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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) offers a robust mecha-
nism for enhancing the mathematical reasoning capabilities of large models. How-
ever, we identify that harder questions lack sufficient attention in existing methods
from both algorithmic and data perspectives. Algorithmically, widely used Group
Relative Policy Optimization (GRPO) and its variants exhibit a critical limitation:
their advantage estimation introduces an implicit imbalance where the magnitude
of policy updates is lower for harder questions. From a data-centric viewpoint,
existing augmentation approaches primarily rephrase questions to enhance diver-
sity, without systematically increasing their intrinsic difficulty. To address these
issues, we propose a two-dual MathForge framework to improve mathematical
reasoning by targeting harder questions from both perspectives, which comprises
a Difficulty-Aware Group Policy Optimization (DGPO) algorithm and a Multi-
Aspect Question Reformulation (MQR) strategy. Specifically, DGPO first recti-
fies the implicit imbalance in GRPO via difficulty-balanced group advantage es-
timation and further prioritizes more challenging questions by difficulty-aware
question-level weighting. Meanwhile, MQR reformulates questions across mul-
tiple aspects to increase their difficulty while maintaining the original gold an-
swer. Overall, MathForge creates a synergistic loop: MQR expands the data fron-
tier, and DGPO efficiently masters the augmented data. Extensive experiments
demonstrate that MathForge markedly outperforms existing methods on various
mathematical reasoning tasks. The code and augmented data will all be available.

1 INTRODUCTION

Recently, large language models (LLMs) have demonstrated remarkable reasoning capabilities, fun-
damentally altering the landscape of artificial intelligence (Jaech et al., 2024; Comanici et al., 2025;
Guo et al., 2025). In this context, reinforcement learning with verifiable rewards (RLVR) has been
proven as a promising training paradigm (Guo et al., 2025; Wen et al., 2025), especially for enhanc-
ing mathematical reasoning. It adopts rule-based rewards instead of neural reward models, thereby
significantly reducing computational overhead and mitigating the risk of reward hacking.

From an algorithmic perspective, the most representative approach to support RLVR is Group Rela-
tive Policy Optimization (GRPO) (Shao et al., 2024), which estimates relative advantages of a group
of responses to the same question. However, we reveal and mathematically prove a critical limita-
tion in GRPO and its variants: their advantage estimation function introduces an implicit imbalance
where the update magnitudes are suppressed for both easier and harder questions and peak for those
of moderate difficulty. The neglect of more challenging yet solvable questions is detrimental to RL
training. Such questions are ideal training material, as they expose the model’s incomplete mastery
while also offering at least one correct response for targeted improvement. Therefore, harder ques-
tions should be emphasized to focus the model on overcoming its solvable weaknesses, while easier
ones necessitate only minimal yet sufficient weighting to prevent forgetting. Zhang & Zuo (2025)
also recognize the importance of question difficulty in GRPO, but their method proposes a complex
difficulty-aware advantage reweighting without rectifying the underlying imbalance.

Meanwhile, from a data perspective, traditional augmentation methods for reasoning often generate
entirely new question-answer pairs (Luo et al., 2023; Li et al., 2023; 2024a), but the quality of the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

answers is difficult to guarantee, especially for competition-level problems. As for those tailored for
RLVR, only Liang et al. (2025) explore rephrasing questions while sustaining the original answer to
enhance data diversity. However, the question difficulty dimension still lacks attention. Recognizing
that solving mathematical reasoning problems requires varying skills, we contend that systematically
increasing question difficulty by reformulating them to target and challenge these skills is a crucial
approach for pushing the model’s performance boundaries.

To address these issues, we introduce a comprehensive framework termed MathForge to enhance
mathematical reasoning by focusing on more challenging questions from both algorithmic and data
perspectives. Specifically, MathForge comprises two key components: a Difficulty-Aware Group
Policy Optimization (DGPO) algorithm and a Multi-Aspect Question Reformulation (MQR) strat-
egy. From the algorithmic perspective, DGPO first rectifies the implicit imbalance of the update
magnitudes in GRPO via difficulty-balanced group advantage estimation, which normalizes group
relative advantages by the mean absolute deviation of rewards rather than the standard deviation
employed in GRPO. Furthermore, DGPO prioritizes more challenging questions using difficulty-
aware question-level weighting, where the difficulty of a single question is quantified as the negative
mean accuracy calculated across all its corresponding responses. From the data perspective, MQR
reformulates the original questions across multiple aspects to increase their difficulty and diversity,
including adding story background, introducing abstract terminology, and nesting sub-problems. A
critical constraint is that all reformulations must preserve the original gold answer, so that MQR can
maintain the essential mathematical logic of the question and obviate the need for solution regen-
eration. Overall, our MathForge creates a powerful synergistic loop, where MQR expands the data
frontier and DGPO efficiently learns from these augmented data.

The main contributions of this paper can be summarized as follows:
1. We introduce a Difficulty-Aware Group Policy Optimization (DGPO) algorithm, which rectifies

the implicit imbalance of GRPO and further upweights more challenging questions.
2. We propose Multi-Aspect Question Reformulation (MQR), a data augmentation strategy tailored

for RLVR, which reformulates questions across multiple aspects to increase their difficulty while
preserving the original gold answer.

3. Experiments show that our MathForge markedly outperforms existing methods on various models
and mathematical reasoning benchmarks, validating its effectiveness and generalizability.

2 PRELIMINARIES

Notation. In this paper, an autoregressive language model, parameterized by θ, is treated as a policy
model, where πθ and πθold represent the current and old policies, respectively. For a given query q
sampled from a question dataset D, multiple responses {oi} are generated using the old policy πθold .
A scalar reward ri for each query-response pair (q, oi) is then assigned by a rule-based verifier. By
default, we only use the accuracy reward, 1 if the response is correct and 0 otherwise. In the context
of batch processing, {qs} signifies a batch of queries sampled from the question dataset D, and the
corresponding responses and rewards are denoted by {osi} and {rsi}, respectively.

Group Relative Policy Optimization (GRPO). GRPO (Shao et al., 2024) is a variant of Proximal
Policy Optimization (PPO) (Schulman et al., 2017), which eliminates the critic model, and estimates
relative advantages of responses within a group of responses to the same query. Moreover, Chu et al.
(2025) and Yu et al. (2025) remove the KL divergence and employ a token-level policy gradient loss
to enhance the performance of GRPO. These modifications have been experimentally validated and
are more commonly used in practice, becoming the default settings in TRL (von Werra et al., 2020).

Specifically, GRPO optimizes the policy model πθ by maximizing the following objective:

JGRPO(θ) = E
[
q ∼ D, {oi}Gi=1 ∼ πθold(· | q)

]
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

{
min

[
Iit(θ)ÂGR,i, clip (Iit(θ), 1− ε, 1 + ε) ÂGR,i

]}
, (1)

where Iit(θ) =
πθ (oi,t | q, oi,<t)

πθold (oi,t | q, oi,<t)
, ÂGR,i =

ri −mean
(
{ri}Gi=1

)
std

(
{ri}Gi=1

) . (2)
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Here, Iit(θ) denotes the importance sampling ratio of the token oi,t, and ÂGR,i signifies the advan-
tage of the response oi obtained by group relative advantage estimation (GRAE). G is the number
of generated responses to each query q (i.e., the group size), and ε is the clipping range of Iit(θ).

3 METHODOLOGY

In this section, we introduce the MathForge framework to enhance mathematical reasoning by con-
centrating on more challenging questions from both algorithmic and data perspectives. Specifically,
it consists of two core components: the Difficulty-Aware Group Policy Optimization (DGPO) algo-
rithm and the Multi-Aspect Question Reformulation (MQR) strategy.

3.1 DIFFICULTY-AWARE GROUP POLICY OPTIMIZATION

Although GRPO achieves strong reasoning performance, we mathematically prove that its opti-
mization objective is unbalanced with respect to the update magnitudes for questions with varying
difficulties, which primarily stems from its group relative advantage estimation (i.e., ÂGR,i in Equa-
tion 2). This imbalance potentially reduces the extent to which the policy updates for more chal-
lenging yet solvable questions. However, such questions are ideal training material that expose the
model’s incomplete mastery while also offering at least one correct response for targeted improve-
ment. Moreover, harder questions may be more complex compositions or reformulations of easier
ones, thus mastering harder ones can potentially enhance the model’s performance on easier ones.

To resolve this issue, our Difficulty-Aware Group Policy Optimization (DGPO) algorithm first pro-
poses difficulty-balanced group advantage estimation (DGAE) to normalize the update magnitudes
across questions. Secondly, it employs difficulty-aware question-level weighting (DQW) to priori-
tize more challenging questions further.

Specifically, the optimization objective of DGPO is defined as follows:

JDGPO(θ) = E
[
{qs}Bs=1 ∼ D, {osi}Gi=1 ∼ πθold(· | qs)

]
1∑Bv

s=1

∑G
i=1 |osi|

Bv∑
s=1

λs

G∑
i=1

|osi|∑
t=1

{
min

[
Isit(θ)ÂDG,si, clip (Isit(θ), 1− ε, 1 + ε) ÂDG,si

]}
, (3)

where Isit(θ) is the importance sampling ratio of the token osi,t, and ÂDG,si is the advantage of the
response oi obtained by DGAE, respectively given by:

Isit(θ) =
πθ (osi,t | qs, osi,<t)

πθold (osi,t | qs, osi,<t)
, ÂDG,si =

rsi −mean
(
{rsi}Gi=1

)
MAD

(
{rsi}Gi=1

) , (4)

where MAD
(
{rsi}Gi=1

)
=

1

G

G∑
i=1

∣∣∣rsi −mean
(
{rsi}Gi=1

)∣∣∣ . (5)

Here, MAD(·) denotes the mean absolute deviation function. Furthermore, λs is the difficulty-aware
weight for the query qs computed by DQW as follows:

λs = Bv ·
exp (Ds/T )∑Bv
s=1 exp (Ds/T )

, where Ds = −mean
(
{rsi}Gi=1

)
. (6)

Here, B represents the global batch size, and Bv signifies the number of valid queries in the batch.
A query is considered valid if its G corresponding responses are not uniformly correct or incorrect.
Without loss of generality, we assume that the first Bv queries in the batch are valid. The token-level
average loss is calculated exclusively on valid queries, a procedure we refer to as valid token-level
loss averaging. This design is inspired by GPG (Chu et al., 2025) and DAPO (Yu et al., 2025) and is
not a key contribution of DGPO. It aims to prevent sharp gradient fluctuations caused by inconsistent
valid token ratios across batches, thereby ensuring training stability, and also serves as the basis for
valid query reweighting in the following DQW.

In the following subsections, we will describe the two key techniques of DGPO: difficulty-balanced
group advantage estimation and difficulty-aware question-level weighting.
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3.1.1 DIFFICULTY-BALANCED GROUP ADVANTAGE ESTIMATION

Consider a single question q and its corresponding responses {oi}Gi=1, the unclipped policy gradient
calculated in GRPO is as follows:

gGRPO =
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

ÂGR,i∇θIit(θ)

=
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

sgn
(
ÂGR,i

) ∣∣∣ÂGR,i

∣∣∣ detach (Iit(θ))∇θ log (πθ (oi,t | q, oi,<t)) , (7)

where sgn(·) is the sign function and detach(·) is the stop-gradient operator. The full derivation is
provided in Appendix B.1. In this equation, detach (Iit(θ)) and ∇θ log (πθ (oi,t | q, oi,<t)) respec-
tively represent the importance sampling ratio and likelihood gradient for each token oi,t. Crucially,
sgn(ÂGR,i) indicates whether the policy πθ should be updated to increase or decrease the probability
of generating the response oi, while |ÂGR,i| determines the corresponding update magnitude. There-
fore, the total update magnitude for a single question q can be upper-bounded and well-approximated
by the sum of these individual magnitudes across all G responses, i.e.,

∑G
i=1 |ÂGR,i|. The complete

derivation is provided in Appendix B.2. This magnitude has a closed-form expression, as formalized
in the following theorem. The complete proof is provided in Appendix B.3.

Theorem 1 (Update Magnitude for a Single Question using GRAE). Given a single question q and
its corresponding responses {oi}Gi=1, each query-response pair receives a binary accuracy reward
ri ∈ {0, 1}, and p represents the accuracy rate, i.e., the proportion for a reward of 1. Then, the total
update magnitude without clipping for the single question q when using GRAE satisfies:

G∑
i=1

∣∣∣ÂGR,i

∣∣∣ = G∑
i=1

∣∣∣∣∣∣
ri −mean

(
{ri}Gi=1

)
std

(
{ri}Gi=1

)
∣∣∣∣∣∣ = 2G

√
p(1− p), where p =

1

G

G∑
i=1

ri. (8)

This total update magnitude varies with respect to the accuracy rate p, reaching its maximum when
p = 0.5 and gradually decreasing as p approaches either 0 or 1.

Theorem 1 implies that within a training batch, questions with moderate accuracy rates have a greater
influence on the policy update, while easier or harder questions have a smaller impact. However, we
argue that challenging questions, yet have non-zero accuracy rates, warrant greater attention. These
questions are ideal for training because they identify areas of the policy model’s incomplete mastery
while providing at least one correct response for targeted learning. Consequently, to counteract the
inherent imbalance of GRAE, we develop a novel difficulty-balanced group advantage estimation
(DGAE) strategy. Specifically, the advantage function of DGAE is defined as follows:

ÂDG,i =
ri −mean

(
{ri}Gi=1

)
MAD

(
{ri}Gi=1

) , where MAD
(
{ri}Gi=1

)
=

1

G

G∑
i=1

∣∣∣ri −mean
(
{ri}Gi=1

)∣∣∣. (9)

Here, the denominator MAD(·) is the mean absolute deviation of rewards across all G responses.
This normalization ensures that the total update magnitude for a single question is a constant value,
as formalized in the following theorem. The complete proof is provided in Appendix B.4.

Theorem 2 (Update Magnitude for a Single Question using DGAE). Given a single question q and
its corresponding responses {oi}Gi=1, each query-response pair receives a reward ri. Then, the total
update magnitude without clipping for the single question q when using DGAE satisfies:

G∑
i=1

∣∣∣ÂDG,i

∣∣∣ = G∑
i=1

∣∣∣∣∣∣
ri −mean

(
{ri}Gi=1

)
1
G

∑G
i=1

∣∣∣ri −mean
(
{ri}Gi=1

)∣∣∣
∣∣∣∣∣∣ = G. (10)

Crucially, Theorem 2 removes the binary reward constraint (ri ∈ {0, 1}) in Theorem 1, rendering it
suitable for a wide array of policy optimization scenarios.
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3.1.2 DIFFICULTY-AWARE QUESTION-LEVEL WEIGHTING

Building upon the DGAE strategy, we further introduce a difficulty-aware question-level weighting
(DQW) scheme, which explicitly prioritizes learning from more challenging questions within each
training batch. Specifically, DQW assigns a weight λs to each question qs as follows:

λs = Bv ·
exp (Ds/T )∑Bv
s=1 exp (Ds/T )

, where Ds = −mean
(
{rsi}Gi=1

)
. (11)

Here, Ds is the negative mean reward across all responses of the question qs, serving as a measure
of its relative difficulty at the current training stage, and T denotes the temperature hyperparameter
that controls the distribution sharpness. Compared to advantage reweighting of Zhang & Zuo (2025),
DQW is simpler and has fewer hyperparameters. Moreover, it is derived based on the analysis of
the implicit update magnitude imbalance in GRPO and the balanced advantages of DGAE. This
two-step “balance-then-reweight” procedure offers improved interpretability and controllability.

3.2 MULTI-ASPECT QUESTION REFORMULATION

DGPO enhances mathematical reasoning from an algorithmic perspective by optimizing the learning
process on existing data. To complement this, we propose the Multi-Aspect Question Reformulation
(MQR) approach as a data-centric solution, which automatically reformulates training questions by
a large reasoning model to generate variants that cover more complex and comprehensive aspects. A
critical constraint is that all reformulations must preserve the original gold answer. In this manner,
MQR can maintain the essential mathematical logic of the question and obviate the need for solution
regeneration, thereby placing minimal demands on the reformulator model.

Specifically, MQR adds story background, introduces abstract terminology, and nests sub-problems
into the original question. The default reformulator model is OpenAI o3, while some smaller open-
source models can also competently handle this task. The prompts are provided in Appendix C, and
the core instructions for these strategies are as follows:

Core Instructions for Multi-Aspect Question Reformulation

1. Background: Add a story background that is not related to the core mathematical content
of the given question, but seems to be related to the question. If the given question already
has such a background, change it to a new, complexer background.

2. Term: Invent a new, abstract mathematical term to define a concept that is central to the
given question, and restate the entire question using this term.

3. Sub-Problem: Convert a key numerical condition of the given question which have a
definite value into an independent sub-problem. The sub-problem may belong to any
branch of mathematics (e.g., algebra, geometry, number theory, combinatorics).

The newly generated questions respectively challenge the policy model’s ability to: 1) identify criti-
cal mathematical information amidst noise; 2) grasp abstract mathematical concepts; and 3) perform
reasoning that requires multiple steps and cross-domain knowledge. Successfully solving these more
difficult questions provides a strong reinforcement signal, compelling the policy model to develop
these crucial reasoning skills. Examples of each reformulation aspect are provided in Appendix D.

Overall, the MQR-augmented data, which combines the original and reformulated questions, serves
as ideal training material for DGPO, rendering MathForge a synergistic loop where the data extends
the model’s performance boundaries, and the algorithm efficiently learns from these challenges.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Datasets. In the main experiments, we train the Qwen2.5-Math-7B model (Yang et al.,
2024) on the MATH dataset (Hendrycks et al., 2021). To evaluate the model-agnostic effectiveness
of MathForge, we conduct experiments on three other models of varying sizes and types: Qwen2.5-
Math-1.5B (Yang et al., 2024), Qwen2.5-3B (Team, 2025), and DeepSeek-Math-7B (Shao et al.,
2024). For cold start, DeepSeek-Math-7B is fine-tuned using 80k data sampled from NuminaMath-
CoT (Li et al., 2024c). Furthermore, we apply DGPO in the multimodal domain, training Qwen2.5-
VL-3B-Instruct (Bai et al., 2025) on the GEOQA-8k dataset (Chen et al., 2025).
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Table 1: Comparative results of methods trained on the MATH dataset using Qwen2.5-Math-7B.

Methods AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg./∆GRPO

Base Model 12.19 4.79 35.23 48.60 15.07 16.33 22.04

GRPO 20.94 8.44 58.98 72.20 27.76 37.33 37.61
Dr.GRPO 21.04 8.23 58.59 72.05 28.58 35.89 37.40−0.21

GPG 21.98 9.06 59.61 72.05 27.21 37.67 37.93+0.32

DAPO 21.25 8.75 58.20 72.70 29.50 37.22 37.94+0.33

GSPO 19.38 8.33 60.16 73.00 28.12 37.26 37.71+0.10

GRPO-AD 21.56 9.48 59.06 73.25 29.14 37.07 38.26+0.65

DGPO 23.85 10.21 61.02 74.25 31.07 38.33 39.79+2.18

MQR 25.00 11.77 59.38 77.85 31.43 40.81 41.04+3.43

MathForge 24.58 12.60 59.84 79.95 33.36 42.67 42.17+4.56

Benchmarks. In the text-only experiments, we assess models on six commonly used mathematical
reasoning benchmarks: AIME24, AIME25, AMC23, MATH500 (Hendrycks et al., 2021), Minerva
(Lewkowycz et al., 2022), and Olympiad (He et al., 2024). To ensure stable results, we perform 32
runs for AIME24, AIME25, and AMC-23, and 4 runs for other benchmarks, reporting the average
performance across the respective runs. For the multimodal domain, we evaluate on the GeoQA test
set (Chen et al., 2021) using greedy decoding. All evaluations are conducted in a zero-shot setting.

Compared Methods. We compare our MathForge framework against several state-of-the-art meth-
ods: GRPO (Shao et al., 2024), Dr.GRPO (Liu et al., 2025a), GPG (Chu et al., 2025), DAPO (Yu
et al., 2025), GSPO (Zheng et al., 2025), and GRPO-AD (Zhang & Zuo, 2025). For a fair algorithm-
level comparison, we disable the resampling components in GPG and DAPO, and add the Advantage
reweighting for Difficulty (AD) technique of Zhang & Zuo (2025) into the GRPO baseline as GRPO-
AD. To isolate the contribution of each component in MathForge, we also evaluate DGPO and MQR
separately. The MQR setting refers to training on the MQR-augmented data, including the original
and MQR-generated data, using GRPO.

Implementation Details. We used 8 NVIDIA H20 GPUs to conduct all experiments. To ensure fair
comparison and reproducibility, our implementation is built upon the Open-R1 codebase (Hugging
Face, 2025). For the DGPO algorithm, the temperature hyperparameter T in the DQW component
is set to 2.0. For the MQR strategy, the data augmentation cost is reported in Appendix E. All other
implementation details are provided in Appendix F.

4.2 MAIN RESULTS

Table 1 presents the comparative results of various methods trained on the MATH dataset using the
Qwen2.5-Math-7B model. In the following, we will analyze the effectiveness of DGPO, MQR, and
their combination, MathForge, respectively.

Effectiveness of DGPO. Our DGPO algorithm, when applied alone, elevates the average score to
39.79%, a substantial gain of 2.18% over the strong GRPO baseline (37.61%). This result validates
our hypothesis that prioritizing more challenging questions through DGAE and DQW effectively
enhances the RL training process. By rectifying the update magnitude imbalance of GRPO and
explicitly focusing the model on its solvable weakness, DGPO fosters a more efficient and targeted
optimization. Additionally, DGPO also surpasses other advanced policy optimization techniques,
highlighting the superior design and efficacy of our proposed difficulty-aware mechanisms.

Effectiveness of MQR. The use of MQR in training also yields significant improvements, reaching
an average score of 41.04%, which is a 3.43% increase over GRPO. This demonstrates the validity
of our three question reformulation strategies. By augmenting the training data with questions that
introduce narrative noise (Background), abstract concepts (Term), and nested logic (Sub-Problem),
MQR creates a more challenging and diverse learning environment. This substantial performance
improvement indicates the effectiveness of compelling the model to develop more robust reasoning
skills by tackling these more complex reformulated questions.

Effectiveness of MathForge. The combination of DGPO and MQR in the full MathForge frame-
work achieves the best overall performance, outperforming both individual components and reach-
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Table 2: Comparative results of methods trained on the MATH dataset using varying base models.

Methods AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg./∆GRPO

Qwen2.5-Math-1.5B 6.87 3.65 30.94 34.95 8.55 21.93 17.82
+ GRPO 11.35 3.96 46.48 64.85 20.13 29.59 29.39
+ DGPO 11.25 5.73 49.84 65.45 21.14 30.85 30.71+1.32

+ MQR 11.98 5.42 50.08 69.65 23.81 33.67 32.44+3.05

+ MathForge 13.23 7.71 52.34 70.10 25.74 33.89 33.84+4.45

Qwen2.5-3B 2.81 0.73 22.66 48.65 13.69 19.37 17.99
+ GRPO 5.31 1.56 33.28 63.35 22.89 26.41 25.47
+ DGPO 6.98 1.56 36.56 65.80 25.28 26.96 27.19+1.72

+ MQR 5.10 1.56 39.53 65.20 25.74 29.19 27.72+2.25

+ MathForge 5.73 1.77 40.70 65.40 28.86 31.59 29.01+3.54

DeepSeek-Math-7B 0.42 0.10 13.28 31.05 9.56 9.00 10.57
+ GRPO 0.63 0.10 19.14 41.45 14.71 13.44 14.91
+ DGPO 1.98 0.42 21.02 41.85 18.93 15.00 16.53+1.62

+ MQR 1.98 0.83 20.86 44.25 17.00 15.74 16.78+1.87

+ MathForge 3.12 0.73 21.72 43.60 20.68 16.74 17.77+2.86

Table 3: Ablation Results of DGPO trained on the MATH dataset using Qwen2.5-Math-7B.

Methods AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg./∆GRPO

GRPO 20.94 8.44 58.98 72.20 27.76 37.33 37.61
DGPO (w/o DGAE & DQW) 20.21 9.06 59.45 72.40 28.58 36.56 37.71+0.10

DGPO (w/o DQW) 21.77 9.69 60.00 73.45 29.04 37.93 38.65+1.04

DGPO (full) 23.85 10.21 61.02 74.25 31.07 38.33 39.79+2.18

DGPO (T = 1.0) 23.12 9.06 59.45 74.15 30.61 37.78 39.03+1.42

DGPO (T = 2.0) 23.85 10.21 61.02 74.25 31.07 38.33 39.79+2.18

DGPO (T = 5.0) 22.81 11.35 60.55 73.80 30.42 38.26 39.53+1.92

DGPO (T = 10.0) 21.35 9.79 62.27 74.55 29.96 37.67 39.27+1.66

ing an average of 42.17%. This result highlights a powerful synergy between the data-centric and
algorithmic components of our framework. MQR provides the ideal training material, diverse and
challenging questions that expose the model’s limitations, while DGPO capitalizes on this data by
ensuring the model focuses its updates on mastering these challenges. Additionally, the performance
gaps between DGPO and GRPO, as well as between MathForge and MQR, further demonstrate the
robustness of DGPO under different query difficulty, as MQR makes questions harder.

Model-Agnosticism of MathForge. To substantiate the model-agnosticism of MathForge, we fur-
ther compare methods across different model sizes and types, as presented in Table 2. MathForge
consistently delivers the best performance on all models, and the individual components, DGPO
and MQR, also robustly outperform GRPO. This highlights that the principles of MathForge are
fundamental and not contingent on a specific model, underscoring its broad generalizability.

4.3 ANALYSIS OF DGPO

Ablation Studies. As shown in Table 3, we conduct ablation experiments to isolate the contribution
of each component in DGPO. Specifically, the valid token-level loss averaging, DGAE, and DQW
components contribute average performance improvements of 0.10%, 0.94%, and 1.14%, respec-
tively. This highlights that DGAE effectively corrects the update magnitude imbalance of GRPO,
and DQW provides a significant and complementary benefit by explicitly prioritizing more chal-
lenging questions. Additionally, we investigate the sensitivity of the temperature hyperparameter T
in DQW. The results indicate that T = 2.0 yields the best overall performance. A lower temperature
may potentially lead to an overly sharp distribution that focuses too narrowly on the hardest question
in a batch, while a higher temperature flattens the weighting distribution, diminishing the prioritiza-
tion effect of DQW. This confirms that T = 2.0 strikes an optimal balance, effectively emphasizing
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Table 4: Synergistic results of DGPO with other policy optimization methods trained on the MATH
dataset using Qwen2.5-Math-7B.

Methods AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Average

GPG 21.98 9.06 59.61 72.05 27.21 37.67 37.93
+ DGPO 21.77 10.00 60.00 73.45 30.06 38.26 38.92

DAPO 21.25 8.75 58.20 72.70 29.50 37.22 37.94
+ DGPO 24.48 9.79 58.75 74.90 31.99 39.56 39.91

GSPO 19.38 8.33 60.16 73.00 28.12 37.26 37.71
+ DGPO 23.33 10.00 59.14 74.15 30.88 38.41 39.32

Table 5: Comparative results of methods trained on the GEOQA-8k dataset using Qwen2.5-VL-3B-
Instruct in the multimodal domain.

Methods Base Model GRPO Dr.GRPO GPG DAPO GSPO GRPO-AD DGPO

GeoQA/∆GRPO 39.79 57.43 57.96+0.53 59.02+1.59 59.02+1.59 57.16−0.27 58.09+0.66 59.95+2.52

difficult questions while maintaining sufficient learning from the entire batch. Because the difficulty
score is bounded within (−1, 0), setting T = 2.0 ensures that the ratio between the maximum and
minimum weights in a batch remains below e0/T /e−1/T = e1/2 ≈ 1.65.
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Figure 1: Training dynamics of DGPO vs. GRPO evaluated
on the MATH500 benchmark. Both models are trained on
MATH using Qwen2.5-Math-7B.

Training Dynamics. Figure 1 shows
the training dynamics of DGPO ver-
sus GRPO in our main experiments,
illustrating the evolution of accuracy
rewards and model output lengths on
MATH500. As demonstrated in Fig-
ure 1(a), DGPO consistently outper-
forms GRPO after the initial phase,
and the performance gap widens as
training progresses, underscoring that
prioritizing harder questions leads to
a more substantial and sustained im-
provement in accuracy. Meanwhile, Figure 1(b) indicates that DGPO tends to produce more concise
responses, highlighting that DGPO not only improves correctness but also encourages the model to
find more efficient and direct reasoning paths, trimming unnecessary verbosity and redundant steps.

Compatibility with Other Methods. Our DGPO algorithm primarily introduces an improved ad-
vantage estimation and an additional question-level weighting scheme, both of which are compatible
with most existing policy optimization methods. To demonstrate this, we integrate DGPO with GPG,
DAPO, and GSPO, respectively. The combination forms are detailed in Appendix G. As shown in
Table 4, this integration yields consistent performance improvements. Particularly, the combination
of DAPO with DGPO results in even higher performance than the standalone DGPO (39.91% vs.
39.79%). This underscores that DGPO addresses a fundamental aspect of the learning process that
complements the specific mechanics of other policy optimization methods. In other words, DGPO
can function as a general enhancement algorithm rather than a monolithic alternative.

Applicability in the Multimodal Domain. To further verify the domain-agnosticism of DGPO, we
apply it to a multimodal mathematical reasoning task. As shown in Table 5, DGPO achieves the best
performance of 59.95% again, significantly higher than that of GRPO (57.43%). This demonstrates
that the core principle of our DGPO, prioritizing more challenging questions, is not confined to text-
only reasoning. It is a robust and generalizable algorithm for enhancing policy learning wherever a
quantifiable measure of difficulty (such as accuracy rate) can be established.

4.4 ANALYSIS OF MQR

In this subsection, we normalize the total training data volume across all methods for a fair compar-
ison. Since MQR expands the dataset by a factor of four, we achieve this by increasing the training
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Table 6: Comparative results of methods trained on the original data vs. the MQR-augmented data
using DGPO and varying base models.

Models Data AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Average

Qwen2.5-Math-7B
Ori. 26.46 9.17 58.67 74.65 31.62 38.81 39.90
MQR 24.58 12.60 59.84 79.95 33.36 42.67 42.17

Qwen2.5-Math-1.5B
Ori. 11.98 5.21 50.62 68.40 24.26 32.59 32.18
MQR 13.23 7.71 52.34 70.10 25.74 33.89 33.84

Qwen2.5-3B
Ori. 6.04 1.35 37.66 65.05 25.28 27.93 27.22
MQR 5.73 1.77 40.70 65.40 28.86 31.59 29.01

DeepSeek-Math-7B
Ori. 2.19 0.21 21.02 43.60 18.29 14.52 16.64
MQR 3.12 0.73 21.72 43.60 20.68 16.74 17.77

Table 7: Ablation Results of MQR on the MATH dataset using Qwen2.5-Math-7B.

Data AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg./∆Ori.

Original 26.46 9.17 58.67 74.65 31.62 38.81 39.90
MetaMath-Rephrasing 25.21 11.35 59.45 76.70 31.71 39.93 40.73+0.83

Original + Background 25.52 10.73 58.59 77.50 32.90 40.48 40.95+1.05

Original + Term 25.52 11.15 58.98 77.75 33.09 40.93 41.24+1.34

Original + Sub-Problem 26.67 10.94 58.75 77.05 34.38 41.36 41.53+1.63

MQR 24.58 12.60 59.84 79.95 33.36 42.67 42.17+2.27

epochs for each method accordingly. As shown in Table 6, we compare the performance of methods
trained on the original data versus the MQR-augmented data using DGPO and varying base models.
MQR consistently yields superior results than the original data across all models, confirming that its
effectiveness stems from the qualitative enhancement of the data, not merely an increase in volume.
Additionally, we assess the quality of the generated data in Appendix H.

Difficulty Assessment. We first conduct a direct comparison of question difficulty by evaluating the
accuracy of Qwen2.5-Math-7B-Instruct on the subsets of MQR-augmented data. The accuracy rates
are 79.77% on Original, 77.31% on Background, 76.87% on Term, and 72.04% on Sub-Problem,
confirming the increased difficulty of reformulated questions and the effectiveness of MQR.

Ablation Studies. To assess the individual contributions of our three reformulation strategies, we
conduct ablation studies where each strategy is utilized separately. MetaMath-Rephrasing (Yu et al.,
2024) is also included as a baseline, which uses GPT-3.5-Turbo to simply rephrase questions. We
sample 22.5k data from its total 50k rephrased questions, combined with the original data for train-
ing. The results, as presented in Table 7, are all trained using DGPO. Each strategy independently
improves performance over both the Original and the MetaMath-Rephrasing baselines. Crucially,
the MQR approach, which combines all three strategies, achieves the highest average score of
42.17%. This underscores a clear synergy, where these diverse strategies produce a more substantial
improvement than any individual component in mathematical reasoning.
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Figure 2: Training dynamics of Original vs. MQR on train-
ing and evaluation data. Both models are trained on MATH
and evaluated on MATH500 using Qwen2.5-Math-7B.

Training Dynamics. Figure 2 illus-
trates the training dynamics of DGPO
when trained on the original MATH
dataset versus the MQR-augmented
dataset. As presented in Figure 2(a),
the consistently lower training accu-
racy on the MQR-augmented data ex-
hibits that the reformulated questions
are substantially more challenging.
Despite this increased difficulty, the
model trained with MQR ultimately
achieves superior accuracy on the un-
seen MATH500 benchmark, as depicted in Figure 2(b). This “train harder, test better” phenomenon
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Table 8: Comparative results of MQR using varying reformulator models on the MATH dataset.

Reformulators AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg./∆Ori.

Original 26.46 9.17 58.67 74.65 31.62 38.81 39.90
Qwen2.5-7B-Instruct 25.10 11.98 58.67 76.85 33.00 40.96 41.09+1.19

Qwen3-30B-A3B-Thinking 25.73 12.29 59.84 78.85 33.18 41.22 41.85+1.95

OpenAI o3 24.58 12.60 59.84 79.95 33.36 42.67 42.17+2.27

suggests that the more challenging questions of MQR result in robust, generalizable reasoning ca-
pabilities, enhancing performance while preventing overfitting.

Generality to Less Capable Reformulators. The reformulator model is only required to reformu-
late questions rather than solve them, thereby imposing lower demands on its reasoning capabilities.
To assess the generality of MQR to reformulator models with less capability, we utilize two smaller
and open-source models: Qwen2.5-7B-Instruct (Team, 2025) and Qwen3-30B-A3B-Thinking (Yang
et al., 2025). As shown in Table 8, while the most capable OpenAI o3 reformulator achieves the best
results, the other two models also deliver substantial gains over the original data. This indicates that
even moderately capable models can effectively generate challenging question reformulations that
enhance mathematical reasoning within the MQR strategy.

5 RELATED WORK

Reinforcement Learning. Policy optimization has become a standard for post-training large lan-
guage models to enhance their reasoning capabilities (Jaech et al., 2024; Guo et al., 2025; Team et al.,
2025). Building upon Proximal Policy Optimization (PPO) (Schulman et al., 2017), Group Relative
Policy Optimization (GRPO) (Shao et al., 2024) proposes a highly efficient critic-less paradigm us-
ing group relative advantage estimation. This spurred a line of research focused on refining GRPO’s
stability and performance. For example, Dr.GRPO (Liu et al., 2025a) removes the length bias and
PPO-objective bias in GRPO’s advantage estimation. GPG (Chu et al., 2025), DAPO (Yu et al.,
2025), and GRPO-LEAD (Zhang & Zuo, 2025) address issues in reward design, advantage estima-
tion, and oversampling, while GSPO (Zheng et al., 2025) and GMPO (Zhao et al., 2025) introduce
alternative optimization objectives. Besides, another line of work (Dai et al., 2025; Yue et al., 2025;
Liu et al., 2025b) proposes more complex pipelines, such as value models or prompt refinement.

Data Augmentation. A parallel line of work improves mathematical reasoning from a data-centric
perspective. One strategy involves generating entirely new, high-quality problem-solution pairs us-
ing powerful teacher models, showing that synthetic data can rival human-curated datasets (Luo
et al., 2023; Li et al., 2024b;a). Another strategy, more aligned with our work, focuses on reformu-
lating existing questions while preserving the original answer. Approaches like MetaMath (Yu et al.,
2024) and PersonaMath (Luo et al., 2024) achieve this by rephrasing problems or adopting specific
personas. Moreover, an advanced approach employs self-play, where the model generates its own
challenging questions from solutions, fostering continuous self-improvement (Liang et al., 2025).

6 CONCLUSION

In this paper, we propose MathForge, a comprehensive framework designed to enhance mathemati-
cal reasoning by targeting harder problems from both algorithmic and data perspectives. MathForge
is two-fold: the Difficulty-Aware Group Policy Optimization (DGPO) algorithm rectifies the up-
date magnitude imbalance and prioritizes challenging questions, while the Multi-Aspect Question
Reformulation (MQR) strategy augments training data with more difficult, yet answer-preserving,
question variants from multiple aspects. Extensive experiments demonstrate that this synergistic
combination significantly outperforms existing methods across various models and benchmarks, un-
derscoring our core principle that “harder is better” in mathematical reasoning.

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics, ensuring ethical compliance throughout all stages of
the research. The MQR-augmented data was constructed by reformulating problems from the public
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MATH dataset. This process and the source data do not involve any personally identifiable informa-
tion or sensitive content, thereby mitigating privacy concerns. The primary goal of our research is
to enhance the mathematical reasoning capabilities of AI models, a pursuit with significant potential
benefits for scientific research, engineering, and education.

REPRODUCIBILITY STATEMENT

To ensure the full reproducibility of our research, we will make our code and the MQR-augmented
dataset publicly available. Our implementation is built upon the Open-R1 codebase (Hugging Face,
2025). Comprehensive details regarding the experimental setup, including model configurations and
all hyperparameters, are described in Section 4.1 and further elaborated in Appendix F. For the MQR
strategy, the exact prompts used for generating the augmented data are provided in Appendix C, and
illustrative examples of the reformulated questions are presented in Appendix D.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to assist in polishing the writing of this paper. Its use was limited to improving
grammar, clarity, and style. All core intellectual contributions, including the proposed methods,
experimental design, and analysis, were conceived and executed by the human authors.

B PROOFS

B.1 FULL DERIVATION FOR GRADIENT OF GRPO

Consider a single question q and its corresponding responses {oi}Gi=1, the unclipped policy gradient
calculated in GRPO is as follows:

gGRPO =
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

ÂGR,i∇θIit(θ)

=
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

ÂGR,i∇θ
πθ (oi,t | q, oi,<t)

πθold (oi,t | q, oi,<t)

=
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

ÂGR,i
detach (πθ (oi,t | q, oi,<t))

πθold (oi,t | q, oi,<t)
∇θ

πθ (oi,t | q, oi,<t)

detach (πθ (oi,t | q, oi,<t))

=
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

ÂGR,i detach (Iit(θ))∇θ log (πθ (oi,t | q, oi,<t))

=
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

sgn
(
ÂGR,i

) ∣∣∣ÂGR,i

∣∣∣ detach (Iit(θ))∇θ log (πθ (oi,t | q, oi,<t)) ,

(12)
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where sgn(·) is the sign function and detach(·) is the stop-gradient operator.

B.2 FULL DERIVATION FOR THE TOTAL UPDATE MAGNITUDE OF GRPO

The PPO/GRPO-style gradient for a fixed question q can be written (ignoring token length differ-
ence, clipping and importance sampling terms) as:

g(q) =
1

G

G∑
i=1

Âi∇θ log πθ (oi | q) ≜
1

G

G∑
i=1

Âigi, (13)

By the triangle inequality, the gradient norm satisfies:

∥g(q)∥ =

∥∥∥∥∥ 1

G

G∑
i=1

Âigi

∥∥∥∥∥ ≤ 1

G

G∑
i=1

|Âi|∥gi∥. (14)

Since all gradients Âigi are generated from the same question and tend to together improve the
policy on that specific query, their directions are positively correlated. Such directional alignment
implies limited mutual cancellation, causing the triangle inequality to be nearly tight.

Moreover, as all responses in a batch are sampled from the same policy with the same temperature
and the same or similar math prompt, the variation in ∥gi∥ is typically much smaller than the varia-
tion in |Âi|. Under this mild assumption,

∑
i |Âi| serves as a tight upper bound and a faithful proxy

for the question-level update strength, but is not an exact equality.

B.3 PROOF OF THEOREM 1

We provide a proof of Theorem 1 (Update Magnitude for a Single Question using GRAE) below.

Proof. By definition, the total update magnitude is the sum of the absolute values of the advantages:

G∑
i=1

∣∣∣ÂGR,i

∣∣∣ = G∑
i=1

∣∣∣∣∣ri −mean
(
{ri}Gi=1

)
std

(
{ri}Gi=1

) ∣∣∣∣∣ =
∑G

i=1

∣∣ri −mean
(
{ri}Gi=1

)∣∣
std

(
{ri}Gi=1

) . (15)

For binary rewards ri ∈ {0, 1}, the mean value is the accuracy rate p = 1
G

∑G
i=1 ri, and the standard

deviation is
√
p(1− p). Substituting these gives:

G∑
i=1

∣∣∣ÂGR,i

∣∣∣ = ∑G
i=1 |ri − p|√
p(1− p)

. (16)

The numerator can be decomposed based on the reward values. There are Gp terms where ri = 1
and G(1− p) terms where ri = 0. Therefore:

G∑
i=1

∣∣∣ÂGR,i

∣∣∣ = Gp|1− p|+G(1− p)|0− p|√
p(1− p)

=
Gp(1− p) +G(1− p)p√

p(1− p)
(since p ∈ (0, 1))

=
2Gp(1− p)√

p(1− p)

= 2G
√

p(1− p). (17)
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B.4 PROOF OF THEOREM 2

We provide a proof of Theorem 2 (Update Magnitude for a Single Question using DGAE) below.

Proof. By definition, the total update magnitude is the sum of the absolute values of the advantages:

G∑
i=1

∣∣∣ÂDG,i

∣∣∣ = G∑
i=1

∣∣∣∣∣ ri −mean
(
{ri}Gi=1

)
1
G

∑G
i=1

∣∣ri −mean
(
{ri}Gi=1

)∣∣
∣∣∣∣∣ . (18)

Since the denominator, 1
G

∑G
j=1

∣∣rj −mean
(
{ri}Gi=1

)∣∣, is constant with respect to the summation
index i and non-negative, we can move it outside the outer summation:

G∑
i=1

∣∣∣ÂDG,i

∣∣∣ = ∑G
i=1

∣∣ri −mean({ri}Gi=1)
∣∣

1
G

∑G
i=1

∣∣ri −mean({ri}Gi=1)
∣∣ = G. (19)

C PROMPTS FOR MQR

We provide the detailed prompts for MQR below.

General Prompt for Question Reformulation

I want you to act as an expert Math Question Rephraser.

Your goal is to rephrase a given math question so it becomes more challenging for
large AI models while remaining logically sound and fully comprehensible to humans. The
rephrased question MUST yield exactly the same final answer as the original.

You should complicate the given question using the following method:
{instruction}

You must strictly adhere to the following constraints:
- The final answer MUST remain unchanged.
- The rephrased question should be no more than 100 words longer than the given question.
- Preserve the original interrogative verb (e.g., “find”, “determine”, “compute. . . ”, “evalu-
ate”).
- Use LaTeX for all mathematical expressions.
- Output only the rephrased question (no hints, solutions, explanation, or commentary).

#Given Question Start#
{question}
#Given Question End#

Specific Instruction for Background Question

- Add a story background that is not related to the core mathematical content of the given
question, but seems to be related to the question.
- If the given question already has such a background, change it to a new, complexer back-
ground.
- Possible background themes include, but are not limited to, the following: history, culture,
geography, nature, occupation, daily life, sports, art, science fiction, and adventure. Astron-
omy is explicitly excluded.
- The background should be presented as natural parts of the question statement, ensuring
the rephrased question is coherent and self-contained.
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Specific Instruction for Term Question

- Invent a new, abstract mathematical term to define a concept that is central to the given
question, and restate the entire question using this term.
- The term should be presented as natural parts of the question statement, ensuring the
rephrased question is coherent and self-contained.

Specific Instruction for Sub-Problem Question

- Convert a key numerical condition of the given question which have a definite value into
an independent sub-problem.
- The sub-problem may belong to any branch of mathematics (e.g., algebra, geometry, num-
ber theory, combinatorics).
- The sub-problem must be self-contained, have a unique solution, and its solution must yield
exactly the value required for the original question.
- The sub-problem should be presented as natural parts of the question statement, ensuring
the rephrased question is coherent and self-contained.

D AUGMENTED DATA OF MQR

We provide examples of questions generated by MQR below, with the highlighted parts representing
the main modifications made according to the reformulation strategies.

Original Question

Berengere and her American foreign-exchange student Emily are at a bakery in Paris that
accepts both euros and American dollars. They want to buy a cake, but neither of them has
enough money. If the cake costs 6 euros and Emily has an American five-dollar bill, how
many euros does Berengere need to contribute to the cost of the cake if 1 euro = 1.25 USD?

Question using Background Reformulation

In the bustling Montmartre district of Paris, Berengere—a culinary historian compiling notes
on classic French desserts—and her visiting American friend Emily, an anthropology stu-
dent documenting European food customs, wander into the venerable pâtisserie “Le Temps
Sucré.” They decide to purchase a famed gâteau Saint-Honoré that the proprietor has priced
at 6 euros. Emily searches her travel wallet and discovers only a single crisp five-dollar bill,
while Berengere carries euros exclusively. A sign by the register lists the day’s exchange
rate as 1 euro = 1.25 USD. To complete the purchase, how many euros must Berengere
contribute?

Question using Term Reformulation

Define the “euro-gap” ϵ of a prospective purchase as the non-negative difference, measured
in euros, between an item’s listed euro price and the euro-denominated value of the funds
already on hand to pay for it. Berengere and her American foreign-exchange student Emily
visit a Parisian bakery. The cake they wish to buy is priced at 6 euros. Emily can contribute
only an American five-dollar bill, and the prevailing conversion rate is 1 euro = 1.25 USD.
Determine, in euros, the euro-gap ϵ that Berengere must cover to complete the purchase.

Question using Sub-Problem Reformulation

Berengere and her American foreign-exchange student Emily are at a Paris bakery that ac-
cepts both euros and U.S. dollars, but neither of them alone can pay for the desired cake.
Before the exchange rate is revealed, solve this independent task: Find positive integers x
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and y that satisfy
x+ y = 9 and x2 + y2 = 41.

Let r be the ratio of the larger of x and y to the smaller.The cashier states that C1 is worth
exactly r U.S. dollars. The cake costs C6, and Emily offers a single $5 bill. Using the
exchange rate r defined above, how many euros must Berengere contribute so that together
they can pay for the cake?

E DATA AUGMENTATION COST OF MQR

The average token usage per question is 255.05 input tokens, 820.27 output reasoning tokens, and
138.33 output reformulated question tokens. Therefore, the total cost for generating 22.5k reformu-
lated questions of the MATH dataset is approximately $184.

F IMPLEMENTATION DETAILS

This section provides detailed information on the training and evaluation configurations used in our
experiments.

For all reinforcement learning experiments, responses were generated with a temperature of 1.0 and
a maximum completion length of 1024 tokens. During evaluation, we used a generation temperature
of 0.6, a top-p value of 0.95, and set the maximum new tokens to 4096.

F.1 MATH

For experiments trained on the MATH dataset, we used the following system prompt to guide the
model’s reasoning process: “Please reason step by step, and put your final answer within \boxed{}.”
The maximum prompt length was set to 512 tokens. For each prompt, we generated 8 responses and
used a training batch size of 32. The reward was based on binary accuracy, where a correct final
answer yielded a reward of 1 and an incorrect one yielded 0.

Model-specific hyperparameters, including learning rate, number of epochs, gradient accumulation
steps, and total training steps, are detailed in Table 9. The table specifies configurations for training
on both the original 7.5k MATH dataset and the 30k MQR-augmented dataset.

Table 9: Hyperparameter settings trained on the MATH dataset using varying base models.

Models
Learning

Epochs
Gradient Training

Rate Accumulation Steps

Qwen2.5-Math-7B 5e-7 1 1 230
+MQR 1e-6 1 4 230

Qwen2.5-Math-1.5B 5e-7 1 1 230
+MQR 1e-6 1 4 230

Qwen2.5-3B 5e-7 1 1 230
+MQR 1e-6 1 4 230

DeepSeek-Math-7B 1e-6 2 1 468
+MQR 1e-6 1 1 937

For the cold start of DeepSeek-Math-7B, we sampled 80k data from NuminaMath-CoT to fine-tune
it with a learning rate of 2e−6, a batch size of 32, and gradient accumulation steps of 8, resulting in
a total of 40 training steps.

F.2 GEOQA-8K

For the multimodal experiments on the GEOQA-8k dataset using Qwen2.5-VL-3B-Instruct, we per-
formed a preprocessing step to remove non-standard units from the gold answers to facilitate con-
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sistent reward calculation. Consequently, the system prompt was adjusted to: “Please reason step by
step, and put your final answer without units in \boxed{}.”

The training was configured with a maximum prompt length of 2048 tokens and 8 generated re-
sponses per question. The model was trained for 2 epochs using a learning rate of 1e−6 and a batch
size of 32. We set gradient accumulation steps to 1, resulting in a total of 480 training steps. The
reward mechanism was the same binary accuracy metric used in the text-only experiments.

G COMBINATION FORMS OF DGPO AND OTHER METHODS

This section details how DGPO is integrated with other policy optimization methods.

G.1 GPG

The integration with GPG involves replacing its original advantage formulation with our DGAE
and incorporating the DQW scheme. Specifically, the policy gradient objective of GPG is retained,
but the update for each token is now scaled by the difficulty-balanced advantage ÂDG,si. Further-
more, the loss contribution of each question is modulated by the difficulty-aware weight λs. The
normalization is also adjusted to average over valid tokens. The optimization objective is as follows:

JGPG+DGPO(θ) = E
[
{qs}Bs=1 ∼ D, {osi}Gi=1 ∼ πθ(· | qs)

]
1∑Bv

s=1

∑G
i=1 |osi|

Bv∑
s=1

λs

G∑
i=1

|osi|∑
t=1

[
− log πθ (oi,t | q, oi,<t) ÂDG,si

]
, (20)

where ÂDG,si is the advantage of the response oi obtained by DGAE given by:

ÂDG,si = G ·
rsi −mean

(
{rsi}Gi=1

)
∑G

i=1

∣∣∣rsi −mean
(
{rsi}Gi=1

)∣∣∣ , (21)

and λs is the difficulty-aware weight for the query qs computed by DQW as follows:

λs = Bv ·
exp (Ds/T )∑Bv
s=1 exp (Ds/T )

, where Ds = −mean
(
{rsi}Gi=1

)
. (22)

G.2 DAPO

For DAPO, the combination preserves its core PPO-style clipped objective and its use of a composite
reward signal (accuracy plus length penalty, i.e., rsi = racc,si + rlength,si). We replace DAPO’s
original advantage estimation with our DGAE (ÂDG,si), which is calculated using this composite
reward. Crucially, the difficulty score Ds for our DQW scheme is computed only using the accuracy
component of the reward (racc,si). This design choice ensures that the question weighting focuses
purely on the logical difficulty of the question, rather than being conflated with the verbosity of the
responses. The optimization objective is as follows:

JDAPO+DGPO(θ) = E
[
{qs}Bs=1 ∼ D, {osi}Gi=1 ∼ πθ(· | qs)

]
1∑Bv

s=1

∑G
i=1 |osi|

Bv∑
s=1

λs

G∑
i=1

|osi|∑
t=1

{
min

[
Isit(θ)ÂDG,si, clip (Isit(θ), 1− εlow, 1 + εhigh) ÂDG,si

]}
,

(23)

where Isit(θ) is the importance sampling ratio of the token osi,t, and ÂDG,si is the advantage of the
response oi obtained by DGAE, respectively given by:

Isit(θ) =
πθ (osi,t | qs, osi,<t)

πθold (osi,t | qs, osi,<t)
, ÂDG,si = G ·

rsi −mean
(
{rsi}Gi=1

)
∑G

i=1

∣∣∣rsi −mean
(
{rsi}Gi=1

)∣∣∣ , (24)
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and λs is the difficulty-aware weight for the query qs computed by DQW as follows:

λs = Bv ·
exp (Ds/T )∑Bv
s=1 exp (Ds/T )

,

where Ds =

−mean
(
{racc,si}Gi=1

)
if mean

(
{racc,si}Gi=1

)
̸= 0

−1 if mean
(
{racc,si}Gi=1

)
= 0

. (25)

Here, Bv signifies the number of valid queries in the batch. A query is considered valid if its rewards
for G corresponding responses are not completely equal. For questions where all corresponding
responses are incorrect (i.e., accuracy reward is 0), no positive learning signal is available in the
current question. Consequently, we deliberately set its corresponding difficulty score, Ds, to its
floor value of −1. This prevents the model from dedicating excessive attention to instances that
offer no constructive gradient for policy improvement.

G.3 GSPO

The integration with GSPO is performed at the sequence level, aligning with GSPO’s fundamental
design. GSPO’s sequence-level importance sampling ratio (Ssi) is preserved. The update for each
sequence is then driven by our DGAE, ÂDG,si. The question-level weighting λs is also applied to
modulate the influence of each question on the total loss. The loss is averaged over the number
of valid questions, which aligns with the sequence-level nature of both GSPO and our DGPO. The
optimization objective is as follows:

JGSPO+DGPO(θ) = E
[
{qs}Bs=1 ∼ D, {osi}Gi=1 ∼ πθ(· | qs)

]
1

Bv ·G

Bv∑
s=1

λs

G∑
i=1

{
min

[
Ssi(θ)ÂDG,si, clip (Ssi(θ), 1− ε, 1 + ε) ÂDG,si

]}
, (26)

where Ssi(θ) is the sequence-level importance sampling ratio of the response osi, and ÂDG,si is the
advantage of the response oi obtained by DGAE, respectively given by:

Ssi(θ) =

|osi|∏
t=1

πθ (osi,t | qs, osi,<t)

πθold (osi,t | qs, osi,<t)

 1
|osi|

, ÂDG,si = G ·
rsi −mean

(
{rsi}Gi=1

)
∑G

i=1

∣∣∣rsi −mean
(
{rsi}Gi=1

)∣∣∣ ,
(27)

and λs is the difficulty-aware weight for the query qs computed by DQW as follows:

λs = Bv ·
exp (Ds/T )∑Bv
s=1 exp (Ds/T )

, where Ds = −mean
(
{rsi}Gi=1

)
. (28)

H QUALITY ASSESSMENT OF MQR

We utilized the OpenAI o3 model to determine whether a reformulated question is mathematically
equivalent to the original question. In this context, mathematical equivalence is defined as the ca-
pacity to yield the same final answer. The specific prompt used for this evaluation is as follows:

Prompt for Quality Assessment of MQR

You are an expert in mathematics and logic.

Your task is to meticulously analyze and compare two versions of a mathematical
problem: an “Original Question” and a “Rewritten Question”. Your primary objective is to
determine if these two questions are mathematically equivalent. For the purpose of this task,
”mathematically equivalent” means that both questions, when solved correctly, will yield
the identical final numerical answer or symbolic solution.
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Please structure your response as follows: 1. Equivalence Verdict: Start with a
clear and unambiguous “Yes” or “No”. 2. Detailed Justification: If they are equivalent,
explain why the changes in wording, structure, or given information do not alter the
underlying mathematical operations or the final result. If they are not equivalent, pinpoint
the specific change in the rewritten question that alters the problem’s mathematical core.
Explain how this change leads to a different solution or answer.

#Original Question Start#
{question}
#Original Question End#

#Rewritten Question Start#
{rewritten question}
#Rewritten Question End#

We randomly sampled 100 questions from each of the three categories of reformulated questions,
which yielded equivalence rates of 99% for Background, 97% for Term, and 97% for Sub-Problem,
respectively.

In MQR, a failed reformulation means that the resulting question becomes unsolvable or has a new
answer different from the original answer. In math reasoning RLVR, the answer space is open-ended,
extremely large, and requires exact canonical matching (e.g., exact integers, simplified fractions, or
normalized symbolic expressions). Therefore, it is highly improbable that the policy model would
reason incorrectly and happen to provide the same answer as that of the original question. Therefore,
the multiple responses to the corrupted question would be uniformly incorrect (i.e., all rewards = 0).
Under GRPO and its variants (including our DGPO), such questions are invalid queries yielding no
update gradients, thereby providing no harmful training signals.
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