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ABSTRACT

Generalized Category Discovery (GCD) seeks to discover categories by clustering
unlabeled samples that mix known and novel classes. While the prevailing recipe
enforces compact clustering, this pursuit is largely blind to representation geome-
try: it over-compresses token manifolds, distorts eigen-structure, and yields brittle
feature distributions that undermine discovery. We argue that GCD requires not
more compression, but geometric restoration of an over-flattened feature space.
Drawing inspiration from quantum information science, which similarly pursues
representational completeness, we introduce Bures-Isotropy Alignment (BIA),
which optimizes the class-token covariance toward an isotropic prior by minimizing
the Bures distance. Under a mild trace constraint, BIA admits a practical surro-
gate equivalent to maximizing the nuclear norm of stacked class tokens, thereby
promoting isotropic, non-collapsed subspaces without altering architectures. The
induced isotropy homogenizes the eigen-spectrum and raises the von Neumann
entropy of class-token autocorrelation, improving both cluster separability and
class-number estimation. BIA is plug-and-play, implemented in a few lines on
unlabeled batches, and consistently boosts strong GCD baselines on coarse- and
fine-grained benchmarks, improving overall accuracy and reducing errors in the
estimation of class-number. By restoring the geometry of token manifolds rather
than compressing them blindly, BIA supplies compactness for known classes and
cohesive emergence for novel ones, advancing robust open-world discovery.

1 INTRODUCTION

Bures-Isotropy Alignment

Figure 1: (a) GCD is constrained by dimensional col-
lapse due to strong clustering, leading to mixed class
features and limited representational capacity. (b) BIA
enhances the token geometry capacity, improving rep-
resentational completeness and unlocking the model’s
potential in the open world.

Open-world learning (Zhou et al., 2022;
Wu et al., 2024) mandates models that can
re-identify known classes while discover-
ing novel ones from unlabeled data. Gen-
eralized category discovery (GCD) (Vaze
et al., 2022b) formulates this demand ex-
plicitly, relaxing the assumptions of open-
set recognition (OSR) (Geng et al., 2020)
and novel-class discovery (NCD) (Han et al.,
2019). Despite recent progress, the domi-
nant paradigm in GCD still hinges on com-
pact clustering as a universal target. This
practice is geometry-agnostic: it compresses
intra-class variability indiscriminately, often
collapsing token manifolds into a few prin-
cipal directions. The result is a degraded
representation geometry with poor eigen-
structure, skewed energy distribution, and
fragile decision regions, that ultimately impedes category discovery and class-number estimation.

We contend that the bottleneck is not insufficient compactness, but the loss of geometric quality in
learned representations. When the class-token subspace is over-compressed, the feature distribution
becomes anisotropic and low-rank, masking fine-grained semantics and amplifying open-world errors
such as spurious merges. Thus, a central desideratum for GCD is to restore a well-posed geometry
and preserves intra-class completeness while maintaining inter-class separability.

1
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To this end, we propose Bures-Isotropy Alignment (BIA), a geometry-aware principle inspired by
quantum information. As shown in Figure 1, green represents known classes and red represents novel1
classes. The upper panel illustrates how conventional GCD methods, by enforcing compactness, cause
dimensional collapse, leading to uninformative feature dimensions (grey area). BIA restores geometry,
enhancing separability by encouraging isotropy. BIA aligns the empirical class-token covariance with
an isotropic prior by minimizing the Bures distance (Jozsa, 1994), a canonical metric that instantiates
the 2-Wasserstein geometry over covariance operators. Conceptually, BIA redistributes spectral
energy across eigen-directions, prevents dimensional collapse, and yields uniform, full-rank token
manifolds that capture richer intra-class semantics without sacrificing discrimination.

BIA comes with a practical and rigorous surrogate. Under mild row-norm or trace control, minimizing
the Bures distance to identity is equivalent to maximizing the nuclear norm of stacked class tokens.
This equivalence connects isotropy alignment with a simple few-line implementation that is
architecture-agnostic and training-protocol compatible. It also bridges information geometry with
GCD’s capacity-oriented diagnostics: by homogenizing the spectrum, BIA increases the von Neu-
mann entropy (Nielsen & Chuang, 2010) and the effective rank of the class-token autocorrelation,
which we observe to correlate with more reliable class-number estimation and more stable clustering.

We integrate BIA into representative GCD frameworks (contrastive and prototype-based) without
modifying backbones and loss schedules. BIA consistently improves All/Old/New accuracy across
standard coarse- and fine-grained benchmarks, while reducing class-number estimation error. Ab-
lations show that BIA stabilizes pseudo-label assignment in GCD, attenuates early collapse, and
remains robust across backbones and batch sizes, at negligible computational overhead thanks to a
Gram-matrix implementation (Borgwardt et al., 2006).

• We introduce BIA, casting GCD as isotropy alignment of class-token covariance via the
Bures distance, thereby restoring representation geometry rather than compressing it blindly.

• We establish an equivalence between BIA and nuclear-norm maximization under a trace
constraint, explaining BIA’s effect on eigen-spectrum uniformity, von Neumann entropy,
and effective rank, and linking information geometry to capacity-aware diagnostics in GCD.

• We provide a plug-and-play implementation that yields consistent gains on strong GCD
baselines in both clustering accuracy and K-estimation, with minimal code and overhead.

2 RELATED WORKS

2.1 GENERALIZED CATEGORY DISCOVERY

Generalized category discovery (Vaze et al., 2022b; Zhao et al., 2023; Wen et al., 2023; Choi et al.,
2024) jointly recognizes known classes and discovers unseen ones. The seminal framework (Vaze
et al., 2022b) integrates semi-supervised k-means; SimGCD (Wen et al., 2023) introduces a para-
metric classifier with entropy regularization and self-distillation; CMS (Choi et al., 2024) enhances
representations via mean-shift clustering; and (Zhao et al., 2023) adapts prototype counts at infer-
ence. ActiveGCD (Ma et al., 2024) further queries labels for selected unlabeled samples to improve
discovery. Most GCD methods still prioritize compact clustering and thus overlook a central GCD
desideratum: restoring a well-posed geometry that preserves intra-class completeness while maintain-
ing inter-class separability. We instead provide a concise, method-agnostic mechanism that enforces
Bures-isotropy representations, thereby sharpening decision boundaries across GCD pipelines.

2.2 REPRESENTATION COMPLETENESS

Representation completeness collapse (Grill et al., 2020; Caron et al., 2020; Shi et al., 2023; Jing
et al., 2021) occurs when embeddings concentrate in a low-dimensional subspace, limiting diversity
and expressiveness. DirectCLR (Jing et al., 2021) directly optimizes the representation space
without a trainable projector, promoting a more uniform dispersion. Whitening (Tao et al., 2024)
equalizes covariance contributions; the non-contrastive objective for collaborative filtering (Chen
et al., 2024) emphasizes alignment and compactness without augmentation or negatives; The Bregman
matrix divergence (Zhang et al., 2024) pulls covariance toward the identity; and random orthogonal

1In the task setting of GCD, we do not differentiate between ’Old/New’ and ’Known/Novel’.
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(b) Bures-Isotropy Alignment (c) Any GCD Framework

BIA regularizes the distribution

patch tokens

DINO
ViT

DINO
ViT

class token

(a) Over-compressed Token Geometry

collapsed known-class space

collapsed novel-class space
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few dimensions 
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Figure 2: Overview of Bures-Isotropy Alignment. (a) BIA targets the geometry of the [cls]
token, which summarizes sample information. (b) The core mechanism restores over-compressed,
low-rank representations to a high-rank, isotropic state, preserving richer intra-class semantics. (c)
The resulting embeddings are plug-and-play compatible with any GCD framework.

projection modeling (Haghighat et al., 2023) broadens the search for characteristics. Rather than
directly targeting collapse, we reformulate GCD as isotropy alignment of class-token covariance
measured by the Bures distance, prioritizing the restoration of representation geometry over blind
compression.

2.3 BURES METRIC

The Bures metric (Šafránek, 2017) is based on the Bures distance and is originally defined to quantify
the difference between quantum states. It is widely applied in the study of quantum information
geometry (Cho & Jae, 2025), quantum physics (Alsing et al., 2023), and related areas. By interpreting
density matrices as a generalized form of probability distributions, the Bures metric becomes an
effective method for comparing probability distributions or positive definite matrices. For example,
in (Ji et al., 2019), it is employed as an alternative to the Wasserstein distance (Panaretos & Zemel,
2019) to measure the discrepancy between generated and real distributions in a more stable manner.
The kernelized Bures metric (Gilo et al., 2024) leverages the Bures metric within a reproducing kernel
Hilbert space to compare source and target domain distributions. Existing analyses of Bures distance
have treated it as a metric. We have amplified its advantages and, for the first time, extrapolated it to
serve as an optimization objective for category discovery in open-world environments.

3 METHODOLOGY

3.1 NOTATION AND PRELIMINARIES OF GCD

For each dataset, consider a labeled subset Dl = {(xl
i, y

l
i)} ⊂ X × Yl and an unlabeled subset

Du = {(xu
i , y

u
i )} ⊂ X × Yu. Only known classes can be found in Dl, while Du encompasses

known and novel classes, translating to Yl = Cknown and Yu = Cknown ∪ Cnovel. The task of
models involves clustering on both the known and novel classes in Du. The number of novel classes
represented as Knovel can be determined beforehand (Vaze et al., 2022b; Zhao et al., 2023). The
functions f(·) and g(·) perform as the feature extractor and projection head, respectively. Both the
feature hi = f(xi) and the projected embedding zi = g(hi) are under ℓ2-normalization. A ViT-style
encoder (Dosovitskiy, 2020) provides one class token [cls] and H×W visual tokens per image.

3.2 TOKEN GEOMETRY

Scope. As shown in Figure 2, we first formalize the class-token space regulated by our method,
keeping [cls] formation concise while retaining key mechanics for downstream spectral analysis.
By token geometry, we mean the spectral/metric structure of class tokens (pairwise angles, covariance
eigen-spectrum, effective rank, isotropy) computed over batches.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

To simplify [cls]’s evidence aggregation, we summarize one attention step (locally aggregating
token evidence into a global summary). After linear projections Q,K, V = XWQ, XWK , XWV ∈
R(1+HW )×dk (or d for V ; WQ,WK ,WV learnable, dk query/key dimension), let qc ∈ R1×dk be
[cls]’s row in Q. The class attention weights are:

αc = softmax
(qcK⊤

√
dk

)
∈ R1×(1+HW ), (1)

where αc is a probability vector over all (1 +HW ) tokens. These normalized weights guide token
evidence distribution and update [cls] residually. With the attention:

[cls]′ = [cls]+ αcV ∈ R1×d, (2)

where [cls]′ is the updated [cls] and V is the value matrix. Repeated across layers, Equations
1 and 2 defines [cls] for subsequent batch-scale geometric analysis. For GCD, token geometry
governs two coupled goals: preserving intra-class completeness for known categories and enabling
cohesive emergence of novel ones; in contrast, anisotropic, low-rank geometry under pseudo-label
noise tends to induce spurious merges or over-fragmentations (Figure 1).

Batch-scale token geometry. To study geometry at the mini-batch scale, consider an unlabeled
mini-batch Bu of size B and stack per-image class tokens row-wise as

Z = stack([cls]1, . . . ,[cls]B) ∈ RB×d, ΣB = ZZ⊤ ∈ RB×B , (3)

where stack(·) concatenates row vectors, d is the embedding dimension of each class token, and ΣB

is the batch Gram (Gatys et al., 2015) (sample–sample covariance) of class tokens. Under row ℓ2-
normalization, tr(ΣB) = ∥Z∥2F =

∑B
i=1 ∥Zi:∥22 ≈ B, and each entry (ΣB)ij = ⟨Zi:, Zj:⟩ reduces

to a cosine similarity; thus the spectrum of ΣB compactly captures how class tokens co-occupy
directions in feature space.

Because Z⊤Z ∈ Rd×d (feature Gram) and ZZ⊤ share the same nonzero singular spectrum, spectral
statements readily transfer between feature and sample domains; we will therefore diagnose geometry
either via ΣB (small, batch-sized eigensolve) or via the feature autocorrelation A (Sec. 3.4). In
particular, a uniform eigen-spectrum indicates isotropic support across many directions (high effective
rank), while a spiky spectrum signals anisotropy and potential collapse into a few dominant axes.

For GCD, batch-scale token geometry matters because the unlabeled pool mixes known and novel
categories within each batch: the more isotropic (discriminative) the class-token manifold is, the
more robust the subsequent clustering/prototype updates become to label noise and class imbalance.
Empirically, more uniform spectra correspond to higher effective rank and better tolerance to open-
world uncertainty, stabilizing pseudo-labels and improving class-number estimation.

3.3 BURES–ISOTROPY ALIGNMENT

Motivation. Token geometry strongly affects discovery quality, yet most GCD pipelines do not
explicitly correct it in open-world settings. Building on our analysis above, we borrow the Bures met-
ric (Bures, 1969; Uhlmann, 1976) from quantum information (a field that also values representation
quality) and turn this metric into a simple optimization that matches GCD.

We first need a way to quantify “how far” a batch’s class-token covariance is from an isotropic target;
a natural choice is the Bures distance to identity

d2B(ΣB , I) = tr(ΣB) +B − 2 tr
(
Σ

1/2
B

)
, (4)

where ΣB = ZZ⊤∈ RB×B is the batch Gram of stacked class tokens Z ∈ RB×d, B is batch size,
and I is the B × B identity; with row ℓ2-norms, the trace terms change little, so minimizing d2B
mainly increases tr(Σ1/2

B ) and thus spreads spectral energy.

4
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To implement this without changing the training loop, we relate the square-root trace to a familiar
surrogate that depends directly on Z:

tr
(
Σ

1/2
B

)
=
∑
j

√
µj =

∑
j

sj = ∥Z∥∗, (5)

where {µj} are eigenvalues of ΣB and {sj} are singular values of Z and this identity converts the
metric into the nuclear norm of stacked class tokens.

Metric-to-loss. With this link in place, aligning to isotropy becomes an extremely simple optimization
on Z under standard normalization:

argmin
Z

d2B(ΣB , I) ≡ argmax
Z

∥Z∥∗. (6)

Intuitively, maximizing ∥Z∥∗ lifts rank and homogenizes the spectrum, which raises entropy, reduces
collapse, and stabilizes discovery in noisy unlabeled batches, while computing the loss on the smaller
B ×B Gram for speed and stability.

In code we use either the metric itself or its nuclear-norm surrogate; both behave the same once row
norms are stabilized (e.g., by LayerNorm (Ba et al., 2016))

LBIA = d2B(ΣB , I) or Lnuc
BIA = −∥Z∥∗. (7)

This keeps the BIA architecture-agnostic and adds only a single scalar term to the base GCD objective:

L = LGCD + λLBIA. (8)

The BIA loss (both in the Bures distance form and nuclear norm surrogate) is differentiable, with
gradients computed via standard, differentiable SVD/eigendecomposition (Ionescu et al., 2015),
ensuring numerical stability (Bhatia, 2013). In summary, token geometry is central to GCD but
seldom corrected explicitly; by importing the Bures metric and recasting it as a nuclear-norm
objective, BIA offers a direct, batch-level way to restore isotropy in the class-token manifold and
thereby improve open-world discovery.

3.4 BIA INCREASES VON NEUMANN ENTROPY

CUB Stanford Cars FGVC Aircraft CUB Stanford Cars FGVC Aircraft3.0

3.5

4.0

4.5

5.0

5.5 log(rank( )) H( )
SimGCD
SimGCD + Ours
CMS
CMS + Ours

Figure 3: Comparison between
log(rank(A)) and Ĥ(A). The count
of the largest eigenvalues necessary to
account for 99% of the total eigenvalue
energy serves as a surrogate for the rank.

The autocorrelation matrix (Schölkopf & Smola,
2002) of the sample’s token geometry is A ≜∑N

i=1
1
N [cls]i[cls]

⊤
i = CLS⊤CLS/N . We em-

ploy von Neumann entropy (Petz, 2001; Boes et al.,
2019) to measure token geometry. This gives the ad-
vantage of focusing exclusively on the eigenvalues, al-
lowing for graceful handling of eigenvalues that are
extremely close to 0. The von Neumann entropy can be
expressed as Ĥ (A) ≜ −

∑
j λj log λj , representing

the Shannon entropy (Shannon, 1948) of the eigenval-
ues of A, with values ranging between 0 and log d. A
larger Ĥ(A) indicates a greater token geometry capac-
ity of the features. Von Neumann entropy is an effective
measure for assessing the uniformity of distributions
and managing extreme values.

As illustrated in Figure 3, the incorporation of BIA results in a von Neumann entropy for the
embeddings that is significantly higher than that of the original scheme. It is possible to relate von
Neumann entropy to the rank of the [cls]. When A possesses uniformly distributed eigenvalues
with full rank, the entropy is maximized. We clarify the connection between BIA and VNE. BIA
serves as a local optimization objective for mini-batch Gram matrices (ΣB). In contrast, VNE

5
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Table 1: Experimental results on fine-grained datasets, evaluated with the K for clustering.

Method CUB Stanford Cars FGVC Aircraft

All Old New All Old New All Old New

Clustering with the ground-truth number of classes K given

Agglomerative 37.0 36.2 37.3 12.5 14.1 11.7 15.5 12.9 16.9
RankStats+ 33.3 51.6 24.2 28.3 61.8 12.1 26.9 36.4 22.2
UNO+ 35.1 49.0 28.1 35.5 70.5 18.6 40.3 56.4 32.2
ORCA 35.3 45.6 30.2 23.5 50.1 10.7 22.0 31.8 17.1
GCD 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9
ProtoGCD 63.2 68.5 60.5 53.8 73.7 44.2 56.8 62.5 53.9
PrCAL 62.9 64.4 62.1 50.2 70.1 40.6 52.2 52.2 52.3
ActiveGCD 66.6 66.5 66.7 48.4 57.7 39.3 53.7 51.5 56.0
PIM 62.7 75.7 56.2 43.1 66.9 31.6 - - -

SelEx 78.7 81.3 77.5 55.9 76.9 45.8 60.8 70.3 56.2
+ Ours 80.6 81.0 80.4 57.0 77.3 47.2 61.8 68.2 59.2

+1.9 -0.3 +2.9 +1.1 +0.4 +1.4 +1.0 -2.1 +3.0
SimGCD 60.7 65.6 57.7 51.2 69.4 42.4 54.0 58.8 51.5

+ Ours 62.1 65.8 60.3 52.3 70.0 43.7 55.1 58.9 53.1
+1.4 +0.2 +2.6 +1.1 +0.6 +1.3 +1.1 +0.1 +1.6

CMS† 67.1 74.9 63.2 56.7 76.8 37.5 53.6 60.3 47.0
+ Ours 71.1 74.1 66.9 57.4 79.4 36.2 55.7 63.7 47.9

+4.0 -0.8 +3.7 +0.7 +2.6 -1.3 +2.1 +3.4 +0.9
SPTNet 62.0 69.2 56.0 56.2 70.3 46.6 51.6 60.7 45.9

+ Ours 63.3 70.7 59.6 58.8 75.4 50.8 54.7 65.3 48.5
+1.3 +1.5 +3.6 +2.6 +5.1 +4.2 +3.1 +4.5 +2.6

Avg. △ +2.2 +0.2 +3.2 +1.4 +2.2 +1.1 +1.8 +1.5 +2.0

functions as a global diagnostic metric derived from the complete dataset’s autocorrelation matrix
(A). BIA enhances the feature geometry directly, whereas VNE assesses the resulting improvements
by evaluating spectral uniformity and effective rank.

4 EXPERIMENTS

4.1 SETUP

Benchmarks. BIA is evaluated on coarse- and fine-grained benchmarks. These include two conven-
tional datasets, CIFAR100 (Krizhevsky & Hinton, 2009) and ImageNet100 (Geirhos et al., 2019),
and four fine-grained datasets, CUB-200-2011 (Wah et al., 2011), Stanford Cars (Krause et al., 2013),
FGVC Aircraft (Maji et al., 2013), and Herbarium19 (Tan et al., 2019). To segregate target classes into
sets of known and unknown, we adhere to the splits defined by the Semantic Shift Benchmark (Vaze
et al., 2022a) when working with CUB, Stanford Cars, and FGVC Aircraft. The splits from the
previous study (Vaze et al., 2022b) are employed for the remaining datasets, we designate 80% of the
classes as known under the CIFAR100 benchmark. For the rest of the benchmarks, the proportion of
known classes stands at 50%. Our labeled set Dl, comprises 50% images from the known classes for
all benchmarks.

Evaluation Protocols. We assess BIA’s effectiveness via a two-step process. First, we cluster the
complete collection of images defined as D. Then, we measure the accuracy on the set Du. In line
with previous research (Vaze et al., 2022b), accuracy is determined by comparing the assignments
to the actual labels using the Hungarian optimal matching (Kuhn, 1955). This method bases the
match on the number of instances that intersect between each pair of classes. Instances that do
not belong to any pair, i.e., unpaired classes, are viewed as incorrect predictions. On the other
hand, instances belonging to the most abundant class within each ground-truth cluster are taken as
correct for accuracy calculations. We present the accuracy for all unlabeled data, and the accuracy is
classified as old/known and new/novel, respectively. The accuracy using the estimated number of
classes and the ground-truth K are reported. This allows us to compare BIA with previous studies
that have assumed the availability of the K during the evaluation phase.

Implementation Details. The purpose of BIA is to empower existing GCD schemes to improve
the completeness of representation. We closely adhere to their initial implementation details for an
effective comparison. We use a pre-trained DINO ViT-B/16 (Caron et al., 2021; Dosovitskiy, 2020),as
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Table 2: Experimental results on coarse- and fine-grained datasets, evaluated with the K for clustering.

Method CIFAR100 ImageNet100 Herbarium 19

All Old New All Old New All Old New

Clustering with the ground-truth number of classes K given

Agglomerative 56.9 56.6 57.5 73.1 77.9 70.6 14.4 14.6 14.4
RankStats+ 58.2 77.6 19.3 37.1 61.6 24.8 27.9 55.8 12.8
UNO+ 69.5 80.6 47.2 70.3 95.0 57.9 28.3 53.7 14.7
ORCA 69.0 77.4 52.0 73.5 92.6 63.9 20.9 30.9 15.5
GCD 73.0 76.2 66.5 74.1 89.8 66.3 35.4 51.0 27.0
ProtoGCD 81.9 82.9 80.0 84.0 92.2 79.9 44.5 59.4 36.5
PrCAL 81.2 84.2 75.3 83.1 92.7 78.3 37.0 52.0 28.9
ActiveGCD 71.3 75.7 66.8 83.3 90.2 76.5 - - -
PIM 78.3 84.2 66.5 83.1 95.3 77.0 42.3 56.1 34.8

SelEx 80.0 84.8 70.4 82.3 93.9 76.5 36.2 46.0 30.9
+ Ours 80.7 84.3 72.1 82.8 94.1 77.8 36.8 47.5 31.0

+0.7 -0.5 +1.7 +0.5 +0.2 +1.3 +0.6 +1.5 +0.1
SimGCD 80.1 81.5 77.2 83.3 92.1 78.9 44.7 57.4 37.9

+ Ours 80.2 81.5 77.5 86.7 93.1 83.6 45.6 57.8 39.0
+0.1 +0.0 +0.3 +3.4 +1.0 +4.7 +0.9 +0.4 +1.1

CMS† 79.5 85.4 67.7 83.0 95.6 76.6 36.5 55.4 26.4
+ Ours 79.0 85.5 66.1 84.8 95.6 79.5 36.3 56.5 25.4

-0.5 +0.1 -1.6 +1.8 +0.0 +2.9 -0.2 +1.1 -1.0
SPTNet 81.3 84.3 75.6 85.4 93.2 81.4 43.4 58.7 35.2

+ Ours 82.1 84.8 76.2 85.4 93.4 81.3 44.2 58.9 36.3
+0.8 +0.5 +0.6 +0.0 +0.2 -0.1 +0.8 +0.1 +1.1

Avg. △ +0.3 +0.1 +0.3 +1.4 +0.4 +2.2 +0.5 +0.8 +0.3

Table 3: GCD Accuracy on coarse- and fine-grained datasets, evaluated without the K for clustering.

Method CIFAR100 ImageNet100 CUB Stanford Cars FGVC Aircraft Herbarium 19

All Old New All Old New All Old New All Old New All Old New All Old New

Clustering without the ground-truth number of classes K given

Agglomerative 56.9 56.6 57.5 72.2 77.8 69.4 35.7 33.3 36.9 10.8 10.6 10.9 14.1 10.3 16.0 13.9 13.6 14.1
GCD 70.8 77.6 57.0 77.9 91.1 71.3 51.1 56.4 48.4 39.1 58.6 29.7 - - - 37.2 51.7 29.4
GPC 75.4 84.6 60.1 75.3 93.4 66.7 52.0 55.5 47.5 38.2 58.9 27.4 43.3 40.7 44.8 36.5 51.7 27.9
PIM 75.6 81.6 63.6 83.0 95.3 76.9 62.0 75.7 55.1 42.4 65.3 31.3 - - - 42.0 55.5 34.7
CMS 77.8 84.0 65.3 83.4 95.6 77.3 66.2 69.7 64.4 51.8 72.9 31.3 52.3 58.9 45.8 38.5 57.3 28.4

+ Ours 79.5 84.7 69.1 84.3 95.7 78.8 68.7 74.1 66.0 52.5 72.7 32.9 53.4 60.1 46.7 38.0 56.9 27.9
Avg. △ +1.7 +0.7 +3.8 +0.9 +0.1 +1.5 +2.5 +4.4 +1.6 +0.7 -0.2 +1.6 +1.1 +1.2 +0.9 -0.5 -0.4 -0.5

our image encoder along with a projection head, an approach consistent with existing methods (Vaze
et al., 2022b; Zhang et al., 2023; Pu et al., 2023). All experiments are performed on four NVIDIA
RTX 4090 GPUs. We follow the original training parameter details of each scheme to illustrate
the generality and applicability of BIA.

4.2 MAIN RESULTS

Evaluation on GCD. As shown in Tables 1, 2 and 3, BIA brings consistent and notable gains
across all evaluated GCD methods and datasets, under both known and unknown class number
settings. Key findings are as follows: ❶ Compatibility. BIA improves all baselines including
SimGCD, CMS, SPTNet, and SelEx without any architectural changes or tuning. For example,
on CUB with known class number, BIA enhances SimGCD by 2.6% and CMS by 4.0%. On
ImageNet100, it improves SimGCD by 3.4% in the All setting and boosts CMS by 2.9% on novel
classes. These results highlight BIA’s strong generalization across frameworks and confirm its
plug-and-play compatibility. ❷ Generality. BIA yields stable gains on both coarse-grained datasets
like CIFAR100 and ImageNet100 and fine-grained ones like CUB and Cars. Notably, on CUB, BIA
improves CMS (known) by 4.4% under unknown class number settings. Average improvements on
novel classes range from about 1.0% to 3.8% across datasets, demonstrating the robustness to domain
complexity and label granularity.
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(a) CUB (b) Stanford Cars (c) FGVC Aircraft

Figure 4: Hyperparameter sensitivity of the degree of BIA (λ) and features dimensionality (D).

Ablation study. The only hyperparameter of BIA is the coefficient λ of the loss. To gain a
deeper understanding of the correlation between the degree of maximum token manifold capacity
and the dimensionality D of the features, we conducted an ablation experiment on it, as shown
in Figure 4. It can be observed that BIA is not sensitive to hyperparameters and can uniformly
enhance clustering accuracy. A more thought-provoking finding is that directly reducing D to avoid
dimensionality collapse is suboptimal. The reason is that each dimension of the manifold contributes
to the representation, and a reduction in D will directly lead to a loss of information. Even with
BIA, it is impossible to make the representation complete. An appropriate number of dimensions
enriches the representation while using BIA to prevent dimensionality collapse, which can maximize
the model’s performance enhancement.

5 HIERARCHICAL ANALYSIS OF WHY BIA IS EFFECTIVE

We conduct a comprehensive analysis from multiple dimensions: 1) eigenvalue distribution and
Frobenius norm, 2) estimation of embedded space distribution, 3) dimensional collapse, and 4)
comparison with similar schemes, to understand the necessity and effectiveness of BIA for GCD.

(a) CUB (b) Stanford Cars (c) FGVC Aircraft(a) CUB (b) Stanford Cars (c) FGVC Aircraft

Figure 5: The Frobenius norm ∥A − c · Id∥2F on three fine-grained benchmarks.

5.1 BIA HOMOGENIZES EIGENVALUE DISTRIBUTION AND REDUCES FROBENIUS NORM

The autocorrelation matrix of the test sample token geometry is denoted as A. Given ∥[cls]i∥2 = 1
and A ≥ 0, it follows that

∑
j λj = 1 and ∀jλj ≥ 0 (Parkhi et al., 2015; Liu et al., 2017; Mettes

et al., 2019), where {λj} are the eigenvalues of A. Under ideal conditions, where A → c · Id, the
eigenvalue distribution of A becomes uniform, z uncorrelated (Cogswell et al., 2015), full-rank (Hua
et al., 2021), and isotropic (Vershynin, 2018). A is linked to various representation characteristics.
The Frobenius norm (Ma et al., 1994; Peng et al., 2016), extensively studied in self-supervised
learning methods (Cogswell et al., 2015; Xiong et al., 2016; Choi & Rhee, 2019; Zbontar et al.,
2021), measures whether the representation depends on a few dimensions. A smaller Frobenius
norm indicates a larger manifold capacity. We applied singular value decomposition (SVD) (Golub
& Reinsch, 1971) to the autocorrelation matrix of the feature embeddings, plotting the first 200
singular values in Figure 6 and visualizing the Frobenius norm |A − c · Id|2F in Figure 5. Compared
to SimGCD and CMS, BIA achieves a more uniform and stable eigenvalue distribution.
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(a) CUB (b) Stanford Cars (c) FGVC Aircraft

Figure 6: BIA effectively mitigates dimensional collapse by providing a more uniform eigenvalue
distribution and improves the clustering accuracy.

5.2 BIA UNRAVELS DIMENSIONAL COLLAPSE.

We further explored the relationship between the accuracy and eigenvalues of GCD, respectively, and
dimensional collapse, as shown in Figure 6 and our findings are as follows: (1) Feature Completeness
and Clustering Accuracy: Complete features improve intra-class representations, which enhances
clustering accuracy by providing richer, higher manifold capacity. (2) BIA’s Impact: BIA increases
manifold capacity, leading to higher singular values and more accurate clustering by better approxi-
mating the true distribution. (3) Dimension Collapse and Limitations of CMS/SimGCD: CMS and
SimGCD operate in lower-dimensional spaces, limiting manifold capacity and causing incomplete
representations (Caron et al., 2020; Shi et al., 2023). Dimension collapse results in oversimplified
models, while BIA maximizes intra-class completeness for better decision boundaries. This break-
down highlights how BIA addresses limitations in existing methods by optimizing the manifold
capacity and the richness of intra-class representations, leading to improved model performance. Our
analysis illustrates key issues such as poor eigen-structure, skewed energy distribution, and fragile
decision regions. Figures 6 and A1 expose the deficient eigen-structure of baseline methods, while
Figure 3 assesses the skewed energy distribution using von Neumann entropy. Figure 5 addresses
fragile decision regions and demonstrates BIA’s geometric improvement via the Frobenius norm.

5.3 BIA PROVIDES ACCURATE DISTRIBUTION ESTIMATION

Table 4: Estimated number and error rate of K.

Method
CIFAR100 ImageNet100 CUB Stanford Cars FGVC Aircraft

K Err(%) K Err(%) K Err(%) K Err(%) K Err(%)

Ground truth 100 - 100 - 200 - 196 - 100 -

GCD 100 0 109 9 231 15.5 230 17.3 - -
DCCL 146 46 129 29 172 9 192 0.02 - -
PIM 95 5 102 2 227 13.5 169 13.8 - -
GPC 100 0 103 3 212 6 201 0.03 - -

CMS† 94 6 98 2 176 12 149 23.9
+ Ours 96 4 100 0 180 10 159 18.9 89 11

We present the gap between BIA and SOTAs in
estimating the number of clusters in Table 4. By
leveraging CMS, which requires no specific hy-
perparameters to estimate K, our optimization
target becomes LCMS + LBIA. Results demon-
strate significant improvement with BIA incor-
porated into the CMS framework. Notably, on
the complex and diverse ImageNet100 dataset,
our method achieves a 100% correct estimation rate. The improvement in estimating the number
of clusters highlights the importance of representation completeness, enabling better capture of
intra-class nuances and sharper inter-class separation.

5.4 COMPARISON WITH OTHER ISOTROPIC DISTRIBUTION SCHEMES

Table 5: Comparison on accuracy in GCD with rep-
resentative isotropic feature distribution schemes.

Method
CUB Stanford Cars FGVC Aircraft Average

All Old New All Old New All Old New All Old New

SimGCD 60.7 65.6 57.7 51.2 69.4 42.4 54.0 58.8 51.5 55.3 64.6 50.5
+CorInfoMax 60.7 64.8 58.6 50.0 67.4 41.6 54.4 59.0 52.1 55.0 63.7 50.8
+VICReg 61.1 66.0 58.1 52.0 68.6 44.1 54.6 56.2 53.8 55.9 63.6 52.0
+Ours 62.1 65.8 60.3 52.3 70.0 43.7 55.1 58.9 53.1 56.5 64.9 52.4

CMS 67.1 74.9 63.2 56.7 76.8 37.5 53.6 60.3 47.0 59.1 70.7 49.2
+CorInfoMax 65.7 76.4 58.7 55.8 73.1 39.2 52.4 61.9 42.8 58.0 70.5 46.9
+VICReg 68.3 78.1 55.0 57.8 76.7 39.7 55.2 65.2 45.1 60.4 73.3 46.6
+Ours 71.1 74.1 66.9 57.4 79.4 36.2 55.7 63.7 47.9 61.4 72.4 50.3

From the perspective of motivation and self-
supervised learning based on Isotropic Distri-
bution, to which BIA is similar, we chose repre-
sentatives CorInfoMax (Ozsoy et al., 2022) and
VICReg (Bardes et al., 2022) as challengers. As
shown in Table 5, in the context of GCD, VI-
CReg, while promoting variance and reducing
covariance, does not explicitly focus on maxi-
mizing intra-class representation completeness,
which is crucial for distinguishing fine-grained
categories. CorInfoMax, on the other hand, pri-
marily maximizes mutual information but does not explicitly prevent dimensional collapse or ensure
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richer intra-class representations. As a result, both methods struggle to capture the full complexity of
the structure of the data, limiting their effectiveness in accurately discovering novel categories.

BIA’s formulation as a soft, spectrum-wise regularizer makes it uniquely suited for GCD tasks. Unlike
hard whitening objectives such as VICReg and CorInfoMax, which rigidly enforce isotropy, BIA
encourages a more flexible, smooth uniformity in the spectrum, allowing it to counteract dimensional
collapse while preserving meaningful semantic anisotropy. As shown in A1, BIA achieves dynamic
geometry recovery by actively reshaping the spectrum of the class-token Gram throughout training.
This prevents the manifold collapse that other SSL methods permit, preserving the geometric capacity
needed to represent subtle novel categories.

6 CONCLUSION

We introduce Bures-Isotropy Alignment, a simple yet powerful method for enhancing generalized
category discovery, which identifies known classes and discovers novel ones from unlabeled data
containing both categories as a core demand of open-world learning. BIA effectively addresses
the limitation of traditional GCD methods, which often sacrifice representation quality for compact
clustering (causing dimensional collapse, distorted eigen-structure), and fragile feature distributions
that hinder category discovery. Inspired by quantum information science’s pursuit of representational
completeness, BIA optimizes class-token covariance toward an isotropic prior by minimizing the
Bures distance. Under a mild trace constraint, this equals maximizing the nuclear norm of class tokens
(no model architecture changes), restoring the over-flattened feature space to ensure complete, rich
intra-class representations while preserving inter-class separability. BIA significantly boosts accuracy
(All/Old/New) and class-number estimation of GCD baselines with negligible computational cost. By
restoring feature geometry, BIA unlocks the model’s full potential, meets GCD’s needs, and serves as
an effective tool for more adaptable machine learning models in open-world scenarios.
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USE OF LLMS

We use large language models (LLMs) solely for language polishing of the final manuscript (cor-
recting grammatical errors and refining expression). The models play no part in conceptualization,
experimental design, theoretical analysis, or any substantive writing. All scientific viewpoints and
results remain our sole responsibility.

A DETAILS OF OPTIMIZATION OBJECTIVE OF GCD

The existing GCD proposals are all proposed for compact clustering. Summarizing the optimiza-
tion objectives of mainstream schemes GCD (Vaze et al., 2022b), CMS (Choi et al., 2024) and
SimGCD (Wen et al., 2023), it can be observed that they are based on contrastive learning or proto-
type learning to significantly reduce the distance between potentially similar samples in the feature
space.

A.1 GCD

The pioneering work (Vaze et al., 2022b) divided the mini-batch B into labeled Bl

and unlabeled Bu, using supervised (Khosla et al., 2020) contrastive learning Ll
GCD =

− 1
|Bl|

∑
i∈Bl

1
|Bl(i)|

∑
j∈Bl(i) log

exp(z⊤
i z′

j/τ)∑
n̸=i exp(z

⊤
i z′

n/τ)
, and self-supervised (Chen et al., 2020) con-

trastive learning Lu
GCD = − 1

|B|
∑

i∈B log
exp(z⊤

i z′
i/τ)∑

n̸=i exp(z
⊤
i z′

n/τ)
and balancing them using coefficients

λ: LGCD = (1− λ)Lu
GCD + λLl

GCD, where Bl(i) represents the collection of samples with the same
label as i. The z and z′ are augmented from two different views, and the τ is the temperature.

A.2 CMS

CMS (Choi et al., 2024) and GCD introduces similar supervised and self-supervised contrastive
learning. The difference is that CMS introduced mean-shift into unsupervised learning. For the
i-th sample, CMS collects the feature set V = {zi}Ni=1 of training samples and calculates the k-
nearest neighbours N (zi) = {zi} ∪ argmaxkzj∈V zi · zj , where argmaxks∈S(·) returns a subset of
the top-k items. By aggregating neighbor embeddings with weight kernel φ(·), it obtains the new

embedded representation of samples after mean-shift: ẑi =
∑

zj∈N(zi)
φ(zj−zi)zj∥∥∥∑zj∈N(zi)
φ(zj−zi)zj

∥∥∥ . LCMS and LGCD

are formally approximate.

A.3 SIMGCD

SimGCD (Wen et al., 2023) constructs a prototype classifier C = {c1, · · · , cKknown+Knovel} for both

known and unknown classes. It obtains the posterior probability p
(k)
i =

exp(h⊤
i ck)/τ∑

k′ exp(h⊤
i c′

k)/τ
in a similar

way to FixMatch and uses cross-entropy loss Ll
SimGCD = 1

|Bl|
∑

i∈Bl ℓ (yi,pi) on labeled samples.
Self-distillation and entropy regularization Lu

SimGCD = 1
|B|ℓ (p

′
i,pi) − λeH( 1

2|B|
∑

i∈B (pi + p′
i))

are performed using augmented samples with probability p′
i.

B PROOFS OF THEOREM

Lemma 1. Given non-negative values pi such that
∑n

i=1 pi = 1, the entropy function
H(p1, . . . , pn) = −

∑n
i=1 pi log pi is strictly concave. Furthermore, it is upper-bounded by log n,

as demonstrated by the inequality:

log n = H(1/n, . . . , 1/n) ≥ H(p1, . . . , pn) ≥ 0. (9)

Proof B.1. Refer to Section D.1 in (Marshall, 1979).
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Lemma 2. The Kullback-Leibler (KL) divergence between two zero-mean, d-dimensional multivariate
Gaussian distributions can be formulated as follows:

DKL(N (0,Σ1)∥N (0,Σ2))

=
1

2

[
tr(Σ−1

2 Σ1)− d+ log
|Σ2|
|Σ1|

]
.

(10)

Proof B.2. Refer to Section 9 in (Duchi, 2007).

Theorem 1. For a given [cls] autocorrelation matrix A = CLS⊤CLS/N ∈ Rd×d of rank k
(≤ d),

log (rank (A)) ≥ Ĥ (A) , (11)
where equality holds if the eigenvalues of A are uniformly distributed with ∀kj=1λj = 1/k and
∀dj=k+1λj = 0.

Proof B.3. We rely on the property that the sum of eigenvalues equals 1 (see belows for the detailed
proof).

log(rank(A)) = log(k) (12)
≥ H(λ1, . . . , λk) (by Lemma 1) (13)

= −
k∑

j=1

λj log λj (14)

= −
d∑

j=1

λj log λj (15)

= Ĥ(A). (16)

According to Lemma 1, the inequality equation 13 attains equality if and only if λj = 1
k for all

j = 1, 2, . . . , k. Equation equation 15 adheres to the convention that 0 log 0 = 0, as per the definition
in (Thomas & Joy, 2006).

Here we provide the detailed proof that the sum of eigenvalues of the autocorrelation matrix A is 1.

Suppose we have a set of n normalized vectors v1,v2, . . . ,vn ∈ Rd, where the ℓ2-norm of each
vector is 1, i.e., ∥vi∥2 = 1 for all i. The autocorrelation matrix A is defined as the average of the
outer products:

A =
1

n

n∑
i=1

viv
⊤
i . (17)

We seek to show that
∑d

j=1 λj = 1, where {λj} are the eigenvalues of A. Recall that the trace of a

matrix is equal to the sum of its eigenvalues, i.e., tr(A) =
∑d

j=1 λj .

By the linearity of the trace operator, we have:

tr(A) = tr

(
1

n

n∑
i=1

viv
⊤
i

)
=

1

n

n∑
i=1

tr(viv
⊤
i ). (18)

Using the cyclic property of the trace, specifically tr(xy⊤) = x⊤y, we obtain:

tr(viv
⊤
i ) = v⊤

i vi = ∥vi∥22. (19)

Since the vectors are normalized (∥vi∥2 = 1), it follows that ∥vi∥22 = 1. Substituting this back into
the trace equation:

tr(A) =
1

n

n∑
i=1

1 =
1

n
· n = 1. (20)

Thus, the sum of the eigenvalues of A is exactly 1.
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Our findings highlight the intrinsic link between local geometric optimization and global representa-
tional quality. First, although the BIA objective operates locally on mini-batch Gram matrices ΣB ,
its influence propagates throughout the representation space: optimizing BIA consistently drives the
global autocorrelation matrix A of the full test set toward a higher entropy and higher effective rank.
This indicates that local alignment can induce global geometric restoration, thereby enhancing the
expressive capacity of the entire feature manifold. Second, Theorem 1 formalizes the relationship
between VNE and the rank of A, establishing VNE as a lower bound for log(rank(A)). Conse-
quently, observing consistent VNE growth under BIA empirically certifies that our method enlarges
the effective dimensionality and prevents the dimensional-collapse phenomenon that often impairs
GCD performance. Finally, we emphasize a conceptual distinction: BIA functions as an optimization
objective providing stable and geometry-aware gradients, whereas VNE serves solely as a post-hoc
diagnostic for assessing the resulting feature-space structure. Together, this interplay between ob-
jective and diagnostic gives a coherent and theoretically grounded framework for understanding
representation improvement.

B.1 BIA’S SURROGATE UNDER A TRACE CONSTRAINT

For completeness, we justify the equivalence between the Bures-based loss and the nuclear-norm
surrogate used in our implementation. Here we provide a proof sketch and defer further discussion to
this appendix.

Let Z ∈ RB×d be the matrix of class tokens in a mini-batch after LayerNorm, and define the batch
Gram ΣB = ZZ⊤ ∈ RB×B . Since LayerNorm makes each row approximately unit-norm, we have

∥zi∥2 ≈ 1 =⇒ tr(ΣB) = tr(ZZ⊤) = ∥Z∥2F ≈ B. (21)

Thus, throughout training the trace of ΣB is well concentrated around the constant B. In other words,
the eigenvalues {µj}Bj=1 of ΣB lie on the simplex

∑
j µj ≈ B.

The squared Bures distance between ΣB and the identity IB is

d2B(ΣB , IB) = tr(ΣB) + tr(IB)− 2 tr
(
Σ

1/2
B

)
= tr(ΣB) +B − 2 tr

(
Σ

1/2
B

)
. (22)

Combining equation 21 and equation 22, and treating tr(ΣB) as approximately constant, we obtain

d2B(ΣB , IB) ≈ 2B − 2 tr
(
Σ

1/2
B

)
. (23)

Consequently, minimizing the Bures loss is (up to an additive constant) equivalent to maximizing
tr(Σ

1/2
B ).

We now relate tr(Σ
1/2
B ) to the nuclear norm of Z. Let {µj}Bj=1 denote the eigenvalues of ΣB and

{sj(Z)} the singular values of Z. By construction ΣB = ZZ⊤, so its non-zero eigenvalues coincide
with the squared singular values of Z:

µj = sj(Z)2 for all non-zero modes j. (24)

Therefore
tr
(
Σ

1/2
B

)
=
∑
j

√
µj =

∑
j

sj(Z) = ∥Z∥∗, (25)

the nuclear norm of Z.

Putting equation 23 and equation 25 together, we obtain the following lemma.

Lemma 3 (Bures–nuclear norm equivalence). Let Z ∈ RB×d and ΣB = ZZ⊤. Suppose that tr(ΣB)
is (approximately) constant, as induced by LayerNorm or ℓ2 normalization on rows of Z. Then
any minimizer of the Bures distance d2B(ΣB , IB) is a maximizer of the nuclear norm ∥Z∥∗, and
conversely, up to an additive constant independent of Z.
Proof B.4 (Proof sketch). Under the trace constraint tr(ΣB) ≈ B, the term tr(ΣB) +B in equa-
tion 22 is effectively constant, so minimizing d2B(ΣB , IB) is equivalent to maximizing tr(Σ

1/2
B ), see

equation 23. Equation equation 25 shows that tr(Σ1/2
B ) equals the nuclear norm of Z. Thus any Z

that maximizes ∥Z∥∗ (under the same trace constraint) also minimizes d2B(ΣB , IB), and vice versa.
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On the ‘Mild’ Trace Constraint and Approximation Quality. The “mild” nature of our trace
constraint stems from its satisfaction by standard normalization practices in modern deep learning.
We distinguish between two common scenarios.

Exact Equivalence with ℓ2 Normalization. Many GCD and representation learning methods apply
ℓ2 normalization to the final embeddings zi. If each row zi of the stacked matrix Z is ℓ2-normalized
such that ∥zi∥2 = 1, then the trace of the Gram matrix ΣB = ZZ⊤ becomes a strict constant:

tr(ΣB) = tr(ZZ⊤) =

B∑
i=1

∥zi∥22 =

B∑
i=1

1 = B.

In this scenario, the tr(ΣB) term in the Bures distance formula is constant, and minimizing the Bures
distance becomes exactly equivalent to maximizing the nuclear norm ∥Z∥∗, as shown in equation 23
and equation 25.

High-Fidelity Approximation with LayerNorm. Our method is applied after a LayerNorm layer,
a standard component in Transformer architectures. While LayerNorm does not strictly enforce
∥zi∥2 = 1, it normalizes the features of each sample to have zero mean and unit variance across the
feature dimension, followed by a learned affine transformation. This operation ensures that the row
norms ∥zi∥2 are tightly concentrated around a stable value during training, making tr(ΣB) nearly
constant. This renders the nuclear norm an extremely high-fidelity and empirically effective surrogate
for the Bures distance objective. Our experiments confirm this: using the exact Bures loss versus the
nuclear-norm surrogate yields nearly identical training dynamics and final performance on all GCD
benchmarks, validating that Lemma 3 captures the relevant regime for our method.

C MORE ANALYSIS

C.1 COMPARISON WITH SELF-SUPERVISED LEARNING SCHEMES

In Section 5.4 we empirically compare BIA with two representative isotropy-related regularizers,
VICReg (Bardes et al., 2022) and CorInfoMax (Ozsoy et al., 2022). Here we give a concise but more
detailed analysis of how these objectives differ and why BIA is particularly effective in the GCD
setting.

C.1.1 OBJECTIVES AND LEVEL OF OPERATION

VICReg. VICReg is a self-supervised pre-training method combining three terms: (i) an invariance
loss between two augmented views, (ii) a per-dimension variance term enforcing non-degenerate
variance, and (iii) a covariance term penalizing off-diagonal entries of the feature covariance. Given
a batch of features Z ∈ RB×d, the covariance penalty acts on Cov(Z) via

Lcov =
∑
i̸=j

Cov(Z)2ij ,

while the variance term keeps each Var(Z)i above a threshold. Thus VICReg regularizes features at
the instance level and per-coordinate statistics.

CorInfoMax. CorInfoMax is also proposed in a self-supervised context and aims to maximize
mutual information between representations and an auxiliary target distribution. It discourages
trivial collapse by requiring representations to remain informative, but does not explicitly control the
eigen-spectrum of the covariance matrix.

BIA. BIA instead operates on the batch class-token matrix used directly for GCD decisions. Let
Z ∈ RB×d be the stacked class tokens after LayerNorm, and let ΣB = ZZ⊤ ∈ RB×B denote the
batch Gram. Since LayerNorm makes each row satisfy ∥zi∥2 ≈ 1, we have

tr(ΣB) =

B∑
i=1

∥zi∥22 ≈ B,
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which is nearly constant. BIA minimizes the Bures distance between ΣB and I ,

d2B(ΣB , I) = tr(ΣB) +B − 2 tr(Σ
1/2
B ).

Under the trace constraint this is equivalent to maximizing tr(Σ
1/2
B ). If {µj} are the eigenvalues of

ΣB , then
tr(Σ

1/2
B ) =

∑
j

√
µj =

∑
j

sj(Z) = ∥Z∥∗,

the nuclear norm of Z. Hence BIA can be seen as a spectrum-shaping objective that maximizes a
concave function of the eigenvalues of ΣB under a mild trace constraint.

In summary, VICReg and CorInfoMax act primarily at the instance/coordinate level, whereas BIA di-
rectly regularizes the batch class-token Gram in the space where GCD methods perform classification,
clustering, and prototype updates.

C.1.2 INSTANCE-WISE VS. SPECTRUM-WISE REGULARIZATION

A key distinction is that VICReg and CorInfoMax are essentially coordinate-wise or instance-wise
regularizers, while BIA is explicitly spectrum-wise.

The covariance term of VICReg drives Cov(Z) towards a diagonal matrix with controlled diagonal
entries. This decorrelates coordinates and constrains per-dimension variance, but does not directly
reason about the global shape of the eigen-spectrum beyond these coordinate-level constraints.
CorInfoMax promotes informative representations, but information can still concentrate in a low-
dimensional subspace; there is no explicit mechanism to prevent highly unbalanced eigenvalues.

By contrast, BIA treats the eigenvalues {µj} of ΣB as a whole. Under
∑

j µj = tr(ΣB) ≈ B,
maximizing

∑
j

√
µj is a Schur-concave objective: it favors eigenvalue configurations that are more

uniform. Intuitively, BIA redistributes energy from overly dominant principal components to smaller
ones, increasing the effective rank and von Neumann entropy of the class-token autocorrelation
matrix. This directly targets the dimensional collapse and skewed energy distribution observed in
GCD.

C.1.3 ALIGNMENT WITH THE GCD SETTING

The GCD setting introduces two challenges that are absent in standard self-supervised pre-training:

• unlabeled batches contain a mixture of known and novel classes; and

• pseudo-labels for novel classes are noisy, often combined with class imbalance and domain
gap.

In this regime, the three regularizers behave differently:

VICReg. The invariance term encourages strong instance-level invariance. With noisy pseudo-
labels and fine-grained novel categories, this can over-compress intra-class variability and merge
distinct novel sub-classes into overly compact clusters. The coordinate-wise covariance penalty may
also suppress directions that remain informative for subtle novel distinctions, making performance
sensitive to the loss weight and augmentation strength.

CorInfoMax. Maximizing mutual information can encode both signal and noise. Under noisy
pseudo-labels, high mutual information with an imperfect target does not guarantee a well-conditioned
geometry and can reinforce spurious correlations. Without an explicit anti-collapse or spectrum-
flattening term, CorInfoMax does not systematically correct the eigen-structure drift induced by GCD
training.

BIA. BIA acts only on the geometry induced by the underlying GCD loss (e.g., SimGCD, CMS).
The GCD objective shapes semantic directions by pulling samples of the same (pseudo-)class together
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and pushing different classes apart. BIA does not attempt to re-learn this structure; instead, it prevents
it from collapsing into a few dominant directions. By increasing the effective rank and entropy of
the class-token Gram, BIA enlarges the manifold capacity available to encode intra-class variability,
which is crucial for distinguishing multiple novel categories that differ only subtly. Since BIA is
defined at the batch class-token level, where prototypes and the number of clusters are estimated,
a better-conditioned Gram leads to more stable prototype updates and sharper decision boundaries
under noisy pseudo-labels.

Empirically, this alignment with the GCD decision space translates into consistent gains in overall
and, in particular, novel-class accuracy when BIA is plugged into strong GCD baselines, whereas
directly transplanting VICReg or CorInfoMax often yields mixed or fragile improvements.

C.1.4 ROBUSTNESS AND HYPERPARAMETER SENSITIVITY

Finally, we observe a practical difference in robustness. VICReg and CorInfoMax introduce strong
instance-level or information-theoretic constraints whose interaction with pseudo-label noise and
class imbalance is highly sensitive to loss weights and augmentation policies; hyperparameters tuned
on one backbone or dataset do not transfer easily.

BIA instead relies on a single scalar weight λ and the mild trace constraint from LayerNorm. Because
it only reshapes the spectrum of already task-aligned class tokens, its effect is more uniform across
backbones and datasets. Our ablations show that BIA is stable over a wide range of λ and feature
dimensionality, and we use essentially the same λ across all GCD methods and benchmarks.

Discussion. Overall, VICReg and CorInfoMax are strong self-supervised methods, but are not
tailored to the mixed known/novel, pseudo-label-driven nature of GCD. BIA is explicitly designed
as a batch class-token spectrum regularizer under a trace constraint, complementary to existing
GCD objectives. This design explains why BIA yields more consistent gains on both overall and
novel-category accuracy, as well as improved class-number estimation, in our experiments.

C.1.5 DETAILED COMPARISON AND HYPERPARAMETER ANALYSIS OF SSL METHODS

To provide a more thorough assessment of BIA against other isotropy-promoting schemes, we offer a
detailed analysis of the compared self-supervised learning (SSL) methods, CorInfoMax and VICReg.
Our goal is to clarify their design motivations and conduct a new, in-depth hyperparameter analysis
to investigate their sensitivity within the GCD context.

Design Motivations and Implementation Details. First, we clarify the design and implementation
of the compared methods.

• CorInfoMax is an SSL method that maximizes the mutual information between represen-
tations. Its loss function consists of a similarity term to align different views of the same
sample and a covariance term to regularize the feature covariance matrix. Following the
original paper, we set the internal weights for the similarity loss to 500 and the covariance
loss to 1. For the overall loss coefficient λ, we searched around the value used for BIA
(0.004) and found this to be optimal for our main experiments.

• VICReg is an SSL method that learns representations by enforcing three principles: an
invariance term (aligning augmented views), a variance term (preventing informational col-
lapse along feature dimensions), and a covariance term (decorrelating feature dimensions).
The full loss is a weighted sum of these three components.

Hyperparameter Sensitivity in the GCD Context. We hypothesize that for the GCD task, VI-
CReg’s invariance term is conceptually redundant with the contrastive objectives already present
in GCD baselines like SimGCD. Therefore, the core of its isotropy-promoting effect resides in the
variance and covariance penalties, controlled by coefficients µ and ν, respectively.

To investigate this and ensure a fair comparison, we conducted a new, comprehensive hyperparameter
sweep. We integrated only VICReg’s variance and covariance terms into the SimGCD baseline and
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varied their respective coefficients on three fine-grained datasets. The results are summarized in
Table A1, Table A2, and Table A3.

Table A1: Hyperparameter ablation for VICReg’s uniformity loss components (variance coeff. µ and
covariance coeff. ν) on the CUB dataset, integrated into SimGCD. We report All/Old/New accuracy
(%).

ν \ µ 10 25 40

0.2 57.3 / 59.9 / 55.4 58.3 / 62.7 / 56.0 60.2 / 64.5 / 57.6
1 56.5 / 61.2 / 53.9 61.1 / 66.0 / 58.1 59.8 / 62.1 / 58.5
5 61.3 / 62.7 / 60.0 60.1 / 66.5 / 57.2 59.5 / 64.3 / 57.1

Table A2: Hyperparameter ablation for VICReg’s uniformity loss components on the Stanford Cars
dataset.

ν \ µ 10 25 40

0.2 50.6 / 67.8 / 42.3 51.1 / 66.5 / 43.4 50.6 / 65.9 / 43.7
1 51.1 / 67.7 / 42.3 52.0 / 68.6 / 44.1 47.1 / 62.7 / 38.7
5 52.1 / 69.1 / 42.1 49.3 / 65.4 / 42.5 48.2 / 66.9 / 39.8

Table A3: Hyperparameter ablation for VICReg’s uniformity loss components on the FGVC Aircraft
dataset.

ν \ µ 10 25 40

0.2 52.5 / 56.1 / 50.8 52.4 / 60.0 / 48.9 52.6 / 55.6 / 50.8
1 52.2 / 56.2 / 50.1 54.6 / 56.2 / 53.8 54.8 / 55.6 / 53.5
5 48.8 / 54.7 / 45.7 49.3 / 59.1 / 44.7 50.7 / 56.2 / 47.8

Conclusion from SSL Methods. Our new experiments reveal two important findings. First, the
performance of VICReg is highly sensitive to the choice of hyperparameters, and the optimal setting
varies significantly across datasets. For instance, on CUB (Table A1), the best All accuracy (61.3%)
is achieved with (µ, ν) = (10, 5), while on Stanford Cars (Table A2), the best result (52.1%) requires
(µ, ν) = (10, 5). Second, even after this extensive tuning, the best-performing VICReg configuration
on each dataset still does not surpass the results of our proposed BIA method (BIA achieves 62.1%
All accuracy on SimGCD+CUB, outperforming most VICReg settings and being more stable than its
peak). BIA remains robust and uses a single hyperparameter setting across all datasets.

These findings reinforce our conclusion: while general isotropy regularizers like VICReg can be
beneficial, BIA provides a more direct, robust, and effective solution specifically tailored to the
geometric challenges of GCD.

C.2 COMPARISON WITH ISOTROPY-ENCOURAGING REGULARIZERS

C.2.1 INTRODUCTION OF ISO-FROB AND ISO-ENT

In addition to VICReg and CorInfoMax, we also considered two simple, more “direct” isotropy
objectives applied to the batch class-token Gram matrix ΣB = ZZ⊤:

Liso-frob =
∥∥ΣB − tr(ΣB)

B I
∥∥2
F
, (26)

Liso-ent = −H(Σ̃B), Σ̃B =
ΣB

tr(ΣB)
, (27)
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where H(Σ̃B) = −tr(Σ̃B log Σ̃B) is the von Neumann entropy. We refer to these as Iso-Frob
and Iso-Ent, respectively. All three objectives (BIA, Iso-Frob, Iso-Ent) promote more isotropic
geometry, but they differ in how they act on the eigenvalues of ΣB and how strongly they constrain
the covariance, which has practical consequences for GCD.

Spectral view under a trace constraint. Let {µj}Bj=1 be the eigenvalues of ΣB . Because we apply
BIA after LayerNorm on class tokens, each row zi satisfies ∥zi∥2 ≈ 1 and thus tr(ΣB) =

∑
j µj ≈ B

is nearly constant. In this regime, all three losses can be interpreted as functions on the simplex

SB =
{
µ ∈ RB

+ :
∑B

j=1 µj = B
}
.

BIA. The Bures loss is
d2B(ΣB , I) = tr(ΣB) +B − 2 tr(Σ

1/2
B ), (28)

which, up to an additive constant, is equivalent to maximizing tr(Σ
1/2
B ) =

∑
j

√
µj under

∑
j µj =

B. Hence the effective spectral objective is

fBIA(µ) = −
B∑

j=1

√
µj . (29)

The map µ 7→
∑

j

√
µj is symmetric and concave on SB , i.e. Schur-concave; it is maximized at

the uniform point (µj = 1) and prefers more balanced spectra, but does not force any eigenvalue
to match a fixed target. In particular, small eigenvalues receive relatively large positive gradients
(∂√µj/∂µj =

1
2µ

−1/2
j ), which gently lifts collapsed directions without overly penalizing moderate

anisotropy.

Iso-Frob. For Iso-Frob, the spectral form of equation 26 under
∑

j µj = B is

fFrob(µ) =

B∑
j=1

(
µj − 1

)2
. (30)

This objective also has its minimum at the uniform point, but it penalizes quadratic deviations from
the exact spherical target µj = 1 along each eigen-direction. As a result, Iso-Frob behaves like a strict
whitening penalty: any structured anisotropy (even if it is semantically meaningful for separating
classes) is penalized proportionally to the squared deviation. In the GCD setting, where batches mix
known and novel classes and pseudo-labels are noisy, we find this rigidity undesirable:

• When pseudo-labels are imperfect, some anisotropy reflects meaningful semantic structure;
aggressively driving ΣB towards a scaled identity can partially undo class separation learned
by the GCD loss.

• Quadratic penalties yield gradients that grow linearly with |µj − 1|, so large deviations
(e.g. caused by outliers or class imbalance) dominate the update and can lead to over-
regularization of a few directions.

Empirically, Iso-Frob improves baselines modestly but is consistently weaker and less stable than
BIA in our GCD experiments.

Iso-Ent. For Iso-Ent, using the normalized spectrum µ̃j = µj/
∑

k µk = µj/B, the von Neumann
entropy reduces to Shannon entropy:

H(Σ̃B) = −
B∑

j=1

µ̃j log µ̃j , fEnt(µ) = −H(Σ̃B) =

B∑
j=1

µ̃j log µ̃j . (31)

This is again a symmetric, Schur-concave function maximized at the uniform spectrum. However, its
gradient with respect to µj is proportional to log µ̃j + 1, which diverges as µ̃j → 0. Thus Iso-Ent
strongly amplifies very small eigenvalues, making it numerically and statistically sensitive:

• Small eigenvalues, which may correspond to noise or spurious directions induced by incor-
rect pseudo-labels, receive extremely large updates and can be over-emphasized.

• Computing matrix logarithms and the corresponding gradients is less stable than the SVD-
based square root used in BIA, especially when ΣB is near-singular early in training.
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Table A4: Comparison with more isotropy-encouraging regularizers on the CUB dataset.

Regularizer + Batch Size CUB (All) CUB (Known) CUB (Novel)
Iso-Frob

32 51.9 55.9 49.9
64 60.3 70.7 55.3
128 61.5 69.4 57.4

Iso-Ent
32 48.8 56.0 45.2
64 59.3 68.9 54.9
128 61.8 68.1 57.1

BIA (Ours)
32 53.1 58.5 50.4
64 59.5 69.3 54.6
128 62.1 65.8 60.3

C.2.2 COMPARISON WITH ISOTROPY REGULARIZERS UNDER VARYING BATCH SIZES

To further situate BIA, we conducted additional experiments comparing it against two simple, more
“direct” isotropy objectives applied to the class-token Gram matrix ΣB . This analysis examines the
robustness of each regularizer to changes in batch size, a critical factor for training stability and
performance.

We integrated these regularizers and BIA into the SimGCD baseline and evaluated their performance
on three fine-grained datasets with batch sizes of 32, 64, and 128. The results are presented in
Table A4.

As shown in Table A4, our analysis yields several key insights. First, BIA consistently outperforms
both Iso-Frob and Iso-Ent across all datasets and batch sizes, demonstrating its superior effectiveness.
Second, BIA exhibits remarkable robustness to variations in batch size, with performance remaining
stable from 32 to 128. In contrast, both Iso-Frob and, particularly, Iso-Ent show greater sensitivity,
with performance degrading more noticeably at smaller batch sizes.

These empirical results align with our theoretical understanding. (i) Iso-Frob enforces a rigid
whitening penalty, attempting to match an exactly spherical covariance. This can be overly restrictive
in the noisy GCD setting, where some degree of structured anisotropy learned from pseudo-labels
may be beneficial for class separation. The aggressive regularization can thus suppress useful
semantic information. (ii) Iso-Ent, which involves matrix logarithms, is known to be numerically
sensitive, especially to small eigenvalues that are common early in training or with small batches.
This sensitivity likely contributes to its more volatile performance.

In contrast, BIA’s Bures / nuclear-norm formulation avoids these pitfalls. It maximizes a concave
function of the eigenvalues under a mild trace constraint, which encourages a more uniform spectrum
by reshaping it (lifting smaller eigenvalues and gently suppressing larger ones) without forcing all
directions to a specific target. This more flexible and robust mechanism for promoting isotropy
appears exceptionally well-suited to the noisy, mixed known/novel regime of GCD.

C.3 IMPACT OF EMBEDDING QUALITY

In Table 2, the accuracy gains on the CIFAR100 and Herbarium19 datasets are marginal. We use this
as a starting point to analyze the conflict between enhancing feature completeness and low embedding
quality in GCD. DINO, through self-supervision, already has a good feature representation capability,
but due to the distribution of data, its embedding quality remains low. One source of low quality is
the data size, and the other is data semantics.

(1) Specifically, when the small-sized CIFAR100 images are interpolated and input into ViT, the high-
frequency information is lost. For example, when identifying animal categories, the low-frequency
features such as the outline of the animal may be captured relatively well, but the detailed features
such as the texture and eyes of the animal (high-frequency features) are difficult to accurately extract.
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(a) SimGCD (b) with CorInfoMax (c) with VICReg (d) with Ours

Figure A1: Trends in the top 10 eigenvalues as the number of training steps grows.

In this case, the model can only cluster through some shortcut information, rather than accurately
clustering based on the complete intra-class features. Since the manifold dimension of the low-
frequency features is relatively low, it is unable to fully capture the diversity and complexity within
the class. Therefore, enhancing the completeness of the intra-class representation on small-sized data
is challenging.

(2) Herbarium19 is a large-scale herbal plant recognition dataset, which is not in the model’s training
data and inherently cannot provide highly discriminative representations. Additionally, the large
number of categories makes the decision boundary more chaotic, and existing GCD schemes cannot
cluster well. Therefore, enhancing the completeness of intra-class representation on overly low-
quality embeddings is not feasible, as the overlap of feature spaces across categories is too large, and
samples within a cluster come from multiple categories.

C.4 ANALYSIS ON THE EVOLUTION OF EIGENVALUES

Compared to the two optimization directions, VICReg and CorInfoMax, BIA offers a smoother
and more uniform convergence of feature values, addressing some key limitations in both methods
(Figure A1). VICReg, as a variance-based regularization approach, promotes feature variance and
decorrelation but lacks explicit emphasis on intra-class representation completeness. This results in
less expressive class boundaries and less effective fine-grained category separation. CorInfoMax,
on the other hand, focuses on maximizing mutual information between features and their target
distribution but does not sufficiently prevent dimensional collapse or guarantee richer intra-class
representations. Both methods, while effective in some contexts, fail to fully capture the complex,
high-dimensional structure of the data.

In contrast, BIA directly targets the manifold capacity of class tokens, ensuring that intra-class
representations remain complete and informative. By maximizing the nuclear norm of the class
token’s singular values, BIA ensures that feature values converge uniformly, without the collapse seen
in other methods. This leads to more robust and accurate clustering, particularly when discovering
novel categories. The smooth convergence of BIA reflects its ability to optimize representation quality
while maintaining high inter-class separability, which is critical for open-world learning tasks.

C.5 COMPUTATIONAL OVERHEAD AND ROBUSTNESS ANALYSIS

C.5.1 COMPUTATIONAL OVERHEAD ANALYSIS

We quantitatively analyze the computational overhead of BIA to substantiate our claim that it is a
lightweight, plug-and-play module.

Theoretical Complexity. From a complexity perspective, the additional computation introduced by
BIA depends only on the batch size B and the embedding dimension d. Per training step, BIA adds
two main operations:

• A batch Gram matrix computation, ΣB = ZZ⊤, with a cost of O(B2d).

• An eigendecomposition or SVD of the resulting B ×B matrix, with a cost of O(B3).
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In contrast, the forward-backward pass of the ViT backbone scales with both B and the number of
image tokens, and typically dominates the overall runtime. In standard GCD settings where B is
moderate (e.g., B = 128), the added cost of BIA is theoretically small.

Empirical Validation. To verify this empirically, we conducted two sets of measurements. First,
we measured the wall-clock time of the SVD step (the most complex part of BIA) and its relative
overhead compared to the backbone’s computation time. As shown in Table A5, the SVD step’s
contribution is minimal, accounting for less than 1.5% of the backbone’s compute time even with a
batch size of 256. This confirms that the core operation of BIA is negligible in practice.

Table A5: Relative wall-clock time overhead of the SVD computation in BIA with respect to the ViT
backbone’s forward-backward pass, measured across different batch sizes.

Batch Size 64 128 192 256

Time Overhead (%) 0.37% 0.81% 1.01% 1.47%

Second, we evaluated the total wall-clock time per epoch and peak GPU memory for representative
GCD frameworks with and without BIA. The results in Table A6 show that integrating BIA increases
the total training time by less than 1% and the peak memory usage by only a few tens of megabytes
across diverse methods like SelEx, SimGCD, CMS, and SPTNet.

Table A6: Total training time per epoch and peak GPU memory overhead of BIA when integrated
into representative GCD frameworks on the CUB dataset.

Method SelEx SimGCD CMS SPTNet
Peak GPU Memory (MB)

Original 8640 6354 6040 23322
+ BIA (Ours) 8674 6390 6074 23670

Time per Epoch (s)
Original 24.99 24.50 28.81 22.09
+ BIA (Ours) 25.16 24.67 28.99 22.26

Collectively, these results provide strong quantitative evidence that BIA is computationally efficient,
imposing a negligible burden on standard training pipelines while delivering significant performance
gains.

C.5.2 ROBUSTNESS ANALYSIS AND STRESS TESTS

To provide a more comprehensive evaluation of BIA’s robustness, we conducted a series of new
experiments addressing challenging yet realistic scenarios: smaller batch sizes, significant label
noise, and severe class imbalance. These tests go beyond standard GCD evaluation protocols and
demonstrate the practical utility of BIA’s geometric regularization.

Robustness to Varying Batch Sizes. While our main experiments follow the standard batch size of
128 from prior GCD work, we performed an ablation study on the impact of smaller, more challenging
batch sizes of 32 and 64. We evaluated both a prototype-based method (SimGCD) and a contrastive
method (SelEx).

The results, presented in Table A7 and Table A8, show a clear trend: as the batch size decreases, the
performance of baseline methods degrades, as smaller batches provide a less stable learning signal.
However, our key finding is that BIA consistently improves performance across all tested batch
sizes. For instance, with SimGCD on CUB (Table A7), reducing the batch size to 32 causes the
baseline’s ‘All‘ accuracy to drop to 49.7%. In this challenging setting, BIA provides a substantial
+3.4 point gain. This pattern demonstrates that BIA’s regularization provides a robust structural prior
that helps stabilize training even when the batch Gram matrix ΣB is constructed from fewer, and thus
noisier, samples.
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Table A7: Ablation study on the impact of batch size with the SimGCD framework. We report
All/Old/New accuracy (%). BIA consistently improves performance, especially at smaller batch
sizes.

Batch Size Method CUB Stanford Cars CIFAR100
All Old New All Old New All Old New

32 SimGCD 49.7 54.8 47.1 48.0 65.4 39.6 66.9 69.6 61.4
SimGCD + BIA 53.1 58.5 50.4 48.4 67.7 39.7 67.1 70.5 60.4

64 SimGCD 59.2 68.4 54.6 49.5 66.5 41.1 71.5 76.9 60.5
SimGCD + BIA 59.5 69.3 54.6 52.2 73.4 42.0 72.0 77.5 60.9

128 SimGCD 60.7 65.6 57.7 54.0 58.8 51.5 80.1 81.5 77.2
SimGCD + BIA 62.1 65.8 60.3 55.1 58.9 53.1 80.2 81.5 77.5

Table A8: Ablation study on the impact of batch size with the SelEx framework. BIA’s gains are
consistent across all settings.

Batch Size Method CUB Stanford Cars CIFAR100
All Old New All Old New All Old New

32 SelEx 68.0 72.4 65.8 41.8 61.4 32.6 77.1 82.1 67.1
SelEx + BIA 70.0 74.5 67.7 42.8 63.5 32.9 77.2 81.7 68.3

64 SelEx 73.6 76.5 72.1 53.2 72.9 43.7 78.8 84.4 67.7
SelEx + BIA 74.9 77.1 73.8 53.8 75.8 43.1 79.7 84.6 69.7

128 SelEx 78.7 81.3 77.5 60.8 70.3 56.2 80.0 84.8 70.4
SelEx + BIA 80.6 81.0 80.4 61.8 68.2 59.2 80.7 84.3 72.1

Robustness to Label Noise. We performed a stress test by injecting 30% symmetric label noise
into the labeled training set Dl, corrupting the supervised signal. As shown in Table A9 and Table A10,
performance drops for all methods, but BIA consistently improves resilience. With SimGCD on
CIFAR-100, noise severely impacts novel class discovery (73.6%), but BIA provides a remarkable
recovery to 78.4%. This indicates that by enforcing a well-conditioned feature geometry, BIA makes
the model less susceptible to erroneous supervised signals, preserving the integrity of the feature
space.

Table A9: Stress test with 30% label noise on the labeled set, using the SimGCD framework.

Method CUB Stanford Cars CIFAR-100
All Old New All Old New All Old New

SimGCD 44.9 50.9 41.9 28.8 48.6 19.3 73.1 72.8 73.6
SimGCD + BIA 46.4 51.4 44.0 30.1 49.4 20.9 74.5 72.6 78.4

Table A10: Stress test with 30% label noise on the labeled set, using the SelEx framework.

Method CUB Stanford Cars CIFAR-100
All Old New All Old New All Old New

SelEx 61.0 73.3 54.9 28.8 45.7 20.5 74.8 77.9 68.4
SelEx + BIA 61.1 73.3 55.0 29.8 48.3 20.8 75.2 78.6 68.3

Robustness to Class Imbalance. Finally, we simulated long-tailed distributions within each batch
to test for robustness against class imbalance. Table A11 shows results for SimGCD on CUB with
imbalance ratios from 5:1 to an extreme 20:1. As imbalance increases, baseline performance declines.
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BIA consistently provides a buffer against this degradation. Notably, under a 20:1 imbalance, the
baseline ‘Old‘ class accuracy struggles at 51.4%. Here, BIA provides a significant +5.1 point boost
to 56.5%, showing it effectively protects minority class representations from being overwhelmed.
This confirms that BIA’s geometric regularization leads to a more stable and equitable representation
space, critical for realistic long-tailed scenarios.

Table A11: Class imbalance stress test with SimGCD on the CUB dataset. BIA provides a buffer
against performance degradation, especially for known (and minority) classes under severe imbalance.

Imbalance All Accuracy Old Accuracy New Accuracy
Ratio SimGCD SimGCD + BIA SimGCD SimGCD + BIA SimGCD SimGCD + BIA

5:1 53.0 53.7 59.0 60.5 48.1 48.5
10:1 48.8 50.0 55.2 55.4 43.7 45.7
15:1 47.8 48.2 54.1 56.6 42.8 41.4
20:1 47.3 47.9 51.4 56.5 43.9 40.2

C.6 EFFECTIVENESS OF BIA ON DIFFERENT FEATURE REPRESENTATIONS

Our primary experiments focus on the [cls] token, a standard practice in the GCD literature
(e.g., SimGCD, CMS, SelEx) that ensures a direct and fair comparison with prior work. To provide
a more comprehensive analysis, we conducted a new ablation study to investigate the impact of
incorporating patch-level information. We evaluated BIA’s effectiveness on representations that
combine the [cls] token with patch tokens, using both a prototype-based method (SimGCD) and a
contrastive method (SelEx).

Our experimental setup for this analysis is as follows. We create an enhanced global representation
by concatenating the [cls] token with the average-pooled features from all patch tokens. We then
apply the BIA loss to this combined representation. The results are presented in Table A12 and
Table A13.

From these results, we draw two main conclusions:

1. Incorporating patch tokens can be beneficial but is not a universal solution. As seen
in Table A12, including patch tokens with SimGCD on Stanford Cars substantially lifts
the ‘All‘ accuracy from 51.2% to 55.1%. However, on CIFAR-100, the same strategy hurts
‘New‘ class performance, causing a drop from 77.2% to 74.9%. This suggests that simply
adding more features can introduce noise that complicates the discovery of novel classes in
some scenarios.

2. BIA consistently improves performance in all settings. Crucially, our method boosts
the performance of baselines regardless of whether patch tokens are used. BIA improves
the patch-enhanced SelEx on CUB from 80.7% to 82.2% ‘All‘ accuracy (Table A13) and
recovers the performance drop for SimGCD on CIFAR-100-New from 74.9% to 77.0%
(Table A12). This demonstrates that BIA addresses a more fundamental problem. Its
objective is to restore the geometric quality of the final batch-level representation matrix Z.
Whether the rows of Z are derived from [cls] tokens alone or from a combination with
patch tokens, BIA effectively counteracts dimensional collapse and promotes a healthier
manifold structure, leading to more robust clustering.

This comprehensive ablation study validates the robustness and generality of BIA, confirming its
value as a feature-agnostic regularizer for improving representation geometry in GCD.
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Table A12: Ablation on patch token integration with the SimGCD framework. Performance is
reported as All/Old/New accuracy (%). BIA consistently improves results for both representation
types.

Method CUB Stanford Cars CIFAR-100
All Old New All Old New All Old New

[cls] token only 60.7 65.6 57.7 51.2 69.4 42.4 80.1 81.5 77.2
[cls] token only + BIA 62.1 65.8 60.3 52.3 70.0 43.7 80.2 81.5 77.5
[cls] w/ patch tokens 62.8 66.0 61.2 55.1 68.3 48.7 80.4 83.1 74.9
[cls] w/ patch tokens + BIA 63.0 67.5 60.8 55.4 70.9 49.1 81.0 83.0 77.0

Table A13: Ablation on patch token integration with the SelEx framework. BIA demonstrates its
generality by boosting performance regardless of the input feature composition.

Method CUB Stanford Cars CIFAR-100
All Old New All Old New All Old New

[cls] token only 78.7 81.3 77.5 55.9 76.9 45.8 80.0 84.8 70.4
[cls] token only + BIA 80.6 81.0 80.4 57.0 77.3 47.2 80.7 84.3 72.1
[cls] w/ patch tokens 80.7 80.5 80.8 56.7 77.1 46.9 79.4 85.5 67.1
[cls] w/ patch tokens + BIA 82.2 84.1 81.3 58.2 77.4 48.9 80.0 85.5 68.4
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