

000 HARDER IS BETTER: BOOSTING MATHEMATICAL 001 REASONING VIA DIFFICULTY-AWARE GRPO AND 002 MULTI-ASPECT QUESTION REFORMULATION 003 004

005 **Anonymous authors**
006
007 Paper under double-blind review
008

009 ABSTRACT 010

011 Reinforcement Learning with Verifiable Rewards (RLVR) offers a robust mechanism
012 for enhancing the mathematical reasoning capabilities of large models. However, we identify that harder questions lack sufficient attention in existing methods
013 from both algorithmic and data perspectives. Algorithmically, widely used Group
014 Relative Policy Optimization (GRPO) and its variants exhibit a critical limitation:
015 their advantage estimation introduces an implicit **imbalance** where the magnitude
016 of policy updates is lower for harder questions. From a data-centric viewpoint,
017 existing augmentation approaches primarily rephrase questions to enhance diversity,
018 without systematically increasing their intrinsic difficulty. To address these
019 issues, we propose a two-dual MathForge framework to improve mathematical
020 reasoning by targeting harder questions from both perspectives, which comprises
021 a Difficulty-Aware Group Policy Optimization (DGPO) algorithm and a Multi-
022 Aspect Question Reformulation (MQR) strategy. Specifically, DGPO first rectifies
023 the implicit **imbalance** in GRPO via difficulty-balanced group advantage es-
024 timation and further prioritizes more challenging questions by difficulty-aware
025 question-level weighting. Meanwhile, MQR reformulates questions across mul-
026 tiple aspects to increase their difficulty while maintaining the original gold an-
027 swer. Overall, MathForge creates a synergistic loop: MQR expands the data fron-
028 tier, and DGPO efficiently masters the augmented data. Extensive experiments
029 demonstrate that MathForge markedly outperforms existing methods on various
030 mathematical reasoning tasks. The code and augmented data will all be available.
031

032 1 INTRODUCTION 033

034 Recently, large language models (LLMs) have demonstrated remarkable reasoning capabilities, fun-
035 damentally altering the landscape of artificial intelligence (Jaech et al., 2024; Comanici et al., 2025;
036 Guo et al., 2025). In this context, reinforcement learning with verifiable rewards (RLVR) has been
037 proven as a promising training paradigm (Guo et al., 2025; Wen et al., 2025), especially for enhanc-
038 ing mathematical reasoning. It adopts rule-based rewards instead of neural reward models, thereby
039 significantly reducing computational overhead and mitigating the risk of reward hacking.
040

041 From an algorithmic perspective, the most representative approach to support RLVR is Group Rela-
042 tive Policy Optimization (GRPO) (Shao et al., 2024), which estimates relative advantages of a group
043 of responses to the same question. However, we reveal and mathematically prove a critical limita-
044 tion in GRPO and its variants: their advantage estimation function introduces an implicit **imbalance**
045 where the update magnitudes are suppressed for both easier and harder questions and peak for those
046 of moderate difficulty. The neglect of more challenging yet solvable questions is detrimental to RL
047 training. Such questions are ideal training material, as they expose the model’s incomplete mastery
048 while also offering at least one correct response for targeted improvement. **Therefore, harder ques-**
049 **tions should be emphasized to focus the model on overcoming its solvable weaknesses, while easier**
050 **ones necessitate only minimal yet sufficient weighting to prevent forgetting.** Zhang & Zuo (2025)
051 **also recognize the importance of question difficulty in GRPO, but their method proposes a complex**
052 **difficulty-aware advantage reweighting without rectifying the underlying imbalance.**

053 Meanwhile, from a data perspective, traditional augmentation methods for reasoning often generate
054 entirely new question-answer pairs (Luo et al., 2023; Li et al., 2023; 2024a), but the quality of the

answers is difficult to guarantee, especially for competition-level problems. As for those tailored for RLVR, only [Liang et al. \(2025\)](#) explore rephrasing questions while sustaining the original answer to enhance data diversity. However, the question difficulty dimension still lacks attention. Recognizing that solving mathematical reasoning problems requires varying skills, we contend that systematically increasing question difficulty by reformulating them to target and challenge these skills is a crucial approach for pushing the model’s performance boundaries.

To address these issues, we introduce a comprehensive framework termed MathForge to enhance mathematical reasoning by focusing on more challenging questions from both algorithmic and data perspectives. Specifically, MathForge comprises two key components: a Difficulty-Aware Group Policy Optimization (DGPO) algorithm and a Multi-Aspect Question Reformulation (MQR) strategy. From the algorithmic perspective, DGPO first rectifies the implicit **imbalance** of the update magnitudes in GRPO via difficulty-balanced group advantage estimation, which normalizes group relative advantages by the mean absolute deviation of rewards rather than the standard deviation employed in GRPO. Furthermore, DGPO prioritizes more challenging questions using difficulty-aware question-level weighting, where the difficulty of a single question is quantified as the negative mean accuracy calculated across all its corresponding responses. From the data perspective, MQR reformulates the original questions across multiple aspects to increase their difficulty and diversity, including adding story background, introducing abstract terminology, and nesting sub-problems. A critical constraint is that all reformulations must preserve the original gold answer, so that MQR can maintain the essential mathematical logic of the question and obviate the need for solution regeneration. Overall, our MathForge creates a powerful synergistic loop, where MQR expands the data frontier and DGPO efficiently learns from these augmented data.

The main contributions of this paper can be summarized as follows:

1. We introduce a Difficulty-Aware Group Policy Optimization (DGPO) algorithm, which rectifies the implicit **imbalance** of GRPO and further upweights more challenging questions.
2. We propose Multi-Aspect Question Reformulation (MQR), a data augmentation strategy tailored for RLVR, which reformulates questions across multiple aspects to increase their difficulty while preserving the original gold answer.
3. Experiments show that our MathForge markedly outperforms existing methods on various models and mathematical reasoning benchmarks, validating its effectiveness and generalizability.

2 PRELIMINARIES

Notation. In this paper, an autoregressive language model, parameterized by θ , is treated as a policy model, where π_θ and $\pi_{\theta_{\text{old}}}$ represent the current and old policies, respectively. For a given query q sampled from a question dataset \mathcal{D} , multiple responses $\{o_i\}$ are generated using the old policy $\pi_{\theta_{\text{old}}}$. A scalar reward r_i for each query-response pair (q, o_i) is then assigned by a rule-based verifier. By default, we only use the accuracy reward, 1 if the response is correct and 0 otherwise. In the context of batch processing, $\{q_s\}$ signifies a batch of queries sampled from the question dataset \mathcal{D} , and the corresponding responses and rewards are denoted by $\{o_{si}\}$ and $\{r_{si}\}$, respectively.

Group Relative Policy Optimization (GRPO). GRPO ([Shao et al., 2024](#)) is a variant of Proximal Policy Optimization (PPO) ([Schulman et al., 2017](#)), which eliminates the critic model, and estimates relative advantages of responses within a group of responses to the same query. Moreover, [Chu et al. \(2025\)](#) and [Yu et al. \(2025\)](#) remove the KL divergence and employ a token-level policy gradient loss to enhance the performance of GRPO. These modifications have been experimentally validated and are more commonly used in practice, becoming the default settings in TRL ([von Werra et al., 2020](#)).

Specifically, GRPO optimizes the policy model π_θ by maximizing the following objective:

$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E} \left[q \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q) \right] \frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \left\{ \min \left[I_{it}(\theta) \hat{A}_{\text{GR},i}, \text{clip}(I_{it}(\theta), 1 - \varepsilon, 1 + \varepsilon) \hat{A}_{\text{GR},i} \right] \right\}, \quad (1)$$

$$\text{where } I_{it}(\theta) = \frac{\pi_\theta(o_{i,t} | q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} | q, o_{i,<t})}, \quad \hat{A}_{\text{GR},i} = \frac{r_i - \text{mean}(\{r_i\}_{i=1}^G)}{\text{std}(\{r_i\}_{i=1}^G)}. \quad (2)$$

108 Here, $I_{it}(\theta)$ denotes the importance sampling ratio of the token $o_{i,t}$, and $\hat{A}_{\text{GR},i}$ signifies the advantage
 109 of the response o_i obtained by group relative advantage estimation (GRAE). G is the number
 110 of generated responses to each query q (i.e., the group size), and ε is the clipping range of $I_{it}(\theta)$.
 111

112 3 METHODOLOGY

114 In this section, we introduce the MathForge framework to enhance mathematical reasoning by con-
 115 centrating on more challenging questions from both algorithmic and data perspectives. Specifically,
 116 it consists of two core components: the Difficulty-Aware Group Policy Optimization (DGPO) algo-
 117 rithm and the Multi-Aspect Question Reformulation (MQR) strategy.

118 3.1 DIFFICULTY-AWARE GROUP POLICY OPTIMIZATION

119 Although GRPO achieves strong reasoning performance, we mathematically prove that its optimi-
 120 zation objective is **unbalanced** with respect to the update magnitudes for questions with varying
 121 difficulties, which primarily stems from its group relative advantage estimation (i.e., $\hat{A}_{\text{GR},i}$ in Equa-
 122 tion 2). This **imbalance** potentially reduces the extent to which the policy updates for more chal-
 123 lenging yet solvable questions. **However, such questions are ideal training material that expose the**
 124 **model’s incomplete mastery while also offering at least one correct response for targeted improve-**
 125 **ment. Moreover, harder questions may be more complex compositions or reformulations of easier**
 126 **ones, thus mastering harder ones can potentially enhance the model’s performance on easier ones.**

127 To resolve this issue, our Difficulty-Aware Group Policy Optimization (DGPO) algorithm first pro-
 128 poses difficulty-balanced group advantage estimation (DGAE) to normalize the update magnitudes
 129 across questions. Secondly, it employs difficulty-aware question-level weighting (DQW) to priori-
 130 tize more challenging questions further.

132 Specifically, the optimization objective of DGPO is defined as follows:

$$134 \mathcal{J}_{\text{DGPO}}(\theta) = \mathbb{E} \left[\{q_s\}_{s=1}^B \sim \mathcal{D}, \{o_{si}\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q_s) \right] \\ 135 \\ 136 \frac{1}{\sum_{s=1}^{B_v} \sum_{i=1}^G |o_{si}|} \sum_{s=1}^{B_v} \lambda_s \sum_{i=1}^G \sum_{t=1}^{|o_{si}|} \left\{ \min \left[I_{sit}(\theta) \hat{A}_{\text{DG},si}, \text{clip}(I_{sit}(\theta), 1 - \varepsilon, 1 + \varepsilon) \hat{A}_{\text{DG},si} \right] \right\}, \quad (3)$$

137 where $I_{sit}(\theta)$ is the importance sampling ratio of the token $o_{si,t}$, and $\hat{A}_{\text{DG},si}$ is the advantage of the
 138 response o_i obtained by DGAE, respectively given by:

$$141 I_{sit}(\theta) = \frac{\pi_{\theta}(o_{si,t} | q_s, o_{si,<t})}{\pi_{\theta_{\text{old}}}(o_{si,t} | q_s, o_{si,<t})}, \quad \hat{A}_{\text{DG},si} = \frac{r_{si} - \text{mean}(\{r_{si}\}_{i=1}^G)}{\text{MAD}(\{r_{si}\}_{i=1}^G)}, \quad (4)$$

$$145 \text{where } \text{MAD}(\{r_{si}\}_{i=1}^G) = \frac{1}{G} \sum_{i=1}^G |r_{si} - \text{mean}(\{r_{si}\}_{i=1}^G)|. \quad (5)$$

148 Here, **MAD**(\cdot) denotes the mean absolute deviation function. Furthermore, λ_s is the difficulty-aware
 149 weight for the query q_s computed by DQW as follows:

$$150 \lambda_s = B_v \cdot \frac{\exp(D_s/T)}{\sum_{s=1}^{B_v} \exp(D_s/T)}, \quad \text{where } D_s = -\text{mean}(\{r_{si}\}_{i=1}^G). \quad (6)$$

153 Here, B represents the global batch size, and B_v signifies the number of valid queries in the batch.
 154 A query is considered valid if its G corresponding responses are not uniformly correct or incorrect.
 155 Without loss of generality, we assume that the first B_v queries in the batch are valid. The token-level
 156 average loss is calculated exclusively on valid queries, **a procedure we refer to as valid token-level**
 157 **loss averaging. This design is inspired by GPG (Chu et al., 2025) and DAPO (Yu et al., 2025) and is**
 158 **not a key contribution of DGPO.** It aims to prevent sharp gradient fluctuations caused by inconsistent
 159 valid token ratios across batches, thereby ensuring training stability, **and also serves as the basis for**
 160 **valid query reweighting in the following DQW.**

161 In the following subsections, we will describe the two key techniques of DGPO: difficulty-balanced
 162 group advantage estimation and difficulty-aware question-level weighting.

162 3.1.1 DIFFICULTY-BALANCED GROUP ADVANTAGE ESTIMATION
163164 Consider a single question q and its corresponding responses $\{o_i\}_{i=1}^G$, the unclipped policy gradient
165 calculated in GRPO is as follows:

166
$$g_{\text{GRPO}} = \frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \hat{A}_{\text{GR},i} \nabla_{\theta} I_{it}(\theta)$$

167
$$= \frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \text{sgn}(\hat{A}_{\text{GR},i}) \left| \hat{A}_{\text{GR},i} \right| \text{detach}(I_{it}(\theta)) \nabla_{\theta} \log(\pi_{\theta}(o_{i,t} | q, o_{i,<t})) , \quad (7)$$

168

169 where $\text{sgn}(\cdot)$ is the sign function and $\text{detach}(\cdot)$ is the stop-gradient operator. The full derivation is
170 provided in Appendix B.1. In this equation, $\text{detach}(I_{it}(\theta))$ and $\nabla_{\theta} \log(\pi_{\theta}(o_{i,t} | q, o_{i,<t}))$ respectively
171 represent the importance sampling ratio and likelihood gradient for each token $o_{i,t}$. Crucially,
172 $\text{sgn}(\hat{A}_{\text{GR},i})$ indicates whether the policy π_{θ} should be updated to increase or decrease the probability
173 of generating the response o_i , while $|\hat{A}_{\text{GR},i}|$ determines the corresponding update magnitude. Therefore,
174 the total update magnitude for a single question q can be **upper-bounded and well-approximated**
175 by the sum of these individual magnitudes across all G responses, i.e., $\sum_{i=1}^G |\hat{A}_{\text{GR},i}|$. The complete
176 derivation is provided in Appendix B.2. This magnitude has a closed-form expression, as formalized
177 in the following theorem. The complete proof is provided in Appendix B.3.178 **Theorem 1** (Update Magnitude for a Single Question using GRAE). *Given a single question q and
179 its corresponding responses $\{o_i\}_{i=1}^G$, each query-response pair receives a binary accuracy reward
180 $r_i \in \{0, 1\}$, and p represents the accuracy rate, i.e., the proportion for a reward of 1. Then, the total
181 update magnitude without clipping for the single question q when using GRAE satisfies:*

182
$$\sum_{i=1}^G \left| \hat{A}_{\text{GR},i} \right| = \sum_{i=1}^G \left| \frac{r_i - \text{mean}(\{r_i\}_{i=1}^G)}{\text{std}(\{r_i\}_{i=1}^G)} \right| = 2G\sqrt{p(1-p)}, \text{ where } p = \frac{1}{G} \sum_{i=1}^G r_i. \quad (8)$$

183

184 This total update magnitude varies with respect to the accuracy rate p , reaching its maximum when
185 $p = 0.5$ and gradually decreasing as p approaches either 0 or 1.186 Theorem 1 implies that within a training batch, questions with moderate accuracy rates have a greater
187 influence on the policy update, while easier or harder questions have a smaller impact. However, we
188 argue that challenging questions, yet have non-zero accuracy rates, warrant greater attention. These
189 questions are ideal for training because they identify areas of the policy model's incomplete mastery
190 while providing at least one correct response for targeted learning. Consequently, to counteract the
191 inherent **imbalance** of GRAE, we develop a novel difficulty-balanced group advantage estimation
192 (DGAE) strategy. Specifically, the advantage function of DGAE is defined as follows:

193
$$\hat{A}_{\text{DG},i} = \frac{r_i - \text{mean}(\{r_i\}_{i=1}^G)}{\text{MAD}(\{r_i\}_{i=1}^G)}, \text{ where } \text{MAD}(\{r_i\}_{i=1}^G) = \frac{1}{G} \sum_{i=1}^G \left| r_i - \text{mean}(\{r_i\}_{i=1}^G) \right|. \quad (9)$$

194

195 Here, the denominator **MAD**(\cdot) is the **mean absolute deviation of rewards** across all G responses.
196 This normalization ensures that the total update magnitude for a single question is a constant value,
197 as formalized in the following theorem. The complete proof is provided in Appendix B.4.198 **Theorem 2** (Update Magnitude for a Single Question using DGAE). *Given a single question q and
199 its corresponding responses $\{o_i\}_{i=1}^G$, each query-response pair receives a reward r_i . Then, the total
200 update magnitude without clipping for the single question q when using DGAE satisfies:*

201
$$\sum_{i=1}^G \left| \hat{A}_{\text{DG},i} \right| = \sum_{i=1}^G \left| \frac{r_i - \text{mean}(\{r_i\}_{i=1}^G)}{\frac{1}{G} \sum_{i=1}^G \left| r_i - \text{mean}(\{r_i\}_{i=1}^G) \right|} \right| = G. \quad (10)$$

202

203 Crucially, Theorem 2 removes the binary reward constraint ($r_i \in \{0, 1\}$) in Theorem 1, rendering it
204 suitable for a wide array of policy optimization scenarios.

216 3.1.2 DIFFICULTY-AWARE QUESTION-LEVEL WEIGHTING
217

218 Building upon the DGAE strategy, we further introduce a difficulty-aware question-level weighting
219 (DQW) scheme, which explicitly prioritizes learning from more challenging questions within each
220 training batch. Specifically, DQW assigns a weight λ_s to each question q_s as follows:

$$221 \quad \lambda_s = B_v \cdot \frac{\exp(D_s/T)}{\sum_{s=1}^{B_v} \exp(D_s/T)}, \text{ where } D_s = -\text{mean} \left(\{r_{si}\}_{i=1}^G \right). \quad (11)$$

223 Here, D_s is the negative mean reward across all responses of the question q_s , serving as a measure
224 of its relative difficulty at the current training stage, and T denotes the temperature hyperparameter
225 that controls the distribution sharpness. **Compared to advantage reweighting of Zhang & Zuo (2025),**
226 **DQW is simpler and has fewer hyperparameters.** Moreover, it is derived based on the analysis of
227 the implicit update magnitude imbalance in GRPO and the balanced advantages of DGAE. This
228 two-step “balance-then-reweight” procedure offers improved interpretability and controllability.

229 3.2 MULTI-ASPECT QUESTION REFORMULATION
230

231 DGPO enhances mathematical reasoning from an algorithmic perspective by optimizing the learning
232 process on existing data. To complement this, we propose the Multi-Aspect Question Reformulation
233 (MQR) approach as a data-centric solution, which automatically reformulates training questions by
234 a large reasoning model to generate variants that cover more complex and comprehensive aspects. A
235 critical constraint is that *all reformulations must preserve the original gold answer*. In this manner,
236 MQR can maintain the essential mathematical logic of the question and obviate the need for solution
237 regeneration, thereby placing minimal demands on the reformulator model.

238 Specifically, MQR adds story background, introduces abstract terminology, and nests sub-problems
239 into the original question. **The default reformulator model is OpenAI o3, while some smaller open-**
240 **source models can also competently handle this task.** The prompts are provided in Appendix C, and
241 the core instructions for these strategies are as follows:

242 **Core Instructions for Multi-Aspect Question Reformulation**
243

- 244 **Background:** Add a story background that is not related to the core mathematical content
245 of the given question, but seems to be related to the question. If the given question already
246 has such a background, change it to a new, complexer background.
- 247 **Term:** Invent a new, abstract mathematical term to define a concept that is central to the
248 given question, and restate the entire question using this term.
- 249 **Sub-Problem:** Convert a key numerical condition of the given question which have a
250 definite value into an independent sub-problem. The sub-problem may belong to any
251 branch of mathematics (e.g., algebra, geometry, number theory, combinatorics).

252 The newly generated questions respectively challenge the policy model’s ability to: 1) identify critical
253 mathematical information amidst noise; 2) grasp abstract mathematical concepts; and 3) perform
254 reasoning that requires multiple steps and cross-domain knowledge. Successfully solving these more
255 difficult questions provides a strong reinforcement signal, compelling the policy model to develop
256 these crucial reasoning skills. Examples of each reformulation aspect are provided in Appendix D.

257 Overall, the MQR-augmented data, which combines the original and reformulated questions, serves
258 as ideal training material for DGPO, rendering MathForge a synergistic loop where the data extends
259 the model’s performance boundaries, and the algorithm efficiently learns from these challenges.

261 4 EXPERIMENTS
262

263 4.1 EXPERIMENTAL SETUP

264 **Models and Datasets.** In the main experiments, we train the Qwen2.5-Math-7B model (Yang et al.,
265 2024) on the MATH dataset (Hendrycks et al., 2021). To evaluate the model-agnostic effectiveness
266 of MathForge, we conduct experiments on three other models of varying sizes and types: Qwen2.5-
267 Math-1.5B (Yang et al., 2024), Qwen2.5-3B (Team, 2025), and DeepSeek-Math-7B (Shao et al.,
268 2024). For cold start, DeepSeek-Math-7B is fine-tuned using 80k data sampled from NuminaMath-
269 CoT (Li et al., 2024c). Furthermore, we apply DGPO in the multimodal domain, training Qwen2.5-
VL-3B-Instruct (Bai et al., 2025) on the GEOQA-8k dataset (Chen et al., 2025).

270
271 Table 1: Comparative results of methods trained on the MATH dataset using Qwen2.5-Math-7B.
272
273
274

Methods	AIME24	AIME25	AMC23	MATH500	Minerva	Olympiad	Avg./ Δ_{GRPO}
Base Model	12.19	4.79	35.23	48.60	15.07	16.33	22.04
GRPO	20.94	8.44	58.98	72.20	27.76	37.33	37.61
Dr.GRPO	21.04	8.23	58.59	72.05	28.58	35.89	37.40 _{-0.21}
GPG	21.98	9.06	59.61	72.05	27.21	37.67	37.93 _{+0.32}
DAPO	21.25	8.75	58.20	72.70	29.50	37.22	37.94 _{+0.33}
GSPO	19.38	8.33	60.16	73.00	28.12	37.26	37.71 _{+0.10}
GRPO-AD	21.56	9.48	59.06	73.25	29.14	37.07	38.26 _{+0.65}
DGPO	23.85	10.21	61.02	74.25	31.07	38.33	39.79 _{+2.18}
MQR	25.00	<u>11.77</u>	59.38	<u>77.85</u>	<u>31.43</u>	<u>40.81</u>	<u>41.04</u> _{+3.43}
MathForge	24.58	12.60	59.84	79.95	33.36	42.67	42.17 _{+4.56}

285 **Benchmarks.** In the text-only experiments, we assess models on six commonly used mathematical
286 reasoning benchmarks: AIME24, AIME25, AMC23, MATH500 (Hendrycks et al., 2021), Minerva
287 (Lewkowycz et al., 2022), and Olympiad (He et al., 2024). To ensure stable results, we perform 32
288 runs for AIME24, AIME25, and AMC-23, and 4 runs for other benchmarks, reporting the average
289 performance across the respective runs. For the multimodal domain, we evaluate on the GeoQA test
290 set (Chen et al., 2021) using greedy decoding. **All evaluations are conducted in a zero-shot setting.**

291 **Compared Methods.** We compare our MathForge framework against several state-of-the-art methods:
292 GRPO (Shao et al., 2024), Dr.GRPO (Liu et al., 2025a), GPG (Chu et al., 2025), DAPO (Yu
293 et al., 2025), GSPO (Zheng et al., 2025), and **GRPO-AD** (Zhang & Zuo, 2025). For a fair algorithm-
294 level comparison, we disable the resampling components in GPG and DAPO, and add the **Advantage**
295 **reweighting for Difficulty (AD)** technique of Zhang & Zuo (2025) into the GRPO baseline as **GRPO-AD**.
296 To isolate the contribution of each component in MathForge, we also evaluate DGPO and MQR
297 separately. The MQR setting refers to training on the MQR-augmented data, including the original
298 and MQR-generated data, using GRPO.

299 **Implementation Details.** We used 8 NVIDIA H20 GPUs to conduct all experiments. To ensure fair
300 comparison and reproducibility, our implementation is built upon the Open-R1 codebase (Hugging
301 Face, 2025). For the DGPO algorithm, the temperature hyperparameter T in the DQW component
302 is set to 2.0. **For the MQR strategy, the data augmentation cost is reported in Appendix E.** All other
303 implementation details are provided in Appendix F.

304 4.2 MAIN RESULTS

306 Table 1 presents the comparative results of various methods trained on the MATH dataset using the
307 Qwen2.5-Math-7B model. In the following, we will analyze the effectiveness of DGPO, MQR, and
308 their combination, MathForge, respectively.

309 **Effectiveness of DGPO.** Our DGPO algorithm, when applied alone, elevates the average score to
310 39.79%, a substantial gain of 2.18% over the strong GRPO baseline (37.61%). This result validates
311 our hypothesis that prioritizing more challenging questions through DGAE and DQW effectively
312 enhances the RL training process. By rectifying the update magnitude **imbalance** of GRPO and
313 explicitly focusing the model on its solvable weakness, DGPO fosters a more efficient and targeted
314 optimization. Additionally, DGPO also surpasses other advanced policy optimization techniques,
315 highlighting the superior design and efficacy of our proposed difficulty-aware mechanisms.

316 **Effectiveness of MQR.** The use of MQR in training also yields significant improvements, reaching
317 an average score of 41.04%, which is a 3.43% increase over GRPO. This demonstrates the validity
318 of our three question reformulation strategies. By augmenting the training data with questions that
319 introduce narrative noise (Background), abstract concepts (Term), and nested logic (Sub-Problem),
320 MQR creates a more challenging and diverse learning environment. This substantial performance
321 improvement indicates the effectiveness of compelling the model to develop more robust reasoning
322 skills by tackling these more complex reformulated questions.

323 **Effectiveness of MathForge.** The combination of DGPO and MQR in the full MathForge frame-
324 work achieves the best overall performance, outperforming both individual components and reach-

324
325 Table 2: Comparative results of methods trained on the MATH dataset using varying base models.

Methods	AIME24	AIME25	AMC23	MATH500	Minerva	Olympiad	Avg./ Δ_{GRPO}
Qwen2.5-Math-1.5B	6.87	3.65	30.94	34.95	8.55	21.93	17.82
+ GRPO	11.35	3.96	46.48	64.85	20.13	29.59	29.39
+ DGPO	11.25	<u>5.73</u>	49.84	65.45	21.14	30.85	<u>30.71</u> _{+1.32}
+ MQR	<u>11.98</u>	5.42	<u>50.08</u>	<u>69.65</u>	<u>23.81</u>	<u>33.67</u>	<u>32.44</u> _{+3.05}
+ MathForge	13.23	7.71	52.34	70.10	25.74	33.89	33.84 _{+4.45}
Qwen2.5-3B	2.81	0.73	22.66	48.65	13.69	19.37	17.99
+ GRPO	5.31	<u>1.56</u>	33.28	63.35	22.89	26.41	25.47
+ DGPO	6.98	<u>1.56</u>	36.56	65.80	25.28	26.96	<u>27.19</u> _{+1.72}
+ MQR	5.10	<u>1.56</u>	<u>39.53</u>	65.20	<u>25.74</u>	<u>29.19</u>	<u>27.72</u> _{+2.25}
+ MathForge	<u>5.73</u>	1.77	40.70	<u>65.40</u>	28.86	31.59	29.01 _{+3.54}
DeepSeek-Math-7B	0.42	0.10	13.28	31.05	9.56	9.00	10.57
+ GRPO	0.63	0.10	19.14	41.45	14.71	13.44	14.91
+ DGPO	<u>1.98</u>	0.42	<u>21.02</u>	41.85	<u>18.93</u>	15.00	<u>16.53</u> _{+1.62}
+ MQR	<u>1.98</u>	0.83	20.86	44.25	17.00	<u>15.74</u>	<u>16.78</u> _{+1.87}
+ MathForge	3.12	<u>0.73</u>	21.72	<u>43.60</u>	20.68	16.74	17.77 _{+2.86}

344 Table 3: Ablation Results of DGPO trained on the MATH dataset using Qwen2.5-Math-7B.

Methods	AIME24	AIME25	AMC23	MATH500	Minerva	Olympiad	Avg./ Δ_{GRPO}
GRPO	20.94	8.44	58.98	72.20	27.76	37.33	37.61
DGPO (w/o DGAE & DQW)	20.21	9.06	59.45	72.40	28.58	36.56	<u>37.71</u> _{+0.10}
DGPO (w/o DQW)	<u>21.77</u>	<u>9.69</u>	<u>60.00</u>	<u>73.45</u>	<u>29.04</u>	<u>37.93</u>	<u>38.65</u> _{+1.04}
DGPO (full)	23.85	10.21	61.02	74.25	31.07	38.33	39.79 _{+2.18}
DGPO ($T = 1.0$)	<u>23.12</u>	9.06	59.45	74.15	<u>30.61</u>	37.78	<u>39.03</u> _{+1.42}
DGPO ($T = 2.0$)	23.85	<u>10.21</u>	<u>61.02</u>	<u>74.25</u>	31.07	38.33	39.79 _{+2.18}
DGPO ($T = 5.0$)	22.81	11.35	60.55	73.80	30.42	<u>38.26</u>	<u>39.53</u> _{+1.92}
DGPO ($T = 10.0$)	21.35	9.79	62.27	74.55	29.96	37.67	<u>39.27</u> _{+1.66}

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
77710
77711
77712
77713
77714
77715
77716
77717
77718
77719
77720
77721
77722
77723
77724
77725
77726
77727
77728
77729
77730
77731
77732
77733
77734
77735
77736
77737
77738
77739
77740
77741
77742
77743
77744
77745
77746
77747
77748
77749
77750
77751
77752
77753
77754
77755
77756
77757
77758
77759
77760
77761
77762
77763
77764
77765
77766
77767
77768
77769
77770
77771
77772
77773
77774
77775
77776
77777
77778
77779
77780
77781
77782
77783
77784
77785
77786
77787
77788
77789
77790
77791
77792
77793
77794
77795
77796
77797
77798
77799
777100
777101
777102
777103
777104
777105
777106
777107
777108
777109
777110
777111
777112
777113
777114
777115
777116
777117
777118
777119
777120
777121
777122
777123
777124
777125
777126
777127
777128
777129
777130
777131
777132
777133
777134
777135
777136
777137
777138
777139
777140
777141
777142
777143
777144
777145
777146
777147
777148
777149
777150
777151
777152
777153
777154
777155
777156
777157
777158
777159
777160
777161
777162
777163
777164
777165
777166
777167
777168
777169
777170
777171
777172
777173
777174
777175
777176
777177
777178
777179
777180
777181
777182
777183
777184
777185
777186
777187
777188
777189
777190
777191
777192
777193
777194
777195
777196
777197
777198
777199
777200
777201
777202
777203
777204
777205
777206
777207
777208
777209
777210
777211
777212
777213
777214
777215
777216
777217
777218
777219
777220
777221
777222
777223
777224
777225
777226
777227
777228
777229
777230
777231
777232
777233
777234
777235
777236
777237
777238
777239
777240
777241
777242
777243
777244
777245
777246
777247
777248
777249
777250
777251
777252
777253
777254
777255
777256
777257
777258
777259
777260
777261
777262
777263
777264
777265
777266
777267
777268
777269
777270
777271
777272
777273
777274
777275
777276
777277
777278
777279
777280
777281
777282
777283
777284
777285
777286
777287
777288
777289
777290
777291
777292
777293
777294
777295
777296
777297
777298
777299
777300
777301
777302
777303
777304
777305
777306
777307
777308
777309
777310
777311
777312
777313
777314
777315
777316
777317
777318
777319
777320
777321
777322
777323
777324
777325
777326
777327
777328
777329
777330
777331
777332
777333
777334
777335
777336
777337
777338
777339
777340
777341
777342
777343
777344
777345
777346
777347
777348
777349
777350
777351
777352
777353
777354
777355
777356
777357
777358
777359
777360
777361
777362
777363
777364
777365
777366
777367
777368
777369
777370
777371
777372
777373
777374
777375
777376
777377
777378
777379
777380
777381
777382
777383
777384
777385
777386
777387
777388
777389
777390
777391
777392
777393
777394
777395
777396
777397
777398
777399
777400
777401
777402
777403
777404
777405
777406
777407
777408
777409
777410
777411
777412
777413
777414
777415
777416
777417
777418
777419
777420
777421
777422
777423
777424
777425
777426
777427
777428
777429
777430
777431
777432
777433
777434
777435
777436
777437
777438
777439
777440
777441
777442
777443
777444
777445
777446
777447
777448
777449
777450
777451
777452
777453
777454
777455
777456
777457
777458
777459
777460
777461
777462
777463
777464
777465
777466
777467
777468
777469
777470
777471
777472
777473
777474
777475
777476
777477
777478
777479
777480
777481
777482
777483
777484
777485
777486
777487
777488
777489
777490
777491
777492
777493
777494
777495
777496
777497
777498
777499
777500
777501
777502
777503
777504
777505
777506
777507
777508
777509
777510
777511
777512
777513
777514
777515
777516
777517
777518
777519
777520
777521
777522
777523
777524
777525
777526
777527
777528
777529
777530
777531
777532
777533
777534
777535
777536
777537
777538
777539
777540
777541
777542
777543
777544
777545
777546
777547
777548
777549
777550
777551
777552
777553
777554
777555
777556
777557
777558
777559
777560
777561
777562
777563
777564
777565
777566
777567
777568
777569
777570
777571
777572
777573
777574
777575
777576
777577
777578
777579
777580
777581
777582
777583
777584
777585
777586
777587
777588
777589
777590
777591
777592
777593
777594
777595
777596
777597
777598
777599
777600
777601
777602
777603
777604
777605
777606
777607
777608
777609
777610
777611
777612
777613
777614
777615
777616
777617
777618
777619
777620
777621
777622
777623
777624
777625
777626
777627
777628
777629
777630
777631
777632
777633
777634
777635
777636
777637
777638
777639
777640
777641
777642
777643
777644
777645
777646
777647
777648
777649
777650
777651
777652
777653
777654
777655
777656
777657
777658
777659
777660
777661
777662
777663
777664
777665
777666
777667
777668
777669
777670
777671
777672
777673
777674
777675
777676
777677
777678
777679
777680
777681
777682
777683
777684
777685
777686
777687
777688
777689
777690
777691
777692
777693
777694
777695
777696
777697
777698
777699
777700
777701
777702
777703
777704
777705
777706
777707
777708
777709
777710
777711

378
 379 Table 4: Synergistic results of DGPO with other policy optimization methods trained on the MATH
 380 dataset using Qwen2.5-Math-7B.

Methods	AIME24	AIME25	AMC23	MATH500	Minerva	Olympiad	Average
GPG	21.98	9.06	59.61	72.05	27.21	37.67	37.93
+ DGPO	21.77	10.00	60.00	73.45	30.06	38.26	38.92
DAPO	21.25	8.75	58.20	72.70	29.50	37.22	37.94
+ DGPO	24.48	9.79	58.75	74.90	31.99	39.56	39.91
GSPO	19.38	8.33	60.16	73.00	28.12	37.26	37.71
+ DGPO	23.33	10.00	59.14	74.15	30.88	38.41	39.32

390
 391 Table 5: Comparative results of methods trained on the GEOQA-8k dataset using Qwen2.5-VL-3B-
 392 Instruct in the multimodal domain.

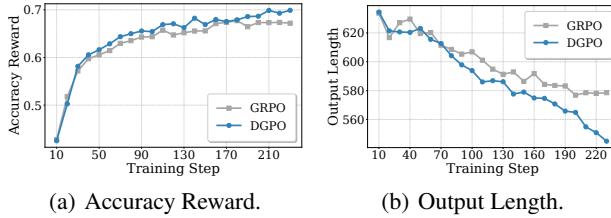
Methods	Base Model	GRPO	Dr.GRPO	GPG	DAPO	GSPO	GRPO-AD	DGPO
GeoQA/ Δ_{GRPO}	39.79	57.43	57.96 _{+0.53}	59.02 _{+1.59}	59.02 _{+1.59}	57.16 _{-0.27}	58.09 _{+0.66}	59.95_{+2.52}

393 difficult questions while maintaining sufficient learning from the entire batch. **Because the difficulty**

394 score is bounded within $(-1, 0)$, setting $T = 2.0$ ensures that the ratio between the maximum and

395 minimum weights in a batch remains below $e^{0/T}/e^{-1/T} = e^{1/2} \approx 1.65$.

396 **Training Dynamics.** Figure 1 shows the training dynamics of DGPO versus GRPO in our main experiments,
 397 illustrating the evolution of accuracy rewards and model output lengths on
 398 MATH500. As demonstrated in Figure 1(a), DGPO consistently outperforms GRPO after the initial phase,
 399 and the performance gap widens as training progresses, underscoring that
 400 prioritizing harder questions leads to
 401 a more substantial and sustained im-
 402 provement in accuracy. Meanwhile, Figure 1(b) indicates that DGPO tends to produce more concise
 403 responses, highlighting that DGPO not only improves correctness but also encourages the model to
 404 find more efficient and direct reasoning paths, trimming unnecessary verbosity and redundant steps.



405 (a) Accuracy Reward. (b) Output Length.
 406 Figure 1: Training dynamics of DGPO vs. GRPO evaluated
 407 on the MATH500 benchmark. Both models are trained on
 408 MATH using Qwen2.5-Math-7B.

409 **Compatibility with Other Methods.** Our DGPO algorithm primarily introduces an improved ad-
 410 vantage estimation and an additional question-level weighting scheme, both of which are compatible
 411 with most existing policy optimization methods. To demonstrate this, we integrate DGPO with GPG,
 412 DAPO, and GSPO, respectively. The combination forms are detailed in Appendix G. As shown in
 413 Table 4, this integration yields consistent performance improvements. Particularly, the combination
 414 of DAPO with DGPO results in even higher performance than the standalone DGPO (39.91% vs.
 415 39.79%). This underscores that DGPO addresses a fundamental aspect of the learning process that
 416 complements the specific mechanics of other policy optimization methods. In other words, DGPO
 417 can function as a general enhancement algorithm rather than a monolithic alternative.

418 **Applicability in the Multimodal Domain.** To further verify the domain-agnosticism of DGPO, we
 419 apply it to a multimodal mathematical reasoning task. As shown in Table 5, DGPO achieves the best
 420 performance of 59.95% again, significantly higher than that of GRPO (57.43%). This demonstrates
 421 that the core principle of our DGPO, prioritizing more challenging questions, is not confined to text-
 422 only reasoning. It is a robust and generalizable algorithm for enhancing policy learning wherever a
 423 quantifiable measure of difficulty (such as accuracy rate) can be established.

424 4.4 ANALYSIS OF MQR

425 In this subsection, we normalize the total training data volume across all methods for a fair compar-
 426 ison. Since MQR expands the dataset by a factor of four, we achieve this by increasing the training

432
 433 Table 6: Comparative results of methods trained on the original data vs. the MQR-augmented data
 434 using DGPO and varying base models.

435 Models	436 Data	437 AIME24	438 AIME25	439 AMC23	440 MATH500	441 Minerva	442 Olympiad	443 Average
437 Qwen2.5-Math-7B	Ori.	26.46	9.17	58.67	74.65	31.62	38.81	39.90
	MQR	24.58	12.60	59.84	79.95	33.36	42.67	42.17
439 Qwen2.5-Math-1.5B	Ori.	11.98	5.21	50.62	68.40	24.26	32.59	32.18
	MQR	13.23	7.71	52.34	70.10	25.74	33.89	33.84
441 Qwen2.5-3B	Ori.	6.04	1.35	37.66	65.05	25.28	27.93	27.22
	MQR	5.73	1.77	40.70	65.40	28.86	31.59	29.01
444 DeepSeek-Math-7B	Ori.	2.19	0.21	21.02	43.60	18.29	14.52	16.64
	MQR	3.12	0.73	21.72	43.60	20.68	16.74	17.77

446 Table 7: Ablation Results of MQR on the MATH dataset using Qwen2.5-Math-7B.
 447

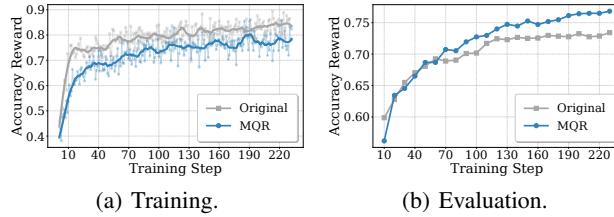
448 Data	449 AIME24	450 AIME25	451 AMC23	452 MATH500	453 Minerva	454 Olympiad	455 Avg./ $\Delta_{\text{Ori.}}$
Original	<u>26.46</u>	9.17	58.67	74.65	31.62	38.81	39.90
MetaMath-Rephrasing	25.21	<u>11.35</u>	<u>59.45</u>	76.70	31.71	39.93	40.73 _{+0.83}
Original + Background	25.52	10.73	58.59	77.50	32.90	40.48	40.95 _{+1.05}
Original + Term	25.52	11.15	58.98	<u>77.75</u>	33.09	40.93	41.24 _{+1.34}
Original + Sub-Problem	26.67	10.94	58.75	77.05	34.38	<u>41.36</u>	<u>41.53</u> _{+1.63}
MQR	24.58	12.60	59.84	79.95	<u>33.36</u>	42.67	42.17 _{+2.27}

456 epochs for each method accordingly. As shown in Table 6, we compare the performance of methods
 457 trained on the original data versus the MQR-augmented data using DGPO and varying base models.
 458 MQR consistently yields superior results than the original data across all models, confirming that its
 459 effectiveness stems from the qualitative enhancement of the data, not merely an increase in volume.
 460 Additionally, we assess the quality of the generated data in Appendix H.

462 **Difficulty Assessment.** We first conduct a direct comparison of question difficulty by evaluating the
 463 accuracy of Qwen2.5-Math-7B-Instruct on the subsets of MQR-augmented data. The accuracy rates
 464 are 79.77% on Original, 77.31% on Background, 76.87% on Term, and 72.04% on Sub-Problem,
 465 confirming the increased difficulty of reformulated questions and the effectiveness of MQR.

466 **Ablation Studies.** To assess the individual contributions of our three reformulation strategies, we
 467 conduct ablation studies where each strategy is utilized separately. **MetaMath-Rephrasing** (Yu et al.,
 468 2024) is also included as a baseline, which uses GPT-3.5-Turbo to simply rephrase questions. We
 469 sample 22.5k data from its total 50k rephrased questions, combined with the original data for training.
 470 The results, as presented in Table 7, are all trained using DGPO. Each strategy independently
 471 improves performance over both the Original and the MetaMath-Rephrasing baselines. Crucially,
 472 the MQR approach, which combines all three strategies, achieves the highest average score of
 473 42.17%. This underscores a clear synergy, where these diverse strategies produce a more substantial
 474 improvement than any individual component in mathematical reasoning.

475 **Training Dynamics.** Figure 2 illustrates the training dynamics of DGPO
 476 when trained on the original MATH
 477 dataset versus the MQR-augmented
 478 dataset. As presented in Figure 2(a),
 479 the consistently lower training accuracy
 480 on the MQR-augmented data exhibits
 481 that the reformulated questions
 482 are substantially more challenging.
 483 Despite this increased difficulty, the
 484 model trained with MQR ultimately
 485 achieves superior accuracy on the un-
 seen MATH500 benchmark, as depicted in Figure 2(b). This “train harder, test better” phenomenon



482 Figure 2: Training dynamics of Original vs. MQR on training
 483 and evaluation data. Both models are trained on MATH
 484 and evaluated on MATH500 using Qwen2.5-Math-7B.
 485

486
487 Table 8: Comparative results of MQR using varying reformulator models on the MATH dataset.
488

Reformulators	AIME24	AIME25	AMC23	MATH500	Minerva	Olympiad	Avg./ $\Delta_{\text{Ori.}}$
Original	26.46	9.17	58.67	74.65	31.62	38.81	39.90
Qwen2.5-7B-Instruct	<u>25.10</u>	11.98	58.67	76.85	33.00	40.96	41.09 _{+1.19}
Qwen3-30B-A3B-Thinking	25.73	<u>12.29</u>	59.84	<u>78.85</u>	<u>33.18</u>	<u>41.22</u>	<u>41.85_{+1.95}</u>
OpenAI o3	24.58	12.60	59.84	79.95	33.36	42.67	42.17_{+2.27}

494
495 suggests that the more challenging questions of MQR result in robust, generalizable reasoning ca-
496 pabilities, enhancing performance while preventing overfitting.

497
498 **Generality to Less Capable Reformulators.** The reformulator model is only required to reformu-
499 late questions rather than solve them, thereby imposing lower demands on its reasoning capabilities.
500 To assess the generality of MQR to reformulator models with less capability, we utilize two smaller
501 and open-source models: Qwen2.5-7B-Instruct (Team, 2025) and Qwen3-30B-A3B-Thinking (Yang
502 et al., 2025). As shown in Table 8, while the most capable OpenAI o3 reformulator achieves the best
503 results, the other two models also deliver substantial gains over the original data. This indicates that
504 even moderately capable models can effectively generate challenging question reformulations that
505 enhance mathematical reasoning within the MQR strategy.

5 RELATED WORK

507
508 **Reinforcement Learning.** Policy optimization has become a standard for post-training large lan-
509 guage models to enhance their reasoning capabilities (Jaech et al., 2024; Guo et al., 2025; Team et al.,
510 2025). Building upon Proximal Policy Optimization (PPO) (Schulman et al., 2017), Group Relative
511 Policy Optimization (GRPO) (Shao et al., 2024) proposes a highly efficient critic-less paradigm us-
512 ing group relative advantage estimation. This spurred a line of research focused on refining GRPO’s
513 stability and performance. For example, Dr.GRPO (Liu et al., 2025a) removes the length bias and
514 PPO-objective bias in GRPO’s advantage estimation. GPG (Chu et al., 2025), DAPO (Yu et al.,
515 2025), and GRPO-LEAD (Zhang & Zuo, 2025) address issues in reward design, advantage estima-
516 tion, and oversampling, while GSPO (Zheng et al., 2025) and GMPO (Zhao et al., 2025) introduce
517 alternative optimization objectives. Besides, another line of work (Dai et al., 2025; Yue et al., 2025;
518 Liu et al., 2025b) proposes more complex pipelines, such as value models or prompt refinement.

519
520 **Data Augmentation.** A parallel line of work improves mathematical reasoning from a data-centric
521 perspective. One strategy involves generating entirely new, high-quality problem-solution pairs us-
522 ing powerful teacher models, showing that synthetic data can rival human-curated datasets (Luo
523 et al., 2023; Li et al., 2024b;a). Another strategy, more aligned with our work, focuses on reformu-
524 lating existing questions while preserving the original answer. Approaches like MetaMath (Yu et al.,
525 2024) and PersonaMath (Luo et al., 2024) achieve this by rephrasing problems or adopting specific
526 personas. Moreover, an advanced approach employs self-play, where the model generates its own
527 challenging questions from solutions, fostering continuous self-improvement (Liang et al., 2025).

6 CONCLUSION

528
529 In this paper, we propose MathForge, a comprehensive framework designed to enhance mathemati-
530 cal reasoning by targeting harder problems from both algorithmic and data perspectives. MathForge
531 is two-fold: the Difficulty-Aware Group Policy Optimization (DGPO) algorithm rectifies the up-
532 date magnitude **imbalance** and prioritizes challenging questions, while the Multi-Aspect Question
533 Reformulation (MQR) strategy augments training data with more difficult, yet answer-preserving,
534 question variants from multiple aspects. Extensive experiments demonstrate that this synergistic
535 combination significantly outperforms existing methods across various models and benchmarks, un-
derscoring our core principle that “harder is better” in mathematical reasoning.

ETHICS STATEMENT

536
537 This work adheres to the ICLR Code of Ethics, ensuring ethical compliance throughout all stages of
538 the research. The MQR-augmented data was constructed by reformulating problems from the public

540 MATH dataset. This process and the source data do not involve any personally identifiable information
 541 or sensitive content, thereby mitigating privacy concerns. The primary goal of our research is
 542 to enhance the mathematical reasoning capabilities of AI models, a pursuit with significant potential
 543 benefits for scientific research, engineering, and education.
 544

545 REPRODUCIBILITY STATEMENT

548 To ensure the full reproducibility of our research, we will make our code and the MQR-augmented
 549 dataset publicly available. Our implementation is built upon the Open-R1 codebase ([Hugging Face](#),
 550 [2025](#)). Comprehensive details regarding the experimental setup, including model configurations and
 551 all hyperparameters, are described in Section 4.1 and further elaborated in Appendix F. For the MQR
 552 strategy, the exact prompts used for generating the augmented data are provided in Appendix C, and
 553 illustrative examples of the reformulated questions are presented in Appendix D.

554 REFERENCES

556 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 557 Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 558 2025.

560 Jiaqi Chen, Jianheng Tang, Jinghui Qin, Xiaodan Liang, Lingbo Liu, Eric P Xing, and Liang Lin.
 561 Geoqa: A geometric question answering benchmark towards multimodal numerical reasoning.
 562 *arXiv preprint arXiv:2105.14517*, 2021.

563 Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci. R1-v: Reinforcing super generalization
 564 ability in vision-language models with less than \$3. <https://github.com/Deep-Agent/R1-V>, 2025. Accessed: 2025-02-02.

567 Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, and Yong Wang. Gpg: A simple and strong
 568 reinforcement learning baseline for model reasoning. *arXiv preprint arXiv:2504.02546*, 2025.

570 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 571 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 572 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 573 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

574 Muzhi Dai, Chenxu Yang, and Qingyi Si. S-grpo: Early exit via reinforcement learning in reasoning
 575 models. *arXiv preprint arXiv:2505.07686*, 2025.

577 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 578 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 579 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

581 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 582 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
 583 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint*
 584 *arXiv:2402.14008*, 2024.

585 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 586 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 587 *preprint arXiv:2103.03874*, 2021.

589 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.

592 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 593 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
 594 *preprint arXiv:2412.16720*, 2024.

594 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 595 masesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 596 reasoning problems with language models. *Advances in neural information processing systems*,
 597 35:3843–3857, 2022.

598 Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
 599 Houwen Peng. Common 7b language models already possess strong math capabilities. *arXiv*
 600 *preprint arXiv:2403.04706*, 2024a.

602 Chengpeng Li, Zheng Yuan, Hongyi Yuan, Guanting Dong, Keming Lu, Jiancan Wu, Chuanqi Tan,
 603 Xiang Wang, and Chang Zhou. Mugglemath: Assessing the impact of query and response aug-
 604 mentation on math reasoning. *arXiv preprint arXiv:2310.05506*, 2023.

605 Chengpeng Li, Zheng Yuan, Hongyi Yuan, Guanting Dong, Keming Lu, Jiancan Wu, Chuanqi Tan,
 606 Xiang Wang, and Chang Zhou. Mugglemath: Assessing the impact of query and response aug-
 607 mentation on math reasoning. In *Proceedings of the 62nd Annual Meeting of the Association for*
 608 *Computational Linguistics (Volume 1: Long Papers)*, pp. 10230–10258, 2024b.

609 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
 610 Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
 611 ai4maths with 860k pairs of competition math problems and solutions. *Hugging Face repository*,
 612 13(9):9, 2024c.

614 Xiao Liang, Zhongzhi Li, Yeyun Gong, Yelong Shen, Ying Nian Wu, Zhijiang Guo, and Weizhu
 615 Chen. Beyond pass@ 1: Self-play with variational problem synthesis sustains rlvr. *arXiv preprint*
 616 *arXiv:2508.14029*, 2025.

617 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
 618 and Min Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint*
 619 *arXiv:2503.20783*, 2025a.

621 Ziru Liu, Cheng Gong, Xinyu Fu, Yaofang Liu, Ran Chen, Shoubo Hu, Suiyun Zhang, Rui Liu,
 622 Qingfu Zhang, and Dandan Tu. Ghpo: Adaptive guidance for stable and efficient llm reinforce-
 623 ment learning. *arXiv preprint arXiv:2507.10628*, 2025b.

624 Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
 625 wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
 626 for large language models via reinforced evol-instruct. *arXiv preprint arXiv:2308.09583*, 2023.

628 Jing Luo, Longze Chen, Run Luo, Liang Zhu, Chang Ao, Jiaming Li, Yukun Chen, Xin Cheng, Wen
 629 Yang, Jiayuan Su, et al. Personamath: Boosting mathematical reasoning via persona-driven data
 630 augmentation. *arXiv preprint arXiv:2410.01504*, 2024.

631 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 632 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

634 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 635 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 636 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

637 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
 638 Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv*
 639 *preprint arXiv:2507.20534*, 2025.

641 Qwen Team. Qwen2.5 technical report, 2025.

642 Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
 643 Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
 644 learning. <https://github.com/huggingface/trl>, 2020.

646 Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
 647 Wang, Junjie Li, Ziming Miao, et al. Reinforcement learning with verifiable rewards implicitly
 incentivizes correct reasoning in base llms. *arXiv preprint arXiv:2506.14245*, 2025.

648 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
649 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2.5-math technical report: Toward mathematical
650 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024.

651 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
652 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
653 arXiv:2505.09388*, 2025.

654 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
655 guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
656 for large language models. In *International Conference on Learning Representations*, 2024.

657 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
658 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
659 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

660 Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
661 Wang, TianTian Fan, Zhengyin Du, et al. Vapo: Efficient and reliable reinforcement learning for
662 advanced reasoning tasks. *arXiv preprint arXiv:2504.05118*, 2025.

663 Jixiao Zhang and Chunsheng Zuo. Grpo-lead: A difficulty-aware reinforcement learning approach
664 for concise mathematical reasoning in language models. *arXiv preprint arXiv:2504.09696*, 2025.

665 Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shao-
666 han Huang, Lei Cui, Qixiang Ye, et al. Geometric-mean policy optimization. *arXiv preprint
667 arXiv:2507.20673*, 2025.

668 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
669 Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. *arXiv preprint
670 arXiv:2507.18071*, 2025.

674 A THE USE OF LARGE LANGUAGE MODELS (LLMs)

675 We used LLMs to assist in polishing the writing of this paper. Its use was limited to improving
676 grammar, clarity, and style. All core intellectual contributions, including the proposed methods,
677 experimental design, and analysis, were conceived and executed by the human authors.

678 B PROOFS

679 B.1 FULL DERIVATION FOR GRADIENT OF GRPO

680 Consider a single question q and its corresponding responses $\{o_i\}_{i=1}^G$, the unclipped policy gradient
681 calculated in GRPO is as follows:

$$\begin{aligned}
682 g_{\text{GRPO}} &= \frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \hat{A}_{\text{GR},i} \nabla_{\theta} I_{it}(\theta) \\
683 &= \frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \hat{A}_{\text{GR},i} \nabla_{\theta} \frac{\pi_{\theta}(o_{i,t} | q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} | q, o_{i,<t})} \\
684 &= \frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \hat{A}_{\text{GR},i} \frac{\text{detach}(\pi_{\theta}(o_{i,t} | q, o_{i,<t}))}{\pi_{\theta_{\text{old}}}(o_{i,t} | q, o_{i,<t})} \nabla_{\theta} \frac{\pi_{\theta}(o_{i,t} | q, o_{i,<t})}{\text{detach}(\pi_{\theta}(o_{i,t} | q, o_{i,<t}))} \\
685 &= \frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \hat{A}_{\text{GR},i} \text{detach}(I_{it}(\theta)) \nabla_{\theta} \log(\pi_{\theta}(o_{i,t} | q, o_{i,<t})) \\
686 &= \frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \text{sgn}(\hat{A}_{\text{GR},i}) |\hat{A}_{\text{GR},i}| \text{detach}(I_{it}(\theta)) \nabla_{\theta} \log(\pi_{\theta}(o_{i,t} | q, o_{i,<t})),
\end{aligned} \tag{12}$$

702 where $\text{sgn}(\cdot)$ is the sign function and $\text{detach}(\cdot)$ is the stop-gradient operator.
 703

704 **B.2 FULL DERIVATION FOR THE TOTAL UPDATE MAGNITUDE OF GRPO**
 705

706 The PPO/GRPO-style gradient for a fixed question q can be written (ignoring token length difference,
 707 clipping and importance sampling terms) as:
 708

709
 710
$$g(q) = \frac{1}{G} \sum_{i=1}^G \hat{A}_i \nabla_{\theta} \log \pi_{\theta}(o_i | q) \triangleq \frac{1}{G} \sum_{i=1}^G \hat{A}_i g_i, \quad (13)$$

 711
 712

713 By the triangle inequality, the gradient norm satisfies:
 714

715
 716
$$\|g(q)\| = \left\| \frac{1}{G} \sum_{i=1}^G \hat{A}_i g_i \right\| \leq \frac{1}{G} \sum_{i=1}^G |\hat{A}_i| \|g_i\|. \quad (14)$$

 717
 718

719 Since all gradients $\hat{A}_i g_i$ are generated from the same question and tend to together improve the
 720 policy on that specific query, their directions are positively correlated. Such directional alignment
 721 implies limited mutual cancellation, causing the triangle inequality to be nearly tight.
 722

723 Moreover, as all responses in a batch are sampled from the same policy with the same temperature
 724 and the same or similar math prompt, the variation in $\|g_i\|$ is typically much smaller than the variation
 725 in $|\hat{A}_i|$. Under this mild assumption, $\sum_i |\hat{A}_i|$ serves as a tight upper bound and a faithful proxy
 726 for the question-level update strength, but is not an exact equality.
 727

728 **B.3 PROOF OF THEOREM 1**
 729

730 We provide a proof of Theorem 1 (Update Magnitude for a Single Question using GRAE) below.
 731

732 *Proof.* By definition, the total update magnitude is the sum of the absolute values of the advantages:
 733

734
$$\sum_{i=1}^G |\hat{A}_{\text{GR},i}| = \sum_{i=1}^G \left| \frac{r_i - \text{mean}(\{r_i\}_{i=1}^G)}{\text{std}(\{r_i\}_{i=1}^G)} \right| = \frac{\sum_{i=1}^G |r_i - \text{mean}(\{r_i\}_{i=1}^G)|}{\text{std}(\{r_i\}_{i=1}^G)}. \quad (15)$$

 735
 736

737 For binary rewards $r_i \in \{0, 1\}$, the mean value is the accuracy rate $p = \frac{1}{G} \sum_{i=1}^G r_i$, and the standard
 738 deviation is $\sqrt{p(1-p)}$. Substituting these gives:
 739

740
$$\sum_{i=1}^G |\hat{A}_{\text{GR},i}| = \frac{\sum_{i=1}^G |r_i - p|}{\sqrt{p(1-p)}}. \quad (16)$$

 741
 742

743 The numerator can be decomposed based on the reward values. There are Gp terms where $r_i = 1$
 744 and $G(1-p)$ terms where $r_i = 0$. Therefore:
 745

746
$$\begin{aligned} 747 \sum_{i=1}^G |\hat{A}_{\text{GR},i}| &= \frac{Gp|1-p| + G(1-p)|0-p|}{\sqrt{p(1-p)}} \\ 748 &= \frac{Gp(1-p) + G(1-p)p}{\sqrt{p(1-p)}} \quad (\text{since } p \in (0, 1)) \\ 749 &= \frac{2Gp(1-p)}{\sqrt{p(1-p)}} \\ 750 &= 2G\sqrt{p(1-p)}. \end{aligned} \quad (17)$$

 751
 752
 753
 754
 755

□

756 B.4 PROOF OF THEOREM 2
757758 We provide a proof of Theorem 2 (Update Magnitude for a Single Question using DGAE) below.
759760 *Proof.* By definition, the total update magnitude is the sum of the absolute values of the advantages:
761

762
$$\sum_{i=1}^G |\hat{A}_{\text{DG},i}| = \sum_{i=1}^G \left| \frac{r_i - \text{mean}(\{r_i\}_{i=1}^G)}{\frac{1}{G} \sum_{i=1}^G |r_i - \text{mean}(\{r_i\}_{i=1}^G)|} \right|. \quad (18)$$

763

764 Since the denominator, $\frac{1}{G} \sum_{j=1}^G |r_j - \text{mean}(\{r_i\}_{i=1}^G)|$, is constant with respect to the summation
765 index i and non-negative, we can move it outside the outer summation:
766

767
$$\sum_{i=1}^G |\hat{A}_{\text{DG},i}| = \frac{\sum_{i=1}^G |r_i - \text{mean}(\{r_i\}_{i=1}^G)|}{\frac{1}{G} \sum_{i=1}^G |r_i - \text{mean}(\{r_i\}_{i=1}^G)|} = G. \quad (19)$$

768

769 \square
770771 C PROMPTS FOR MQR
772773 We provide the detailed prompts for MQR below.
774775 **General Prompt for Question Reformulation**776 I want you to act as an expert Math Question Rephraser.
777778 Your goal is to rephrase a given math question so it becomes more challenging for
779 large AI models while remaining logically sound and fully comprehensible to humans. The
780 rephrased question MUST yield exactly the same final answer as the original.
781782 You should complicate the given question using the following method:
783 {instruction}
784785 You must strictly adhere to the following constraints:
786787 - The final answer MUST remain unchanged.
788 - The rephrased question should be no more than 100 words longer than the given question.
789 - Preserve the original interrogative verb (e.g., “find”, “determine”, “compute...”, “evalu-
790 ate”).
791 - Use LaTeX for all mathematical expressions.
792 - Output only the rephrased question (no hints, solutions, explanation, or commentary).
793794
795 #Given Question Start#
796 {question}
797 #Given Question End#
798799 **Specific Instruction for Background Question**800 - Add a story background that is not related to the core mathematical content of the given
801 question, but seems to be related to the question.
802 - If the given question already has such a background, change it to a new, complexer back-
803 ground.
804 - Possible background themes include, but are not limited to, the following: history, culture,
805 geography, nature, occupation, daily life, sports, art, science fiction, and adventure. Astron-
806 omy is explicitly excluded.
807 - The background should be presented as natural parts of the question statement, ensuring
808 the rephrased question is coherent and self-contained.
809

810

Specific Instruction for Term Question

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

- Invent a new, abstract mathematical term to define a concept that is central to the given question, and restate the entire question using this term.
- The term should be presented as natural parts of the question statement, ensuring the rephrased question is coherent and self-contained.

Specific Instruction for Sub-Problem Question

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

D AUGMENTED DATA OF MQR

We provide examples of questions generated by MQR below, with the highlighted parts representing the main modifications made according to the reformulation strategies.

Original Question

Berengere and her American foreign-exchange student Emily are at a bakery in Paris that accepts both euros and American dollars. They want to buy a cake, but neither of them has enough money. If the cake costs 6 euros and Emily has an American five-dollar bill, how many euros does Berengere need to contribute to the cost of the cake if 1 euro = 1.25 USD?

Question using Background Reformulation

In the bustling Montmartre district of Paris, Berengere—a culinary historian compiling notes on classic French desserts—and her visiting American friend Emily, an anthropology student documenting European food customs, wander into the venerable pâtisserie “Le Temps Sucré.” They decide to purchase a famed gâteau Saint-Honoré that the proprietor has priced at 6 euros. Emily searches her travel wallet and discovers only a single crisp five-dollar bill, while Berengere carries euros exclusively. A sign by the register lists the day’s exchange rate as 1 euro = 1.25 USD. To complete the purchase, how many euros must Berengere contribute?

Question using Term Reformulation

Define the “euro-gap” ϵ of a prospective purchase as the non-negative difference, measured in euros, between an item’s listed euro price and the euro-denominated value of the funds already on hand to pay for it. Berengere and her American foreign-exchange student Emily visit a Parisian bakery. The cake they wish to buy is priced at 6 euros. Emily can contribute only an American five-dollar bill, and the prevailing conversion rate is 1 euro = 1.25 USD. Determine, in euros, the euro-gap ϵ that Berengere must cover to complete the purchase.

Question using Sub-Problem Reformulation

Berengere and her American foreign-exchange student Emily are at a Paris bakery that accepts both euros and U.S. dollars, but neither of them alone can pay for the desired cake. Before the exchange rate is revealed, solve this independent task: Find positive integers x

864

865

and y that satisfy

866

$$x + y = 9 \quad \text{and} \quad x^2 + y^2 = 41.$$

867

868

Let r be the ratio of the larger of x and y to the smaller. The cashier states that €1 is worth exactly r U.S. dollars. The cake costs €6, and Emily offers a single \$5 bill. Using the exchange rate r defined above, how many euros must Berengere contribute so that together they can pay for the cake?

870

871

872

E DATA AUGMENTATION COST OF MQR

873

874

The average token usage per question is 255.05 input tokens, 820.27 output reasoning tokens, and 138.33 output reformulated question tokens. Therefore, the total cost for generating 22.5k reformulated questions of the MATH dataset is approximately \$184.

875

876

877

F IMPLEMENTATION DETAILS

878

879

880

881

This section provides detailed information on the training and evaluation configurations used in our experiments.

882

883

884

885

For all reinforcement learning experiments, responses were generated with a temperature of 1.0 and a maximum completion length of 1024 tokens. During evaluation, we used a generation temperature of 0.6, a top-p value of 0.95, and set the maximum new tokens to 4096.

886

887

F.1 MATH

888

889

890

891

892

893

For experiments trained on the MATH dataset, we used the following system prompt to guide the model’s reasoning process: “Please reason step by step, and put your final answer within $\boxed{\cdot}$.” The maximum prompt length was set to 512 tokens. For each prompt, we generated 8 responses and used a training batch size of 32. The reward was based on binary accuracy, where a correct final answer yielded a reward of 1 and an incorrect one yielded 0.

894

895

896

Model-specific hyperparameters, including learning rate, number of epochs, gradient accumulation steps, and total training steps, are detailed in Table 9. The table specifies configurations for training on both the original 7.5k MATH dataset and the 30k MQR-augmented dataset.

897

898

Table 9: Hyperparameter settings trained on the MATH dataset using varying base models.

Models	Learning Rate	Epochs	Gradient Accumulation	Training Steps
Qwen2.5-Math-7B +MQR	5e-7	1	1	230
	1e-6	1	4	230
Qwen2.5-Math-1.5B +MQR	5e-7	1	1	230
	1e-6	1	4	230
Qwen2.5-3B +MQR	5e-7	1	1	230
	1e-6	1	4	230
DeepSeek-Math-7B +MQR	1e-6	2	1	468
	1e-6	1	1	937

911

912

913

For the cold start of DeepSeek-Math-7B, we sampled 80k data from NuminaMath-CoT to fine-tune it with a learning rate of $2e-6$, a batch size of 32, and gradient accumulation steps of 8, resulting in a total of 40 training steps.

914

915

916

917

F.2 GEOQA-8K

For the multimodal experiments on the GEOQA-8k dataset using Qwen2.5-VL-3B-Instruct, we performed a preprocessing step to remove non-standard units from the gold answers to facilitate con-

918 sistent reward calculation. Consequently, the system prompt was adjusted to: “Please reason step by
 919 step, and put your final answer without units in \boxed{\{.\}}.”
 920

921 The training was configured with a maximum prompt length of 2048 tokens and 8 generated re-
 922 sponses per question. The model was trained for 2 epochs using a learning rate of $1e-6$ and a batch
 923 size of 32. We set gradient accumulation steps to 1, resulting in a total of 480 training steps. The
 924 reward mechanism was the same binary accuracy metric used in the text-only experiments.
 925

G COMBINATION FORMS OF DGPO AND OTHER METHODS

928 This section details how DGPO is integrated with other policy optimization methods.
 929

G.1 GPG

931 The integration with GPG involves replacing its original advantage formulation with our DGAE
 932 and incorporating the DQW scheme. Specifically, the policy gradient objective of GPG is retained,
 933 but the update for each token is now scaled by the difficulty-balanced advantage $\hat{A}_{DG,si}$. Further-
 934 more, the loss contribution of each question is modulated by the difficulty-aware weight λ_s . The
 935 normalization is also adjusted to average over valid tokens. The optimization objective is as follows:
 936

$$\begin{aligned} \mathcal{J}_{GPG+DGPO}(\theta) &= \mathbb{E} \left[\{q_s\}_{s=1}^B \sim \mathcal{D}, \{o_{si}\}_{i=1}^G \sim \pi_\theta(\cdot | q_s) \right] \\ &\quad \frac{1}{\sum_{s=1}^{B_v} \sum_{i=1}^G |o_{si}|} \sum_{s=1}^{B_v} \lambda_s \sum_{i=1}^G \sum_{t=1}^{|o_{si}|} \left[-\log \pi_\theta(o_{i,t} | q, o_{i,< t}) \hat{A}_{DG,si} \right], \end{aligned} \quad (20)$$

942 where $\hat{A}_{DG,si}$ is the advantage of the response o_i obtained by DGAE given by:
 943

$$\hat{A}_{DG,si} = G \cdot \frac{r_{si} - \text{mean} \left(\{r_{si}\}_{i=1}^G \right)}{\sum_{i=1}^G |r_{si} - \text{mean} \left(\{r_{si}\}_{i=1}^G \right)|}, \quad (21)$$

947 and λ_s is the difficulty-aware weight for the query q_s computed by DQW as follows:
 948

$$\lambda_s = B_v \cdot \frac{\exp(D_s/T)}{\sum_{s=1}^{B_v} \exp(D_s/T)}, \text{ where } D_s = -\text{mean} \left(\{r_{si}\}_{i=1}^G \right). \quad (22)$$

G.2 DAPO

954 For DAPO, the combination preserves its core PPO-style clipped objective and its use of a composite
 955 reward signal (accuracy plus length penalty, i.e., $r_{si} = r_{acc,si} + r_{length,si}$). We replace DAPO’s
 956 original advantage estimation with our DGAE ($\hat{A}_{DG,si}$), which is calculated using this composite
 957 reward. Crucially, the difficulty score D_s for our DQW scheme is computed only using the accuracy
 958 component of the reward ($r_{acc,si}$). This design choice ensures that the question weighting focuses
 959 purely on the logical difficulty of the question, rather than being conflated with the verbosity of the
 960 responses. The optimization objective is as follows:
 961

$$\begin{aligned} \mathcal{J}_{DAPO+DGPO}(\theta) &= \mathbb{E} \left[\{q_s\}_{s=1}^B \sim \mathcal{D}, \{o_{si}\}_{i=1}^G \sim \pi_\theta(\cdot | q_s) \right] \\ &\quad \frac{1}{\sum_{s=1}^{B_v} \sum_{i=1}^G |o_{si}|} \sum_{s=1}^{B_v} \lambda_s \sum_{i=1}^G \sum_{t=1}^{|o_{si}|} \left\{ \min \left[I_{sit}(\theta) \hat{A}_{DG,si}, \text{clip} (I_{sit}(\theta), 1 - \varepsilon_{\text{low}}, 1 + \varepsilon_{\text{high}}) \hat{A}_{DG,si} \right] \right\}, \end{aligned} \quad (23)$$

967 where $I_{sit}(\theta)$ is the importance sampling ratio of the token $o_{si,t}$, and $\hat{A}_{DG,si}$ is the advantage of the
 968 response o_i obtained by DGAE, respectively given by:
 969

$$I_{sit}(\theta) = \frac{\pi_\theta(o_{si,t} | q_s, o_{si,< t})}{\pi_{\theta_{\text{old}}}(o_{si,t} | q_s, o_{si,< t})}, \quad \hat{A}_{DG,si} = G \cdot \frac{r_{si} - \text{mean} \left(\{r_{si}\}_{i=1}^G \right)}{\sum_{i=1}^G |r_{si} - \text{mean} \left(\{r_{si}\}_{i=1}^G \right)|}, \quad (24)$$

972 and λ_s is the difficulty-aware weight for the query q_s computed by DQW as follows:
 973

$$974 \quad \lambda_s = B_v \cdot \frac{\exp(D_s/T)}{\sum_{s=1}^{B_v} \exp(D_s/T)},$$

$$975$$

$$976 \quad \text{where } D_s = \begin{cases} -\text{mean} \left(\{r_{\text{acc},si}\}_{i=1}^G \right) & \text{if } \text{mean} \left(\{r_{\text{acc},si}\}_{i=1}^G \right) \neq 0 \\ -1 & \text{if } \text{mean} \left(\{r_{\text{acc},si}\}_{i=1}^G \right) = 0 \end{cases}. \quad (25)$$

$$977$$

$$978$$

$$979$$

980 Here, B_v signifies the number of valid queries in the batch. A query is considered valid if its rewards
 981 for G corresponding responses are not completely equal. For questions where all corresponding
 982 responses are incorrect (i.e., accuracy reward is 0), no positive learning signal is available in the
 983 current question. Consequently, we deliberately set its corresponding difficulty score, D_s , to its
 984 floor value of -1 . This prevents the model from dedicating excessive attention to instances that
 985 offer no constructive gradient for policy improvement.
 986

987 G.3 GSPO

988 The integration with GSPO is performed at the sequence level, aligning with GSPO’s fundamental
 989 design. GSPO’s sequence-level importance sampling ratio (S_{si}) is preserved. The update for each
 990 sequence is then driven by our DGAE, $\hat{A}_{\text{DG},si}$. The question-level weighting λ_s is also applied to
 991 modulate the influence of each question on the total loss. The loss is averaged over the number
 992 of valid questions, which aligns with the sequence-level nature of both GSPO and our DGPO. The
 993 optimization objective is as follows:
 994

$$995 \quad \mathcal{J}_{\text{GSPO+DGPO}}(\theta) = \mathbb{E} \left[\{q_s\}_{s=1}^B \sim \mathcal{D}, \{o_{si}\}_{i=1}^G \sim \pi_\theta(\cdot | q_s) \right]$$

$$996$$

$$997 \quad \frac{1}{B_v \cdot G} \sum_{s=1}^{B_v} \lambda_s \sum_{i=1}^G \left\{ \min \left[S_{si}(\theta) \hat{A}_{\text{DG},si}, \text{clip} (S_{si}(\theta), 1 - \varepsilon, 1 + \varepsilon) \hat{A}_{\text{DG},si} \right] \right\}, \quad (26)$$

$$998$$

$$999$$

1000 where $S_{si}(\theta)$ is the sequence-level importance sampling ratio of the response o_{si} , and $\hat{A}_{\text{DG},si}$ is the
 1001 advantage of the response o_i obtained by DGAE, respectively given by:
 1002

$$1003 \quad S_{si}(\theta) = \left(\prod_{t=1}^{|o_{si}|} \frac{\pi_\theta(o_{si,t} | q_s, o_{si,<t})}{\pi_{\theta_{\text{old}}}(o_{si,t} | q_s, o_{si,<t})} \right)^{\frac{1}{|o_{si}|}}, \quad \hat{A}_{\text{DG},si} = G \cdot \frac{r_{si} - \text{mean} \left(\{r_{si}\}_{i=1}^G \right)}{\sum_{i=1}^G |r_{si} - \text{mean} \left(\{r_{si}\}_{i=1}^G \right)|}, \quad (27)$$

$$1004$$

$$1005$$

$$1006$$

1007 and λ_s is the difficulty-aware weight for the query q_s computed by DQW as follows:
 1008

$$1009 \quad \lambda_s = B_v \cdot \frac{\exp(D_s/T)}{\sum_{s=1}^{B_v} \exp(D_s/T)}, \quad \text{where } D_s = -\text{mean} \left(\{r_{si}\}_{i=1}^G \right). \quad (28)$$

$$1010$$

1011 H QUALITY ASSESSMENT OF MQR

$$1012$$

1013 We utilized the OpenAI o3 model to determine whether a reformulated question is mathematically
 1014 equivalent to the original question. In this context, mathematical equivalence is defined as the ca-
 1015 pacity to yield the same final answer. The specific prompt used for this evaluation is as follows:
 1016

1017 Prompt for Quality Assessment of MQR

1018 You are an expert in mathematics and logic.
 1019

1020 Your task is to meticulously analyze and compare two versions of a mathematical
 1021 problem: an “Original Question” and a “Rewritten Question”. Your primary objective is to
 1022 determine if these two questions are mathematically equivalent. For the purpose of this task,
 1023 “mathematically equivalent” means that both questions, when solved correctly, will yield
 1024 the identical final numerical answer or symbolic solution.
 1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

Please structure your response as follows: 1. **Equivalence Verdict:** Start with a clear and unambiguous “Yes” or “No”. 2. **Detailed Justification:** If they are equivalent, explain why the changes in wording, structure, or given information do not alter the underlying mathematical operations or the final result. If they are not equivalent, pinpoint the specific change in the rewritten question that alters the problem’s mathematical core. Explain how this change leads to a different solution or answer.

#Original Question Start#

{question}

#Original Question End#

#Rewritten Question Start#

{rewritten_question}

#Rewritten Question End#

We randomly sampled 100 questions from each of the three categories of reformulated questions, which yielded equivalence rates of 99% for Background, 97% for Term, and 97% for Sub-Problem, respectively.

In MQR, a failed reformulation means that the resulting question becomes unsolvable or has a new answer different from the original answer. In math reasoning RLVR, the answer space is open-ended, extremely large, and requires exact canonical matching (e.g., exact integers, simplified fractions, or normalized symbolic expressions). Therefore, it is highly improbable that the policy model would reason incorrectly and happen to provide the same answer as that of the original question. Therefore, the multiple responses to the corrupted question would be uniformly incorrect (i.e., all rewards = 0). Under GRPO and its variants (including our DGPO), such questions are invalid queries yielding no update gradients, thereby providing no harmful training signals.

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079