation, both ResNet-50 [15] and ViT-B [14] serve as recog-
nition backbones on the restored images. All recognition
models are pre-trained on the training sets of their cor-
responding classification datasets without the degradation
synthesis process.

Table 2 demonstrates UniRestore’s effectiveness in en-
hancing image classification performance compared to ex-
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Seen Dataset Unseen Dataset

Seen Dataset Unseen Dataset

Inputs ImageNet [12] CUB [58] Inputs Cityscapes [49] ‘FoggyCityscapes [49]]  ACDC [50]

| ResNet-50 [15] 1 ViT-B [14] 1| ResNet-50 [15] 1 ViT-B [14] 1 |DeepLabv3+ [3] RefineNet-lw [41]| RefineNet-Iw [41] |RefineNet-lw [41]
LQ 51.75 67.65 33.69 44.83 LQ 40.36 40.75 65.20 28.30
DIP[36] | 6055 7205 [ 4 4791 5410 DIP(6] | 5707 5767 | 6781 | 3819
DIP* [36] 59.80 70.35 45.99 5248 DIP* [36] 51.81 50.35 67.16 3298
URIE [54] 66.65 73.95 49.64 57.24 URIE [54] 55.88 51.45 65.93 37.90
URIE* [54] 65.20 72.15 46.89 54.93 URIE* [54] 50.56 48.23 65.93 3271
NAFNet [2] 60.35 70.80 46.47 53.82 NAFNet [2] 58.41 58.19 66.06 37.59
NAFNet* [2] 57.65 68.25 43.17 51.88 NAFNet* [2] 51.91 53.29 65.40 36.03
PromptIR [44] 65.25 73.90 49.52 58.04 PromptIR [44] 58.05 57.54 66.76 37.86
PromptIR* [44] 64.05 73.00 48.52 57.39 PromptIR* [44]]  54.67 5225 63.44 35.51
DiffBIR [35] 59.30 68.05 41.68 5238 DiffBIR [35] 52.49 53.68 66.29 36.28
DiffBIR* [35] 57.55 66.85 40.65 51.34 DiffBIR* [35] 48.90 48.56 63.26 33.12
DiffUIR [82] 62.35 72.10 46.75 57.28 DiffUIR [82] 51.28 51.46 66.24 3578
DiffUIR* [82] 61.15 71.60 45.44 56.31 DiffUIR* [82] 47.92 45.01 62.82 34.83
UniRestore 71.65 77.05 53.70 60.79 UniRestore 66.05 65.73 70.77 39.27
HO | 72800 7870 [ 5822 6441 HQ | 7564 7566 | 7566 | -

Table 2. Performance comparison of existing methods on seen
and unseen datasets for image classification. Results are re-
ported in terms of accuracy.

LQ URIE PromptIR  UniRestore HQ

Figure 5. Qualitative analysis of image classification. The first
and third rows display the input images, while the second and
fourth rows show their corresponding activation maps.

isting image restoration models, achieving accuracy com-
parable to that obtained using high-quality ground truth in-
puts (i.e., HQ). Moreover, PIR methods show limited per-
formance in classification tasks because they are optimized
for human perception, which does not guarantee recogni-
tion accuracy. However, when these methods are trained
on multiple downstream tasks, classification performance
decreases. This decline may be due to these methods’ po-
tential inability to effectively handle multiple downstream
tasks simultaneously. As detailed in Table 2, on the CUB
dataset [58], UniRestore enhances classification accuracy
by 20.01% for ResNet-50 [15] and by 15.96% for ViT-
B [14] in scenarios involving unseen images. Figure 5 visu-
ally demonstrates that when images restored by UniRestore
are used as inputs for recognition, their activation maps
align more closely with those from high-quality ground

Table 3. Performance comparison of existing methods on seen
and unseen datasets for semantic segmentation. Results are re-
ported in terms of mloU.

UniRestore

PromptIR

Figure 6. Qualitative analysis of semantic segmentation. The
first and third rows present the input images, while the second and
fourth rows display the corresponding segmentation results.

truth images used as inputs for recognition.

Semantic Segmentation. In the training stage, we adopt
DeepLabv3+ [3] as the segmentation model, while for eval-
uation, we employ both DeepLabv3+ [3] and RefineNet-
Iw [41]. Both models are pretrained on the training set of
Cityscapes dataset [11]. As shown in Table 3, UniRestore
achieves decent performance in semantic segmentation on
both seen datasets and the unseen dataset. These results un-
derscore UniRestore’s ability to restore fine-grained details
crucial for semantic segmentation tasks, demonstrating that
the TFA modules integrate diffusion features with restored
features to produce restored images with high-quality fea-
ture representations. Similar to the results observed in clas-
sification, PIR methods show limited performance in se-
mantic segmentation compared to TIR methods, with per-
formance decreasing in multiple downstream task scenar-

CVPR
#9427

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438



CVPR
#9427

439
440
441
442

443

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

CVPR 2025 Submission #9427. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

) PIR Cls Seg
Methods PSNRT ACCt mloU 1t
Baseline 19.35 57.65 46.76
UniRestore w/o CFRM 2143 63.10 55.48
UniRestore w/o TFA 22.16 64.25 58.13
UniRestore 24.32 71.65 66.05

Table 4. Effectiveness of CFRM and TFA in UniRestore.

. - . PIR Cls Seg
Methods # of Tuned Parameters PSNR+ ACC+ mloUt
Multiple Adapters 65.17M 23.06 68.95 64.64
Multiple TFAs 63.03M 25.48 71.20 65.78
UniRestore-SP 21.01IM 2391 70.05 64.99
UniRestore 21.03M 24.32 71.65 66.05

Table 5. Comparative analysis of different TFA variants.

Method | LQ  DIP[36] PromptIR [44]
mAP T | 4563  54.29 50.61 58.06

UniRestore

Table 6. Performance of Extendability Tested on Object Detec-
tion Using the RTTS [27] Dataset.

ios. A qualitative comparison in Figure 6 shows that im-
ages restored by UniRestore enable segmentation models to
generate more accurate object boundaries in the segmented
results.

5.4. Ablation Study

To verify the effectiveness of the proposed modules, we
conduct an ablation study. All experiments are evaluated
on the DIV2K [1] test set for PIR, the ImageNet [12] test
set for image classification, and the Cityscapes [49] test set
for semantic segmentation, with degradation synthesis ap-
plied in the above tasks. These three sets are the same as we
used in the evaluation dataset.

Effectiveness of Proposed Modules. We have established
several configurations for our experiments: (i) Baseline:
training the controller with a pre-trained Stable Diffusion
model; (ii)) UniRestore w/o CFRM: using the vanilla en-
coder features without any restoration; (iii) UniRestore w/o
TFA: employing only the latent features from the denoising
U-Net without adapting the encoder features; (iv) UniRe-
store: incorporating all modules. Table 4 demonstrates that
both CFRM and TFA significantly enhance performance
across PIR and TIR scenarios.

Investigation of TFA. To further investigate the effec-
tiveness of the TFA module in multi-task scenarios, we
conducted experiments with four variants: (i) Multiple
Adapters: concatenates the output of the denoising U-Net
with the restored features from CFRM and processes them
through the same number of convolutional blocks as in
TFA; (ii) Multiple TFAs: optimizes each task with its own
TFA; (iii) UniRestore-SP: employs a single TFA with a sin-

gle prompt for all tasks; (iv) UniRestore: utilizes one TFA
with specific prompts for each task.

The results are shown in Table 5. The Multi-TFA out-
performs Multi-Adapter, indicating the importance of dy-
namically fusing features by utilizing an updated prompt
from the previous layer. Although UniRestore-SP requires
the fewest parameters to be tuned, its performance is infe-
rior to that of UniRestore, highlighting the significance of
having a specific prompt for each task. UniRestore deliv-
ers performance comparable to Multi-TFA in PIR tasks and
better performance in TIR tasks. This may be attributed to
the single TFA block’s ability to update using different ob-
jectives simultaneously, unlike in Multi-TFA, where each
TFA is updated with only one objective. This also suggests
that knowledge from various TIR tasks can potentially ben-
efit other TIR tasks. Additionally, the number of parame-
ters needing updates does not significantly increase with the
number of tasks, indicating that the proposed TFA structure
effectively balances scalability and performance.
Extendability Evaluation. To validate the extensibility
of UniRestore, we incorporate an additional downstream
task—object detection based on the model trained for PIR,
image classification, and semantic segmentation. Specifi-
cally, we use a RetinaNet [33] pre-trained on the COCO
[34] as the backbone. We randomly select 69,242 images
from the COCO training set and synthetic the degradation
as our training set. As outlined in Section 3.4, we utilize
the current model configuration and update only with a new
learnable prompt, optimizing it using the object detection
loss. We then evaluate the object detection performance of
UniRestore on the RTTS [27] dataset in comparison with
other methods optimized concurrently for PIR, image clas-
sification, semantic segmentation, and object detection. As
shown in Table 6, UniRestore achieves promising results in
object detection. Additionally, compared to existing meth-
ods that require retraining models on complete task datasets,
UniRestore only needs fine-tuning of a prompt with new
downstream data and optimizing with its specific objective.
This highlights UniRestore’s potential for extensibility to
other downstream tasks using our designed TFA module.

6. Conclusion

This paper introduces UniRestore, an approach capable of
addressing PIR and TIR simultaneously. Building on dif-
fusion models, we propose adapting diffusion features for
diverse applications. To achieve this, we introduce a com-
plementary feature restoration module that restores features
within the encoder and a task feature adapter that dynami-
cally and efficiently combines these restored features with
diffusion features for downstream tasks. Experimental re-
sults validate the effectiveness and extendability of UniRe-
store, demonstrating its ability to alleviate the trade-offs as-
sociated with existing PIR and TIR methods.
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