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Abstract

The most widely used inputs in classification models for resting-state functional
magnetic resonance imaging (rs-fMRI) data are estimates of static-based func-
tional connectivity (SFC) and sliding window dynamic functional connectivity
(swDFC). Although these methods are computationally convenient, the resulting
representations are highly simplified portrayals of a deeply integrated and dynamic
process. Change point dynamic functional connectivity (cpDFC) methods offer an
alternative to swDFC approaches with many advantages. In this study, we consider
a classification task between controls and patients with eMCI using rs-fMRI data
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) studies, ADNI2
and ADNIGO. Our results indicate that the DFC methods are generally superior to
the SFC methods when used as inputs into the classification model. Most impor-
tantly, we find that cpDFC is generally superior to swDFC. We discuss how cpDFC
methods offer greater parsimony of network features and ease of interpretability.
Our empirical results indicate that functional brain network representations are
dynamic, multiscale, and subject-specific, underscoring the need for a learning
paradigm tailored to these properties.

1 Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI) enables the investigation of brain
connectivity without task-related variability, making it useful for detecting functional differences
in neurological conditions [Biswal et al.||1995]]. Functional connectivity (FC) quantifies statistical
dependencies between regions of interest (ROIs) and is often represented as a graph [Muldoon and
Bassett, |2016], | Bassett and Bullmore, [2017]]. While static FC (SFC) assumes constant connectivity,
dynamic FC (DFC) captures time-varying interactions that better reflect neural processes [Hutchison
et al.,|2013]]. The sliding-window approach (swDFC) is by far the most common method for DFC
[Allen et al.,|2014], but suffers from arbitrary window-size selection, redundancy from overlapping
windows, and assumptions about uniform change rates [Zalesky and Breakspear, 2015, [Leonard: and
'Van De Ville, [2015]]. Furthermore, rs-fMRI time series are known to exhibit discrete state-switching
rather than smooth, continuous drifts as assumed in swDFC [Allen et al., 2014].

We propose a segmentation-first approach that aligns more closely with the true generative process.
Change point dynamic functional connectivity (cpDFC), which segments fMRI time series into non-
overlapping stationary intervals in a data-driven manner. This approach reduces redundancy, captures
subject-specific dynamics, and can produce more discriminative features for disease classification.
We evaluated cpDFC against SFC and swDFC in distinguishing early mild cognitive impairment
(eMCI) from healthy controls using Alzheimer’s Disease Neuroimaging Initiative (ADNI) rs-fMRI
data, and validated on an independent MCI dataset [Mascali et al., 2015]]. Our work tackles key
challenges in neuroimaging, namely, modeling complex, high-dimensional time series data (rs-fMRI),
capturing distributional shifts, and generating interpretable, reliable representations for clinical
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classification. Unlike fixed-window approaches that impose uniform temporal segmentation, cpDFC
adaptively discovers subject-specific, stationary network regimes, parsing meso-scale dynamics that
may correspond to evolving cognitive states or neural processes. Using change points, our approach
instead extracts structured, meaningful segments that are more amenable to clinical deployment.

Our contributions are as follows: (1) the first application of change point detection to classify
neurodegenerative diseases from rs-fMRI, (2) a systematic comparison of cpDFC, swDFC, and SFC,
including step-size effects of swDFC, (3) the demonstration that cpDFC produces superior accuracy
and interpretability, (4) evidence that combining multiple FC methods in an ensemble improves
performance for eMCI classification and provides richer representations than any one method.

2 Methods
rs-fMRI data Pre-processing ROl extraction FC estimation Classification Study
(n=68) (SFC, swDFC, cpDFC)
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Figure 1: A schematic of CN/eMCI classification task starting from raw rs-fMRI data to eMCl/control
classification for the ADNI rs-fMRI dataset. Panel (a) is the overall pipeline, while panels (b), (c),
and (d) show the different FC methodologies (SFC, swDFC, cpDFC, respectively). Panel, (e), shows
example graphs expressing the topological features used in the classification study.

We provide notation in the Supplementary Materials [A] In ADNTI’s rs-fMRI dataset, we analyzed
33 subjects with early mild cognitive impairment (eMCI; mean age 72.3, 15M/18F) and 35 healthy
controls (mean age 74.6, 14M/21F). Data were preprocessed in SPM [SPM, 2023] following a
standard fMRI pipeline, including removal of initial volumes, motion correction, spatial normalization
to MNI space, nuisance regression, spatial smoothing, detrending, and band-pass filtering (0.01-0.08
Hz). The brain was parcellated into 120 regions using the AAL?2 atlas [Tzourio-Mazoyer et al.| 2002],
and Z-score normalized. The final data set of each subject was a T' = 130 by p = 120 matrix (time
points x ROISs). Full details are provided in the Supplementary Materials[C]

For each stationary segment S, FC between ROIs ¢ and j is estimated using Pearson’s correlation p; ;.
An edge is kept if |p;;| > 0.5, which yields graphs of strong statistical dependence [Adamovich et al.,
2022]]. For each subject, SFC assumes one stationary segment (entire scan), whereas DFC yields
multiple segments. We estimate DFC under the assumption of unknown distributional shifts and rate
of change, but with stationary segments existing in X . Two approaches were used:

Sliding windows (swDFC): a fixed-length window (w) is shifted by step size (s), with FC computed
in each (Algorithm[I]in Supplementary Materials; schematic in Figure[Tk).



Change points (cpDFC): we use FaBiSearch [Ondrus et al.},[2025]], which detects multiple change
points in multivariate time series based on network structure via non-negative matrix factorization
[Lee and SeungL 1999\ The hyperparameters (J, 7yun, Nreps) are established using recommendations
from|Ondrus and Cribben|[2024]]. Change points are ordered by p-value, and the first k = 1 or k = 2
are used to segment the time series before FC estimation. We also test NCPD [[Cribben and Yu, [2017]

and CRMT [Ryan and Killickl 2023]] with comparable settings.

For each segment’s graph, we compute standard node- and network-level metrics, degree, clustering
coefficient, shortest path length, degree assortativity, local efficiency, and betweenness centrality, as
candidate features [Rubinov and Sporns| [2010]]. Formal definitions are provided in the Supplementary
Materials

Labels are defined as ¢ = 0 (control) and ¢ = 1 (eMCI). The features of all segments are concatenated,
and sure independence screening (SIS; 2008) selects a reduced set F”. We train a linear
SVM [Boser et al.|[T992]], chosen for robustness after testing RBF-SVM, logistic regression, and
decision trees. We compare SFC, swDFC, and cpDFC in separate experiments. For SFC, all 7' = 130
time points are used. For swDFC, we test w € [10,70] (step 5) and s € {1,2,3,5,8,10,15,20}. For
cpDFC, we evaluate FBS_cpDFC1 and FBS_cpDFC2. SIS and SVM are applied within each fold of
leave-one-out cross-validation (68 subjects total). The complete pipeline is shown in Figure[Th.

3 Results

We first evaluate SFC, swDFC, and cpDFC separately, and then combine the best-performing models
in an ensemble. Figure [2] summarizes the results. For swDFC, we report only window/step size
combinations achieving accuracy > 63.57% (one standard error above the null accuracy of 51.47%).
Among all methods, FBS_cpDFC2 achieves the highest overall performance in two of four metrics:
accuracy 77.94%, F1 80.00%, sensitivity 90.91%, and specificity 65.71%. The only metric in which
FBS_cpDFC2 is significantly different from swDFC is sensitivity, but the two swDFC variants with
higher sensitivity (60w_15s and 70w_10s) perform notably worse in other metrics. Compared to the
best swDFC configuration (15w_3s: accuracy 72.06%, F1 74.67%), FBS_cpDFC2 performs slightly
better (n.s., p = 0.250) but is significantly superior compared to the full swDFC set (u = 0.5852,
o = 0.0483; all metrics p < 1.4 x 107°). cpDFC1 and SFC both underperform, with SFC near null
accuracy. Across all (w, s) combinations of swDFC (Supplementary Materials , no performance
trend emerges and small parameter changes can cause large accuracy drops.
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Figure 2: F1, accuracy, sensitivity, and specificity results from the classification study of CN subjects
and subjects with eMCI in the ADNI rs-fMRI dataset. SFC, cpDFC, and swDFC correspond to static,
change point, and window based dynamic functional connectivity, respectively.

In general, the difference between FBS_cpDFC2 and the best swDFC combination (w = 60, s = 15)
can be summarized as such: F1 score improved by 6.26%, accuracy by 12.76%, and specificity
by 53.31%, while the sensitivity was lower by 6.25%. swDFC exhibited substantial variability,
depending on the choice of window and step sizes, with accuracy in the range of 22.06% — 72.06%,
F1 score 19.35% — 75.29%, sensitivity 18.18% — 96.97%, and specificity 14.29% — 68.57%.

Figure [3] shows the performance of the ensemble when combining predictions from the top-2 to
top-10 classifiers (ranked by F1 score). The best single model is FBS_cpDFC2. Combining additional
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Figure 3: The ensemble model results from the classification study of CN subjects and subjects with
eMCI in the ADNI dataset. Panel (a) shows the ensemble results, which combines the predictions
from the top-2 to the top-10 classifier models as determined by F1 score. FBS_cpDFC?2 is the best
stand-alone classifier. Shaded regions indicate & the standard error of proportion calculated. (b)
shows the correlation between predicted probabilities of eMCI across the top-10 classifiers.

models does yield an improvement, likely due to minimal overlap in predictive information and
differences in assumed rates of change. A correlation of predicted probabilities (Figure[3p) shows
significant correlations (p-value = 4.00e — 5 and 1.09e — 3, respectively, t-test, o« < 0.05, adjusted
for multiple comparisons using [Benjamini and Hochberg}, [1995) between cpDFC2 and two swDFC
variants (swDFC40w_5s, swDFC35w_20s), indicating redundancy between these feature spaces.

4 Discussion

Our results show that subject-specific temporal segmentation via change point DFC via FBS_cpDFC2,
yields the strongest and most stable eMCI classification performance in ADNI rs-fMRI. Although
the locations of the change points vary widely between individuals, the rate of change itself is not
directly discriminative; instead, cpDFC’s advantage comes from capturing individualized temporal
dynamics without imposing fixed window parameters. Across the entire grid, swDFC shows high
variability, occasional performance below SFC, and unstable feature selection, underscoring the
risks of exhaustive parameter search and multiple hypothesis testing. Furthermore, cpDFC achieves
these results with 33% fewer selected features (28 vs. 42) and without costly hyperparameter tuning,
making it less prone to overfitting than swDFC in small-sample, high-dimensional settings.

Post-hoc ensemble analysis combining the best models yields further gains, supporting the idea
that multi-timescale information improves classification. Significant correlations between some
model predictions indicate partial redundancy, but diverse temporal scales still provide complemen-
tary features. Performance gains plateau after the top-8 ensemble, suggesting diminishing returns.
Replication on an independent MCI dataset (Supplementary Materials confirmed the superior
performance of cpDFC over all swDFC variants, despite differences in acquisition and preprocessing,
suggesting robustness to dataset-specific factors.

Overall, our findings suggest: (1) individualized temporal segmentation is more robust than fixed-
window approaches; (2) change point detection offers a principled alternative to swDFC for dynamic
FC estimation; and (3) integrating multiple temporal resolutions can capture complementary neural
dynamics for downstream tasks. Our cpDFC approach exemplifies a data-driven, segmentation-first
approach that circumvents the need to tune hyperparameters such as window size, enabling stable,
interpretable features from high-dimensional brain signals. Our ensemble findings highlight how
multi-timescale fusion can enhance classification by aggregating complementary information.

We acknowledge that our work has some limitations. One is that the smaller sample size (n = 68)
may limit the ability to generalize to larger populations, particularly given the heterogeneity of
eMCI. Additionally, our study uses some fixed pre-processing and parcellation choices which could
influence downstream classification. Future works could explore larger studies and jointly learn
segment boundaries and within-segment representations end-to-end using deep-learning approaches.
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A Notation

We denote a matrix with a bold capital letter A and vectors as bold lowercase letters a. The entry
corresponding to the ith row and the jth column in A is A;;. The vector of the ith column in A is
given by A;. We denote a single subject’s fMRI data by X, where each data matrix X € R”*? has
T time points and p ROIs. A time point ¢ is an element of the time index set {1,...,7T}. A stationary
segment in X is denoted by S = {x; € RP : t; <t <t} where t1,to € {1,...,T}. A graph G is
defined as a collection of vertices and edges G = (V, E'). We use the terms “graph" and “network"
interchangeably throughout. The number of samples or subjects in each study is denoted by n.

B Additional results

B.1 Additional classification results

In Figure 4] we report the area under the receiver operating curve for all swDFC analyses. We include
the results for SFC and multiple change points (FBS_cpDFC2) plotted as vertical lines at their
respective values, in order to better contextualize the differences between each technique.

a Distribution of swDFC AUROC Scores (ADNI) b Distribution of swDFC AUROC Scores (ADNI)
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Figure 4: Histograms of the swDFC AUROC scores for the (a) ADNI, and (b) Mascali et al.| [2015
rs-fMRI datasets. In each plot, we also provide a vertical line corresponding to the SFC result (green)
and FBS_cpDFC2 result (red) for context.

To evaluate whether improvements to classification performance are attributable to the change point
estimation procedure rather than randomly segmenting the time series at two discrete time locations,
we generate a random segmentation (or “sham” change point) baseline. In particular, for each subject,
we uniformly sample two “sham” change point locations which adhere to the pre-specified minimum
distance change points 6 = 30 used in FBS_cpDFC2. This means that for each subject, the “sham”
change points must be at least 30 time points away from the beginning of the time series (¢ = 0),
the end of the time series (t = T), and from each other (|tz — #1]). We then proceed with the same
remaining steps for feature generation, selection, and classification. This procedure is then repeated
1000 times to generate a null distribution of classification performance under random segmentation.

The resulting distribution of AUROC values is worse than chance-level performance (1 =
0.3815,0 = 0.1229) In contrast, multiple change point estimation via FBS_cpDFC2 achieved
an AUROC of 0.8069, above the mean of the permutation distribution (permutation based one-sided
p-value: 9.99e — 4, corrected via[Phipson and Smythl [2016])). This evidence supports the notion that
estimated change points under a formalized change point detection procedure provide non-random
segmentation that captures meaningful temporal structure, and that this is not simply an artifact of
segmenting the time series.

B.2 Sliding window results

Figure [5] shows the results of different combinations of window size and step size for swDFC.
Across the various combinations, there is no clear relationship between step size and window size.
Additionally, there are several combinations that are plagued by instability, as shown by the large



variability in step and window sizes in neighboring combinations (or tiles). For example, the
combination of window size 15 and step size 3 achieved the best accuracy of 72.06%. However,
changing the window size by 5 time points in either direction (to either 10 or 20), drastically reduces
the performance of these models (to 58.82% and 55.88%, respectively). The same is also evident
when the step size is changed to 2 or 8: the performance of the models reduces to 52.94% and
64.71%, respectively.
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Figure 5: Heatmaps of F1 score, accuracy, sensitivity, and specificity from the classification study
of CN subjects and subjects with eMCI from the ADNI rs-fMRI dataset using swDFC. Results are
shown across window sizes [10, 70] in increments of 5 and step sizes [1, 2, 3, 5, 8, 10, 15, 20].

Figure [5] shows the results of different combinations of window size and step size for swDFC.
Across the various combinations, there is no clear relationship between step size and window size.
Additionally, there are several combinations that are plagued by instability, as shown by the large
variability in step and window sizes in neighboring combinations (or tiles). For example, the
combination of window size 15 and step size 3 achieved the best accuracy of 72.06%. However,
changing the window size by 5 time points in either direction (to either 10 or 20), drastically reduces
the performance of these models (to 58.82% and 55.88%, respectively). The same is also evident
when the step size is changed to 2 or 8: the performance of the models reduces to 52.94% and
64.71%, respectively.

B.3 Secondary dataset

We present the classification results from the [Mascali et al.| [2013]] dataset. We also include two
additional change point detection methodologies, specifically Network Change Point Detection
(NCPD: [Cribben and Yu}, [2017) and Covariance Change Points through Random Matrix Theory
(CRMT: Ryan and Killick, [2023). Figure[6] (top panel) shows the classification results using SFC,
swDFC and cpDFC methods. Similar to the ADNI data set, FaBiSearch with two change points has
a superior performance compared to the other methods. In addition, it appears that change point
methods outperform swDFC methods. In Figure [6] (bottom panels), we again find that there is no
particular patterns between the different combinations of step size and window size and classification
performance. The best performing models have a window size of approximately 40 and step size
between 5 and 20 depending on the evaluation metric. For swDFC, performance on this dataset
mirrors ADNI but is often inferior. Given the smaller size of this study (n = 20) compared to the




ADNI data set (n = 68), it is possible that the performance discrepancies between the combinations
of window and step size are further exacerbated in smaller sample size settings. Figure[7[a) shows

the ensemble analysis for the Mascali et al.| [2013]] dataset. The lack of a monotonically increasing
performance pattern as more models are combined may stem from the small sample size. Alternatively,

it could be due to the larger number of higher correlations between the models (Figure[7(b)).
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Figure 6: The classification results of CN subjects and subjects with MCI from the

rs-fMRI dataset. (Top panel) F1, accuracy, sensitivity, and specificity results of all methods.
SFC, cpDFC, and swDFC correspond to static, change point, and window based dynamic functional
connectivity, respectively. (Bottom panels) Heatmaps of F1 score, accuracy, sensitivity, and specificity.
Results are shown across window sizes [10, 70] in increments of 5 and step sizes [1, 2, 3, 5, 8, 10, 15,

20].

B.4 Change point detection and stationary segments

To estimate cpDFC, we apply FabiSearch [Ondrus et all,2025] to each subject in the ADNI dataset.
Figure [§] shows both the detected change points for the control group (CN) (Figure [8(a)) and the
eMCI group (Figure [§[b)). Within each group, the change points are not consistently clustered around
specific time points during the scan; rather, they are distributed relatively uniformly, aside from some
edge effects near the start and end of the session. This observation suggests that the timing of change
points is largely subject-specific, rather than being driven by a group-level pattern. A non-parametric
Kolmogorov-Smirnov test on the change point locations between the two groups suggests that they
are not significantly different (p = 0.413). A one-sided ¢-test on the means of the location of the first
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Figure 7: The ensemble model results from the classification study of CN subjects and subjects with
eMCI in the Mascali et al.| [2015]] dataset. Panel (a) shows the ensemble results. For the ensemble
model, we combined the predictions from the top-2 to the top-10 classifier models, as determined by
their highest F1 score. The FBS_cpDFC2 model is the best stand-alone classifier. Shaded regions

indicate + the standard error of proportion calculated as SE = 4/ @. (b) shows the correlation

between predicted probabilities of eMCI across the top-10 classifiers, as determined by the highest
F1 score.

detected change points of the CN group and the eMCI groups suggests that the first change point for
the CN group is significantly smaller (in time) than the eMCI group (p = 0.028).

Figure[8]also shows the stationary FC states (or modes) between each change point, where S, S5, S
refer to the first, second, and third stationary segments estimated by change point detection, respec-
tively. Across all segments and even between the CN and subjects with eMCI, there is strong FC
between the frontal and cerebellar regions. In the first FC state, S, CN have stronger FC between
the parietal regions and the rest of the brain, and also engage the temporal regions with the rest of the
brain more as well. Subjects with eMCI, have stronger FC between the frontal and parietal regions.

In S5, CN subjects exhibit strong FC between the frontal and parietal regions. In contrast, subjects
with eMCI show FC primarily concentrated in the frontal regions, with connections extending to
the occipital and limbic systems. Notably, a small number of occipital nodes in subjects with eMCI
mediate much of the FC to other brain regions. In S3, CN patients display robust FC among the
frontal, occipital, and cerebellar regions, forming a tightly coupled triad. Conversely, subjects with
eMCI exhibit more diffuse FC, with the cerebellum acting as a hub, extensively connected to the rest
of the brain, particularly the parietal lobe.

B.5 Graph structure changes across time segments

In Figure O(a), we show the ROIs that were selected by SIS in all folds in leave-one-out cross-
validation for FBS_cpDFC2. Figure [9(b) includes more information on the selected features and
the corresponding ROIs, such as node ID, feature type, stationary segment, and differences in the
mean value for the features of the CN and the eMCI groups. We find that the most consistently
chosen features correspond to the frontal, parietal, and cerebellum regions. Degree, betweenness,
clustering coefficient, local efficiency, and shortest path were all key features that were selected
across LOOCYV folds. We also find that eMCI is associated with lower degree in the parietal region,
and that paths were more efficient, shorter, and tightly clustered in the cerebellum and frontal regions.
Later segments (S», and S'5) were chosen more often across these folds, which may be related to the
subjects being more settled and closer to a true “resting" state compared to the beginning of the fMRI
experiment.

As the results in the main article show, there is a concentration of strongly differentiating features in
the later time segments (Figure [9) for the classification task. This is highlighted also in Figure[T0}]
especially in the ROISs close to the main diagonal, and also in the squared difference row, which are
the largest for time segments 2 and 3. It is evident that the group-wise characteristics become more
stable and contribute most to the differentiation in later time windows. Furthermore, it is clear from
Figure [I0]that global changes in graph structure are subtle, since the averaged adjacency matrices
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Figure 8: The change point detection results from applying FaBiSearch (taking only the first two
change points, FBS_cpDFC2) and corresponding stationary FC states for (a) controls and (b) subjects
with eMCI for the ADNI rs-fMRI dataset. For each panel, FC plots are shown for each stationary
segment, where S, .52, S35 correspond to the first, second, and third stationary segments. Individual
change points are used to segment the time series, and then correlation matrices are averaged across
subjects. The top 100 edges as determined by the absolute value of this averaged correlation are
shown for each stationary segment. Below the FC plots, orange and blue points indicate the first and
second detected change points, respectively, for each subject such that the points are pooled within
each group (CN or eMCI).

are generally relatively similar, but localized differences in functional connectivity have widespread
effects related to the global graph structure. For example, we observed differences in the shortest
path metric, which can be strongly influenced by changes in one or a few edges, especially if there is
a lack of redundancy in connections between nodes. Therefore, these subtle differences in the graph
structure have strong consequences in distinguishing CN from patients with eMCI.

As we restrict each subject to two change points, each subject has 3 stationary segments, or partitions
between change points (or stationary modes). We can then compare group-wise differences in the
adjacency matrices between consecutive segments. We calculate the average adjacency matrix for
each segment and class (CN or eMCI), using the following procedure. For each group (CN: n = 35,
eMCIL: n = 33), pA;; = L3/ A;;. We can then calculate the entry-wise difference between

the groups using p A = L AN — , AMC, Figure (rows 1 and 2) shows the average adjacency
matrices grouped by segment (1, 2, or 3) and class (CN or eMCI), while Figure ﬂ;ﬁl (row 3) shows
the differences in class between segments for all 120 ROIs. The differences appear to concentrate
close to the diagonal of the adjacency matrices. This difference is especially pronounced between
ROIs 50-60. In addition, subjects with eMCI have stronger off-diagonal connections, notably at the
intersection of ROIs 10-20 and 80-90.
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Figure 9: (a) The associated regions of interest (ROIs) of the features selected across all folds by
SIS in leave-one-out cross validation for FBS_cpDFC?2 in the classification study of CN subjects
and subjects with eMCI from the ADNI rs-fMRI dataset. (b) The node ID, the number of LOOCV
folds that the feature was chosen, region from the AAL atlas, the graph theoretic feature type, the
stationary segment (i.e., 1 = first, 2 = second, 3 = third), and the mean values of the features of the
CN and eMCI groups. The features are ordered in descending order based on how often they were
selected across the LOOCYV folds.

C Data and pre-processing

C.1 ADNI data

The first dataset we obtained from the ADNI database (http://adni.loni.usc.edu). ADNI was
launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary objective of ADNI has been to test whether serial magnetic resonance imaging, positron
emission tomography, other biological markers, and clinical and neuropsychological evaluations
can be combined to measure the progression of MCI and early AD. For up-to-date information, see
www.adni-info.org. In ADNI’s rs-fMRI experiments, subjects were instructed to remain still and
relaxed in the scanner. Subjects level data were obtained using Phillips scanners and include 33
subjects with eMCI (mean age 72.3, 15M/18F) and 35 healthy controls (mean age 74.6, 14M/21F).

Data were pre-processed using SPM [SPM| 2023, following a standard fMRI preprocessing pipeline.
The first 10 volumes were discarded to account for initial scanner and subject noise. Next, a slice
timing correction was performed (spm_slice_timing) to correct for timing differences between
slices within each volume. The images were then realigned using spm_realign, which applies a
rigid-body transformation to align each volume with the mean functional image. Motion parameters
were estimated using least-squares with 2nd degree B-spline interpolation. The estimated motion
parameters were subsequently applied to reslice all volumes using 4th degree B-spline interpolation
to minimize resampling artifacts. The images were then normalized to the Montreal Neurological
Institute (MNI) space with 3mmXx3mmx3mm voxels (spm_normalise). Nuisance covariates
(Friston 24, cerebrospinal fluid, white matter, and global mean) were regressed out. The voxels were
then spatially smoothed using a Gaussian kernel (FWHM = 6mm) in spm_smooth. A linear trend was
removed from each time series using ordinary least squares regression (spm_detrend) and a fourth
order Butterworth low-pass filter (0.01-0.08 Hz) was applied to attenuate high-frequency noise and
low-frequency drift outside the typical BOLD signal range (spm_filter). We used the Automated
Anatomical Labeling (AAL2) atlas to subdivide the brain into 120 anatomical regions [Tzourio+
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Figure 10: Averaged adjacency matrices across temporal segments (columns), and subject class
(rows) for the FaiSearch (cpDFC2) method in the classification study of CN subjects and subjects
with eMCI from the ADNI rs-fMRI dataset. Node labels (1 to 120) correspond to the AAL atlas
[Tzourio-Mazoyer et al., [2002] labels. The difference between the CN and the eMCI adjacency
matrices computed for each segment is shown in the third row.

Mazoyer et al. [2002]. We chose the AAL2 atlas because of its widespread use in neuroimaging
studies, particularly in Alzheimer’s disease and MCI research, allowing for comparisons with other
works. AAL2 provides whole-brain coverage with a moderate number of parcels, providing a balance
between spatial resolution and statistical power. The region of interest (ROI) time series for a given
region was defined as the average of the time series of all voxels within that region. Finally, each
time series was z-score normalized. The final preprocessed dataset for each subject was a time series
of dimension T" = 130 time points by p = 120 ROIs.

C.2 Secondary dataset

In order to check the robustness of our results, we apply our methods to a second study of MCI
classification [Mascali et al.,|2015]], which includes 10 patients with mild cognitive impairment and
10 healthy elderly controls. Participants were told to lie quietly with their eyes closed without falling
asleep. A 3T MRI system (Magnetom Allegra, Siemens, Erlangen, Germany) was used to acquire
images, with the following properties: TR = 2080 ms, TE = 30 ms, 32 axial slices parallel to the
AC-PC plane, matrix = 64 x 64, in plane resolution = 3x3 mm?2, slice thickness = 2.5 mm, 50% skip,
flip angle = 70°. Functional images were preprocessed using the Connectivity toolbox [Whitfield+
Gabrieli and Nieto-Castanon, |2012]. The initial four volumes were discarded for signal and scanner
stabilization, resulting in 216 time points per subject, and images were slice-time corrected and
realigned to the first image. More detailed information on the preprocessing steps can be found
in Mascali et al.|[2015]. Finally, the atlas of |(Gordon et al.|[2016] was used to parcellate the brain
into ROIs. To explore the generalizability of our approach while maintaining comparability with

13



-

the main study (120 ROIs), we selected the Default [Sperling et al., 2010, Buckner et al.l [2008]],
Frontoparietal [Brier et al., [2012]], Cinguloparietal [Bai et al., 2009], and Dorsal Attention [[Zhou
et al., 2008] communities, resulting in a reduced dimensionality of 102 ROIs. This allowed us to
test the method on another dataset with slightly different preprocessing and experimental conditions,
while keeping the parcellation scale comparable, to assess the robustness of the results.

D Algorithms for time-varying functional connectivity estimation

In this section, we provide a brief overview of the algorithms used to estimate and analyze dynamic
functional connectivity, including a standard sliding-window correlation approach and the FaBiSearch
change point detection method |Ondrus et al.[[2025]]. For further technical details are available on
FaBiSearch, we refer readers to the original publication [Ondrus et al., 2025]].

Algorithm 1: Algorithm for estimating dynamic functional connectivity using sliding windows.

Inputs: fMRI data matrix X, window size w, step size s
Initialize the starting point and end points of the window as ¢y, = 1 and t.ng = w, respectively.
while tstart +w-—1 S T do
tend < lstart T W — 1
Estimate FC within the window X ...
Advance the window, tgiart < tstart + S»  tend < tstart + W — 1
end

Algorithm 2: Change point detection algorithm using FaBiSearch which can be applied recur-
sively to find multiple change points.

Inputs: data matrix X, minimum distance §, number of runs of NMF n,.,,,,, number of
permutation repetitions 7,.¢ps

1 Find optimal rank, r, over all of X

2 Evaluate fitments of X to NMF using Kullback-Leibler divergence to navigate over 7.

Continue until convergence to a single ¢ which becomes the candidate change point to be
evaluated.

Calculate the p-value of the candidate change point to determine whether splitting at this point
improves Kullback-Leibler divergence over the null distribution.

E Functional connectivity through graph estimation

We begin by introducing the concept of stationarity, where a stationary segment in the multivariate
BOLD time series is defined as one in which the statistical properties are assumed to not change
with respect to time [Jones et al.l 2012| [Handwerker et al.,[2012]. The goal of DFC then, is to either
model the dynamics of these changing properties, or, to segment the time series to isolate stationary
segments. From the DFC approaches outlined in the next section, we obtain a series of stationary
segments for each subject, while for SFC, stationary is assumed over the entire experimental time
course, and thus one segment is obtained for each subject. For each stationary segment S, we estimate
the functional connectivity (FC), or linear dependency, between the ith and jth time series using
Pearson’s correlation coefficient p;;. In the brain fMRI setting, the graph G = (V, E) is defined
such that each vertex v; € V represents a region of interest (ROI) or parcellated brain region, and
each edge e;; € I is weighted by the corresponding correlation p;; between ROI time series 4 and j.
Because we are primarily interested in strong functional connections, we apply an absolute correlation
threshold of 0.5, consistent with the range (0.1-0.8) commonly used in the literature [Adamovich
et al.,|2022|]. Thus, an edge e;; remains in G if |pij| > 0.5. A schematic of the SFC estimation
procedure is shown in Figure[T(b). The resulting adjacency matrix encodes the network structure for
the segment, with retained edge weights reflecting the strength of functional coupling between brain
regions as measured by correlation. More formally, let 7 = 0.5. The edge set is

E={{i,j}:i <], |pi| > 7},

and the weighted adjacency is A;; = p;; if {1, j} € E and A;; = 0 otherwise (with A;; = 0).
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F Estimating DFC

To estimate DFC, we assume that we have no prior knowledge of the distribution of X, and that there
may be an unknown number of distributional shifts, with the number and locations in {1,...,T}
and the rate of change between them is assumed unknown. We do however assume that there exist
segments in X which are stationary. We consider two approaches, sliding windows (swDFC) and
change points (cpDFC), for estimating time-varying connectivity in rs-fMRI. swDFC is a naive
approach in which no data information is used to determine the temporal structure. Here, a window of
a particular length, w, is used to subselect the set of time indices in {1,...,7T}. As its name suggests,
the window is then slid over a predetermined length, s, to define the next window. Consequently, the
sliding window captures dynamic information by subsampling the entirety of the distribution through
a predetermined and overlapping set of time-dependent steps, where within each of these windows,
FC is estimated as described in Section[E] We describe the sliding-window method in Algorithm T
(in the Appendix) and show a schematic in Figure[T|c).

The choices for w and s are crucial, as they determine the granularity and the amount of overlap
between snapshots that this technique captures. However, the values for these parameters are context
dependent and it is not possible to derive them directly from X. As a consequence of this, we vary
the combinations of w and s in our experiments and test the classification performance.

We implement cpDFC using FaBiSearch, a change point detection technique in the network structure
between (high-dimensional) multivariate time series [Ondrus et al.| 2025]]. More formally, we consider
the multiple change point detection problem in a multivariate time series data X . We seek to find
the time points where the network structure of X changes. FaBiSearch utilizes non-negative matrix
factorization (NMF: [Lee and Seung| [1999) to identify multiple change points in high-dimensional
time series data. In particular, change points are identified in a sequential manner through successive
splitting of the time series. No limit is imposed on the number of change points; instead, detection
proceeds until further splitting cannot be performed. Candidate change points are then evaluated
through a permutation test procedure. The method requires a series of hyperparameters; X, «, 9,
Nyun, Treps» 7 Which refer to the input multivariate time series data, significance for the permutation
test, minimum distance between change points, maximum number of runs of the NMF algoirthm, and
the number of permutation in the permutation test. The rank of NMF to use in the procedure, r, can
be determined from the data by an iterative permutation procedure. Algorithm[2](in the
summarizes FaBiSearch, and we utilize a loss based on Kullback-Leibler divergence to assess the fit
of the model. For more details on FaBiSearch, see |Ondrus et al.|[2025]].

In contrast to the sliding window method, which can be highly sensitive to the precise choice of
parameters such as window length and step size, Change point detection does not require parameter
values to be so finely tuned for optimal performance. Instead, it only requires sufficient settings,
meaning enough data samples, permutation iterations, and related hyperparameters, to reliably detect
change points, without the need to identify a single “best” configuration. |Ondrus and Cribben
[2024] show through a sensitivity analysis on simulated data that the accuracy of change point
detection using FaBiSearch plateaus beyond sufficient values of the input hyperparameters. In their
simulations,|Ondrus and Cribben|[2024] found that performance plateaued once § > 30, nrun > 100,
nreps > 100, denoting the minimum distance between change points, the number of NMF runs for
convergence, and the number of permutations for the significance test, respectively. Increasing these
values beyond these thresholds produced only marginal improvements in detection accuracy.

For each subject, we first estimate the change points using FaBiSearch and then order the change
points ¢ by their respective p-value from smallest to largest. After defining the set of change points, ¢,
we partition X into stationary time segments between the change points. In the classification study,
we used k = 1 and k£ = 2 change points to define the stationary segments. Finally, for each of the
stationary segments, we estimate FC as described in Section[E]

We also estimate cpDFC using two other change point detection methods, specifically Network
Change Point Detection (NCPD: |Cribben and Yul |2017) and Covariance Change Points through
Random Matrix Theory (CRMT: Ryan and Killick} 2023)). For NCPD and CRMT, we used similar
hyperparameters to FaBiSearch, that is, a similar minimum distance between the change points and
the optimal rank. All other hyperaparameters for these methods were set to their default values. For
CRMT, we further pre-processed ROI time series by performing a truncated SVD with the same

15



optimal rank as used in FaBiSearch to satisfy the theoretical condition that p < n for the estimator to
be well-behaved. A schematic of change point detection is shown in Figure[T(d).

G Graph Theoretic Features

Degree
The degree of a node can be calculated from the following definition:
d; = Z aij
JEV

where d; € Ny is the degree of the node 4, V' is the set of all nodes, and a;; is the intersection of the
nodes ¢ and j in the adjacency matrix.

Clustering coefficient

From Wasserman and Faust [1994]], it is given by:

261'

QZ@@fn’

where C; € [0, 1] is the clustering coefficient for node 4, d; is the degree of node 7, and e; is the
number of edges between node ¢ and neighbors d;.

Shortest path
We use the notation ¢;; € Ny as the fewest number of edges that connect nodes ¢ and j together to

define the shortest path. The shortest path can be calculated using different algorithms, although we
use breadth-first search (BFS: |Cormen et al.,[2022]) in our implementation.

Degree assortativity

Newman| [2002] define degree assortativity as
_ ; _ . 2
m=t Y Giki — [m72 Y0 50 + ki)
; ) 2
m=t 35 507+ k) — [m2 30 50+ ki)

where r € [—1, 1] is the degree assortativity of the graph, m is the total number of edges, and j; and
k; are the degree of the nodes j and k that are connected through 4.

Tk =

Local efficiency
The definition of local efficiency from Latora and Marchiori [2001] is
1 1
=R IS
di(di —1) 5 kEG,j#k lik

where E; € [0, 1] is the local efficiency measure of node i, d; is the degree of node 4, and ¢;;, is the
shortest distance between nodes j and % in the sub-graph of G;.

Betweenness centrality

The definition of betweenness centrality [Freeman, |1977] follows:
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B= Y Ujk‘(i),

itk Ok
where B; € [0, 1] is the betweenness centrality of node i, 0, is the total number of shortest paths

between nodes j and k, and o (¢) is the total number of shortest paths between j and k that pass
through .

H Evaluation metrics

We evaluated the performance of our models from the classification study using the following four
metrics:

A TP+ TN
ccuracy =
Y=TPYTN+FP+FN
Sensitivity — TP
ensitivity = TP+ PN
TN
Specificity = ———
PeCily = N T FP
Fl =2 x Prec?s?on x Recall
Precision + Recall
TP TP
where Precision = TP—&-iFP’ Recall = m and ,

TP denotes True Positives; The number of correctly labeled eMCI.

TN denotes True Negatives; The number of correctly labeled control.

F' P denotes False Positives; The number of control incorrectly labeled as eMCI.
F'N denotes False Negatives; The number of eMCI incorrectly labeled control.

I Data, code, and computational resources statement

Due to the sensitive nature of the data used in this study, as well as the terms of use for both
sources, we are unable to directly share the data used. The ADNI and Mascali et al.| [2015]]
datasets used were derived from the following public domains http://adni.loni.usc.edu/|and
https://dataverse.harvard.edu/dataverse/restAD, respectively. All R code implementing
experiments is available on /Anonymous GitHub, All experiments were performed using 48 core
machines with 2 Intel Platinum 8260 Cascade Lake at 2.4Ghz and 187GB of memory.

J Potential societal impacts

Our study provides evidence of more accurate and robust estimates of early neurodegeneration,
which can accelerate fundamental neuroscience research, improve biomarkers for neurological and
psychiatric disorders, and ultimately inform better diagnostics and therapies. However, there are
potential negative impacts. For one, there is a risk of misinterpretation of models. Treating the
edges of a correlational network as causal may prompt unsafe interventions. Another concern is
privacy. High-resolution connectomes can, in principle, carry individual-specific signatures. Sharing
or pooling data without adequate safeguards risks misuse of participants’ brain data. There are also
risks in using this method in unintended ways, such as outside clinical or research contexts (e.g.,
surveillance of cognitive states). Lastly, there are considerations regarding fairness. If the method is
applied to heterogeneous populations without proper care, estimates can systematically misrepresent
under-studied groups (e.g., age, ethnicity), leading to biased conclusions.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, we provide clear statements about background information, previous
studies, and our contribution through the paper, both in the abstract as well as throughout
the introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We provide commentary on the limitations of our study in the Discussion
portion of the paper. In particular, we state:

“We acknowledge that our work has some limitations. One is that the smaller sample
size (n = 68) may limit the ability to generalize to broader populations, particularly
given the heterogeneity of eMCI. Additionally, our study uses some fixed pre-processing
and parcellation choices which could influence downstream classification. Future works
could explore larger studies, and jointly learn segment boundaries and within-segment
representations end-to-end using deep-learning approaches.”

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA|

Justification: We do not consider theoretical implications of the proposed framework/method,
as we are more concerned with validating the approach empirically.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a full methodological pipeline from raw data to final predictions
detailed in both the main paper, as well as the supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a statement at the end of the supplementary material which details
where open access data was retrieved from, and we also provide a link to an Anonymous
Github repository which includes comprehensive experimental pipelines.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide full preprocessing, data splitting, and hyperparameter selection
details in the paper, with additional specifics in the supplementary material. The main text
summarizes the overall experimental setup, while the supplement contains exact parameter
values, algorithm settings, and training/testing procedures to ensure full reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We report all hypothesis testing results, statistical significance provide error
bars in figures.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the compute environment in the supplementary material. Execution
time varies by experiment, but as a guideline, processing from raw data through preprocess-
ing, FC estimation, feature generation, and classifier training/testing takes a few hours per
subject. Experiments were parallelized across subjects using CPU cores.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and ensured full compliance.
Anonymity is preserved by omitting author-identifying information and using an Anonymous
GitHub repository for code access.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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10.

11.

12.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide a statement of potential societal impacts of the work available in
the supplementary materials.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The authors do not believe the methodology proposed in this paper has a high
risk for misuse. Pretrained model weights are not provided in any of the code.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

15.

Answer: [Yes]
Justification: We include appropriate citations for all code and data sets used for the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We include all code and experiments as an Anonymous Github.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Although we did not collect any human data as part of our neuroimaging
experiments, we did use an open source data set which includes human subjects. Details are
available in the supplementary materials.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|

Justification: Although our real data experiments include human subjects, we were not
involved in the data collection process at all, and are using the open source and de-identified
version of the data set.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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