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Abstract

Conditional diffusion models have become a leading approach for generating condition-
consistent samples, such as class-specific images. In practice, the guidance scale is a key
hyperparameter in conditional diffusion models, used to adjust the strength of the guidance
term. While empirical studies have demonstrated that appropriately choosing the scale can
significantly enhance generation quality, the theoretical understanding of its role remains
limited. In this work, we analyze the probabilistic guidance term from a geometric view
under the linear manifold assumption and, based on this analysis, construct a geometric
guidance model that enables tractable theoretical study. To address regularity issues aris-
ing from multi-modal data, we introduce a mollification technique that ensures well-posed
dynamics. Our theoretical results show that increasing the guidance scale improves align-
ment with the target data manifold, thereby enhancing generation performance. We further
extend our framework to nonlinear manifolds, and empirical results on real-world datasets
validate the effectiveness of the proposed model and support our theoretical findings.

1 Introduction

Diffusion models (Ho et al.,2020; Song et al.,|2021a)) have achieved state-of-the-art performance on generative
tasks across various domains, including images (Dhariwal & Nichol, 2021; |Rombach et al.l [2022), text-to-
image synthesis (Saharia et al., [2022), videos (Ho et al., |2022), and audio (Kong et all 2021). As a result,
their empirical success has led to increasing interest in understanding the theoretical foundations of diffusion
models (De Bortoli et al., 2021} [Lee et al., [2022; |Chen et al., [2023ca; |Gao et al., |2025). In particular, under
the manifold hypothesis (Bengio et all [2013), the ability of diffusion models to output high-quality samples
in high-dimensional spaces motivates researchers to investigate how these models can generate distributions
supported on low-dimensional manifolds in high-dimensional ambient spaces (De Bortoli, 2022; |Oko et al.
2023; ILi & Yan| [2024; Wan et al., [2025)).

Controlling diffusion models to generate conditional distributions is another active area of research. Based on
the theoretical framework proposed by |Song et al.| (2021b)), both classifier guidance and classifier-free guidance
models (Dhariwal & Nichol, 2021} [Ho & Salimans, |2022) apply a probabilistic guidance term—derived from
Bayes’ rule—to guide the sampling process toward the target conditional distribution. These methods also
introduce a scale to adjust the strength of the guidance, and they showed that the performance depends
strongly on the choice of the guidance scale and an appropriate value can significantly improve generation
quality. Recent empirical studies further demonstrated the importance of the guidance scale in conditional
generation tasks (Dinh et al., |2023; Sadat et al.| |2024; |2025). However, the theoretical understanding of
how the guidance scale affects the generation process remains limited (Chidambaram et al. [2024; |Wu et al.|
2024]).

In this work, we propose a new geometric guidance model to enable the theoretical analysis of the role of
the guidance scale in conditional generation. A key challenge in studying the guidance scale in classifier(-
free) models is the analytical complexity of the probabilistic guidance term. To address this, we replace the
probabilistic guidance with a new geometric guidance term. Specifically, under the linear manifold hypothesis
(Chung et al.| [2022), we study the geometric property of the original probabilistic guidance term, building
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on an idea introduced by |Chen et al.| (2023b)), and construct a linear geometric guidance term that plays the
same role but more tractable for theoretical analysis.

As a next step, the analysis of the geometric guidance model requires certain regularity conditions on the score
function, such as the Lipschitz continuity. However, because of the multi-modality of data distributions, these
conditions generally fail to hold (Lee et al., [2022; |Gao et all|2025). To overcome this issue, we introduce a
mollification technique inspired by mollifiers in mathematical analysis (Evans||2018|) to construct a surrogate
score function that satisfies the required properties for our analysis.

Building on this, we construct a well-posed geometric guidance model through which we address two ques-
tions: (i) whether the model can recover the target data manifold, and (ii) what is the upper bound on the
distance between the generated distribution and the target conditional distribution. Our results reveal the
effects of the guidance scale: increasing the scale encourages the generated data to lie closer to the target
manifold, and large guidance scales do not significantly increase an upper bound on the generation error.

Finally, for the nonlinear case and real-world data distributions, we extend our framework by constructing a
nonlinear geometric guidance model. This model builds on the same principles as the linear case, with the
theoretical foundation obtained by extending the results of (Chung et al.| (2022) to nonlinear data manifolds.
Experimentally, we evaluate the nonlinear geometric guidance model on CIFAR-10 (Krizhevsky, |2009)) and
demonstrate its effectiveness for conditional generation. Furthermore, we empirically verify our theoretical
findings regarding the effects of the guidance scale in the nonlinear geometric guidance model on CIFAR-10.

In summary, our contributions are:

1. We construct a new linear geometric guidance term to replace the original probabilistic guidance term by
studying its geometric property under the linear manifold hypothesis.

2. To ensure the regularity of the unconditional score function, we apply a mollification technique to construct
a a surrogate score function, and build a well-posed geometric guidance model.

3. By analyzing the geometric guidance model, we uncover the role of the guidance scale: a large guidance
scale encourages the generated data to lie closer to the target data manifold and does not significantly
affect the upper bound of the generation error.

4. We extend the model to nonlinear settings to handle real-world datasets, and the experimental results
on CIFAR-10 demonstrate the effectiveness of the geometric guidance model and validate our theoretical
findings on the effects of the guidance scale.

The remainder of this paper is organized as follows. Section[2|reviews related work, and Section [3]summarizes
the technical background on diffusion models. Section[d]introduces the construction of the geometric guidance
term, and Section [5] presents the theoretical analysis of the geometric guidance model. Section [6] extends the
model to nonlinear settings and reports experimental results. Section [7] concludes the paper and discusses
limitations. Notation is summarized in Appendix [A]

2 Related Works

Convergence analysis: A number of recent works have analyzed the convergence properties of diffusion
models under various assumptions (De Bortoli et al.| [2021} Lee et al., [2022} 2023; |Chen et al.l [2023cja; |Gao
et al., [2025)). [De Bortoli et al.| (2021)) established total variation bounds under C3-regularity assumptions
on the score for the target distribution. |Chen et al.| (2023c) relaxed this requirement to Lipschitz continuity
of the score function but for each intermediate density, which was further weakened in [Chen et al.| (2023a))
to the Lipschitz continuity of the score only for the target density. Using functional inequalities, |[Lee et al.
(2022; 12023)) and |Gao et al.| (2025) have derived convergence guarantees under the assumption that the target
density function is log-concave, with results in both total variation and Wasserstein distances. In contrast,
our setting involves multi-modal target distributions for which log-concavity and smoothness assumptions do
not hold (Lee et al [2022)). To address this, we introduce a technique that constructs a surrogate distribution
satisfying the required regularity properties while closely approximating the original target.
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Geometric structure: For real-world datasets, it is widely believed that high-dimensional data lie on a
low-dimensional submanifold of the ambient space, a perspective known as the manifold hypothesis (Bengio
et al [2013). When generating such data distributions, deep generative models often encounter challenges
such as the curse of dimensionality (Bronstein et al., [2021) and manifold overfitting (Loaiza-Ganem et al.,
2022)). However, the strong empirical performance suggests that diffusion models can avoid these issues.
As a result, understanding the theoretical behavior of diffusion models under the manifold hypothesis has
attracted increasing attention. For example, De Bortoli (2022) established a Wasserstein convergence bound
assuming that the target distribution is supported on a compact set. Under the additional assumption that
the target data manifold is linear, |Oko et al.| (2023)) showed that diffusion models can avoid the curse of
dimensionality by providing a Wasserstein bound that depends only on the intrinsic dimension. |Chen et al.
(2023b) further derived a total variation bound in terms of the intrinsic dimension based on a decomposition
of the score function under the linear manifold assumption. Following this line of work, we further investigate
the geometric structure of this decomposition to clarify the role of the score function in recovering the target
data manifold, which in turn helps us construct the geometric guidance model.

Conditional generation: To control the generation (Song et al.,[2021b)), Dhariwal & Nichol| (2021]) and Ho
& Salimans (2022)) applied the probabilistic guidance term to generate conditional distributions. Following
their works and based on the geometric structure of noisy data manifolds under the linear assumption of the
target data manifold (Chung et al., [2022)), (Chung et al.| (2022; |2024)) and He et al.| (2024) proposed using a
new time-dependent guidance in conditional generation to constrain geometric structure of the generation
process. From a different perspective, |Song et al. (2023) and |[Bansal et al| (2023)) constructed a time-
independent guidance constructed by a loss function that is designed to enforce desired constraints on the
generated data. Instead, our geometric guidance is constructed by studying the geometric property of the
probabilistic guidance, with the goal of replacing its role in conditional generation.

To adjust the strength of guidance, |Dhariwal & Nichol| (2021]) and Ho & Salimans| (2022)) also introduced a
guidance scale, and their experiments showed that selecting an appropriate scale can significantly improve
performance. However, there are limited works on theoretically analyzing the effects of the guidance scale in
conditional generation. |(Chidambaram et al|(2024) studied one-dimensional case and showed that increas-
ing the scale not only reduces diversity of generated distributions but also leads generated data to drift to
the extreme points in the support of the conditional distribution. |Wu et al.| (2024) theoretically analyzed
the influence of the guidance scale in the context of Gaussian mixture models, demonstrating that a large
guidance scale diminishes distributional diversity while boosting classification confidence. Due to the ana-
lytical complexity of the probability guidance term, previous works have focused on special cases. Therefore,
we propose a geometric guidance term that plays the same role as the probabilistic guidance but is more
amenable to theoretical analysis of the guidance scale.

3 Background
In this section, we review the basic concepts of both unconditional and conditional diffusion models.

3.1 Diffusion Model

Let X ~ Px € P(RP) denote the target data distribution. The forward process in denoising diffusion
probabilistic models (DDPMs) (Ho et al., 2020) is governed by the stochastic differential equation (SDE)

AX, = B0 Xt + VEDAW:, V1€ (0.7) (1)

with the initial condition Xy ~ Px, where (W});>¢ is a standard Brownian motion and 5: [0,T] — (0, c0)
is smooth; see |Song et al.| (2021bf). This SDE admits the following analytical solution:

X, L JaiXo+VI— €, Vtel0,T], (2)

where € ~ N(0,Ip) a standard Gaussian, oy := exp (— fg B(s)ds), and “2” means equal in distribution.
The derivation is provided in Appendix
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The reverse process of DDPMs aims to generate Py, which corresponds to the time-reversal process of .
To this end, we need to consider the process

Xt(_ = XTft

and study its stochastic dynamics. As shown in |Anderson| (1982) and [Haussmann & Pardoux] (1986)), the
process (X );eo,r) satisfies the following SDE:

dX; = (;B(T )X+ B(T — )Vq long_t(Xf)) dt + /B(T — t)dW,, (3)

where p; is the density function of X, and (Wt)te[O,T] is the Brownian motion in reverse time. A simplified
proof can be found in Tang & Zhao| (2024).

In practice, a neural network sq(t, ) with parameter 6 is trained to estimate the score function V log p:(-)
using the score matching method (Vincent, 2011). By substituting V log p; with the estimator sy(t,-) in
(3), experiments (Song & Ermon, 2019} Song et al., 2021bj; [Dhariwal & Nichol, [2021)) showed that DDPMs
achieve state-of-the-art performance in data generation tasks.

3.2 Probability Flow ODE

Instead of simulating the stochastic process , denoising diffusion implicit models (DDIMs) (Song et al.l
2021a) employ a deterministic approach for generation, which corresponds to the following ordinary differ-
ential equation (ODE):

d 1

aXt(_ = EB(T - t) (X;_ + vm IngTft(X;_)) ’ Vie [OvTL (4)
with the initial condition X§~ ~ pr, which is called the probability low ODE. The evolution of the density
functions of X;~ under this deterministic process is equivalent to that of the stochastic reverse process ,
as the continuity equation associated with the ODE coincides the Fokker—Planck equation corresponding to
the SDE ({)); see [Song et al (2021b) for details.

In this paper, we focus on the deterministic dynamics, as the Wasserstein distance used as the main metric
makes analyzing the ODE formulation more convenient than the SDE. It naturally extends to the SDE via
Ité&’s formula (Gao et al., 2025). Following |Chen et al. (2023c) and [Chen et al.| (2023a)), we consider the
Ornstein—Uhlenbeck process by setting 5(t) = 2 in Equation for simplicity, where this constant choice is
unimportant, as varying it merely rescales time.

3.3 Conditional Diffusion Model

When working with paired data (X,Y) ~ Pxy, the goal of conditional generation is to generate the condi-
tional distribution Py |y (- | Y). In|Song et al. (2021b)), diffusion models are directly applied to Px|y (- | ).
Specifically, the forward process is first run with the initial condition X¢ ~ Px|y (- | Y) to obtain the
density functions p! of X;. Then, the stochastic reverse process (3, or the deterministic process (4)), is
simulated to generate samples from Pxy (- | Y).

Moreover, these intermediate densities p{ admit more explicit expressions. Suppose (X,Y) ~ Pxy and we
run the SDE with initial condition X ~ Px = [Pxy (-, dy) to obtain X;. Let p;(z,y) denote the joint
density function of (X;,Y"). Then, it can be shown that

pe(me | y) = pi (@4);
see Appendix for details.

Therefore, the score function for generating Pxy (- | Y') can be decomposed as

Ve logp!(x) = Vg logpi(x | y) = Ve logpi(xz) + Ve logpe(y | ), (5)
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where p;(x) is the marginal density of X, obtained by running with the initial condition Xy ~ Px.
This term can be estimated using standard methods from unconditional DDPMs. The remaining term,
Vzlogp:(y | @), is known as the guidance term, and there are two main approaches for approximating it:
classifier guidance and classifier-free guidance (Dhariwal & Nicholl [2021; Ho & Salimans, [2022)). In classifier
guidance, a time-dependent classifier is trained to approximate p;(y | -) on all noisy data. In classifier-free
guidance, a new neural network sy (¢, x,y) is trained to estimate the conditional score V4 log p;(x | y), while
sg(t, z, () approximates the unconditional score V log p;(x). The guidance term is then computed as

vw 1ngt(y | .’B) ~ 89(t7$7y) - 89(t7$7®)'

In practice, a scaling parameter n > 0, known as the guidance scale, is typically introduced to control the
strength of the guidance term (Dhariwal & Nichol, 2021]). When using the deterministic dynamics , this
modification is mathematically expressed as

d
aXf = Xf + vm long—t(Xf) + nvm long—t(y | Xf)? Vite [OvTL (6)

with the initial condition X§~ ~ pr(- | y).

As mentioned in Section [2] although setting 77 # 1 may seem counterintuitive from a theoretical perspective,
empirical studies (Dhariwal & Nichol, 2021} [Ho & Salimans| [2022)) have shown that selecting an appropriate
value of 1 can significantly improve performance. In particular, increasing the guidance scale n enhances
the distinguishability of generated samples, but at the cost of reduced diversity (Ho & Salimans| [2022;
Chidambaram et al., 2024 |Wu et al.,|2024)). However, theoretical understanding of how the guidance scale n
influences generation remains limited, due to the analytical complexity of the guidance term Vg logp:(y | )
(Chidambaram et al.l |2024; [Wu et al.| [2024).

Therefore, the main objective of this work is to provide a theoretical analysis of the guidance scale 1, under
the assumption that the target data concentrate on a low-dimensional linear subspace M, C RP called the
target data manifold, i.e., suppPx|y (- | Y = y) C M,. This analysis consists of two main steps:

(i) First, we replace the probabilistic guidance term with a geometric guidance term in order to avoid the
difficulty of handling Vg logp:(y | ) (see Section [)).

(ii) Second, we analyze the modified dynamics under the geometric guidance from two perspectives: (a)
how 7 influences the recovery of the target data manifold, and (b) how it affects the distance between
the generated distribution and the target distribution (see Section .

A central technical challenge in analyzing the geometric guidance dynamics is that Vg logp;(x) may fail
to satisfy desirable properties, such as the L-Lipschitz continuity (and the log-concavity of p;(x)), due to
the fact that p;(x) arises from a diffusion process initialized with a multi-modal distribution (Lee et al.
2022; |Gao et al., 2025)). To address this issue, we introduce a novel technique inspired by mollification in
mathematical analysis (Evans| 2018), which yields a surrogate distribution p¢ (x) for which the geometric
guidance dynamics is well-posed.

4 Geometric Guidance Model

In this section, our main objective is to construct a new guidance term to replace V, log p;(y | ) in Equation
@ from a geometric perspective. Specifically, the key idea is to understand the role that Vlogp:(y | )
plays in recovering the target data manifold M,,.

Note that Vg logp:(y | ) appears as a component of V logp?(x) by Equation . This motivates us to
investigate the geometric interpretation of the score function V,logp:(x) in the setting of unconditional
DDPMs (see Section [£.I). Based on Equation and a basic property of p:(y | @), we then propose a
replacement for Vg logp:(y | @), which preserves its geometric role but is more tractable for theoretical

analysis (see Section [4.2]).
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4.1 Geometric Interpretation of Score Function

To study the geometric properties of the score function V log p:(x), we first examine the geometric structure
of the noisy data manifolds that arise during the DDPM process. |(Chung et al.| (2022) showed that, under
the assumption that the target data lie on M € RP, a linear subspace of the ambient space R” with
significantly lower dimension, the noisy data X; concentrate on a hypersurface, i.e., a (D — 1)-dimensional
manifold embedded in RP, for any ¢+ > 0. We generalize this result (Chung et al., 2022, Proposition 1) in
the following proposition; the proof is provided in Appendix [C.1]

Proposition 1. Assume Z ~ PZ on R?, and X = AZ ~Px onRP for an A€ OP*4, je., Ac RP*? and
AT A =1,. Define
M= {m cRP: H(ID - AAT):BH = r(t)} ,

where r(t) := /(D — d)(1 — o) and oy = e~ 2. Let X; be generated by the DDPM forward process with
the initial condition Xo = X. If d < D , then X; concentrates on M with high probability.

Based on this result, the next question is how the score function V4 log p;(2) contributes to recovering these
noisy data manifolds M? during the reverse process .

Under the same assumptions as those in Proposition |1} |Chen et al.| (2023b) showed that

1

vm 1ngt(x) =A Vz logptz(z)|z=ATm - 1— ay

(Ip — AA )z, (7)

where p? is the density associated with the forward process initialized from p#. An alternative derivation
of this formula, along with an analysis of its geometric properties, is provided in Appendix

Based on this orthogonal decomposition, we observe that the role of V4 log p:(«) can be understood as two
components: (i) the first term serves as generating the distribution PZ in the latent space, and (ii) the
second term controls the reconstruction of the noisy data manifolds M? in the ambient space. Informally,
this decomposition can be summarized as

Vz log pi(z) = Generate Latent Distribution + Recover Data Manifolds M".

We formalize this intuition in the following theorem; see the proof in Appendix [C.1]
Theorem 2. Under the same setting as that in Proposz'tion let X\ = AATXS and X{ = X — X5
where X7 = Xp_4.

(a) Let X\ = AZ{ with Z;~ = AT X, Then Z; satisfies

d
ST = 20+ Valogph(Z7),

which implies that Z, = AT X, = Z5_, follows the forward process initialized from p?.

(b) X7, satisfies
d 1
Moreover, | X/ ||| = (T —to) implies | X5 || = r(T —to — ), where r(t) = /(D — d)(1 — o).

In Theorem [2| statement (a) demonstrates that the parallel part V, logp?(z) in the decomposition is
responsible for generating the target latent distribution pZ via the reverse process of DDPMs, which has
been thoroughly studied in |Chen et al| (2023b). Meanwhile, statement (b) shows that, since

(I = AATXE || = [| X5

the orthogonal part (Ip — AAT)z plays a key role in guiding the recovery of the noisy data manifolds M?,
which provides an insight for designing geometric guidance in conditional generation.
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4.2 Geometric Guidance for Conditional Generation

Let us return to the conditional diffusion model. To apply the results from Section [4.1] in studying the role
of Vzlogp:(y | @) in guidance, we first impose the linear assumption for the target data manifold.

We consider a two-class dataset (X,Y) ~ Pxy on RP x {1,2} for simplicity; the following analysis readily
extends to the multi-class case. Let P(Y = 1) = w; and P(Y = 2) = ws so that

Px =wiPxy (- |Y =1) + woPxy (- | Y =2).

The linear assumption states as follows.

Assumption 1. Fori = 1,2, there exists a Z; ~ p? on R% and an A; € OP*4 such that
X =AZ; ~ ]PX\Y(' | Y = i)a

and we further assume A{ Ay = O.

Remark 1. For this assumption, we provide two remarks.

i) It basically means that the support suppPxy (- | Y = i) C M; := Im A;, the image of x — Ax; in
|
other words, Px|y (- | Y = i) is supported on the linear space Im A;. The definition of the support of
a probability measure is provided in Appendix [A]

ii) A] Ay = O indicates M; L My. This orthogonality assumption is introduced to simplify the sub-
1
sequent analysis, but it does not significantly affect our conclusions regarding the guidance scale; see
Appendix [EJ] for further discussion.

Next, we fix Y = 1 and our goal is to generate the conditional distribution, which needs to consider the
geometric structure of the condition score function Vg log pi(x | y = 1). By combining the results in Section
with Equation , the conditional score function has two different types of decomposition:

Ve logpi(x | y = 1) = Generate Latent Distribution + Recover Data Manifolds M}

8
= Vzlogpi(z) + Vg logp(y =1 z). ®

We will show that Vg logp:(y = 1| &) plays the role of recovering the data manifolds M¢ with respect to
the first decomposition.

For the first decomposition in , based on Assumptionand Proposition because the noisy data manifolds
generated by the forward process starting from M are given by

M ={z eR”: |(Ip — 1A )z|| =r(t)}, (9)
the orthogonal part of V4 log py(x | y = 1) in the first decomposition responsible for recovering M} is parallel
to (Ip — A1 A] )z as shown in Section

Intuitively, for the second decomposition in , since p;(y = 1 | ) acts as a classifier for M}, we have
pe(y=1]x) ~ 1 for any z € MY, ie., logp,(y =1 | x) is approximately constant on M. Therefore, by
Lemma Velogp(y = 1| @) is almost normal to M?,

Velogpi(y=1| )~ —n(Ip— A1A )z, for some n >0,

because (Ip — A1 A )z is normal to M} by Lemma Rigorous details are provided in Appendix

Therefore, the guidance term V, logp:(y = 1 | @) partially contributes to the recovery of the data manifolds
M during the reverse process. Consequently, it can be replaced by (Ip — A; A] )x. Based on this insight,
we propose the following geometric guidance model for conditional generation:

d
&Xt‘_ =X, +Valogpr (X ) —nPi X, Pr:=1Ip—AA]l. (10)
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5 Main Results: Analysis of Geometric Guidance Model

In this section, we analyze the geometric guidance model with the aim of uncovering the role of the
guidance scale 1. To understand its effects, we consider two related questions: whether the model can
approximately estimate the target data manifold M; (see Section , and how to quantify the distance
between the generated and target distributions (see Section. These two problems serve as a lens through
which we investigate the influence of 1 in conditional generation.

Before addressing these two questions, it is necessary to ensure the well-posedness of the ODE ; that is,
we must establish regularities of V, log p(x) such as its Lipschitz continuity and the log-concavity of p;(x),
which requires careful analysis (see Section [5.1])) because it is obtained from a multi-modal distribution Px.

5.1 Well-posedness of Geometric Guidance Model

In general, the Lipschitz continuity of Vlogp:(x) and the log-concavity of p;(x) induced by the DDPM
forward process depend on properties of the initial distribution p. A basic requirement is that p admit a
density p(x). Log-concavity of p(x) then implies log-concavity of p;(x) (Gao et all 2025), and Lipschitz
continuity of V log p(x) implies the Lipschitz continuity of V4 log pi(x) (Chen et al.| [2023a).

However, in our setting, it is clear that Px does not admit a density function. We therefore first deduce
the necessary conditions on the latent distribution implied by Px; see Sections and Second, the
multi-modality of Px introduces irregularities in p;(x) (Lee et all 2022), which we discuss in Section
By solving these two problems, we construct a surrogate pg () for use in the geometric guidance model ((10)),
which is well-posed; see Section [5.1.4]

5.1.1 Problems in Latent Distribution

When p does not admit a density function—for instance, when the support of y lies on a lower-dimensional
manifold in the ambient space—De Bortoli (2022|) showed that the score function V logp; is Lipschitz
continuous under the assumption that supp p is compact, i.e., closed and bounded. This setting aligns with
our problem but guarantees only Lipschitz continuity. In contrast, we establish a stronger result in the
following Proposition [3] which does not require the compactness, under the assumption that the target data
manifold is linear. The proof is provided in Appendix

Proposition 3. Let Z be a random variable on R with the density function p?, and let B € R™**. Assume
there are mqg, A > 0 such that
~V2logp?(2) = moly, || BI2, < A,

and X := Amin(B ' B) > 0, the minimum of all eigenvalues of BT B. For a € R and 3 > 0, let
X = aBZ + B¢, €~N(0,I,)
with the density function px on R™. We have

i N S S
IValogpx (@), < L. L= g5+ ey

Remark 2. A direct application of this proposition is that it extends the result of [De Bortoli (2022) to a
non-compact setting, under the additional assumption that the latent distribution is strongly log-concave,
i.e., —V2logp?(z) = moly. If we are only concerned with the L-smoothness [!| of logpx, the log-concavity
of pZ can be relaxed to the L-smoothness; see Appendix [F| for details.

Corollary 4. Using the same notations as in Proposition[3, we have
a?A 1
A% =N == ) L.
@ ngX(m)— <ﬁ2(a2)\+m052) ﬂ2>

1 L-smoothness of f and L-Lipschitz continuity of V f are equivalent for C? functions; we use them interchangeably.
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Remark 3. Note that, if a?A < a?\ + moB32, such as A = )\, then
1 o?A
2 ._

which implies that py is m,-strongly log-concave. Therefore, it shows that the strong log-concavity of p?
ensures not only the L-smoothness, but also the concavity of logpx.

Based on results in Proposition [3] even if Px does not admit a density function, the desired properties of the
score function can still be guaranteed, provided that the latent distribution admits a density and satisfies
strong log-concavity. However, in our setting, these two conditions are not satisfied:

(i) For the latent distribution of Px, because Z; ~ ]P’iZ on R% | we first lift them on R? with d := d; + da
by defining . y y ~
Zy = (14,,0u,xa,) " Z1 ~BY,  Zy = (Ouyxay, 1a,) " Zo ~ PF.

Let A = (A1, Ay) € OP*4. Tt follows that
AZ; = AiZi ~Pypy (- | Y =), Le, AgPZ =Py y(- | Y =1).
Therefore, by Lemma if Z ~P? :=wP{ 4+ woPf, we have
X = AZ ~Px =wPyy(- | ¥ = 1)+ wsPyy (- | ¥ = 2).
But the problem is that the latent distribution P? does not admit a density function on R9.

(ii) For log-concavity, even if the latent distribution admits a density function, it typically does not satisfy
strong log-concavity due to its multi-modality (Lee et al., |2022).

Therefore, in the following, we first introduce a technique to address the log-concavity of the latent density
(Sections and , and then apply Proposition |3| to establish the desired properties of the score
function (Section [5.1.4]).

5.1.2 Mollification Technique

Mollification (Evans) [2018]) is a standard technique in mathematical analysis to address non-smoothness of
functions. When dealing with a non-smooth function f, the idea is to find a smooth kernel function k£ such
that the convolution g := f * k, which is clearly smooth, is closed to f.

Following this idea, we choose a Gaussian distribution N(0,0%1,) with some o > 0 as the kernel, and
consider its convolution with PZ; see Remark for the definition of convolution between measures. Let

PZ := PZ « N'(0,0°1,) = wiP{ , + woPF

where PZ, := PZ « N'(0,0%1,). Note that both PZ and PZ, admit density functions, denoted by pZ and pZ,
respectively, and
pi =wip?, +waps . (11)

Moreover, by the definition of convolution, if Z; ~ pZ, then
Z1;=(21,0)" +0C ~plo, Zoo=(0,Z5)" +0C ~p3,. (12)
for ¢; ~ N(0, 1) independent of Z;. Therefore, we obtain a smooth density pZ on the latent space R.

Next, for Px, the following Proposition |5 addresses the question of whether sampling from pZ yields a
P% := AxPZ that is close Px. The proof is provided in Appendix

To measure the distance between probability measures, we use the 1-Wasserstein distance in this work for
analytical convenience. For u,v € P(RP), it is defined by

Wilp) =t { [le = yldr(e,)s v € D) | = nf EIX - Y11 X~y ¥ ~ ),
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where I'(,v) := {y € P(RP x RP): v(4 x RP) = p(A), v(RP x B) = v(B)}; see |Chewi et al| (2024) for
more details.

Proposition 5. Using the above notation, if Z, ~ PZ, then for X° = AZ, ~ P%, we have
Pk = wiP%y (1Y = 1) + waP% )y (- | Y =2),
where nglY(' |Y =14):= A#Pfg fori=1,2, and it follows that

Wl(Pg(,]Px) § 0’\/8,

Therefore, the mollification technique provides a smooth latent density function pZ? that induces a distribution
P& approximating Px.

5.1.3 Log-Concavity of Latent Density

In general, even if pZ is smooth, we cannot directly assume that it is strongly log-concave, as it is multi-modal
by Equation . However, we can still assume that each of its components pfa is strongly log-concave,
which, in fact, follows from the assumption of strong log-concavity of the original latent density pZ.

Assumption II. Let p? be the density function of PZ defined on R%. There exits a large m > 1 such that
—V2logpZ(z) = mly,,
i.e., pZ is m-strongly log-concave for i =1,2.

fa, but it does not guarantee that the
overall mixture pZ is strongly log-concave—this is a common difficulty in the case of multi-modal distribu-
tions. However, due to the mollification construction, the parameter o can be freely chosen, which enables

us to establish the strong log-concavity of pZ under the following assumption.

Assumption [[I] ensures the strong log-concavity of each component p

Assumption III. For a chosen o, we assume that
M :=sup||V, logpfa(z) -V, logpQZ’U(z)H < 2vm — 1.

Remark 4. This assumption is novel and essential for addressing log-concavity in multi-modal settings.
Characterizing the classes of pZ that satisfy it is nontrivial and is discussed in Appendix One concrete
example is when each piZ (z) is a lower-dimensional Gaussian truncated to a compact, convex set K; with an
appropriate choice of o, Assumption III holds.

Assumption is required to obtain an upper bound on V?2logp, even when the density p is multi-modal,
as shown in the following lemma; see the proof in Appendix [D.1]

Lemma 6. Let py,ps be two probability density functions on R™ such that V?logp; = L;I,, for some constant
L; € R. Suppose that
sup||Vlog pi(x) — Viegpa(x)|| < M < oc.
xT

Then, for the mizture density p = wp1 + (1 — w)p2 with w € (0, 1), it holds that

1
V2logp < <max{L1,L2} + 4M2> I,.

By Lemma |§| and Proposition [3| the strong log-concavity of the multi-modal latent density function pZ can
be guaranteed.

Theorem 7. Under Assumptions and if 02 < (4m — M?)/(M?m), then pZ is strongly log-concave
for pf = wipf, +wapd,, ie.,

. . 4m— M2(1+mo?)
~Vilogp7(z) = mils, m = 4(1+mao?)

10
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Proof. Note that
Zi,=(14,,0) Zy + ¢ ~pf,,.

By Assumption [l and Corollary 4] with the choices B = (I4,,0)", mg =m, a = 1, and 3 = o, we obtain

1 1
\a| z === 1,

For p227 -, we similarly have

1 1
2 z
1 == | I
Valogps,(2) = (02(1+m02) 02) d
Then, because pZ? = wlpi ot wgpf -, it follows from Assumption and Lemma |§| that
V2 logp? (z) = v 1 + 1M2 I,=—mil, 0O
= = \o2(1+moe2) o2 4 0

5.1.4 Smoothness and Concavity

Before proceeding, let us recall that the latent distribution PZ of Py is not “good”. To address this, we
construct a new distribution P% whose latent distribution PZ admits a “good” density function pZ, and
which is close to Px. Consequently, instead of considering the score function associated with a DDPM
initialized from Px, we consider a DDPM initialized from P%, i.e.,

X7 =VauAZ, +V1—a€ ~  pf, (13)
where Z, ~ pZ and &€ ~ N(0,Ip). We then modify the dynamics in to define our final version of the
geometric guidance model:

Definition 1 (Geometric Guidance Model). For any ¢t € [0,T — 4],
d -~ . . . .
&Xt = X; + Vg logpT (Xi) —nPi X, Xo~N(0,Ip), (*)
where Pl = ID — AlAir
Remark 5. (i) The initial condition is taken as N'(0, Ip) instead of pr (- | y) to reflect practical implementation
settings. (ii) The time interval is chosen as [0, 7 — 4] for some ¢ > 0 to avoid the singularity at time 7.
Therefore, our main objective now becomes establishing the Lipschitz continuity of Vlogpy(x) and the
log-concavity of p¢(x), which follows from the strong log-concavity of the latent density pZ(z).
Theorem 8. Under Assumptionm and the same settings as in Theorem@ for the density function py defined
in Equation , we have

2ay + (1 — ay)m§
(1—ay) (ar + (1 —ap)mg)’

V2 logpf (@)||,, < Le,  Li=

and
-V logp (iL’) ~-m ID my ‘= —mz
T t [ t ) t . (1 t)mz .

Proof. First, by Theorem the latent density pZ is m§-strongly log-concave. By the definition of p¢,
Proposition [3] implies that

< 20 + (1 — ag)m§
P 7 (1= ay) (e + (1= ag)m§)’
with the choices B = A, mg = m&, a = \/ay, and 3 = /T — a;. This follows from the fact that ATA = I
(Assumption , which indicates ||A||(2)p =1and Apin(ATA) = 1.

V2 log 7 ()]

For the log-concavity, Corollary [ directly yields

—V2 logp? (x) = ( ! (1 a )) Ip. O

1—oy _atJr(lfat)mg

11
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Therefore, we have established the desired properties of pf, which ensure the well-posedness of the geometric
guidance model . Moreover, from the definition of m; in Theorem [§] we can derive a lower bound that
will be useful in the following analysis; see Appendix for the proof.

Corollary 9. There exists a small o > 0 such that m§ > 1 and my := inf,c o, 71 me > 1.

5.2 Estimating Target Data Manifold

For the geometric guidance model , the first problem is whether it can estimate the target data manifold
M. Specifically, we aim to show that the generated sample X7_s approximately lies in M;. Since M; =
Im A; is a linear subspace by Assumption [I} it suffices to examine whether E [HYT—5 H] ~ 0, where

Y, =P X, P=1Ip— AA].

Multiplying both sides of Equation by Py, we obtain that Y; satisfies the following dynamics:

d .~ . . .
&Yt =Y, + PiVglogpT (X)) —nY;, Yo~ N(0,P1), (14)

for t € [0,7 — §]. By analyzing the dynamics , the following theorem provides a convergence rate of
E [HYT—5|H — 0 with respect to the guidance scale 7.

Theorem 10. Consider the dynamics under Assumptz'ons and . Then,
- 1
B (1¥r-ol) <0 (4 1)
In particular, for any € > 0, by choosing n = ©(max{log(1/¢),1/e}), E [||YT,5||] <e.

Proof sketch. We provide a sketch of the proof here; the full proof is given in Appendix
The key idea is to derive a differential inequality for E [HY,:H] First, we have
d
dt
To bound E [||V,logpg_,(X:)||], the Li-smoothness of logp§ is required, which follows from Theorem
The smoothness implies that

E[[[¥i[]] < @ =n)E [[[¥i]|] + E[[|Ve log p7_. (X0)|] - (15)

Ve logp7_(X0)|| < Ls|| Xel| + C

for some constants L and C. Therefore, it suffices to bound E [ X, ] By deriving a differential inequality
from Equation and applying Gronwall’s inequality (Lemma [H.11]), we obtain E [HXt %ﬁ M; for some
constant M, and thus E [va logp%_t()zt)m < Mj. Substituting this bound into 1) and applying
Gronwall’s inequality once more yields the desired result. O

Remark 6. For this theorem, we provide two remarks.

(i) Note that this result depends only on the L;-smoothness of logpy, and not on strong log-concavity.
Therefore, Assumptions [[I] and [[T] can be relaxed; see further discussion in Appendix [F}

(ii) The universal guidance model,
. on

dt
was proposed by [Bansal et al.|[(2023) to control the generation process such that the generated images
match the prompt g(X5 ) =~ c. In their setting, f(x) = {(c, g(x)) for some loss function ¢. A similar

idea used in the proof of Theorem [L0| can be extended to theoretically analyze the universal guidance
model. If the L-smoothness of log p; holds (see Appendix [F]) and f is strongly convex,

=X 4+ Valogpr—+(X;) —nV (X)),

E[f(X5)] — min f, as n — oo;

see Appendix [D.3] for more details.

12
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Theorem [10]shows that the geometric guidance model can approximate the target data manifold. Specifically,
as the guidance scale 7 increases, the generated data increasingly lie close to the target manifold. This result
is consistent with empirical observations on both synthetic datasets (Wu et al., |2024; |(Chidambaram et al.
2024) and real-world datasets (Dhariwal & Nichol, [2021} [Sadat et al., [2024; [2025)), as well as with the
theoretical results in the one-dimensional case studied by [Chidambaram et al.| (2024), which demonstrate
that increasing n causes the generated data to move toward the extreme points in the support of the target
conditional distribution.

5.3 Distance to Target Distribution

Let p; be the density function of X, in the geometric guidance model . The second question is how to mea-
sure the 1-Wasserstein distance between the generated density pr_s and the target conditional distribution
Pxy(- | Y =1). Specifically, the goal is to provide an upper bound on Wy (pr—s, Pxy (- | Y = 1)).

First, we require an additional assumption: the boundedness of the first moment of each conditional distri-
bution Py |y (- | Y = i), which can be reduced to the same condition on the latent distribution pZ.
Assumption IV. Fori=1,2 and Z; ~ p?, mZ? :=E[|| Z;||] < o0.

Theorem 11. Under Assumptions ], [[I, [[T], and[IV}, we obtain that

Wi (Br—s,Pxiy(- | Y =1)) <O(e T +62 4o +97 1)+ C
for some constant C.

Proof sketch. The proof consists of two main steps:

(i) Let @ = A;A] be the orthogonal projection onto M; = Im A;. By Theorem we have

Wi (Br—s, Pxpy (- | Y =1)) < W1 ((Q)#br—s, Pxy (- | Y =1)) +O0(e™ " +n7").

(ii) For Wl ((Ql)#ﬁT—Sa]P)XD/(’ | Y = 1)), it has
Wi ((Q)#Pr—s,Pxpy (- | Y = 1)) < W (r—s,Px) + W1 ((Q1)#Px.Pxiy(-| Y =1)),

where the first term Wy (pr—s,Px) can be bounded by comparing the geometric guidance model
with the unconditional reverse dynamics, and the second term is directly bounded by Lemma [D.3]

The full proof and the further discussion of the error floor C' (Remark|D.1)) are provided in Appendix O

This result suggests that increasing the guidance scale does not harm the generating performance, which may
appear counterintuitive and inconsistent with empirical observations. In practice, however, ODE dynamics
are typically approximated using the Euler discretization (or the Euler—Maruyama scheme for SDEs), which
introduces additional discretization error. In our setting, the Euler discretization error for the geometric
guidance model is bounded by O(hn?), where h denotes the step size; see Appendix for details.
Therefore, the performance degradation observed at large guidance scales arises not from the model formu-
lation itself, but from the discretization algorithm. For example, Wu et al.| (2024, Figure 3) showed that the
large guidance scale would harm the modality of the original data, but this problem can be mitigated by
reducing the discretization step size.

6 Nonlinear Extension
In this section, our main objective is to construct a nonlinear geometric guidance model suitable for real-world
image datasets, and to evaluate its generation performance under varying guidance scales 7.

The first challenge is to construct the geometric guidance term for image datasets, which may not lie in a
linear subspace. To this end, we study the geometric structure of noisy data manifolds without assuming
linearity of the target data manifold, by extending the result of Proposition [l to the nonlinear case (see

13
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Section [6.1). Then, following the idea of Ross et al. (2024), we train functions Fj: RP? — R to model noisy
data manifolds via M* = (F})~1(0) so that V;F} can replace (Ip — AAT )z to be the nonlinear geometric
guidance term (see Section . Finally, we examine this nonlinear geometric guidance model on CIFAR-10
(Krizhevsky, 2009)), and evaluate its performance under the different guidance scale (see Section .

6.1 Noisy Data Manifolds for Nonlinear Case

The geometric guidance term (Ip — AAT)x is constructed based on the result in Proposition which
assumes that the target data manifold M = Im A is linear. However, for real-world image datasets, it may
unrealistic to assume that the data lie in a linear subspace. Instead, it is more reasonable to assume that
the target image data lie on a nonlinear manifold M C RP with intrinsic dimension d < D; see Appendix
for basic knowledge of manifolds. This assumption is known as the manifold hypothesis (Bengio et al.,
2013)), and it has been supported by both theoretical analyses (Fefferman et al.,|2016)) and empirical studies
(Brown et al., |2022; [Loaiza-Ganem et al., [2022)).

To construct a new geometric guidance term, because of the nonlinearity of M, we must extend the result
of Proposition [I] to uncover the geometric structure of noisy data manifolds. Although the d-dimensional
manifold M C RP is not assumed to be linear, we additionally require that it is locally isometric to R,
More precisely, we assume the existence of a C* function ¢: R — RP such that Im¢ = M and ¢ is an
isometry; that is, J¢ ' J¢ = I;. Then, by Lemma we obtain an analogue of Proposition in Theorem
which shows that the noisy data manifolds M? are hypersurfaces—i.e., (D — 1)-dimensional submanifolds of
RP; see the proofs in Appendix

Lemma 12. Let ¢p: R? — RP be a C* isometry such that M =Im ¢ C RP is a d-dimensional submanifold.
Then, there exists a C> function ¢*: RP — R¢ such that ¢* o ¢ = idga and

Jo*(p(z)) = Jp(z)T, V zeR%

Remark 7. In fact, the isometry of ¢ implies that Im ¢ is a submanifold, because it is proper (i.e., the
preimage of every compact set is compact) by the Hopf~Rinow theorem (Jost, [2008)).

Theorem 13. Let M C RP be a d-dimensional submanifold as defined in Lemma and let Px on RP
such that suppPx C M. Let X; be generated by DDPM initialized from Px. If d < D, then X;
concentrates on a hypersurface Mt C RP with high probability, where

Mt = {:n: fiz) = r(t)}, r(t) =V (D —d)(1 — ),

for some C™ function ft: RP — R.

6.2 Learning Geometric Guidance

For an image dataset (X,Y) ~ Pxy with class label Y € {1,2,..., K}, we adopt the union of manifold
hypothesis (Brown et al. 2022)), that is,

supp Py (- | Y =y) C M,,
where M, C RP is a d,-dimensional submanifold. To apply Theorem we further assume that, for each

My, there exists an isometry ¢,: R% — RP such that Im ¢y = My. Then, the noisy data manifolds
generated by the forward process initialized from M, are given by

Mty = {wERD: f;(w>:r(t)}a r(t) = V(D —d)(1 - o),

for some function f!: R” — R.

By adopting the same idea as in Section forx € Mty, the guidance term V log p;(y | @) is approximately
normal to ./\/lf/ at x—that is, it is approximately parallel to V fé (x). Therefore, we construct the nonlinear
geometric guidance term as Vg fi () to replace the probabilistic guidance Vg logp:(y | @) in the reverse

14
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Figure 1: Images generated by GeGM on CIFAR-10

process for conditional generation. The resulting nonlinear geometric guidance model (in deterministic form)

is defined by

d
7X<*
de™t

where V log p; is the score function of the unconditional DDPM initialized from Px.

Xf + Vg IngT—t(Xf) 7nvmf57t(Xf)a (16)

To implement the nonlinear geometric guidance model, one must estimate both the score function and the
nonlinear geometric guidance term. The score function V, log pi(x) can be estimated using an unconditional

diffusion model—specifically, by training a network sq(¢, ) via the score matching method (Vincent, [2011)
on the unconditional data X. The main task, then, is to estimate V f}(X/").

First, Theorem |10|shows that M}, = (f)~"(r(t)), so such function f} is called a manifold-defining function

in Ross et al.| (2024). Following a similar idea, we train a network F ,: RP — R to estimate f! —r(t), so

F} 5 needs to satisfy

F!o(x) =0, and V,F! o(x) £0, Yz e M.,

where the first condition follows directly from the definition of M;, and the second condition, called the

rank condition, ensures F;,e a manifold-defining function, as guaranteed by the Constant Rank Theorem
(Lemma . Therefore, the loss function for training F;,e is designed as
2 2
£4(6) = Exopiy) [|FLo (X[ — wl|VaFLo (X)) a7)

where k > 0 is chosen for controlling the strength of the rank condition. We simply set k = 1.

6.3 Experiments

Effectiveness of GeGM. We use the Fréchet Inception Distance (FID) (Heusel et al.,|2017)) as the metric
for evaluating generation performance, because it can be regarded as a practical surrogate for the Wasserstein
distance. We compare the FID of samples generated by the nonlinear geometric guidance model (GeGM)
with those generated by the classifier guidance model (CGM) @ The results are reported in Tabl where
we present results for selected classes; the remaining classes are provided in Appendix [G.2] Note that the
guidance scales used for CGM and GeGM differ, since the norms of the probabilistic and geometric guidance
terms are not comparable. For visualization, Figure [1] displays images generated by the nonlinear GeGM.
These results demonstrate the effectiveness of the nonlinear GeGM in generating real-world images.

Performance vs. guidance scale. By applying the nonlinear GeGM , we evaluate how generation
performance varies with the guidance scale 7 on selected classes from CIFAR-10; results for the remaining
classes are provided in Appendix[G.2} As shown in Figure[2] performance improves with increasing n within
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Table 1: Comparison of FID on CIFAR-10

Automobile Frog Horse Ship Truck
CGM (n=1) 13.46 17.87 1397 11.61 16.85

GeGM (n = 50) 9.70 16.28 12.65 13.84 11.02
100 H -8- automobile
frog
-8- horse
-e-ship
80 -~ -0~ truck
A 60
(T
40 -
20 A
T T T T T
0 5 10 50 100
n

Figure 2: FID v.s. guidance scale n of GeGM on selected classes of CIFAR-10

a reasonable range. Since FID serves as a practical approximation of the Wasserstein distance, this trend
empirically supports Theorem even in the nonlinear setting.

7 Conclusion

In this work, we studied the role of the guidance scale in conditional generation with diffusion models. To
address the analytical intractability of the probabilistic guidance term, we introduced a geometric guidance
model that enables theoretical analysis under the linear manifold hypothesis. To facilitate this analysis, we
proposed a mollification technique to ensure the regularity of the score function in the presence of multi-
modality. Our results showed that increasing the guidance scale within a reasonable range can enhance
generation performance, in line with empirical observations reported in prior studies. We further extended
the model to nonlinear settings, and experiments on real-world datasets demonstrated the effectiveness of
the geometric guidance model and provided additional support for our theoretical findings.

Limitations: While the geometric guidance offers a more tractable alternative to probabilistic guidance,
it comes with certain limitations. Notably, our analysis showed that the upper bound of the Wasserstein
distance between the generated and target conditional distributions is bounded by a constant, regardless of
the choice of the guidance scale. This implies that, unlike probabilistic guidance, which can approximate
the target conditional distribution by setting the scale to 1, the geometric guidance does not guarantee
convergence to the target distribution. This is a trade-off made for the sake of analytical tractability.

Although our experiments on the nonlinear extension partially supported the theoretical results, our current
theoretical analysis is restricted to the linear manifold setting. In the nonlinear case, the geometric structure
of the score function remains unclear. Regarding regularity of the score function, while Lipschitz continuity
can be ensured under compactness assumptions, extending this to the non-compact setting remains an
open problem. Furthermore, the log-concavity of the score function cannot be guaranteed, even in compact
nonlinear cases.
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A Notation

The symbols used throughout this paper are clarified below.

1. Letters: Unless otherwise specified, lowercase letters such as z and x denote deterministic variables,
while uppercase letters such as X and X denote random variables. Scalars are typically represented by
non-bold symbols such as x and Y, whereas vectors are denoted using bold symbols such as « and X. In
particular, we use I, € R™*"™ to denote the identity matrix and 0 € R™ to denote the zero vector.

2. Linear Algebra:

(i) Let O™*™ C R™*™ (with m > n) denote the set of matrices whose columns are orthonormal, i.e.,
those satisfying AT A = I,,.

(ii) For a vector € R", the notation ||| refers to the f3-norm. For a matrix A € R™*", the operator

norm is defined as
[Allop = sup [|Az|| =/ Amax(ATA),

ll=l=1

where Apax(-) denotes the maximum eigenvalue.
(iii) Let A, B € R™ " be symmetric matrices, i.e., A = AT and B = BT. We write A < B (or
equivalently, B = A) if B — A is positive semi-definite, i.e.,

' (B—A)x >0, VaxcR"

3. Calculus:

(i) For a scalar-valued function f: R™ — R, the gradient with respect to  is denoted by V f(x), and
the Hessian matrix by V2 f(z).

(ii) For a vector-valued function F': R™ — R™, JF denotes the Jacobian matrix of F', and the second-
order derivative D?F is a bilinear map D*F(z): R" x R"” — R™ defined by

2

D?*F(z)v, w] = aiatF(w +sv+tw) = (v VoF (z)w, - - ,vTVchm(:c)w)T,

where F' = (F1,...  F™). If each F* has continuous derivative of order k, F' is called C*.

(iii) For any set U C R™, the characteristic function xy: R™ — R is defined by xy(z) =1 if € U, and
xv () = 0 otherwise.

(iv) For integrable functions f,g: R™ — R, their convolution is denoted by

[rg(x)= [ f(y)g(z—y)dy.

R™

(v) For a function f: R™ — R™, let Im f = f(R™) denote the image of f. In particular, for a matrix
A € R™*™ Im A refers the image of the linear map x — Ax.

4. Probability-related Symbols:

(i) We fix the base probability space (2, F,P), where Q is the sample space, F is a o-algebra, and P
is a probability measure on F.

(ii) On R™, we typically work with the Borel o-algebra B(R™), and let P(R™) denote the set of all
probability measures defined on B(R™). Symbols such as p and v represent elements of P(R™). The
integral with respect to a measure p is denoted by [ f(x)du(x) or equivalently by [ f(x)u(dx).
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(iii)

(iv)

(vii)

For a measurable map f: Q@ — R", the push-forward measure of P under f is denoted by f4P, and
is defined as
f4P(U) =P(f71(U)), VYU € BR").

A random variable (or vector) X : @ — R™ is a measurable map. Its distribution, denoted by Px
(or P¥X), is a probability measure on R" defined by Px = X4P. For some pu € P(R"), we say
X ~ pif 4 =Px. Two random variables X and Y are said to be equal in distribution, denoted by
X2y, if Py =Py

For X ~ Py, if Px is absolutely continuous with respect to the Lebesgue measure dax, then by the
Radon-Nikodym Theorem, there is a function px (or denoted by p*X) such that

Px(U) = /pr(m)da:, v U € B(R"),

and px is said the density function E| of X. For a measurable function ¢g: R" — R™, if X ~ Py,
then g(X) ~ gxPx. When Px admits a density py, the density of g(X) is denoted by gxpx. In
particular, if g(x) = Az for a matrix A € R™*", g.Py is also denoted by AxPx for simplicity.
For random variables X : 2 — R™ and Y: Q — R, the joint distribution of (X,Y): @ — R" x R
is denoted by Pxy = (X,Y)xP, a probability measure on R™ x R. The conditional distribution
Pxy (- | Y) is defined as

Pyy(U|Y)=P(X €U |Y), VU EeBR"),

which is a probability measure on R™.
For a probability measure 1 € P(R™), the support of p is denoted by

supppu = {x € R": u(B,(x)) >0, Vr >0}

where B,.(x) C R™ denotes the open ball centered at @ with radius r. When p admits a density
function p,

supp . = {x € R™: p(x) > 0}

B More Details in Background

B.1 Analytic Solution for DDPMs

To solve the SDE

1
we multiply both sides by the integrating factor e?

dX; = —%B(t)Xtdt +/BE) AW, Vite[0,T],

t
fo Ale)ds g gives

L[ g(s)ds 1 1 (" B(s)ds L (" B(s)ds
e Jo g x, o §ﬂ(t)65 Jo P99 x qp — \/BR)e? o PO qwy,

which leads to

1 f" B8
by applying It6’s formula to e? Jo (

d <eé foﬂ(s)dth> — /B(D)e? Jo P9 qp,,

S)dth. Therefore, we obtain the solution

X = ay Xo + &,

where oy 1= exp (— f(f ﬂ(s)ds), and

& = /Ot e b LA aaw,

2When unambiguous, px is also occasionally referred to as the distribution.
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Since (W});>0 is a standard Brownian motion on R it follows that &, ~ N(0, O’?t Ip). To compute Ugt, let
[-,-] denote the quadratic variation. Then

Ogt_E ££

e[ e

- /0 eSO (s =1~ exp (— /Ot B(s)ds) .

(see |Le Gall (2016) for details). As a result,
&EVI-a E~N(OIp).

B.2 Density Functions in Conditional DDPMs

Proposition B.1. Consider a joint data density function p(x,y) and the process governed by the SDE:

dX; = —76 ) Xdt + /B(t)dW.
For the following two scenarios:
(a) Let X ~p(x | Y =y), and run the SDE for Xo = X. Let p{(x) be the distribution of X,

(b) Let (X,Y) ~p(x,y), and run the SDE for Xo = X. Let pi(x¢,y) be the distribution of (X;,Y),
Then, we have
pi(xe) = pe(@e | y).

Proof. As shown in Equation ,
d
Xt - \/atX0+ Vl_até-a SNN(OaID)7

where a; = exp | — K B(s)ds ). Therefore, in the first case, we have
0

pi (@) = (Vor)p( | y) « N(0, (1 — o) Ip).

Moreover, by Lemma since £ is independent of (Xg,Y), it follows that

(e | ) :P(\/Ewo+v1*04t€ | y)
=p(Varx [ y) * N(0, (1 — az)Ip)
= (Var)gp(x | y) * N (0, (1 — az)Ip).

Consequently, we obtain:
pi(x) = pe(xe | y)- O

Lemma B.2. Consider three random variables, X, Y € R™, and Z € R. Let'Y be independent of paired
(X,Z), and W = X +Y. Then, we have

pwiz(w | 2) = (px|2( | 2) #py () (w).

Or informally,
pxy|z(®+y | 2) =px|z(x | 2) *py (y).
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Proof. Because Y is independent of (X, Z),
pxvz(®,y,2) =pxz(x,2)py (Y).
Let Dy = {(x,y): © + y < w}. Then, we have
PW <w,Z<z)=PX+Y <w,Z<z)

/ (// pxyz(2,y, 2 )dazdy) dz
/ (// pxz(® 2)py (y )dscdy) dz
:/0 /0 (pxz(-2) *py (")) (s)dsdz,

where W = (W;); < w = (w;); means W; < w; for all i = 1,...,n, and f(;u ds = Ow" ---fowl dsy---dsy,. It
follows that
pwz(w, z) = (pxz(+,2) * py () (w).

Therefore,

pwizlw] 2) = P (PX20D) () () = izl |2) () () =

Remark B.1. In Lemma the existence of density functions is assumed, which also makes it necessary to
assume the existence of the density for X in the proof of Proposition However, this condition is often
not satisfied in practice. To address this limitation, consider the convolution of two probability measures
w,v € P(R™), defined by

porv)= [ [ o+ pdn@any).

Note that p * v is still a probability measure. Moreover, it follows that if X ~ g and ¥ ~ v with X
independent of Y, then X +Y ~ p*v. Under this formulation, the conclusion of Lemma [B:2| remains valid
in the general case:

Pwiz(-| Z2) =Px1z(- | Z2) * Py z(- | Z2) = Px2z(- | Z) x Py ("),

where the first equality follows from the fact that independence of Y and (X, Z) implies that Y is inde-
pendent of X conditional on Z, and the second equality holds because Y is independent of Z due to its
independence from the pair (X, 7). Therefore, by following a similar line of reasoning as in the proof of
Proposition [B.I}--replacing statements about densities with statements about distributions—we can obtain
the same result even when X, does not admit a density function.

C More Details of Geometric Guidance

C.1 Omitted Poofs in Section [
Proof of Proposition[l, Fix a time t > 0. By Equation ,
X =V AZ + V1 — o€,
for some & ~ N (0, Ip). It follows that
(X0 = [|(Tp — AAT)X|| = VT = aal|(Tp — AAT)e] |
Note that AAT is the orthogonal projection to Im A. Therefore, there exists a U € OP*P such that

Ip — AAT =UT diag(1,...,1,0,...,0)U.
N——
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Moreover, the orthogonality of U implies that v = (vy,...,vp)" = U& ~ N(0,Ip). Hence,

1
f( X)) =+v1- atH(ID — AAT)‘EH =+v1—-oy (1/12 4o+ z%fd) 2,
For any € > 0, by setting « = (D — d)e in the Laurent-Massart bound (Lemma [H.1)), we obtain

P <r(t)\/1 —2Ve < f(Xy) <r(t)y/14+2ve+ 25—:) >1— 2 D= de,

Since d < D, we can choose ¢ sufficiently small such that § = e 2(P~9< i5 also sufficiently small. As a

result, P(f(X;) ~r(t)) > 1 -4, i.e., X; concentrates on M? = f~1(r(¢)) with high probability. O

Proof of Theorem[3 First, by applying the orthogonal decomposition of the score function in Equation ,
the deterministic reverse process can be rewritten as

d
X =X+ AV:logpf ,(ATX) -

1

(a) Because A € OP*4 we have ATA =1I;and AT (Ip — AAT) = O. Therefore, by multiplying AT on the

both sides of ,

d
S a =27+ Valogrh (20,

for Z;~ = AT X;. Moreover, by the equivalence of the continuity equation of the Fokker-Planck equation
(or by the statements in Appendix , Z, = Zj_, satisfies the forward process of DDPMs starting
from p?.

(b) Similarly, by multiplying Ip — AAT on the both sides of ,

d 1 ar_¢
&X;,_J_ = ;,1 - 7X;,_J_ =

-
t1
1—ar_ -

1—ar_

for Xt‘l = (Ip — AAT)Xt. Note that ap_; = e 2(T=)_ Therefore, this equation has the analytical

solution given by
- 1= e 2T (to+9)) X
to+6,L — 1 — e—2(T—to) to,L-

When || X || = \/ (D —d) (1 — e=2(T—t0)) it follows that

1 — e~ 2(T=(to+9))
1Xeses |l = \/ 1 i e—2(T—to) Xl = \/(D —d) (1 — em2(T=(toto))), O

C.2 Decomposition of Score Function
By Equation and the assumption Xg = AZ, we have
X, = a; Xo + V1 — ;€
=auXo+ V1 — Q€+ V1 —a(Ip —Q)E

::Xt,” =:Xt,L

for some & ~ N (0,Ip), where Q = AAT is the orthogonal projection onto Im A.

We compute the covariance:

Cov(Q&, (Ip — Q)€) =E [Q¢ - (Ip — Q)&)T] —E[Q€]-E[(Ip — Q)€)]"
=E[Q¢ (Ip - Q)&)] =QE[¢¢T] (Ip - Q)
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:Q(ID_Q) :07

which shows that Q€ and (Ip — Q)€ are uncorrelated. Since both are Gaussian, they are independent.
Hence, X; , is independent of /1 — a;Q§. Combined with the fact that £ is independent of X, it follows
that X, is independent of X; ;. By Lemma the density of X; admits the decomposition

pi(x) = Pty (m\l)pt,l(mL)v (19)

where p; | and p; | are the densities of X; | and X; ;| with respect to the canonical volume measures on
Im A and (Im A)*, respectively. Here, ¢ = Qx and ¢, = = — ;.

Next,

(1)

(i)

let us analyze p; | and p; |, respectively.

For the parallel part, first define Z; := A" X,. Then, by multiplying AT on the both sides of Equation
(1), we obtain
dZ, = - Z,dt + V2dB,,

where (B;)i>0 = (ATW,);>0 is a standard Brownian motion on R? by Lemma Therefore, the
process Z; ~ pZ is governed by the DDPM dynamics initialized from pZ. Since

Xy, = QX = AZy,
this shows that X, | evolves as a diffusion process on the target data manifold M = Im A.

Moreover, applying Lemma [H.4] gives
pe(@)) = Agpf (z)) = pf (ATa)) = pf (AT ). (20)
For the orthogonal part, we have
X1 =V1—aPE~N(O,(1—a)P),

where P = Ip —Q is an orthogonal projection with rank D—d. So P = B B for some B € OP*(P=d),
It follows that X; , is a Gaussian on Im B, i.e., X; | = BW for some W ~ N(0,(1 — ay)Ip_q).
Therefore, X, | is basically a (D — d)-dimensional Gaussian. When d < D, as shown in the proof in
Proposition
[(Ip = AAT) Xo|| = (| X, 1 || = 7(2),

which implies that the orthogonal part X; | is responsible for the concentration of X; on M" and
endows X; with its geometric structure. Furthermore, by Lemma pi is approximately uniform
on the sphere S(P~9=1(r(t)). In other words, the density p;, which is concentrated on the cylindrical-
like surface M?, remains constant along radial directions and varies only in the longitudinal direction
governed by p; |—a consequence of diffusion along the subspace Im A.

Moreover, applying Lemma [H.4] again, we obtain
pra(xy) = B#pw(ﬂl) = PW(BTZCD = pW(BTm), (21)
where

pV(w) = (2n(1 - at))i¥ eXp (2(|1|Uiat)> '

Finally, for the decomposition, by combining and with , we get

log pi (@) = log p;/ (AT x) +logp" (B x),

from which the orthogonal decomposition formula immediately follows:

1
Ve logpi (@) = AV logp! (2)| _ v, — H(ID - Pz,

as originally derived via direct computation by |Chen et al.| (2023b)).

For the geometric property, the randomness of X; arises from the diffusion process on the target data
manifold M = Im A, while the geometric structure of X; results from the concentration behavior of the
orthogonal part.
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C.3 Construction of Geometric Guidance

To clarify our intuition about V,logp:(y = 1 | &) “almost normal” to M}, we will show that there exists a
small B; > 0 such that
Ve logpi(y = 1| ®) + i Prxl| < i, ¥V xeM;,

for some scalar 1, > 0. But first, we need the following lemma.

Lemma C.1. Let M C RP be a smooth manifold with dimension D — 1. Let V. C RP be a tubular
neighborhood of M with the orthogonal projection w: V. — M. Let f: V — R be a C?-function satisfying
the following two conditions.

(a) |Vaf(@)]op < L.
(b) flm is B-Lipschitz with the induced distance of R™ on M.

Then for any x € V,
IVaf(x) = Onf(m(x))n(n(z))]| < 5+ Ldist(z, M),

where n: M — R™ is a continuous unit normal vector field along M, 0, f = (V f,n) the derivative along n,
and dist(x, M) = inf {||x — y||: y € M} is the distance from x to M.

Proof. Let M be equipped with the induced Riemannian structure of R” and V™ be the corresponding
Levi-Civita connection. Because M C RP is a hypersurface, i.e., submanifold with dimension D — 1,

V=V 4 (0uf)n, (22)
see the details in [Lee| (2019, Chapter 8). Fix € V with y = n(x) € M. Note that
dist (e, M) = [z -y, (23)
by |Lee| (2019, Proposition 5.26 (c)). Writing
[Vaf(x) = 0nf(y)n(y)] < [Vaf (@) = Vaf @)l + IVaf(y) — nf(y)n(y)ll (24)

I. For the first term, by

Vel (@) — Vai(y) = / V21 (y + s(x — y))(@ — y)ds,

the fact that ||V2 f(z)|lop < L, and Equation , we have
IVaf(x) = Vo f(y)ll < Lllx — y|| = Ldist(z, M). (25)
II. For the second term, first, by ,
IV f(y) = Onf(y)n(y)ll = VY f(y)l.
By assumption, f|a is S-Lipschitz with the induced distance of R™ on M, i.e.,

|f(y1) — f(y2)| < Bdm(y1, y2),

where dag. It implies that
IVYf)I <8, YVzeM, (26)

see the details in Boumal| (2023, Proposition 10.43).
Then combining the inequalities and with ,

IVaf(x) = 0nf(y)n(y)| < B+ Ldist(z, M). u
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Let fi(z) = logpi(y = 1 | ). It is natural to assume that f; is C? on a tubular neighborhood V of M},
that ||V2 fi|lop < Ly on V, and that f; is B;-Lipschitz continuous on M?. Then by Lemma

IV fi(®) = On fr(m(@))ne(m(2))]| < Be + Ly dist(z, M3).

In particular, for any @ € M} and 7(x) = x, we have

Ve fi(x) = On fe(@)ne ()] < Br.

Two questions remain: whether 9, fi(x)n:(x) = —n Py for some scalar 7; > 0, and how to bound ;.

For the first question, we can choose ny(z) = Piz/||Piz|| by the definition (9) of M¢ and Lemma So
On fr(@)ne(x) = —me Prec,

for
Onfr(x)
[Pz

Moreover, because p;(y = 1 | x) is the classifier for (X;,y = 1) and such X; concentrates on M} by
Proposition [1} f;(x) =logp:(y = 1 | ) decreases when & moves away from M{. So

N = —

Onft(x) <0 = n>0.

Next, to bound f;, we introduce the following lemma.
Lemma C.2. Let p(y =k | x) be a softmax classifier with logits gi(x) for k =1,2,--- | K, that is,

o ewlge)
P =R = S (@)

Assume ||Vggi(x)|| < L for all k,x. Let My, be the region where points with label y = 1 concentrate on.
Assume classifier confidence
ply=klx)>1—¢, VaecM,;.
Then
[Valogp(y =k | @)|| < 2Le, V@ e M.

Proof. Fix k. Let f(x) =logp(y =k | x).

K
Vef(x) = Vagr(x Zp =jlz) acgj(m)
j=1

_ Zp(y =j|x) (Vaegj(®) — Vagr(x))
_ Zp(y =j|x) (Vagj(®) — Vagr(x))

By assumption,
IVagj(@) = Vagi(@)|| < [[Vagj (@) + |Vage(z)| < 2L.
Therefore,
IVaf (@) <D ply =7 )| Vags(@) — Vage(@)|
J#k
<2LY ply=j|®) =2L(1—ply =k |z)).
J#k
It implies that
IVef(@)|| <2Le, Vx e My,
by the assumption that classifier confidence > 1 — ¢ on M. O
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Therefore, for all p;(y =1 | ), we assume that they satisfy the conditions in Lemma Then if
ply=1|x)>1—-¢g, VaxecM

for a small &4, then

IVY fi(@)ll < Ve fe()l| = \/\|VMft(w)|\2 + 0 fi(@)]” < 2Ce;, V@ e M.
So ﬁt < 2081}.

Combining above results, we have
IValogpe(y = 1| @) +mPrz| < B, Va@e M,

for some 7; > 0. Moreover, 8; = O(g;) for py(y =1| ) > 1 —&; on MY.

D More Details related to Main Results

D.1 Omitted Proofs in Section 5.1

Proof of Proposition[3 First, the Hessian is
Varx(®)  Vepx(®)Vepx(z)'
px () px(z)?

V2 logpx () =

To express the above formula explicitly, by the definition, for any € R",

px(x) = 8 K.(2)p?(2)dz, K.(z):= (215" % exp <_||fﬂ—;;23Z|2> 7
and so
VoK. (a) = K. (o),
ViK.(x) = —%Kz(m)In G O‘Bz)ﬁ(f —aB2)T L)
Let Z
Ao (2) = K;"f)& )(z)dz

be the posterior probability measure on R¥. Then, for the first term

Viox(@) _ fu VEK.@pP(2)de 1
px(@) px(@) 7

Lt hEs, (@ - aB2)e - aB2)T).

and for the second term

Vaepx (2)Vapx(xz)T 1 .
px ()2 = @Ezwz [® —aBZ|Ez.,, [x —aBZ] .

Moreover, note that

Ezp, [(x —aBZ)(x —aBZ)"] —Eg.,, [® — aBZ]Ez.,, [z —aBZ]"
= Covz,,(x —aBZ) = a®Cov,, (BZ)=a*BCov,, (Z)B'.
Therefore, we get

_a2 1

V2 logpx (x) 54BCOVM(Z)BT - @In.
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It follows that
1
92 togpx @)l < 35 + 51 0% (), (28)

It is sufficient to bound [|Covy, (Z)||,,. To do that, u, is required to satisfy the Poincaré Inequality. Let
p?(z) = exp(—=V(z)) for some V: R¥ — R and

= - aBz|?
U,(z) = T + V(z),
which indicates that du,(z) = e U=(*)dz/ [ e~Vs. Because V2V (z) = —V2logpZ(2z) = moly,
2 2)\
ViU,(z) = 2‘2 B'B+ V2V (z) = <O‘52 - m0> I,.

Then, by Lemma i satisfies the Poincaré Inequality with constant m := a?)\/3% + mg. Thus, for any
C!' function f: R* — R,

1
Var,, (f) < — B, [IVSI]
For any u € R", let f,(z) = (u, z) with V f,(2) = u. The above inequality implies that

1 1
u Cov,, (Z)u = Var,, (fu) < — By, [IVfulP] < —[ul?,
m m
for any u € R*. Therefore,
1
1Covu (Z)llg, < —- (29)
Finally, by plugging inequality into Equation (28)), we get the result
1 a’A
V21 < 4. O
H x ngx(w)Hop = g2 + B2(a2\ + mof?)
Proof of Corollary[j By Equation ,
A A
T T
||B Cov,,(Z)B ||Op < - = BCov,, (Z)B' = EIH'
By combining this with Equation , we have
2A 1
2] ol L — m
Vel (@) 2\ G )

Proof of Proposition[5. By Lemma [H.7]
Pk = AuP? = w1 APy, + wo AuPS .

Moreover, because Z1 , = (Z1,0)" 4+ 0¢ ~ PZ, with ¢ ~ N(0, 1),

AZy ;=AM Zy + o AC~PXy (| Y =1).
Note that A1 Z; ~ Px)y (- | Y = 1). Therefore,

WPy (Y =1),Pxy (- |Y =1)) SE[[|[AZ1,, — A1 Z1]]] = oE[||AC[]] < oV,
where the final inequality is because A¢ ~ N (0, 1) and Lemma Similarly, it can get
Wi(P%y (1Y =2),Pxy (| Y =2) < oVd.
Combining these two inequality and by Lemma we have
Wl(]Pg(vPX) < w1W1(quy(' | Y = 1)>PX\Y(' | Y= 1))
+ w1 (P )y (1Y =2),Pxy(- | Y =2))
< oVd. O
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Proof of Lemma[6 Let

wp1 () (1 —w)p2(z)
ri(x) = , re(x)=1—r(x)=———""""7.
B Ty @@= g
We have - ) v
Viogp = wVpL (p—w) P2 =r1Vilogp, + roVlog ps,
and

V2logp = r1VZlog pi + ro V2 1og ps + Vri(Viogpr — Vlogpg)T.
For r1 = wpy/p,

pVp1 —p1Vp
wbPYPL—P1VP

VT1 = >
p
~ (wp1 + (1 = w)p2)Vp1 — p1(wVps + (1 — w)Vps)
= w p2
w(l —w
= % (p2Vp1 — p1Vp2)

p
=112 (Viogp) — Viogps).

Therefore,
V2logp = r1V2logps + 12V logpa + rira (Vlog pr — Vlogps) (Vlogpy — Vlogp) '
For the first two terms, by the assumption,
V2 logpy + raV2logps = r1L1 I, + raLoI,, < max {L1, L2} I,.
For the third term, because sup,, ||V logpi(x) — Viogpa(x)| < M,

H(Vlogpl — Vlogps) (Vlegpr — Vlegps) || < M2,

op

which implies that
(Vlogps — Vogpa) (Viogps — Vlegps) ' < M2L,.

For the coefficients r1r9, because r1, 7 € (0,1), 1172 < 1/4. Combining these results, we have
1
VZlogp = (max {Li, Lo} + 4M2) I,.

Proof of Corollary[9 Because
is decreasing in o,
With the Assumption [[TI, we have

Therefore, by choosing a small o, we can also have m3 > 1. It follows that

z

_ Mo
T g+ (- mg)e ™
is decreasing in ¢t. So
mr:= inf m;=mgp= M5 >1
e T mE+ (I —mg)e 2T~
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D.2 Proof of Theorem

Proof of Theorem[I0} By differentiating Hf@”z from ,

55Tl = (% 5%

= (Y2, Y + PV logp7_,(X;) — nYi)
=(1- ||YtH+<n,P1vmlogpg_t(Xt)>
< (1= | + [ %il]| Vo log p— (X))
Therefore,
ST < @ = I + [V logpg (X))

Taking the expectation on the both sides yields

d
&mt (1- )mt‘HE[HV log p7_ t(Xt)

I (30)

where m; := E [HYtH] Therefore, the next step is to bound E [va logp"T_t(Xt)m.

Let
Lg:= sup L;, C:= sup ||V log p7 (0)|| < oo, (31)
te[s,T) telo,T
where L, is defined in Theorem [8| By the Lg-Lipschitz of V4 logp? (Theorem 7

||Vm 1ng%_t(Xt)H < va logp%_t(Xt) — Vg logp%_t(())H + va logp%_t(())H

. (32)
< LSHXtH +C
For X, in Equation (%), we have

d .~ . - . . -
TIXe]* =2 Xl + 2 (Ko Ve logp7_, (X0) — 20 (X0 P Xy)

< 2||X,||” +2(X1, Vo log 7 (X0))
< 2| X || + 2| X |||V Log pF o (X0)

where the second inequality is because <Xt, PlXt> > 0. Combining this with ,
d. - ~
L I1Xell < 1+ L[| X + €.
By taking the expectation on the both sides of above inequality, Gronwall’s Inequality (Lemma [H.11]) implies

C
(I+Ls)t _ 1
1+ Lg (e ) ’ (33)

Because Xo ~ N(0,Ip), [HXOM <vD (Lemma . It follows that

E (| %] < B Xol] e+ +

sup E[| K] < VDO HEIT 4 T (im0 1) = ay,
+€[0,T—4) 1+ Ls

and implies
sup E[|Vologps (K] € swp LeE[|%i]] +
te[0,7—4] t€[0,7—4] (34)

< Lle +C = MQ.
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Then by substituting this into ,

&mt S *(77 — l)mt =+ MQ.

Because mg = E [Hf’b”] <+D —dy by Lemma by applying Gronwall’s Inequality again, we obtain
E[|[¥:]] = m < VD —die " 4 % (1 ) = a0, (35)
which implies that
E[||Yr_s||] < /D —dye” (DT My

n—1
For any € > 0,
M2 e 2M2
Sf = 77274_17
n—17"2 €
and
/D — dye~(=1(T=9) <% = p> Tl 510g 2vD —d; 1
— €

Therefore, for any € > 0, by choosing

2M, 1 1 2\/D—d1}+1
e b

>
nmax{ 5108 .

we have _
E[[[Yr—s|[] <. 0

D.3 Theoretical Analysis for Universal Guidance

Consider the universal guidance model

dX;

for t € [0, T], where p; is the density function in DDPMs.

Theorem D.1. For the dynamics @, assume that log p; is L-smoothness, f is p-strongly convex, and
E[f(X§)] < oo. Then

_ 1
B - f(e) =0 (¢4 1),
where x, is the unique minimizer of f.
Proof. By differentiating f(X;7),

d, oo o d
) = (Vs (). X5

:<vwf(Xt<_)7Xt<_+vm10ng7t(X;_)_nvmf(Xt<_)>
<XV f (X + Ve log pr—o X Va f (X)) = 1l Va f (X))

Let C = supye(571/|Va log pe(0)|| < oo. Then, the L-smoothness of log p; implies that
Ve log pr—(X{7)| < LI X[ + C.

Therefore, by ab < (a® + b?)/2, we have
d
T FX) < U+ DIXT Ve (X + OVl (X =l Va (XN

32



Under review as submission to TMLR

1+L
2
1
= =5 =2= L)IVaf (X +

<

02
1X17 + =

1+L
2
Because f is p-strongly convex, by Lemma it satisfies the p-PL inequality,
2
Ve f(XI 220 (F(X{7) — fl=s)),

For n > L + 2, we obtain

d 1+L C?
SHXD) < —pln =2 = L) (FX0) = fla) + — = I1X P+ 5
Taking the expectation on the both sides yields that
d 1+L C?
SE[F(X)] < —p(n =2 = D) (BIFX) - ) + ——E [IX112] + 5

The next step is to bound E {HXfHQ} Let R; := X — @.. Then

1d
5 1Bl = (R, X{ + Vo logpro(X{7) = 1V f(X7)

= (R, X;7) + (R, Vg logpr—+(X;7)) —n (R, Vo f (X)) .

To obtain the desired inequality, we consider these three terms respectively. For the first term,

(Ri, X7) = | R|” + (Riy @) < | Re|” + [l [l Rel.
Let ¢ = ||Vg log pr—t(x.)||. By the L-smoothness of log p;, we have

log pr—o(X;7)|| < [log pr—o(X;7) = Valog pr—i(@.)[| + [ Ve log pr—i(z.) |
< L||R|| + c.

Therefore, for the second term,

(Ry, Vg logpr—+(X,7)) < || R:||[| Ve logpr—« (X7l
< L||Rt||2 + c|| R¢|].

For the third term, because f is p-strongly convex, V. f(x.) = 0 and
(R, Vo (X)) = (R, Vo f(X{7) = Vo f (@) = p| R
Then, by combining with , we have
d 2 2 | o
I Bell” < 2(L + 1 = np) || Rel|” + 2¢|[ Re |

< (2L +3 = 2np) || Re||* + &

(1% 12 + IV fGOI) + 5 (O 4 IV f(XO) ) — Ve F )

‘ 2

(38)

(39)

(40)

(41)

where é = ||x.|| + ¢. By taking the expectation on the both sides, Gronwall’s Inequality (Lemma [H.11))

implies that

=2

_ _of,_ C _ _of,_
E[”Rt\ﬂ SE[I|R0||2] e~ (2np—2L 3)t+m (1_6 (2np—2L 3)t)

By taking a sufficiently large n such that 2np — 2L — 3 > & > 0, we have

E[IR?] <E[I1Roll] +1
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Note that X{§~ ~ N (0, Ip), which implies that E [HX(THQ} = D. Therefore,

and

E[IRol’] <E[1X5 I + eI < D+ 2.,

E 16 17] < B (IR + e < D+ 2l +1 = Mo

By substituting M3 into , we obtain

SEIF(X) < —pln— 2~ L) (BIF(X0)] - (@) + My
for My := ((1 + L)M3 + C?)/2. Then, by Grénwall’s Inequality,
< < —p(n—2— M4
E[f(X$)] = f(@.) < (E[f(X5)] = flm,) e P27 0T 4 —2-1)’
which means that )
B - f(e) =0 (74 1)

D.4

Proof of Theorem [11]

Proof of Theorem[11] The proof consists two main steps:

(i)

Let Q; = A1 A]. For any coupling (X,X) ~ (ﬁT_(;,IP’XW(o |Y = 1)), we have
Wi (pr—s5,Pxy (- | Y =1)) <E[| X — X]||]
=E[lX - Qi X[] +E[| A X - P X]]
=E[|@Q:X - X|] +E [|Yr—s]] ,

where the final equality holds because X ~ Pxy(- | Y = 1) implies that @; X = X, and X ~ Prs

implies that P X =Yr_s. And by ,
E [[[¥rs|[] < My(T = 6) = O™ +07").
Let (Q1X, X) be chosen as the optimal coupling for (@) #Pr—s:Px;y (- | Y =1)), ie.,
W1 ((Q)ubr—s, Pxy (- | Y =1)) =E[[|Q1 X — X|] .

Therefore, we have

Wi (Pr—s, Pxpy (- | Y = 1)) < W1 ((Q)br—6,Pxy (- | Y =1)) +O(e " +n71).

For W, ((Ql)#ﬁT,(;,IP’X|y(~ Y = 1)), by the triangular inequality,

Wi ((Q1)#Pr—s,Pxpy (- | Y =1)) < Wi ((Q1)gbr—s, (Q1)#Px)
+ Wi ((Q)#Px,Pxy (- | Y =1))

< Wi (Pr—s,Px) + Wi ((Q1)#Px,Pxpy (- | Y =1)),

where the final inequality is because @); is an orthogonal projection (Lemma [H.13)).
By Lemma the second term in above inequality is bounded by

Wi (QD)#Px,Pxy(-|Y =1)) <Cy
for some constant C;. For the first term, it can be divided into

Wi (pr—s5,Px) < Wh (Pr—s,Ds) + Wh (D5, 05 ) + Wi (5, P%) + Wi (P, Px),

(43)

(44)

(45)

where p; is defined in dynamics , p{ is the density evolving in the DDPM initialized from P%; see

, and P% is defined in Proposition |5, For the four terms in :
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(a) By Proposition and m; > 1 (Corollary [9),

Wi (Br—5,5§) < O(e™" +171) + Co (46)
for some constant Cs.
(b) By Proposition
Wi (ps,p§) < O(e™™). (47)

(c) Note that
X7 = GAZ + VT —as€ ~pf, as=e P
for Z ~ pZ. Moreover, AZ ~ P%. Therefore,
Wi (p5,P%) < E[| XS — AZ]|]
SE[IXF - VasAZ|] + (1 - Vas)E[[| AZ]]]
= VI-aE[lgl] + (1 - Vas)Ez.,z [ Z]]
< V20D + 5mUZ,

where mZ =Ez_,z [[| Z]|] < oo by Lemma It follows that

Wi (9, P%) < O(5'/2). (48)
(d) By Proposition
Wi (P%.Px) < O(0). (49)
Then, combining with , we have
Wi (pr—s,Px) < O(e " + 52 + o +n71) + Cs. (50)

Combining with , it follows
Wi (Q1)#br—s, Pxpy (- |V =1)) <O(e T +6*+o+771) +C,
where C' = C + C,. Therefore, substituting this in , we obtain
Wi (pr—s,Pxpy (- | Y =1)) <O(e™ T + 62 +o+n7 )+ C. O
Remark D.1. For the error floor C, it follows from the above proof that C' = Cy + C,, where

« ( is determined by and Lemma
Ol :w2mlza mlz = le :EZNJP’IZ[”ZH]?
which is independent of the parameters T, 4, 0.

o (, is given by and Proposition
= Mo
myp — ].7
where My is defined in and depends on Lg = SUP4e(0,7—5] Ly and T, while m; = inf;c (o 75 74
Since L; and m, are specified by Theorem |8 through p{, Cs depends implicitly on T, 8, and o.

At present, we believe the error floor is inherent to the geometric guidance model. Because of the analytical
simplicity of the geometric guidance, it cannot provide as much information as the probability guidance term
did. More precisely, in Appendix we show that

IVelogp(y =1|x)+mPiz| < B, VaeMi,

for some scalar n; > 0, and 8; = O(e;), when pi(y =1 | ) > 1 — & for all x € M. This shows that the
probabilistic guidance Vlogp:(y =1 | @) is “almost parallel” to the geometric guidance Py, but the norm
of the probabilistic guidance carries additional information that the geometric term cannot capture. This is
a trade-off made for the sake of analytical tractability.
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Lemma D.2. Let Z; ~ p? fori=1,2. IfmZ =E[||Z]]] < oo, then for pZ defined in ,

my =Bz [|2]] < oo

Proof. By the definition of ,
E(|Z:ol] <E[Z]] + 0B [|G]l] < mf +0Vd < o0
for Z; o ~ pfm where the second inequality is by Lemma Then, by ,

Bz 121] = [ 207 (z)02

:wl/ zpfa(z)dz—&-wg/ szZﬁ(z)dz
R R
= wiE [ Z10]] + wak [[| Z2,0[|] < o0 O

Lemma D.3. For
Py =wiPxy (- [ Y =1) + wePxy(- | Y =2)
under Assumption [l
W((Q1)#Px, Pxjy (- | Y = 1)) < wym{,
where Q1 = A1 A] and m%? = Ez-pz [l Z]]]-

Proof. First, by Lemma [H.7}
(Q1)#Px = (Q1)#Pxy (- | Y =1) + (Q1)#Pxy (- | Y =2)
For the two terms, if X ~ Py y(-|Y = 1), then @: X = X, which implies that
(QU#Pxy (1Y =1) =Pxy(- |V =1)
On the other hand, X ~ Px |y (- | Y = 2) implies that @; X = 0 so that
(Ql)#]P’X\Y(' |Y =2) = do,
the Dirichlet measure at 0. Therefore, by Lemma
Wi(Q)#Px, Pxjy (- [ Y = 1)) <waWi (b0, Pxy (- [ Y =1)).
For any coupling (D, X) ~ (do,Pxy (- | Y =1),
Wi, Pxpy (- | Y = 1)) <E[[|D — X[]
=E[|X|] =Ezpz [ A1 Z]]] = Ezpz [[1Z]]],
where the last two equalities are because Pxy (- | Y = 1) = (41)xP# and 4, € OP*% by Assumption O
In the following, unless otherwise specified, we assume that Assumptions I} [T, [TI} and [[V] hold.
Proposition D.4. Let p{ be defined in . Consider the following two dynamics:
dX,
dt

= X, + Vg logpf_,(X;), Xo~N(0,Ip) (51)

with the notation X; ~ pg_,, and
dX: < _ _
Ttt = X; + Valogpr (X1),  Xo~pT,

where note that X; ~ p%._,. For § > 0, we
Wi(B.95) < e =) (mZ +-VD)

where mZ = Ez~pz [I1Z|l] and m; = inf;c(57)my¢ is defined in Theorem @
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Proof. First, by the Theorem [8] pF_, is m -strong log-concavity for ¢ € [0,T — ], which follows that

<Xt — X, Valogpg (X)) — Va logp%ft()_(t)> = <Xt — X4, V2 1logpg_,(x) (Xt - Xt>>
—m[HXt — Xt||2.

IN

Therefore, we have
d. o o d e
SiX, x| =2({X, - X —(XfX)
1= X =2 (%= X 5 (K- %o
= 2% — X +2 (X, — Xy, Valogpf_(X0) - Valogpf_, (X))
< —2(my — 1) X, — X%,

which indicates that d
11Xt = Xell < —(m1 = DX = Xe,

Then, by Gronwall’s Inequality (Lemma 7

X 75 — Xps]| < eI X0 — Xo|.
Therefore, by the definition of Wasserstein distance,

W(5.05) < B || Xr—s — Xz

< e (mNITIE ()%, — Xol|.

By choosing (Xo, X)) as the optimal coupling, we obtain that
Wi (55, 05) < =" DIEIWUN(O, Ip), pF)- (52)
For the right hand side of , by the definition of p{ in Equation , ie.,
X7 = JarAZ + Tt ~ i
for Z ~ pZ, & ~ N(0,Ip), and oy = e~ %, we have
W N (O, (1~ ) Ip)) < VE [JAZ]] = e Bz 1Z]].

Moreover,

Wl(N(O7 (1 - O‘T)ID)aN(O7ID)) S (1 Y 1- aT)E [”5”] S eiT\/E-

Therefore,
Wl(p%,N(O,ID)) < Wl(p%7~/\/(07 (1 - aT)ID)) + Wl(N(O7 (1 - OéT)ID),N(O, ID))
<e T (mf + \/5) .
Substituting this in the inequality implies that

WA(.05) < T (1 VD) < 9 (4 VD) 5

Proposition D.5. Consider the geometric guidance model and the dynamics , for the corresponding
generated distribution p7 and p7, we have

WDy, s
W s S A St I —+ AN o
1 (Pr—5,D5) n—m; (mr—1)(n—1)

where Mo is the constant defined in .
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Proof. By the mj-strong log-concavity of p7 (Theorem 7 we have

1d

A ~ N ~ d A ~
- . 2 e — - —
s3I Xe - X <Xt X = (Xt Xt)>

= <Xt - Xt,Xt - X+ Vg 10%?%4()215) — Vg 10%?%4()215) + 77P1Xt>

IN

—(my = 1)[| X, — Xol|” + 0l Xe — X || || P X |
Note that P, X; = Y;. It follows that
d . . N . N
Xt = Xell < —(mr = DX = Xo| + b
Moreover, by , taking the expectation on the both sides yields

CR[1% ~ Xl < (g~ VE [IX — Xill] +ndy (1),

Then, Gronwall’s inequality implies that

Wi (pr—s,05) < E [HXT—é - XT—(SH}
T—s
<7 My (s)e™ (M= DI=079ds —: I (n),
0

when the initial coupling is chosen as X = Xo ~ N(0,Ip). For I(n), by the definition of M,(t) in , we
have

T-5
M.
I(n) gn/ <\/ﬂe("1)5+2> o~ (mr=1)(T—=3-5) 4
0

n—1
_WD—di n1yas) (1 _ e,(n,m,w,g))
n—my
nMy —(mi—1)(T—8)
/2 (= I
TS Gt )
cMWP=di sy, 0Ma 0
n—mp (mr—1)(n—1)

D.5 Discretization Error

To clarify why performance degrades in practice when n becomes too large, we analyze the discretization error
of the geometric guidance model . In practice, ODEs are typically solved using the Fuler method, while
SDEs are solved using the Euler-Maruyama (EM) scheme. Since our model is formulated as a deterministic
ODE in , we focus on the Euler approximation; the analysis for the corresponding SDE and the EM
scheme is analogous.

More specifically, we partition the interval [0, T — §] into N subintervals with step size h = (T' — 0)/N, and
define t, = kh for k =0,1,..., N. The Euler scheme then constructs the sequence {X,?};V:O via
X=X+ h (X4 Ve logp]_, (X)) —nPiX]), X{ ~N(0,Ip).

Let X' ~ plt. Our goal is to bound the Wasserstein error Wi (5r—s, #%;). Under the Lipschitz continuity of
V. log p?, standard results yield Wy (pr_s, ) < O(he") (Griffiths & Higham, [2010, Theorem 2.4). Because
of Theorem [§] we not only have the Lg-smoothness

V3 logpf (®)]|,, < Ls, Ls= sup Ly,
te(s,T]
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but also the mj-strong log-concavity

—V2logp?(x) = miIp, = inf m,.
2logpf(x) = miIp, m; tel[%,T] my

The additional strong log-concavity yields the improved bound
Wi(pr-s.P) < O(hn?).
Theorem D.6. Assume that t — Vg log pf(x) is C! for each x, and there exist A, B > 0 such that
10:Ve log pf ()| < A+ Bljz||.
Forn>2 if h(n—1) <1, we have
Wi (Br-s,5%) < O(hip?).

Proof. Let
b(t,x) = x + Vg logpT_,(x) — nPia.

Let ®(x) =: x4, ,, where x; is the solution of ODE

dx
—L = b(t, @), € [tr,trrl,
dt
with initial value x;, = . By , we can see
th+1 = (I)k(th)
Moreover, define the Euler one-step map

U(x) = + hb(tg, x),

so that Euler scheme is
X1?+1 = ‘I’k(XI?)

Therefore,
€L+l = th+1 - XI’CLJrl = (bk(th) - \Ilk(XI?)
= (4(Xp) — Pu(XP)) + (Pu(XT) — UR(X])) -
Next, we analyze these two terms respectively.
(i) By the my-strong log-concavity, we have
(Ve logpf_(@) — ValogpT_,(y), & — y) < —my|lz -y,
Moreover, since P; is an orthogonal projection,
(Ip = nP)(x —y).z —y) = [lz —y|* =1l Pr(z — y)|I* < |z — y]|*.
Therefore,
<b(t,$) - b(ta y)7 T — y> < _(mI - 1)H$ - yH2
Let x4, y; be the solution of with the initial value x;, = « and y;, = y. So we have
d
&H-’Bt —yel® =2(b(t, ) — bt ye), e — yr) < —2(mr — 1)@ — e
Then by the Gronwall’s Inequality (Lemma [H.11J),
||mtk+1 ~ Yt H < 67(77”71)}1“33 -yl
which implies that
@5 (@) — @1 (y)]| < ez — yl|.
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(ii) Fix z € RP and let x; be the solution of (53) with the initial value x;, = x. Note that by definition

tht1
bp(z) =+ / b(t, x,)dt.

tr

Therefore,

By (x) — Up() = / bt ) — bty ) dt

t

:/W (b(t,xt)—b(t,$))dt+/k+l (b(t, ) — b(ty, x)) dt.

123 123

For above two terms, we analyze them respectively.

(a)

Since |[Ip — nPillop = n—1 (n > 2) and Vzlogp; is Lg-Lipschitz continuous, b(t,-) is K(n)-
Lipschitz continuous for K(n) = Lg +n — 1. So
tht1 trk41
[ bt~ bto)lds < KGo) [ - ads
tr tr
Note that
t ¢
& — || = / b(s,zs)ds|| < [ [b(s,zs)l|ds < (¢ —tx) sup  |[b(s, ;).
tk ti s€[tk trt1]
Therefore,
tht1 h2
/ 1b(¢, ¢) — b(t, @)l|ds < —-K(n) _sup  [|b(s,@s)]l- (55)
ti s€[tk,trt1]

For the right hand side, using same notation as , let

C = sup [|[Vglogpf(0)] < cc.
te(s,T]

It implies that [|b(t,0)|| < C and so
16(s, @s)[| < [[b(s, ) — b(s, 0)[| + [|b(£,0)[| < C + K (n)|[z.]].

Let S = sup,cy, 1,1 /1%s|| < co. Using the similar idea as in the proof of Theorem in Appendix

D.2]
S= sup || <Cillz| +Co

SE[tr,try1]

where C; = exp ((1 4+ Lg)h) and Cy = C(exp((1+ Lg)h) —1)/(1+ Lg) as shown in and they
are independent of 1. So

sup  [[b(s, zs)| < C+ K(n) sup o] < CLK(n)|z]| + C2K(n) + C. (56)

s€[tr trta] SE[tk,trt1]

Combining and 7 we have

[ bt bt < 5 QK7 el + CaK ) + CE ). 67)

ty

Since b(t, z) — b(ty, ) = Vg logpt_,(x) — Vg logpd_, (x),

16(t, @) — b(tx, )| S/t [0: V2 log p7_(®)]|ds < (t — ti) (A + Bllz])) .

It implies that
th+1 h2
[ btt2) ~ bt @)t < (4 + Blel). (59)

tr
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Therefore, combining and ,

th+1

MM@—%@WS/HWWwQ—W@M&+/ 1b(t. ) — bty @) dt

t tr
+ k (59)

< T (A+ QoK) + CK () + (B+ K ()P)a)

Combining and , by setting x = X,}; and y = th_,
lewsill < [|Pr(Xs,) — @u(X7)]| + [ @1 (XE) — Tu(XE)||

h2
e ey|| + 5 (A+CKn)* + CKn) + (B + CLE(m))IX7)) -

Let ar = E[|lex]|]. By the following Lemma because h(n — 1) < 1, E[||X}||] < M.. Taking the
expectation of above inequality, we have

h2
aps1 = e Mmr=Dhg 4 5 (A+ CoK(n)> + CK(n) + (B + C1K(n)*)M.) .

Therefore, by coupling Xo = X}, ie., ag = 0, we have

an =E[[|Xr-s - Xy |] < h; (A+ C2K (n)* + CK () + (B + CLK (n)*) M) Ni ¢~ (mr=1)hk
h el(gn:m?*l)h
<3 (A+ CoK(n)? + CK(n) + (B + C1K(n)*)M,) e
It follows that as 7 — 0 and 7 — oo,
Wi (pr—s,7) < E[||Xr—s — X%||] < Ohi?). 0

Lemma D.7. Forn > 2, if h(n—1) <1, then

supE [[| X < Me,
where M, is independent of 1.

Proof. First, by construction,
X}y =Ip+h(Ip—nP)) X\ +hVglogpT_, (X1).

Let My, = Ip + h(Ip — nP;). Then because P is an orthogonal projection, there are only two eigenvalues
of My: for & € ker Py, Mpx = (1 + h)x, and for € Im P;, Mpx = (1 + h(1 — n))x. Because h(n—1) < 1,
14+ h(1—mn)€]0,1]. So

[Mhllop = 1+ he

Similarly, as shown in ,
IV logp, (Xi)[| < Ls || X + C.

Therefore,
X7 | < 1Mo | XR | + 2]V log 7, (XE)|
< (1+h(1+ L)) || X} || + Ch.
Taking expectations on the both sides, we have

k—1
E[[|XE[] <+ +Ls) E[| X)) +Ch Y 1+ h(1+ Ls)y
§=0

41



Under review as submission to TMLR

< et B[] Xg ] + Cte)
Because X} ~ N(0,Ip), E[|| X{|]] < 4/E {||X6L||2] = V/D. Therefore, if let

M, i= 1209 (VD 4 O(T - ),

which is independent of 7, then
= [|x}]] < o =

E Analysis for Assumptions

E.1 More Details for Orthogonality Assumption

For Assumption [I, consider the case where A] Ay # O, i.e., M; is not orthogonal to M. In this case,
A= (A, Ay) ¢ OP*4 meaning that ATA # I; and AAT is no longer an orthogonal projection. We claim
that this relaxation does not affect our analysis regarding the guidance scale 7. Based on our results, it is
necessary to examine its influence from three perspective: the smoothness and concavity of logpy (Section
, the estimation of the target manifold M; (Section, and the distance between generated and target
distributions (Section [5.3)).

(a) Smoothness and Convexity: First, the results on the strong log-concavity of the latent density in
Theorem [7] are independent of the orthogonality of A. Therefore, to analyze the smoothness and
concavity of logpy, it suffices to revisit the proof of Theorem 8 Note that

X7 = VaAZ, + 1 — € ~ pf.
By Proposition (3] Corollary 4l and the mZ-strong log-concavity of the latent density pZ (Theorem [7)),
we obtain the following bounds:
as(Aa +24) + (1 — ay)mé
(1—a)(aura +mi(l —ay))’

|92 1080 (@), < LA, L=

and
(1 —ay)m§ — ay(Aa — Aa)

(1 —a)(aura+mi(l —ay))’

~Vlogpf (x) = miIp, m{ :=

where
A= A2 = Amax(ATA), A= Amin(AT A).

Because A = (A1, A3) and A; are orthogonal,

I, C o ¢
ATA:(Cd% I, )zLH—(CT 0), C:=A] A,.

Let omax(C) be the maximal singular value of C. Then, we have
1- O'max(c) S >\A S AA S 1+ Umax(o)-

Moreover, because [C||,, < [[A1llp[[A2]lop = 1, omax(C) < 1, which implies that 0 < Ay < As < 2.
For smoothness, it is clear that 0 < L{! < oo, so the non-orthogonality of A does not affect the
L-smoothness of logp{, except that the constant changes from L; to L{*. However, for strong log-
concavity, it requires m{* > 1 (Corollary @), which holds if
mS — AA

1
t> —log

jlos A, (60)

under the condition mZ > 2 > A 4. This requires a modification of Assumption M < 2v/m =2, for
the same reason discussed in the proof of Corollary [0}
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(b) Estimating Target Manifold: Since Theorem depends only on the L-smoothness of logp{, and the
geometric guidance model does not involve A, the result of Theorem |10|remains valid even when A
is not orthogonal.

(c) Distance to Target Distribution: Because the condition m;* > 1 requires inequality (60]), one can set

1 mg — A
§> Zlog 904
73 % s

and consider the geometric guidance model on interval [0, T — ¢]. With this adjustment, the results
in Theorem [T1] still hold, up to changes in certain constants. For instance, the non-orthogonality of A
changes the bound on Wi ((Q1)#Px,Px|y (- | Y = 1)), specifically the constant C' in Theorem

E.2 More details of Assumption [IT]]

In the following, we demonstrate a family of distributions that satisfy both Assumption [T and Assumption
Consider the density function pZ of the distribution PZ, given by the form:

pi(z) = e V" Fxk (2),
where K; C R% is a convex and compact set, and
V2Vi(z) = mly,.

In other words, pZ belongs to the class of strongly log-concave densities supported on convex and compact
subsets of R%.

First, for such pZ, strong log-concavity on a convex set does not perfectly align with Assumption [[I, which
induces a question of whether this property can substitute for Assumption [[] in deriving the strong log-
concavity of the mixture latent density pZ defined in Equation .

In the proof of Theorem 7| the strong log-concavity of pZ is inherited from that of the component densities
pfa defined in Equation 1} which are shown to be strongly log-concave via Corollary [4) under Assumption
M In other words, the key question is whether strong log-concavity on a convex set suffices to replace
the strong log-concavity condition in Proposition [3] and thereby still allow us to deduce the conclusion of
Corollary [

Proposition E.1. Let Z be a random variable on R¥ with the density function p? given by
p?(z) = e " Fxk(2),
where K is a convex set. Let B € R"**. Assume there are mg, A > 0 such that
V2V(2) = moly, |B|2, <A,
and X\ := Apin(BTB) > 0. Fora € R and B > 0, let
X =aBZ +p¢, £~N(0,1,)
with the density function px on R™. We have

ZA 1
2 < (> -,
Valogpx(@) 2| gy ~ 52
Proof. By the same calculation, we have

_a2 1

V2 logpx (x) 54BCOVM(Z)BT - @In,
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Note in this case,
e V(B y g (2)dz

dpe(z) = e U (y)y
where 1
Us(2) = 5 5llx — Bz||* + V(2).
It follows that
a? a’)
ViU, (z) = @BTB + V2V (2) = mI, m:= 5 +my.

Instead of applying Lemma by using the Brascamp—Lieb Inequality on a convex set (Bobkov & Ledoux,
2000, Proposition 2.1), we still have

Var,, (f) < —E,, [IVAI?].

1
m
for any C! function f: R¥ — R, which also indicates that

1
1Covp, (Z)]]g, < —-

op — m
Then, the following proof is as same as the proof in Proposition [3] and in Corollary (] so that we have the
same result

9 a?A 1
Vi logpx(x) =< <Bg(az)\+moﬂQ) - 52> I,. O

Therefore, Proposition shows that, in our settings, Assumption [[If can be replaced Assumption

Assumption II'. Fori=1,2, PZ admits the density function p? that has the form p?(z) = e Vi@ xg (2)
such that K; C R% is a convex and compact set, and

V2Vi(z) = mly,.

Next, we verify if p7 in such class can satisfy Assumption
Proposition E.2. Fori = 1,2, let p? satisfy Assumption and let pfa defined by Equation . Fiz a

o > 0, we have
VI + Kol

sup||Vz log pf , () — Vg logps , (2)|| < =
x

)

where | K;| = sup{||z|: z € K;}.

Proof. First, by the definition ,

_d 1 2
pfg(z) = (2m0?) "2 / exp (—22||z — (zl,O)TH >plz(z1)dz1,
K o
Therefore,

2
V. logp () = Y2PEo(®) 2 Jio (2= (@0 ) e (~ gz~ (20.0)7|°) f (20)dz
ngl,a' zZ)= - .

) Pio(2) Jie, 0 (=52 = (21,0)T17) pZ (21)d21

It follows that 1
V. logp? () = = (m1(2),0)" = 2),

where

Jx, zrexp (—ﬁ”z - (zl,O)TH2> p? (z1)dz;

my(z) =
Jiey exp (= gollz = (21,0 T)1°) pZ (1)
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Similarly, .
Vzlogps,(2) = — ((0,ma(2))" - 2),
for
fi 22050 (—sballz — (22,007 ) s (22122
ma(z) = .
Jiey exp (= g2 l12 = (22, 0)TI1°) p (22)d
Therefore,
1 1
7 10807, (2) — Vs o, (]| = 5l ms(2).ma(2) | = 2/ Ima(2) I + [ma(2)]
Note that

2
exp (—#HZ — (=i, O)TH )piz(zi)dzi
Jie,exp (=552 = (26, 0)TI°) p? ()2
By the convexity of K; and Lemma m;(z) € K;. Then, the boundedness of K; implies

VIEL o+ Ko
<X - O

sup|| Ve log pf , () — Vg logpf ,(z)]| < o
@x

mi(z) =Bz (2], dpi(zi) =

Sufficient conditions for Assumption If pZ belongs to the class of distributions
{e_V(Z)XK(z): V2V = mlI, K is compact and convex.} , (61)

then pfa given Equation is strongly log-concave by Proposition Moreover, if we choose o such that

VKL + Kol K% + | Ko
g—‘ i covm—T e ozl TRl (62)
o2 4(m —1)

Proposition shows that Assumption is satisfied. Then the mixture latent distribution pZ given by
Equation (11f) is mg-strongly log-concave provided by Theorem [7} which further implies that p§ in the
geometric guidance model satisfies:

HV?E logpf(a:)”op < Ly, —V?c log p? () = miIp.

F Lipschitz Continuity of Score Function

If we only focus on the Lipschitz continuity of the score function V log p;, where p; is obtained by a DDPM
initialized from a distribution whose latent distribution admits a smooth density function p?, then the
conditions in Proposition [3] can be relaxed. We consider two cases below.

The first case aligns with the setting considered in [De Bortoli (2022), where supp p? is assumed to be
compact. We provide an alternative proof for this case, motivated by the argument used in the proof of
Proposition

Proposition F.1. Let Z be a random variable on R with the density function p?, and let ¢: RF — R™ be
continuous. Assume supp p? is compact. For oo € R and > 0, let

X =ad(Z)+pE, €~N(0,1,),
with the density function px on R™. We have
1 a’R?

V3 logpx ()|, < e

for some constant R > 0.
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Proof. By the similar calculation as in the proof of Proposition

2 a? 1
Vz logpx (x) = 51 oV (6(2Z)) — ol

which follows that

Oé2

31
To bound the second term, first by the definition of p,, supp je = supp p?. Because supp p? is compact and
¢ is continuous, ¢(supp p) is compact, which means that there exists a R > 0 such that

1
V2 102px (@)]],, < 55 + F1Cov (D)l

sup {[|¢(2)|: z € supp pa } < R.

Then, we obtain that for any u € R™,
u' Covy, (6(2))u = Var,, (u'¢(2)) < Var,, (|ulll6(2)]) < R?||u|?,

which indicates that
ICovyu, (6(2))]l,, < R.

op —
Therefore, we have
1 a’?R?
2

valogpx(sc)Hopgﬁ—&— 51 O
Remark F.1. This proposition shows that when the latent density function has compact support, no addi-
tional conditions—such as log-concavity or L-smoothness—are required for the latent distribution. Moreover,
under the compactness assumption, the results of Proposition [3| can be extended to the nonlinear case, as
shown in |De Bortoli| (2022).

Next, in the non-compact case, Proposition [3| requires the strong log-concavity of the latent density pZ, as it
is used to establish not only the L-smoothness but also the concavity of logpx (see Corollary . However,
if we are only interested in the L-Lipschitz continuity of the score function, the assumption of concavity
can be relaxed to the Lo-smoothness of logp?, i.c., |VZlogp?(z)|| < Lo, or even to the weaker condition
V2log p?(z) = LolIy; see Proposition below.

Proposition F.2. Let Z be a random variable on R¥ with the density function p? and B € R™**. Assume
there are Lo, A > 0 such that

V2logp?(z) = Loly, | B2, <A,

and X := Apin(BT B) > 0, the minimum of all eigenvalues of BT B. For a € R and > 0, let
X =aBZ+ ¢, €~N(0,I,),

with the density function px on R™. If o®X — LoB? > 0, we have

1 a’A
2

va long(w)Hop < 32 + 32(a2x — LoB?)

and "
o 1
V21 N — = | In

x ngx(:li)_ <62(042A—L062) 62)
Proof. The main difference of this proof to the proof in Proposition 3|is how to bound [|Cov,,, (Z)[,,-
Note that ) 2

! e
ViU, (2) = ?BTB +VIiV(z) = (52 - LO) I,

because —V2 logp?(z) = V2V (2z) = —LoIy. When a?)X — Lg% > 0, we similarly obtain

62

S e e
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Therefore,

1 a?A

IVetospx@)llo, < 55+ gaizy— Lopey

On the other hand,

AB?
.
B COVH'J: (Z)B j WITH
which follows that )
A 1
2] Y (N I O
Velospx(®) = e~ L) 2

G More Details for Nonlinear Extension

G.1

Omitted Proofs in Section

Proof of Lemma [T3. The proof consists of the following three steps. First, let z € R? be arbitrary.

(1)

Local construction: Because ¢: R? — M C RP is an isometry, the columns of J¢(z) form an or-
thonormal basis for the tangent space Ty () M. These vectors can be extended to an orthonormal
basis of R” by adjoining

{ni1(z),na2(2),...,np_a(2)},

where each mn; is a smooth normal vector fields along M. For such n;, one can define the Fermi
coordinates map as

D—d
F:RIxRP=4 5 RP F(z,v) = ¢(2) + Z vini(2).
i=1

Then, by the Tubular Neighborhood Theorem (Theorem, there exists a e: R? — (0, 00) such that
for the set

V={(z,v) e M xR |v]| < e(2)},

F:V — U = F(V) is a diffeomorphism, where the open set U C R is a neighborhood of M, called
a tubular neighborhood. Let 7: R? x RP~4 — R? be the projection, i.e., 7(z,v) = z. Then, one can
construct

¢ U — R, ¢ (@) =n(F !(x))

Check conditions: First, because M C U, and F is diffeomorphic from V to U with F(z,0) = ¢(z),
¢*(6(2)) = n(F~1(¢(2))) = 7(2,0) =z, VzeR"

For the derivative condition, by the definition of F', we have
JF(2,0) = (J.F(2,0), JuF(2,0)) = (Jé(2),n(2)),

where n = (n1(2),...,np_q(2)). By Jo'J¢ = I, JF(z,0) is orthogonal, which follows that

J(F)(F(2,0)) = JF(,0) 7 = JF(2,0)7 = ( i@ig)j ) |

On the other hand, F~! can be written as F~(z) = (Fy (), Fa(x)), where F; =70 F~! = ¢* on U.

It implies that )
- (56560

Therefore, J¢*(¢(z)) = Jo(z) .
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(iii) Global construction: By the Urysohn Lemma (Munkres,2018), there exists a smooth function x : RP —
[0, 1] such that x|5 = 1 and x|gp\y = 0, where U C U is a open neighborhood of M. Let h: RP — R4
be any smooth function—for instance, a constant function h = ¢. Define

¢*(x) = x(2)" (@) + (1 — x(x))h(z),
then the desired identities hold:
¢ o =idgs, Jo*(4(2))=Jd(2)". O

Proof of Theorem[I3 Let ¢: R? — RP be the isometry for defining M = Im¢. Because suppPx C M,
there exists a PZ defined on R? such that X = ¢(Z) ~ Px when Z ~ Py. Let ¢ be fixed in (0,T]. By ,

X, = Vaio(Z) + VI - ak.
Define F*: RP — RP by
T
Ft — * _ —2t
(z) == arpo¢ (\/07) , y=e
where ¢* is defined in Lemma [I2] Then we have

- atﬁ) , Xo:=9(2).

Qg

FYX;) = agpo ¢* (Xo +
Now consider the Taylor expansion of ¢ := ¢ o ¢* at Xo = ¢(Z), with integral remainder. We obtain

FY(X;) = F'(Xo) + V1 — aiJo(X0)€ + R(§),

where R(£) denotes the remainder term.

Next, we analyze the three terms on the right-hand side one by one. For the first term, because Xy =
d(Z) e M, Z = ¢*(Xp) by the definition of ¢*; see the proof of Lemma It implies that

F'(Xo) = Jozg o ¢*(Xo) = Vou Xo.
For the second term, by Lemma [12]
Tp(Xo) = J(Z)J¢* (0(2)) = J$(Z)T$(Z) .

Moreover, because Jo¢ ' Jp = I, P := Jp(Xj) is an orthogonal projection with rank d. For the third term,

1-— Qi !
RE =~ [ (=)D (Xo +sv/(T=anfag) [€.€lds.

By the proof of Lemma ¢* = c on RP\U for a tubular neighborhood U of M, which means J¢* = 0 and
D2?¢* =0 on RP\U. Tt follows that

D*p(x)[u,v] = D?*¢(¢"(2)) [J¢ (x)u, Jo" (x)v] + Jo (¢ (2))(D*¢" (z)[u, v]) = 0

for & € RP\U. For a chosen &, we can choose a tubular neighborhood U sufficiently thin such that Xg -+

sv/ (1 —a)/ou€ ¢ U for s > 6. Therefore, we have

—ay g 9
R(€) = 1\/017 ; (1—-s)D%p (Xo +sv/(1 - Oét)/atE) €, &]ds.

Assume D?¢ is bounded on U. Then, for any small & > 0, one can choose § sufficiently small such that
IR <€
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Combining these analyses, we obtain
VI—o|(Ip = P)E| — €' < | X; = F'(X)[| < V1= a||(Ip — P)E|| + €. (63)

Let f'(x) := ||z — F'(z)||. Similarly as the proof of Proposition[I] by the Laurent-Massart bound (Lemma

, implies that

P (T(t)m —& < fH(Xy) < r(t)\/mJr d) > 1 — 2 2(P-d)e,

where 7(t) = /(D — d)(1 — o). Because d < D, one can choose small ¢ such that § = e~ 2(P~9)¢ is also
small enough. As a result, P(f/(X;) =~ r(t)) > 1 -, i.e., X; concentrates on M’ = (f!)~1(r(¢)) with high
probability. O

G.2 More Results of Experiments

Comparison of FID. Table[2|serves as a complement to Table

Table 2: Comparison of FID on CIFAR-10

Airplane Bird Cat  Deer Dog  Overall
CGM (n=1) 17.95 21.69 20.34 19.24 23.62 4.07
GeGM (n = 50) 18.98 18.39 17.35 17.38 18.45 5.15

FID v.s. guidance scale on CIFAR-10. By sampling with the nonlinear GeGM , Figure [3| shows
how the FID varies with the guidance scale 1 across all classes from CIFAR-10, which is consistent with the
result of Theorem [T11

100 - -®-airplane -e-dog
=0~ automobile frog
-e-bird -8-horse
-8-cat ship
80 - -o-deer -o-truck
A 60
o
40
20 A
T T T T T
0 5 10 50 100
n

Figure 3: FID v.s. guidance scale n of GeGM on all classes of CIFAR-10

H Technical Lemmas

Lemma H.1 (Laurent & Massart| (2000)). Let X be a x?-random variable with n degrees of freedom, i.e.,
X =51 & with & e N(0,1). Then, for any o > 0, we have

P(X —n>2vVna+2a) <e @,
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P(X —n < —2yna) <e “

Lemma H.2. Let R® =V @ V1 be an orthogonal decomposition of R™, where V is a linear subspace and
VL s its orthogonal complement. Let X,Y € R™ be random variables such that X € V, Y € VL, and
X independent of Y. Suppose that X and Y admit densities px and py on V and V=, respectively, with
respect to the canonical volume measures on 'V and V. Then the density function of Z = X +Y is given

by
pz(z) = pX(Q‘E)PY(QLw)a

where Q is the orthogonal projection onto V', and Q+ = I,, — Q is the orthogonal projection onto V.

Proof. Let my and my 1 be the canonical volume measure on V and V=1, respectively. Define ®: V x V+ —
R™ by ¢(x,y) =  +y. Clearly, ® is an orthogonal linear map, which indicates |det J®| = 1, so

D (my @myL) =my,

where m,, is the Lebesgue measure on R™.

Let Px and Py be the distributions of X and Y, respectively. Then dPy = pxdmy and dPy = pydmy ..
By the independence of X and Y, we have

d(Px @ Py) = px (@)py (y)d (mv (z) @ my.(y)).

Since Z =X +Y = ®(X,Y), it follows that Z ~ Pz = @4 (Px ® Py), and thus

P, (U) = /n xu(z)dPz(2)

xv(x +y)d(Px @ Py)

xV+

xv(x + y)px (z)py (y)d (mv () @ my 1 (y))

—

<
£

X

xu(2)px (Qz)py (QF2)dP4 (my (z) @ my 1 (y))

n

xv(2)px (Qz)py (Q*z)dm, ().

n

T

Therefore, we have
pz(2) = px (Qm)py (Q ). U

Lemma H.3. Let (W;)>0 be a standard Brownian motion on R™ and A € O™*™. Let
Bt = ATWt.
Then (By)i>0 is a standard Brownian motion on R™.

Proof. The path continuity of ¢t — B; = AT W, follows directly from the path continuity of t — W, as
does the independence of increments. The initial condition By = AT W, = 0 is immediate. Moreover, since
A € O™*™ we have,

B, -~ B,=A"(B; — B,) ~N(0,(t —s)I,,), Yt>s. O

Lemma H.4 (Jost|(2008)). For a function g: R™ — R™, if g: R™ — Im g is a diffeomorphism, that is, both
g and its inverse g~1: Im g — R™ are continuously differentiable, then gupx, the density function of g4Px
on Im g with respect to the canonical volume measure on Im g, satisfies

S

9#px (y) = px () |det (Jg(x)Jg(x)")|*, @ =g""(y).

T

Moreover, when g(x) = Ax for an A € O"™*", Aupx(y) =px(A'y).
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Remark H.1. This result is essentially a general form of the change-of-variables formula, which has been
widely used in the context of generative models on manifolds (see, e.g., [Loaiza-Ganem et al. (2024))). To
rigorously justify this result, some basic knowledge of Riemannian geometry is required. Since g: R™ — Im g
is a diffeomorphism, the image Img C R" is a submanifold. When Im g is equipped with the canonical
Riemannian structure induced from the ambient Euclidean space R™, the canonical volume measure on Im g
coincides with the Riemannian volume measure. Therefore, the relevant results from Jost| (2008], Section 1.4)
can be applied to establish the desired formula rigorously.

Lemma H.5. Let X ~ N(0,I,) with large n. Then, with high probability, X is approzimately uniformly
distributed on the sphere S*~1(\/n), i.e., X ~ Unif(S"~1(y/n)).

Proof. First, consider Y := ﬁ We first show that Y ~ Unif(S"!). Note that S*~! is a compact

homogeneous space:

St 2= 80(n)/SO(n — 1),

where SO(n) C R™ " denotes the special orthogonal group. Consider the natural action of SO(n) on S*~1
given by R: S"~! — S"~1 z + Rz for all R € SO(n). Then by the existence and uniqueness of Haar
measure (Folland, 2016, Theorem 2.49), Unif(S"~!) is the unique rotation-invariant probability measure on

S»—1. Therefore, it is sufficient to prove that the distribution of Y is rotation-invariant, i.e., Y’ 4 RY for
all R € SO(n).

Since X ~ N(0,I,) and R € SO(n), we have RX ~ N (0, I,) and |[RX|| = || X||. Hence,

X a4 RX
= =4 22— Ry,
X1 [1RX]

which implies that Y ~ Unif(S"~!). Similarly, by the uniqueness of the invariant measure,

f n—1
VnY = HX”X Unif (S"*(v/n)).

Moreover, as shown in the proof in Proposition |1} the Laurent-Massart Bound implies that || X || &~ \/n with
high probability when n is large. Therefore,

f n—1
X ~ HX”X Unif (S"~*(v/n)). O

Lemma H.6 (Corollary 4.8.2 of Bakry et al.| (2013)). Let U: R™ — R be C? such that VU = pI,, for some

p > 0. Then the probability measure
e—U(w)

dp(zx) = mdw

on R™ satisfies the Poincaré Inequality with the constant 1/p.
Lemma H.7. Let u,v € P(R™) be two probability measures, and let f: R™ — R™ be measurable. Then

fu(wip + wav) = wi fap + wafapv,

for any wy,ws € [0,1] with wy + we = 1.

Proof. For any A € B(R™),

fu(wip +wav)(A) = (w1M+w2V (f71(4)
=wip (f7! )+w21/(f '(A))
= wy fyu(A )+w2f#V(A) O
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Lemma H.8. Let pu be a probability measure on R™. Then, we have

B 111 < B 1X1°]

E[[X][] < vn.

In particular, if n = N(0, 1),

Proof. Because p is a probability measure, by the Holder’s Inequality,

/RnHCUH ldp(x) < (/Rn||a:||2du(a;)>é (/Rn 1du(w)> : ’

that is, Ex ., [| X||] < /Ex~u[|X|*]. In particular, if u = NV'(0, L,), E[| X|*] = n.
Lemma H.9. Let py, po, v1,v2 be probability measures on R™, and let
p=wpr + (1 —wpe, v=wr+(1—-wry, welol]

Then, we have
Wi (p, v) < wWi(pa,vr) + (1 —w)Wi(pe, va).

Proof. By the existence of optimal coupling on R™ (Chewi et all 2024), there is a v; € T'(u;, ;) for i = 1,2

such that
Wil = [ e ylldn(a.p)
R7 xR"™
Let
T=wn + (1 —w)ye.

Clearly, 7 is a probability measure on R™ x R™. Moreover, by definition,

7(A X RY) = w0y (A x R?) + (1 — w)32(A x RY) = wpir (4) + (1 — w)puz(A)

m(R" x B) = wy1(R" x B) + (1 — w)¥(R" x B) = w1 (B) + (1 — w)va(B)

T
S =
T e

which means 7 € I'(u, ). Therefore,

Wi (. v) < / | — ylldn(z, )

R7» xR"™
—w / Iz — ylldm(z,9) + (1 - w) / Iz — ylldra(z, )
R7 xR™ Rn xR™

=wWi(p1, 1) + (1 — w)Wi(p2, v2).

Lemma H.10. Let p € R™ be a probability measure such that its support K is closed and convex. Then

Ex-.[X] € K.

O

Proof. Suppose that m = Ex.,[X] ¢ K. By the convexity and closedness of K, the strong separation

theorem (Rockafellar [1997)) implies that there are w € R™\ {0} and ¢ € R such that (u, m) > ¢ and

(u,z) <ec, Ve e K.
Let X ~ pu. X € K for almost everywhere and so
(u, X) <e, ae.
Then taking the expectation on the both sides, we have
(u,m) <e,

which induces a contradiction.
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Lemma H.11 (Gronwall’s Inequality). If u: [0, T] — R satisfies the linear ODE inequality as

%U(t) < a(t)u(t) + b(t),
then t t
u(t) < u(0)edo “ 4 / b(s)es “P g
0

Proof. Let ®(t) = exp (f fg a(s)ds). Then, ®'(t) = —a(t)®(t) and
q)(t)%u(t) < O(t)a(t)ult) + P)b(t) = — (P(H)u(t)) < P(t)b(t).
By integrating on the both sides of above inequality, we have

t t t
u(t) < u(O)efo a{r)dr +/ b(s)efs alrdr s, O
0

Lemma H.12. If a C! function f: R® — R is p-strongly convez, then it satisfies p-Polyak-Lojasiewicz
(PL) inequality:
IVaf(@)I” > 20 (f () ~ f(2.),

where x, is the unique minimizer of f.

Proof. Because f is p-strongly convex,
p
f) = f(@) + (Vaf(@),y — @) + Sy — |

Minimizing the both sides with respect to y, we obtain

f@) > f@) — [ Valf @)

2p
which is precisely the p-PL inequality. O

Lemma H.13. Let f: R¥ — R" be L-Lipschitz continuous. For two probability measures u,v € P(R™),
Wl(f#ﬂ7f#y) S LWI(/Lal/)'

Proof. Let (X,Y) be an optimal coupling for (u, v), thatis, X ~ u, ¥ ~ v, and Wy = E[| X =Y ||]. Besides,
f(X) ~ fgp and f(Y) ~ fur. Then, by the Lipschitz continuity of f,

Wi(fum, fav) SE[f(X) = f(Y)]]
< LE[|X - Y]
= LW (1, v). O

I Preliminaries for Manifold

We provide only the minimal background on smooth manifolds necessary for this work. For a comprehensive
treatment, we refer the reader to |Lee| (2012).

Definition I.1. A subset M C R" is called a m-dimensional (embedded) (sub)manifold of R™ if there are a
family open sets {Uq },cp in R™, a family of open sets {V,},cp in R™, and a family of smooth (C'*°) maps
{¢a}aer such that

MC | Ua, and ¢o: Voo = Ua N M
ael

is a diffeomorphism, i.e., ¢ 1: U, N M — V, is also smooth.
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Each pair (¢q,Vy) is called a chart, and {(¢a, Va)},er is called an atlas of M. In general, a single chart
cannot cover the entire manifold M. However, if M is closed, then there exists a chart ¢: V' — M that can
almost cover M, in the sense that the volume measure of the set M \ ¢(V) is zero; see [Lee (2019) for more
details.

Definition I.2. Let M C R™ be a m-dimensional manifold. For any € M, the tangent space, denoted
TxM, is a vector space defined as

TeM = {7'(0): v: [0,1] = M smooth, v(0) = x}.
Lemma I.1. Let M C R” be a smooth submanifold. If a C* function g: R™ — R is constant on M, then
for any x € M, Vg(x) is normal to M; that is, Vg(x) L TpM.

Proof. For any v € TpM, let v: [0,1] — M be a smooth curve such that y(0) = & and +/(0) = v. Then,

because g(y(t)) = ¢,

0- 2 9(v(1)) = (Vg(7(0)),7'(0)) = (Vg(z), v)

dt|,_,
Therefore, Vg(z) L TpM. O
Theorem 1.2 (Constant Rank Theorem (Lee, [2012))). Let f: R™ — R" be a smooth map and ¢ € R". Let
M:={x eR": f(x)=1c}.

If rank JF(x) = r for any * € M, then M is a (n — r)-dimensional manifold.

Theorem 1.3 (Tubular Neighborhood Theorem (Lee, 2012)). Let M C RP be a d-dimensional submanifold.
There is a smooth €: M — (0,00) such that for

Vi={(z,v) e M x RP~%: |jv|| < e(2)},

F:V = U= F(V) is a diffeomorphism and U C RP is a neighborhood of M.

Remark 1.1. For a given tubular neighborhood V of M, we also call U = F(V) C RP is its tubular
neighborhood in R”. Moreover, we can define the corresponding orthogonal projection 7: U — M as

where m1: V — M is m1(z,v) = z.
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