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Abstract

The most widely used inputs in classification models for resting-state functional1

magnetic resonance imaging (rs-fMRI) data are estimates of static-based func-2

tional connectivity (SFC) and sliding window dynamic functional connectivity3

(swDFC). Although these methods are computationally convenient, the resulting4

representations are highly simplified portrayals of a deeply integrated and dynamic5

process. Change point dynamic functional connectivity (cpDFC) methods offer an6

alternative to swDFC approaches with many advantages. In this study, we consider7

a classification task between controls and patients with eMCI using rs-fMRI data8

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) studies, ADNI29

and ADNIGO. Our results indicate that the DFC methods are generally superior to10

the SFC methods when used as inputs into the classification model. Most impor-11

tantly, we find that cpDFC is generally superior to swDFC. We discuss how cpDFC12

methods offer greater parsimony of network features and ease of interpretability.13

Our empirical results indicate that functional brain network representations are14

dynamic, multiscale, and subject-specific, underscoring the need for a learning15

paradigm tailored to these properties.16

1 Introduction17

Resting-state functional magnetic resonance imaging (rs-fMRI) enables the investigation of brain18

connectivity without task-related variability, making it useful for detecting functional differences19

in neurological conditions [Biswal et al., 1995]. Functional connectivity (FC) quantifies statistical20

dependencies between regions of interest (ROIs) and is often represented as a graph [Muldoon and21

Bassett, 2016, Bassett and Bullmore, 2017]. While static FC (SFC) assumes constant connectivity,22

dynamic FC (DFC) captures time-varying interactions that better reflect neural processes [Hutchison23

et al., 2013]. The sliding-window approach (swDFC) is by far the most common method for DFC24

[Allen et al., 2014], but suffers from arbitrary window-size selection, redundancy from overlapping25

windows, and assumptions about uniform change rates [Zalesky and Breakspear, 2015, Leonardi and26

Van De Ville, 2015]. Furthermore, rs-fMRI time series are known to exhibit discrete state-switching27

rather than smooth, continuous drifts as assumed in swDFC [Allen et al., 2014].28

We propose a segmentation-first approach that aligns more closely with the true generative process.29

Change point dynamic functional connectivity (cpDFC), which segments fMRI time series into non-30

overlapping stationary intervals in a data-driven manner. This approach reduces redundancy, captures31

subject-specific dynamics, and can produce more discriminative features for disease classification.32

We evaluated cpDFC against SFC and swDFC in distinguishing early mild cognitive impairment33

(eMCI) from healthy controls using Alzheimer’s Disease Neuroimaging Initiative (ADNI) rs-fMRI34

data, and validated on an independent MCI dataset [Mascali et al., 2015]. Our work tackles key35

challenges in neuroimaging, namely, modeling complex, high-dimensional time series data (rs-fMRI),36
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capturing distributional shifts, and generating interpretable, reliable representations for clinical37

classification. Unlike fixed-window approaches that impose uniform temporal segmentation, cpDFC38

adaptively discovers subject-specific, stationary network regimes, parsing meso-scale dynamics that39

may correspond to evolving cognitive states or neural processes. Using change points, our approach40

instead extracts structured, meaningful segments that are more amenable to clinical deployment.41

Our contributions are as follows: (1) the first application of change point detection to classify42

neurodegenerative diseases from rs-fMRI, (2) a systematic comparison of cpDFC, swDFC, and SFC,43

including step-size effects of swDFC, (3) the demonstration that cpDFC produces superior accuracy44

and interpretability, (4) evidence that combining multiple FC methods in an ensemble improves45

performance for eMCI classification and provides richer representations than any one method.46

2 Methods47

Figure 1: A schematic of CN/eMCI classification task starting from raw rs-fMRI data to eMCI/control
classification for the ADNI rs-fMRI dataset. Panel (a) is the overall pipeline, while panels (b), (c),
and (d) show the different FC methodologies (SFC, swDFC, cpDFC, respectively). Panel, (e), shows
example graphs expressing the topological features used in the classification study.

We provide notation in the Supplementary Materials A. In ADNI’s rs-fMRI dataset, we analyzed48

33 subjects with early mild cognitive impairment (eMCI; mean age 72.3, 15M/18F) and 35 healthy49

controls (mean age 74.6, 14M/21F). Data were preprocessed in SPM [SPM, 2023] following a50

standard fMRI pipeline, including removal of initial volumes, motion correction, spatial normalization51

to MNI space, nuisance regression, spatial smoothing, detrending, and band-pass filtering (0.01–0.0852

Hz). The brain was parcellated into 120 regions using the AAL2 atlas [Tzourio-Mazoyer et al., 2002],53

and Z-score normalized. The final data set of each subject was a T = 130 by p = 120 matrix (time54

points × ROIs). Full details are provided in the Supplementary Materials C.55

For each stationary segment S, FC between ROIs i and j is estimated using Pearson’s correlation ρij .56

An edge is kept if |ρij | > 0.5, which yields graphs of strong statistical dependence [Adamovich et al.,57

2022]. For each subject, SFC assumes one stationary segment (entire scan), whereas DFC yields58

multiple segments. We estimate DFC under the assumption of unknown distributional shifts and rate59

of change, but with stationary segments existing in X . Two approaches were used:60
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Sliding windows (swDFC): a fixed-length window (w) is shifted by step size (s), with FC computed61

in each (Algorithm 1 in Supplementary Materials; schematic in Figure 1c).62

Change points (cpDFC): we use FaBiSearch [Ondrus et al., 2025], which detects multiple change63

points in multivariate time series based on network structure via non-negative matrix factorization64

[Lee and Seung, 1999]. The hyperparameters (δ, nrun, nreps) are established using recommendations65

from Ondrus and Cribben [2024]. Change points are ordered by p-value, and the first k = 1 or k = 266

are used to segment the time series before FC estimation. We also test NCPD [Cribben and Yu, 2017]67

and CRMT [Ryan and Killick, 2023] with comparable settings.68

For each segment’s graph, we compute standard node- and network-level metrics, degree, clustering69

coefficient, shortest path length, degree assortativity, local efficiency, and betweenness centrality, as70

candidate features [Rubinov and Sporns, 2010]. Formal definitions are provided in the Supplementary71

Materials G.72

Labels are defined as c = 0 (control) and c = 1 (eMCI). The features of all segments are concatenated,73

and sure independence screening (SIS; Fan and Lv, 2008) selects a reduced set F ′. We train a linear74

SVM [Boser et al., 1992], chosen for robustness after testing RBF-SVM, logistic regression, and75

decision trees. We compare SFC, swDFC, and cpDFC in separate experiments. For SFC, all T = 13076

time points are used. For swDFC, we test w ∈ [10, 70] (step 5) and s ∈ {1, 2, 3, 5, 8, 10, 15, 20}. For77

cpDFC, we evaluate FBS_cpDFC1 and FBS_cpDFC2. SIS and SVM are applied within each fold of78

leave-one-out cross-validation (68 subjects total). The complete pipeline is shown in Figure 1a.79

3 Results80

We first evaluate SFC, swDFC, and cpDFC separately, and then combine the best-performing models81

in an ensemble. Figure 2 summarizes the results. For swDFC, we report only window/step size82

combinations achieving accuracy ≥ 63.57% (one standard error above the null accuracy of 51.47%).83

Among all methods, FBS_cpDFC2 achieves the highest overall performance in two of four metrics:84

accuracy 77.94%, F1 80.00%, sensitivity 90.91%, and specificity 65.71%. The only metric in which85

FBS_cpDFC2 is significantly different from swDFC is sensitivity, but the two swDFC variants with86

higher sensitivity (60w_15s and 70w_10s) perform notably worse in other metrics. Compared to the87

best swDFC configuration (15w_3s: accuracy 72.06%, F1 74.67%), FBS_cpDFC2 performs slightly88

better (n.s., p = 0.250) but is significantly superior compared to the full swDFC set (µ = 0.5852,89

σ = 0.0483; all metrics p < 1.4× 10−5). cpDFC1 and SFC both underperform, with SFC near null90

accuracy. Across all (w, s) combinations of swDFC (Supplementary Materials B.1), no performance91

trend emerges and small parameter changes can cause large accuracy drops.92

Figure 2: F1, accuracy, sensitivity, and specificity results from the classification study of CN subjects
and subjects with eMCI in the ADNI rs-fMRI dataset. SFC, cpDFC, and swDFC correspond to static,
change point, and window based dynamic functional connectivity, respectively.

In general, the difference between FBS_cpDFC2 and the best swDFC combination (w = 60, s = 15)93

can be summarized as such: F1 score improved by 6.26%, accuracy by 12.76%, and specificity94

by 53.31%, while the sensitivity was lower by 6.25%. swDFC exhibited substantial variability,95

depending on the choice of window and step sizes, with accuracy in the range of 22.06%− 72.06%,96

F1 score 19.35%− 75.29%, sensitivity 18.18%− 96.97%, and specificity 14.29%− 68.57%.97
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Figure 3: The ensemble model results from the classification study of CN subjects and subjects with
eMCI in the ADNI dataset. Panel (a) shows the ensemble results, which combines the predictions
from the top-2 to the top-10 classifier models as determined by F1 score. FBS_cpDFC2 is the best
stand-alone classifier. Shaded regions indicate ± the standard error of proportion calculated. (b)
shows the correlation between predicted probabilities of eMCI across the top-10 classifiers.

Figure 3 shows the performance of the ensemble when combining predictions from the top-2 to98

top-10 classifiers (ranked by F1 score). The best single model is FBS_cpDFC2. Combining additional99

models does yield an improvement, likely due to minimal overlap in predictive information and100

differences in assumed rates of change. A correlation of predicted probabilities (Figure 3b) shows101

significant correlations (p-value = 4.00e− 5 and 1.09e− 3, respectively, t-test, α < 0.05, adjusted102

for multiple comparisons using Benjamini and Hochberg, 1995) between cpDFC2 and two swDFC103

variants (swDFC40w_5s, swDFC35w_20s), indicating redundancy between these feature spaces.104

4 Discussion105

Our results show that subject-specific temporal segmentation via change point DFC via FBS_cpDFC2,106

yields the strongest and most stable eMCI classification performance in ADNI rs-fMRI. Although107

the locations of the change points vary widely between individuals, the rate of change itself is not108

directly discriminative; instead, cpDFC’s advantage comes from capturing individualized temporal109

dynamics without imposing fixed window parameters. Across the entire grid, swDFC shows high110

variability, occasional performance below SFC, and unstable feature selection, underscoring the111

risks of exhaustive parameter search and multiple hypothesis testing. Furthermore, cpDFC achieves112

these results with 33% fewer selected features (28 vs. 42) and without costly hyperparameter tuning,113

making it less prone to overfitting than swDFC in small-sample, high-dimensional settings.114

Post-hoc ensemble analysis combining the best models yields further gains, supporting the idea115

that multi-timescale information improves classification. Significant correlations between some116

model predictions indicate partial redundancy, but diverse temporal scales still provide complemen-117

tary features. Performance gains plateau after the top-8 ensemble, suggesting diminishing returns.118

Replication on an independent MCI dataset (Supplementary Materials C.2) confirmed the superior119

performance of cpDFC over all swDFC variants, despite differences in acquisition and preprocessing,120

suggesting robustness to dataset-specific factors.121

Overall, our findings suggest: (1) individualized temporal segmentation is more robust than fixed-122

window approaches; (2) change point detection offers a principled alternative to swDFC for dynamic123

FC estimation; and (3) integrating multiple temporal resolutions can capture complementary neural124

dynamics for downstream tasks. Our cpDFC approach exemplifies a data-driven, segmentation-first125

approach that circumvents the need to tune hyperparameters such as window size, enabling stable,126

interpretable features from high-dimensional brain signals. Our ensemble findings highlight how127

multi-timescale fusion can enhance classification by aggregating complementary information.128

We acknowledge that our work has some limitations. One is that the smaller sample size (n = 68)129

may limit the ability to generalize to larger populations, particularly given the heterogeneity of130

eMCI. Additionally, our study uses some fixed pre-processing and parcellation choices which could131

influence downstream classification. Future works could explore larger studies and jointly learn132

segment boundaries and within-segment representations end-to-end using deep-learning approaches.133
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A Notation225

We denote a matrix with a bold capital letter A and vectors as bold lowercase letters a. The entry226

corresponding to the ith row and the jth column in A is Aij . The vector of the ith column in A is227

given by Ai. We denote a single subject’s fMRI data by X , where each data matrix X ∈ RT×p has228

T time points and p ROIs. A time point t is an element of the time index set {1, . . . , T}. A stationary229

segment in X is denoted by S = {xt ∈ Rp : t1 ≤ t ≤ t2} where t1, t2 ∈ {1, . . . , T}. A graph G is230

defined as a collection of vertices and edges G = (V,E). We use the terms “graph" and “network"231

interchangeably throughout. The number of samples or subjects in each study is denoted by n.232

B Additional results233

B.1 Sliding window results234

Figure 4 shows the results of different combinations of window size and step size for swDFC.235

Across the various combinations, there is no clear relationship between step size and window size.236

Additionally, there are several combinations that are plagued by instability, as shown by the large237

variability in step and window sizes in neighboring combinations (or tiles). For example, the238

combination of window size 15 and step size 3 achieved the best accuracy of 72.06%. However,239

changing the window size by 5 time points in either direction (to either 10 or 20), drastically reduces240

the performance of these models (to 58.82% and 55.88%, respectively). The same is also evident241

when the step size is changed to 2 or 8: the performance of the models reduces to 52.94% and242

64.71%, respectively.243

Figure 4: Heatmaps of F1 score, accuracy, sensitivity, and specificity from the classification study
of CN subjects and subjects with eMCI from the ADNI rs-fMRI dataset using swDFC. Results are
shown across window sizes [10, 70] in increments of 5 and step sizes [1, 2, 3, 5, 8, 10, 15, 20].

Figure 4 shows the results of different combinations of window size and step size for swDFC.244

Across the various combinations, there is no clear relationship between step size and window size.245

Additionally, there are several combinations that are plagued by instability, as shown by the large246

variability in step and window sizes in neighboring combinations (or tiles). For example, the247

combination of window size 15 and step size 3 achieved the best accuracy of 72.06%. However,248

changing the window size by 5 time points in either direction (to either 10 or 20), drastically reduces249
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the performance of these models (to 58.82% and 55.88%, respectively). The same is also evident250

when the step size is changed to 2 or 8: the performance of the models reduces to 52.94% and251

64.71%, respectively.252

B.2 Secondary dataset253

We present the classification results from the Mascali et al. [2015] dataset. We also include two254

additional change point detection methodologies, specifically Network Change Point Detection255

(NCPD: Cribben and Yu, 2017) and Covariance Change Points through Random Matrix Theory256

(CRMT: Ryan and Killick, 2023). Figure 5 (top panel) shows the classification results using SFC,257

swDFC and cpDFC methods. Similar to the ADNI data set, FaBiSearch with two change points has258

a superior performance compared to the other methods. In addition, it appears that change point259

methods outperform swDFC methods. In Figure 5 (bottom panels), we again find that there is no260

particular patterns between the different combinations of step size and window size and classification261

performance. The best performing models have a window size of approximately 40 and step size262

between 5 and 20 depending on the evaluation metric. For swDFC, performance on this dataset263

mirrors ADNI but is often inferior. Given the smaller size of this study (n = 20) compared to the264

ADNI data set (n = 68), it is possible that the performance discrepancies between the combinations265

of window and step size are further exacerbated in smaller sample size settings. Figure 6(a) shows266

the ensemble analysis for the Mascali et al. [2015] dataset. The lack of a monotonically increasing267

performance pattern as more models are combined may stem from the small sample size. Alternatively,268

it could be due to the larger number of higher correlations between the models (Figure 6(b)).269

B.3 Change point detection and stationary segments270

To estimate cpDFC, we apply FabiSearch [Ondrus et al., 2025] to each subject in the ADNI dataset.271

Figure 7 shows both the detected change points for the control group (CN) (Figure 7(a)) and the272

eMCI group (Figure 7(b)). Within each group, the change points are not consistently clustered around273

specific time points during the scan; rather, they are distributed relatively uniformly, aside from some274

edge effects near the start and end of the session. This observation suggests that the timing of change275

points is largely subject-specific, rather than being driven by a group-level pattern. A non-parametric276

Kolmogorov-Smirnov test on the change point locations between the two groups suggests that they277

are not significantly different (p = 0.413). A one-sided t-test on the means of the location of the first278

detected change points of the CN group and the eMCI groups suggests that the first change point for279

the CN group is significantly smaller (in time) than the eMCI group (p = 0.028).280

Figure 7 also shows the stationary FC states (or modes) between each change point, where S1,S2,S3281

refer to the first, second, and third stationary segments estimated by change point detection, respec-282

tively. Across all segments and even between the CN and subjects with eMCI, there is strong FC283

between the frontal and cerebellar regions. In the first FC state, S1, CN have stronger FC between284

the parietal regions and the rest of the brain, and also engage the temporal regions with the rest of the285

brain more as well. Subjects with eMCI, have stronger FC between the frontal and parietal regions.286

In S2, CN subjects exhibit strong FC between the frontal and parietal regions. In contrast, subjects287

with eMCI show FC primarily concentrated in the frontal regions, with connections extending to288

the occipital and limbic systems. Notably, a small number of occipital nodes in subjects with eMCI289

mediate much of the FC to other brain regions. In S3, CN patients display robust FC among the290

frontal, occipital, and cerebellar regions, forming a tightly coupled triad. Conversely, subjects with291

eMCI exhibit more diffuse FC, with the cerebellum acting as a hub, extensively connected to the rest292

of the brain, particularly the parietal lobe.293

B.4 Graph structure changes across time segments294

In Figure 8(a), we show the ROIs that were selected by SIS in all folds in leave-one-out cross-295

validation for FBS_cpDFC2. Figure 8(b) includes more information on the selected features and296

the corresponding ROIs, such as node ID, feature type, stationary segment, and differences in the297

mean value for the features of the CN and the eMCI groups. We find that the most consistently298

chosen features correspond to the frontal, parietal, and cerebellum regions. Degree, betweenness,299

clustering coefficient, local efficiency, and shortest path were all key features that were selected300

across LOOCV folds. We also find that eMCI is associated with lower degree in the parietal region,301
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Figure 5: The classification results of CN subjects and subjects with MCI from the Mascali et al.
[2015] rs-fMRI dataset. (Top panel) F1, accuracy, sensitivity, and specificity results of all methods.
SFC, cpDFC, and swDFC correspond to static, change point, and window based dynamic functional
connectivity, respectively. (Bottom panels) Heatmaps of F1 score, accuracy, sensitivity, and specificity.
Results are shown across window sizes [10, 70] in increments of 5 and step sizes [1, 2, 3, 5, 8, 10, 15,
20].

and that paths were more efficient, shorter, and tightly clustered in the cerebellum and frontal regions.302

Later segments (S2, and S3) were chosen more often across these folds, which may be related to the303

subjects being more settled and closer to a true “resting" state compared to the beginning of the fMRI304

experiment.305

As the results in the main article show, there is a concentration of strongly differentiating features306

in the later time segments (Figure 8) for the classification task. This is highlighted also in Figure307

9, especially in the ROIs close to the main diagonal, and also in the squared difference row, which308

are the largest for time segments 2 and 3. It is evident that the group-wise characteristics become309

more stable and contribute most to the differentiation in later time windows. Furthermore, it is clear310

from Figure 9 that global changes in graph structure are subtle, since the averaged adjacency matrices311

are generally relatively similar, but localized differences in functional connectivity have widespread312

effects related to the global graph structure. For example, we observed differences in the shortest313

path metric, which can be strongly influenced by changes in one or a few edges, especially if there is314

a lack of redundancy in connections between nodes. Therefore, these subtle differences in the graph315

structure have strong consequences in distinguishing CN from patients with eMCI.316
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Figure 6: The ensemble model results from the classification study of CN subjects and subjects with
eMCI in the Mascali et al. [2015] dataset. Panel (a) shows the ensemble results. For the ensemble
model, we combined the predictions from the top-2 to the top-10 classifier models, as determined by
their highest F1 score. The FBS_cpDFC2 model is the best stand-alone classifier. Shaded regions

indicate ± the standard error of proportion calculated as SE =
√

p̂(1−p̂)
n . (b) shows the correlation

between predicted probabilities of eMCI across the top-10 classifiers, as determined by the highest
F1 score.

As we restrict each subject to two change points, each subject has 3 stationary segments, or partitions317

between change points (or stationary modes). We can then compare group-wise differences in the318

adjacency matrices between consecutive segments. We calculate the average adjacency matrix for319

each segment and class (CN or eMCI), using the following procedure. For each group (CN: n = 35,320

eMCI: n = 33), µAij = 1
n

∑n
k=1 Aij . We can then calculate the entry-wise difference between321

the groups using µAdiff = µACN − µAeMCI. Figure 9 (rows 1 and 2) shows the average adjacency322

matrices grouped by segment (1, 2, or 3) and class (CN or eMCI), while Figure 9 (row 3) shows323

the differences in class between segments for all 120 ROIs. The differences appear to concentrate324

close to the diagonal of the adjacency matrices. This difference is especially pronounced between325

ROIs 50-60. In addition, subjects with eMCI have stronger off-diagonal connections, notably at the326

intersection of ROIs 10-20 and 80-90.327

C Data and pre-processing328

C.1 ADNI data329

The first dataset we obtained from the ADNI database (http://adni.loni.usc.edu). ADNI was330

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.331

The primary objective of ADNI has been to test whether serial magnetic resonance imaging, positron332

emission tomography, other biological markers, and clinical and neuropsychological evaluations333

can be combined to measure the progression of MCI and early AD. For up-to-date information, see334

www.adni-info.org. In ADNI’s rs-fMRI experiments, subjects were instructed to remain still and335

relaxed in the scanner. Subjects level data were obtained using Phillips scanners and include 33336

subjects with eMCI (mean age 72.3, 15M/18F) and 35 healthy controls (mean age 74.6, 14M/21F).337

Data were pre-processed using SPM [SPM, 2023], following a standard fMRI preprocessing pipeline.338

The first 10 volumes were discarded to account for initial scanner and subject noise. Next, a slice339

timing correction was performed (spm_slice_timing) to correct for timing differences between340

slices within each volume. The images were then realigned using spm_realign, which applies a341

rigid-body transformation to align each volume with the mean functional image. Motion parameters342

were estimated using least-squares with 2nd degree B-spline interpolation. The estimated motion343

parameters were subsequently applied to reslice all volumes using 4th degree B-spline interpolation344

to minimize resampling artifacts. The images were then normalized to the Montreal Neurological345

Institute (MNI) space with 3mm×3mm×3mm voxels (spm_normalise). Nuisance covariates346

(Friston 24, cerebrospinal fluid, white matter, and global mean) were regressed out. The voxels were347

then spatially smoothed using a Gaussian kernel (FWHM = 6mm) in spm_smooth. A linear trend was348

removed from each time series using ordinary least squares regression (spm_detrend) and a fourth349
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Figure 7: The change point detection results from applying FaBiSearch (taking only the first two
change points, FBS_cpDFC2) and corresponding stationary FC states for (a) controls and (b) subjects
with eMCI for the ADNI rs-fMRI dataset. For each panel, FC plots are shown for each stationary
segment, where S1,S2,S3 correspond to the first, second, and third stationary segments. Individual
change points are used to segment the time series, and then correlation matrices are averaged across
subjects. The top 100 edges as determined by the absolute value of this averaged correlation are
shown for each stationary segment. Below the FC plots, orange and blue points indicate the first and
second detected change points, respectively, for each subject such that the points are pooled within
each group (CN or eMCI).

order Butterworth low-pass filter (0.01–0.08 Hz) was applied to attenuate high-frequency noise and350

low-frequency drift outside the typical BOLD signal range (spm_filter). We used the Automated351

Anatomical Labeling (AAL2) atlas to subdivide the brain into 120 anatomical regions [Tzourio-352

Mazoyer et al., 2002]. We chose the AAL2 atlas because of its widespread use in neuroimaging353

studies, particularly in Alzheimer’s disease and MCI research, allowing for comparisons with other354

works. AAL2 provides whole-brain coverage with a moderate number of parcels, providing a balance355

between spatial resolution and statistical power. The region of interest (ROI) time series for a given356

region was defined as the average of the time series of all voxels within that region. Finally, each357

time series was z-score normalized. The final preprocessed dataset for each subject was a time series358

of dimension T = 130 time points by p = 120 ROIs.359

C.2 Secondary dataset360

In order to check the robustness of our results, we apply our methods to a second study of MCI361

classification [Mascali et al., 2015], which includes 10 patients with mild cognitive impairment and362

10 healthy elderly controls. Participants were told to lie quietly with their eyes closed without falling363

asleep. A 3T MRI system (Magnetom Allegra, Siemens, Erlangen, Germany) was used to acquire364

images, with the following properties: TR = 2080 ms, TE = 30 ms, 32 axial slices parallel to the365
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Figure 8: (a) The associated regions of interest (ROIs) of the features selected across all folds by
SIS in leave-one-out cross validation for FBS_cpDFC2 in the classification study of CN subjects
and subjects with eMCI from the ADNI rs-fMRI dataset. (b) The node ID, the number of LOOCV
folds that the feature was chosen, region from the AAL atlas, the graph theoretic feature type, the
stationary segment (i.e., 1 = first, 2 = second, 3 = third), and the mean values of the features of the
CN and eMCI groups. The features are ordered in descending order based on how often they were
selected across the LOOCV folds.

AC-PC plane, matrix = 64 x 64, in plane resolution = 3x3 mm2, slice thickness = 2.5 mm, 50% skip,366

flip angle = 70◦. Functional images were preprocessed using the Connectivity toolbox [Whitfield-367

Gabrieli and Nieto-Castanon, 2012]. The initial four volumes were discarded for signal and scanner368

stabilization, resulting in 216 time points per subject, and images were slice-time corrected and369

realigned to the first image. More detailed information on the preprocessing steps can be found370

in Mascali et al. [2015]. Finally, the atlas of Gordon et al. [2016] was used to parcellate the brain371

into ROIs. To explore the generalizability of our approach while maintaining comparability with372

the main study (120 ROIs), we selected the Default [Sperling et al., 2010, Buckner et al., 2008],373

Frontoparietal [Brier et al., 2012], Cinguloparietal [Bai et al., 2009], and Dorsal Attention [Zhou374

et al., 2008] communities, resulting in a reduced dimensionality of 102 ROIs. This allowed us to375

test the method on another dataset with slightly different preprocessing and experimental conditions,376

while keeping the parcellation scale comparable, to assess the robustness of the results.377

D Algorithms for time-varying functional connectivity estimation378

In this section, we provide a brief overview of the algorithms used to estimate and analyze dynamic379

functional connectivity, including a standard sliding-window correlation approach and the FaBiSearch380

change point detection method Ondrus et al. [2025]. For further technical details are available on381

FaBiSearch, we refer readers to the original publication [Ondrus et al., 2025].382
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Figure 9: Averaged adjacency matrices across temporal segments (columns), and subject class
(rows) for the FaiSearch (cpDFC2) method in the classification study of CN subjects and subjects
with eMCI from the ADNI rs-fMRI dataset. Node labels (1 to 120) correspond to the AAL atlas
[Tzourio-Mazoyer et al., 2002] labels. The difference between the CN and the eMCI adjacency
matrices computed for each segment is shown in the third row.

Algorithm 1: Algorithm for estimating dynamic functional connectivity using sliding windows.
Inputs: fMRI data matrix X , window size w, step size s

1 Initialize the starting point and end points of the window as tstart = 1 and tend = w, respectively.
while tstart + w − 1 ≤ T do

2 tend ← tstart + w − 1
3 Estimate FC within the window Xtstart : tend

4 Advance the window, tstart ← tstart + s, tend ← tstart + w − 1
end

383

Algorithm 2: Change point detection algorithm using FaBiSearch which can be applied recur-
sively to find multiple change points.
Inputs: data matrix X , minimum distance δ, number of runs of NMF nrun, number of

permutation repetitions nreps

1 Find optimal rank, r, over all of X
2 Evaluate fitments of X to NMF using Kullback-Leibler divergence to navigate over T .
3 Continue until convergence to a single t which becomes the candidate change point to be

evaluated.
4 Calculate the p-value of the candidate change point to determine whether splitting at this point

improves Kullback-Leibler divergence over the null distribution.

384
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E Functional connectivity through graph estimation385

We begin by introducing the concept of stationarity, where a stationary segment in the multivariate386

BOLD time series is defined as one in which the statistical properties are assumed to not change387

with respect to time [Jones et al., 2012, Handwerker et al., 2012]. The goal of DFC then, is to either388

model the dynamics of these changing properties, or, to segment the time series to isolate stationary389

segments. From the DFC approaches outlined in the next section, we obtain a series of stationary390

segments for each subject, while for SFC, stationary is assumed over the entire experimental time391

course, and thus one segment is obtained for each subject. For each stationary segment S, we estimate392

the functional connectivity (FC), or linear dependency, between the ith and jth time series using393

Pearson’s correlation coefficient ρij . In the brain fMRI setting, the graph G = (V,E) is defined394

such that each vertex vi ∈ V represents a region of interest (ROI) or parcellated brain region, and395

each edge eij ∈ E is weighted by the corresponding correlation ρij between ROI time series i and j.396

Because we are primarily interested in strong functional connections, we apply an absolute correlation397

threshold of 0.5, consistent with the range (0.1–0.8) commonly used in the literature [Adamovich398

et al., 2022]. Thus, an edge eij remains in G if |ρij | > 0.5. A schematic of the SFC estimation399

procedure is shown in Figure 1(b). The resulting adjacency matrix encodes the network structure for400

the segment, with retained edge weights reflecting the strength of functional coupling between brain401

regions as measured by correlation. More formally, let τ = 0.5. The edge set is402

E =
{
{i, j} : i < j, |ρij | > τ

}
,

and the weighted adjacency is Aij = ρij if {i, j} ∈ E and Aij = 0 otherwise (with Aii = 0).403

F Estimating DFC404

To estimate DFC, we assume that we have no prior knowledge of the distribution of X , and that there405

may be an unknown number of distributional shifts, with the number and locations in {1, . . . , T}406

and the rate of change between them is assumed unknown. We do however assume that there exist407

segments in X which are stationary. We consider two approaches, sliding windows (swDFC) and408

change points (cpDFC), for estimating time-varying connectivity in rs-fMRI. swDFC is a naive409

approach in which no data information is used to determine the temporal structure. Here, a window of410

a particular length, w, is used to subselect the set of time indices in {1, . . . , T}. As its name suggests,411

the window is then slid over a predetermined length, s, to define the next window. Consequently, the412

sliding window captures dynamic information by subsampling the entirety of the distribution through413

a predetermined and overlapping set of time-dependent steps, where within each of these windows,414

FC is estimated as described in Section E. We describe the sliding-window method in Algorithm 1415

(in the Appendix) and show a schematic in Figure 1(c).416

The choices for w and s are crucial, as they determine the granularity and the amount of overlap417

between snapshots that this technique captures. However, the values for these parameters are context418

dependent and it is not possible to derive them directly from X . As a consequence of this, we vary419

the combinations of w and s in our experiments and test the classification performance.420

We implement cpDFC using FaBiSearch, a change point detection technique in the network structure421

between (high-dimensional) multivariate time series [Ondrus et al., 2025]. More formally, we consider422

the multiple change point detection problem in a multivariate time series data X . We seek to find423

the time points where the network structure of X changes. FaBiSearch utilizes non-negative matrix424

factorization (NMF: Lee and Seung, 1999) to identify multiple change points in high-dimensional425

time series data. In particular, change points are identified in a sequential manner through successive426

splitting of the time series. No limit is imposed on the number of change points; instead, detection427

proceeds until further splitting cannot be performed. Candidate change points are then evaluated428

through a permutation test procedure. The method requires a series of hyperparameters; X , α, δ,429

nrun, nreps, r which refer to the input multivariate time series data, significance for the permutation430

test, minimum distance between change points, maximum number of runs of the NMF algoirthm, and431

the number of permutation in the permutation test. The rank of NMF to use in the procedure, r, can432

be determined from the data by an iterative permutation procedure. Algorithm 2 (in the Appendix)433

summarizes FaBiSearch, and we utilize a loss based on Kullback-Leibler divergence to assess the fit434

of the model. For more details on FaBiSearch, see Ondrus et al. [2025].435
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In contrast to the sliding window method, which can be highly sensitive to the precise choice of436

parameters such as window length and step size, Change point detection does not require parameter437

values to be so finely tuned for optimal performance. Instead, it only requires sufficient settings,438

meaning enough data samples, permutation iterations, and related hyperparameters, to reliably detect439

change points, without the need to identify a single “best” configuration. Ondrus and Cribben440

[2024] show through a sensitivity analysis on simulated data that the accuracy of change point441

detection using FaBiSearch plateaus beyond sufficient values of the input hyperparameters. In their442

simulations, Ondrus and Cribben [2024] found that performance plateaued once δ ≥ 30, nrun ≥ 100,443

nreps ≥ 100, denoting the minimum distance between change points, the number of NMF runs for444

convergence, and the number of permutations for the significance test, respectively. Increasing these445

values beyond these thresholds produced only marginal improvements in detection accuracy.446

For each subject, we first estimate the change points using FaBiSearch and then order the change447

points q̂ by their respective p-value from smallest to largest. After defining the set of change points, q̂,448

we partition X into stationary time segments between the change points. In the classification study,449

we used k = 1 and k = 2 change points to define the stationary segments. Finally, for each of the450

stationary segments, we estimate FC as described in Section E.451

We also estimate cpDFC using two other change point detection methods, specifically Network452

Change Point Detection (NCPD: Cribben and Yu, 2017) and Covariance Change Points through453

Random Matrix Theory (CRMT: Ryan and Killick, 2023). For NCPD and CRMT, we used similar454

hyperparameters to FaBiSearch, that is, a similar minimum distance between the change points and455

the optimal rank. All other hyperaparameters for these methods were set to their default values. For456

CRMT, we further pre-processed ROI time series by performing a truncated SVD with the same457

optimal rank as used in FaBiSearch to satisfy the theoretical condition that p ≤ n for the estimator to458

be well-behaved. A schematic of change point detection is shown in Figure 1(d).459

G Graph Theoretic Features460

Degree461

The degree of a node can be calculated from the following definition:462

di =
∑
j∈V

aij ,

where di ∈ N0 is the degree of the node i, V is the set of all nodes, and aij is the intersection of the463

nodes i and j in the adjacency matrix.464

Clustering coefficient465

From Wasserman and Faust [1994], it is given by:466

Ci =
2ei

di(di − 1)
,

where Ci ∈ [0, 1] is the clustering coefficient for node i, di is the degree of node i, and ei is the467

number of edges between node i and neighbors di.468

Shortest path469

We use the notation ℓij ∈ N0 as the fewest number of edges that connect nodes i and j together to470

define the shortest path. The shortest path can be calculated using different algorithms, although we471

use breadth-first search (BFS: Cormen et al., 2022) in our implementation.472

Degree assortativity473

Newman [2002] define degree assortativity as474
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where r ∈ [−1, 1] is the degree assortativity of the graph, m is the total number of edges, and ji and475

ki are the degree of the nodes j and k that are connected through i.476

Local efficiency477

The definition of local efficiency from Latora and Marchiori [2001] is478

Ei =
1

di(di − 1)

∑
j,k∈Gi,j ̸=k

1

ℓjk
,

where Ei ∈ [0, 1] is the local efficiency measure of node i, di is the degree of node i, and ℓjk is the479

shortest distance between nodes j and k in the sub-graph of Gi.480

Betweenness centrality481

The definition of betweenness centrality [Freeman, 1977] follows:482

Bi =
∑

j ̸=i ̸=k

σjk(i)

σjk
,

where Bi ∈ [0, 1] is the betweenness centrality of node i, σjk is the total number of shortest paths483

between nodes j and k, and σjk(i) is the total number of shortest paths between j and k that pass484

through i.485

H Evaluation metrics486

We evaluated the performance of our models from the classification study using the following four487

metrics:488

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

F1 = 2× Precision× Recall
Precision + Recall

where Precision =
TP

TP + FP
, Recall =

TP

TP + FN
and ,

TP denotes True Positives; The number of correctly labeled eMCI.
TN denotes True Negatives; The number of correctly labeled control.
FP denotes False Positives; The number of control incorrectly labeled as eMCI.
FN denotes False Negatives; The number of eMCI incorrectly labeled control.
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I Data, code, and computational resources statement489

Due to the sensitive nature of the data used in this study, as well as the terms of use for both490

sources, we are unable to directly share the data used. The ADNI and Mascali et al. [2015]491

datasets used were derived from the following public domains http://adni.loni.usc.edu/ and492

https://dataverse.harvard.edu/dataverse/restAD, respectively. All R code implementing493

experiments is available on Anonymous GitHub. All experiments were performed using 48 core494

machines with 2 Intel Platinum 8260 Cascade Lake at 2.4Ghz and 187GB of memory.495

J Potential societal impacts496

Our study provides evidence of more accurate and robust estimates of early neurodegeneration,497

which can accelerate fundamental neuroscience research, improve biomarkers for neurological and498

psychiatric disorders, and ultimately inform better diagnostics and therapies. However, there are499

potential negative impacts. For one, there is a risk of misinterpretation of models. Treating the500

edges of a correlational network as causal may prompt unsafe interventions. Another concern is501

privacy. High-resolution connectomes can, in principle, carry individual-specific signatures. Sharing502

or pooling data without adequate safeguards risks misuse of participants’ brain data. There are also503

risks in using this method in unintended ways, such as outside clinical or research contexts (e.g.,504

surveillance of cognitive states). Lastly, there are considerations regarding fairness. If the method is505

applied to heterogeneous populations without proper care, estimates can systematically misrepresent506

under-studied groups (e.g., age, ethnicity), leading to biased conclusions.507
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NeurIPS Paper Checklist508

1. Claims509

Question: Do the main claims made in the abstract and introduction accurately reflect the510

paper’s contributions and scope?511

Answer: [Yes]512

Justification: Yes, we provide clear statements about background information, previous513

studies, and our contribution through the paper, both in the abstract as well as throughout514

the introduction.515

Guidelines:516

• The answer NA means that the abstract and introduction do not include the claims517

made in the paper.518

• The abstract and/or introduction should clearly state the claims made, including the519

contributions made in the paper and important assumptions and limitations. A No or520

NA answer to this question will not be perceived well by the reviewers.521

• The claims made should match theoretical and experimental results, and reflect how522

much the results can be expected to generalize to other settings.523

• It is fine to include aspirational goals as motivation as long as it is clear that these goals524

are not attained by the paper.525

2. Limitations526

Question: Does the paper discuss the limitations of the work performed by the authors?527

Answer: [Yes]528

Justification: We provide commentary on the limitations of our study in the Discussion529

portion of the paper. In particular, we state:530

“We acknowledge that our work has some limitations. One is that the smaller sample531

size (n = 68) may limit the ability to generalize to broader populations, particularly532

given the heterogeneity of eMCI. Additionally, our study uses some fixed pre-processing533

and parcellation choices which could influence downstream classification. Future works534

could explore larger studies, and jointly learn segment boundaries and within-segment535

representations end-to-end using deep-learning approaches.”536

Guidelines:537

• The answer NA means that the paper has no limitation while the answer No means that538

the paper has limitations, but those are not discussed in the paper.539

• The authors are encouraged to create a separate "Limitations" section in their paper.540

• The paper should point out any strong assumptions and how robust the results are to541

violations of these assumptions (e.g., independence assumptions, noiseless settings,542

model well-specification, asymptotic approximations only holding locally). The authors543

should reflect on how these assumptions might be violated in practice and what the544

implications would be.545

• The authors should reflect on the scope of the claims made, e.g., if the approach was546

only tested on a few datasets or with a few runs. In general, empirical results often547

depend on implicit assumptions, which should be articulated.548

• The authors should reflect on the factors that influence the performance of the approach.549

For example, a facial recognition algorithm may perform poorly when image resolution550

is low or images are taken in low lighting. Or a speech-to-text system might not be551

used reliably to provide closed captions for online lectures because it fails to handle552

technical jargon.553

• The authors should discuss the computational efficiency of the proposed algorithms554

and how they scale with dataset size.555

• If applicable, the authors should discuss possible limitations of their approach to556

address problems of privacy and fairness.557

• While the authors might fear that complete honesty about limitations might be used by558

reviewers as grounds for rejection, a worse outcome might be that reviewers discover559

limitations that aren’t acknowledged in the paper. The authors should use their best560

18



judgment and recognize that individual actions in favor of transparency play an impor-561

tant role in developing norms that preserve the integrity of the community. Reviewers562

will be specifically instructed to not penalize honesty concerning limitations.563

3. Theory assumptions and proofs564

Question: For each theoretical result, does the paper provide the full set of assumptions and565

a complete (and correct) proof?566

Answer: [NA]567

Justification: We do not consider theoretical implications of the proposed framework/method,568

as we are more concerned with validating the approach empirically.569

Guidelines:570

• The answer NA means that the paper does not include theoretical results.571

• All the theorems, formulas, and proofs in the paper should be numbered and cross-572

referenced.573

• All assumptions should be clearly stated or referenced in the statement of any theorems.574

• The proofs can either appear in the main paper or the supplemental material, but if575

they appear in the supplemental material, the authors are encouraged to provide a short576

proof sketch to provide intuition.577

• Inversely, any informal proof provided in the core of the paper should be complemented578

by formal proofs provided in appendix or supplemental material.579

• Theorems and Lemmas that the proof relies upon should be properly referenced.580

4. Experimental result reproducibility581

Question: Does the paper fully disclose all the information needed to reproduce the main ex-582

perimental results of the paper to the extent that it affects the main claims and/or conclusions583

of the paper (regardless of whether the code and data are provided or not)?584

Answer: [Yes]585

Justification: We provide a full methodological pipeline from raw data to final predictions586

detailed in both the main paper, as well as the supplementary materials.587

Guidelines:588

• The answer NA means that the paper does not include experiments.589

• If the paper includes experiments, a No answer to this question will not be perceived590

well by the reviewers: Making the paper reproducible is important, regardless of591

whether the code and data are provided or not.592

• If the contribution is a dataset and/or model, the authors should describe the steps taken593

to make their results reproducible or verifiable.594

• Depending on the contribution, reproducibility can be accomplished in various ways.595

For example, if the contribution is a novel architecture, describing the architecture fully596

might suffice, or if the contribution is a specific model and empirical evaluation, it may597

be necessary to either make it possible for others to replicate the model with the same598

dataset, or provide access to the model. In general. releasing code and data is often599

one good way to accomplish this, but reproducibility can also be provided via detailed600

instructions for how to replicate the results, access to a hosted model (e.g., in the case601

of a large language model), releasing of a model checkpoint, or other means that are602

appropriate to the research performed.603

• While NeurIPS does not require releasing code, the conference does require all submis-604

sions to provide some reasonable avenue for reproducibility, which may depend on the605

nature of the contribution. For example606

(a) If the contribution is primarily a new algorithm, the paper should make it clear how607

to reproduce that algorithm.608

(b) If the contribution is primarily a new model architecture, the paper should describe609

the architecture clearly and fully.610

(c) If the contribution is a new model (e.g., a large language model), then there should611

either be a way to access this model for reproducing the results or a way to reproduce612

the model (e.g., with an open-source dataset or instructions for how to construct613

the dataset).614
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(d) We recognize that reproducibility may be tricky in some cases, in which case615

authors are welcome to describe the particular way they provide for reproducibility.616

In the case of closed-source models, it may be that access to the model is limited in617

some way (e.g., to registered users), but it should be possible for other researchers618

to have some path to reproducing or verifying the results.619

5. Open access to data and code620

Question: Does the paper provide open access to the data and code, with sufficient instruc-621

tions to faithfully reproduce the main experimental results, as described in supplemental622

material?623

Answer: [Yes]624

Justification: We provide a statement at the end of the supplementary material which details625

where open access data was retrieved from, and we also provide a link to an Anonymous626

Github repository which includes comprehensive experimental pipelines.627

Guidelines:628

• The answer NA means that paper does not include experiments requiring code.629

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/630

public/guides/CodeSubmissionPolicy) for more details.631

• While we encourage the release of code and data, we understand that this might not be632

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not633

including code, unless this is central to the contribution (e.g., for a new open-source634

benchmark).635

• The instructions should contain the exact command and environment needed to run to636

reproduce the results. See the NeurIPS code and data submission guidelines (https:637

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.638

• The authors should provide instructions on data access and preparation, including how639

to access the raw data, preprocessed data, intermediate data, and generated data, etc.640

• The authors should provide scripts to reproduce all experimental results for the new641

proposed method and baselines. If only a subset of experiments are reproducible, they642

should state which ones are omitted from the script and why.643

• At submission time, to preserve anonymity, the authors should release anonymized644

versions (if applicable).645

• Providing as much information as possible in supplemental material (appended to the646

paper) is recommended, but including URLs to data and code is permitted.647

6. Experimental setting/details648

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-649

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the650

results?651

Answer: [Yes]652

Justification: We provide full preprocessing, data splitting, and hyperparameter selection653

details in the paper, with additional specifics in the supplementary material. The main text654

summarizes the overall experimental setup, while the supplement contains exact parameter655

values, algorithm settings, and training/testing procedures to ensure full reproducibility.656

Guidelines:657

• The answer NA means that the paper does not include experiments.658

• The experimental setting should be presented in the core of the paper to a level of detail659

that is necessary to appreciate the results and make sense of them.660

• The full details can be provided either with the code, in appendix, or as supplemental661

material.662

7. Experiment statistical significance663

Question: Does the paper report error bars suitably and correctly defined or other appropriate664

information about the statistical significance of the experiments?665

Answer: [Yes]666
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Justification: We report all hypothesis testing results, statistical significance provide error667

bars in figures.668

Guidelines:669

• The answer NA means that the paper does not include experiments.670

• The authors should answer "Yes" if the results are accompanied by error bars, confi-671

dence intervals, or statistical significance tests, at least for the experiments that support672

the main claims of the paper.673

• The factors of variability that the error bars are capturing should be clearly stated (for674

example, train/test split, initialization, random drawing of some parameter, or overall675

run with given experimental conditions).676

• The method for calculating the error bars should be explained (closed form formula,677

call to a library function, bootstrap, etc.)678

• The assumptions made should be given (e.g., Normally distributed errors).679

• It should be clear whether the error bar is the standard deviation or the standard error680

of the mean.681

• It is OK to report 1-sigma error bars, but one should state it. The authors should682

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis683

of Normality of errors is not verified.684

• For asymmetric distributions, the authors should be careful not to show in tables or685

figures symmetric error bars that would yield results that are out of range (e.g. negative686

error rates).687

• If error bars are reported in tables or plots, The authors should explain in the text how688

they were calculated and reference the corresponding figures or tables in the text.689

8. Experiments compute resources690

Question: For each experiment, does the paper provide sufficient information on the com-691

puter resources (type of compute workers, memory, time of execution) needed to reproduce692

the experiments?693

Answer: [Yes]694

Justification: We report the compute environment in the supplementary material. Execution695

time varies by experiment, but as a guideline, processing from raw data through preprocess-696

ing, FC estimation, feature generation, and classifier training/testing takes a few hours per697

subject. Experiments were parallelized across subjects using CPU cores.698

Guidelines:699

• The answer NA means that the paper does not include experiments.700

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,701

or cloud provider, including relevant memory and storage.702

• The paper should provide the amount of compute required for each of the individual703

experimental runs as well as estimate the total compute.704

• The paper should disclose whether the full research project required more compute705

than the experiments reported in the paper (e.g., preliminary or failed experiments that706

didn’t make it into the paper).707

9. Code of ethics708

Question: Does the research conducted in the paper conform, in every respect, with the709

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?710

Answer: [Yes]711

Justification: We have reviewed the NeurIPS Code of Ethics and ensured full compliance.712

Anonymity is preserved by omitting author-identifying information and using an Anonymous713

GitHub repository for code access.714

Guidelines:715

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.716

• If the authors answer No, they should explain the special circumstances that require a717

deviation from the Code of Ethics.718
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-719

eration due to laws or regulations in their jurisdiction).720

10. Broader impacts721

Question: Does the paper discuss both potential positive societal impacts and negative722

societal impacts of the work performed?723

Answer: [Yes]724

Justification: We provide a statement of potential societal impacts of the work available in725

the supplementary materials.726

Guidelines:727

• The answer NA means that there is no societal impact of the work performed.728

• If the authors answer NA or No, they should explain why their work has no societal729

impact or why the paper does not address societal impact.730

• Examples of negative societal impacts include potential malicious or unintended uses731

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations732

(e.g., deployment of technologies that could make decisions that unfairly impact specific733

groups), privacy considerations, and security considerations.734

• The conference expects that many papers will be foundational research and not tied735

to particular applications, let alone deployments. However, if there is a direct path to736

any negative applications, the authors should point it out. For example, it is legitimate737

to point out that an improvement in the quality of generative models could be used to738

generate deepfakes for disinformation. On the other hand, it is not needed to point out739

that a generic algorithm for optimizing neural networks could enable people to train740

models that generate Deepfakes faster.741

• The authors should consider possible harms that could arise when the technology is742

being used as intended and functioning correctly, harms that could arise when the743

technology is being used as intended but gives incorrect results, and harms following744

from (intentional or unintentional) misuse of the technology.745

• If there are negative societal impacts, the authors could also discuss possible mitigation746

strategies (e.g., gated release of models, providing defenses in addition to attacks,747

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from748

feedback over time, improving the efficiency and accessibility of ML).749

11. Safeguards750

Question: Does the paper describe safeguards that have been put in place for responsible751

release of data or models that have a high risk for misuse (e.g., pretrained language models,752

image generators, or scraped datasets)?753

Answer: [NA]754

Justification: The authors do not believe the methodology proposed in this paper has a high755

risk for misuse. Pretrained model weights are not provided in any of the code.756

Guidelines:757

• The answer NA means that the paper poses no such risks.758

• Released models that have a high risk for misuse or dual-use should be released with759

necessary safeguards to allow for controlled use of the model, for example by requiring760

that users adhere to usage guidelines or restrictions to access the model or implementing761

safety filters.762

• Datasets that have been scraped from the Internet could pose safety risks. The authors763

should describe how they avoided releasing unsafe images.764

• We recognize that providing effective safeguards is challenging, and many papers do765

not require this, but we encourage authors to take this into account and make a best766

faith effort.767

12. Licenses for existing assets768

Question: Are the creators or original owners of assets (e.g., code, data, models), used in769

the paper, properly credited and are the license and terms of use explicitly mentioned and770

properly respected?771
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Answer: [Yes]772

Justification: We include appropriate citations for all code and data sets used for the paper.773

Guidelines:774

• The answer NA means that the paper does not use existing assets.775

• The authors should cite the original paper that produced the code package or dataset.776

• The authors should state which version of the asset is used and, if possible, include a777

URL.778

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.779

• For scraped data from a particular source (e.g., website), the copyright and terms of780

service of that source should be provided.781

• If assets are released, the license, copyright information, and terms of use in the782

package should be provided. For popular datasets, paperswithcode.com/datasets783

has curated licenses for some datasets. Their licensing guide can help determine the784

license of a dataset.785

• For existing datasets that are re-packaged, both the original license and the license of786

the derived asset (if it has changed) should be provided.787

• If this information is not available online, the authors are encouraged to reach out to788

the asset’s creators.789

13. New assets790

Question: Are new assets introduced in the paper well documented and is the documentation791

provided alongside the assets?792

Answer: [Yes]793

Justification: We include all code and experiments as an Anonymous Github.794

Guidelines:795

• The answer NA means that the paper does not release new assets.796

• Researchers should communicate the details of the dataset/code/model as part of their797

submissions via structured templates. This includes details about training, license,798

limitations, etc.799

• The paper should discuss whether and how consent was obtained from people whose800

asset is used.801

• At submission time, remember to anonymize your assets (if applicable). You can either802

create an anonymized URL or include an anonymized zip file.803

14. Crowdsourcing and research with human subjects804

Question: For crowdsourcing experiments and research with human subjects, does the paper805

include the full text of instructions given to participants and screenshots, if applicable, as806

well as details about compensation (if any)?807

Answer: [Yes]808

Justification: Although we did not collect any human data as part of our neuroimaging809

experiments, we did use an open source data set which includes human subjects. Details are810

available in the supplementary materials.811

Guidelines:812

• The answer NA means that the paper does not involve crowdsourcing nor research with813

human subjects.814

• Including this information in the supplemental material is fine, but if the main contribu-815

tion of the paper involves human subjects, then as much detail as possible should be816

included in the main paper.817

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,818

or other labor should be paid at least the minimum wage in the country of the data819

collector.820

15. Institutional review board (IRB) approvals or equivalent for research with human821

subjects822
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Question: Does the paper describe potential risks incurred by study participants, whether823

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)824

approvals (or an equivalent approval/review based on the requirements of your country or825

institution) were obtained?826

Answer: [NA]827

Justification: Although our real data experiments include human subjects, we were not828

involved in the data collection process at all, and are using the open source and de-identified829

version of the data set.830

Guidelines:831

• The answer NA means that the paper does not involve crowdsourcing nor research with832

human subjects.833

• Depending on the country in which research is conducted, IRB approval (or equivalent)834

may be required for any human subjects research. If you obtained IRB approval, you835

should clearly state this in the paper.836

• We recognize that the procedures for this may vary significantly between institutions837

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the838

guidelines for their institution.839

• For initial submissions, do not include any information that would break anonymity (if840

applicable), such as the institution conducting the review.841

16. Declaration of LLM usage842

Question: Does the paper describe the usage of LLMs if it is an important, original, or843

non-standard component of the core methods in this research? Note that if the LLM is used844

only for writing, editing, or formatting purposes and does not impact the core methodology,845

scientific rigorousness, or originality of the research, declaration is not required.846

Answer: [NA]847

Justification:848

Guidelines:849

• The answer NA means that the core method development in this research does not850

involve LLMs as any important, original, or non-standard components.851

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)852

for what should or should not be described.853
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