

000  
001  
002  
003  
004  
005  
006  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  

# BURES GENERALIZED CATEGORY DISCOVERY

**Anonymous authors**

Paper under double-blind review

## ABSTRACT

Generalized Category Discovery (GCD) seeks to discover categories by clustering unlabeled samples that mix known and novel classes. While the prevailing recipe enforces compact clustering, this pursuit is largely blind to representation geometry: it over-compresses token manifolds, distorts eigen-structure, and yields brittle feature distributions that undermine discovery. We argue that GCD requires not more compression, but geometric restoration of an over-flattened feature space. Drawing inspiration from quantum information science, which similarly pursues representational completeness, we introduce **Bures-Isotropy Alignment** (BIA), which optimizes the class-token covariance toward an isotropic prior by minimizing the Bures distance. Under a mild trace constraint, BIA admits a practical surrogate equivalent to maximizing the nuclear norm of stacked class tokens, thereby promoting isotropic, non-collapsed subspaces without altering architectures. The induced isotropy homogenizes the eigen-spectrum and raises the von Neumann entropy of class-token autocorrelation, improving both cluster separability and class-number estimation. BIA is plug-and-play, implemented in a few lines on unlabeled batches, and consistently boosts strong GCD baselines on coarse- and fine-grained benchmarks, improving overall accuracy and reducing errors in the estimation of class-number. By restoring the geometry of token manifolds rather than compressing them blindly, BIA supplies compactness for known classes and cohesive emergence for novel ones, advancing robust open-world discovery.

## 1 INTRODUCTION

Open-world learning (Zhou et al., 2022; Wu et al., 2024) mandates models that can re-identify known classes while discovering novel ones from unlabeled data. Generalized category discovery (GCD) (Vaze et al., 2022b) formulates this demand explicitly, relaxing the assumptions of open-set recognition (OSR) (Geng et al., 2020) and novel-class discovery (NCD) (Han et al., 2019). Despite recent progress, the dominant paradigm in GCD still hinges on compact clustering as a universal target. This practice is geometry-agnostic: it compresses intra-class variability indiscriminately, often collapsing token manifolds into a few principal directions. The result is a degraded representation geometry with poor eigen-structure, skewed energy distribution, and fragile decision regions, that ultimately impedes category discovery and class-number estimation.

We contend that the bottleneck is not insufficient compactness, but the loss of **geometric quality** in learned representations. When the class-token subspace is over-compressed, the feature distribution becomes anisotropic and low-rank, masking fine-grained semantics and amplifying open-world errors such as spurious merges. Thus, a central desideratum for GCD is to *restore a well-posed geometry and preserves intra-class completeness while maintaining inter-class separability*.

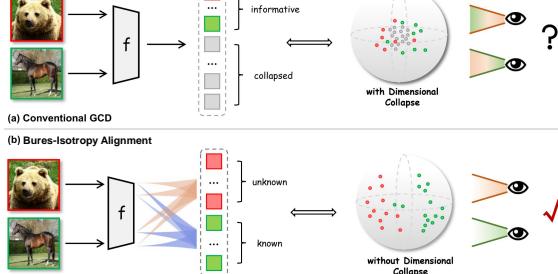


Figure 1: (a) GCD is constrained by dimensional collapse due to strong clustering, leading to mixed class features and limited representational capacity. (b) BIA enhances the token geometry capacity, improving representational completeness and unlocking the model’s potential in the open world.

To this end, we propose **Bures-Isotropy Alignment (BIA)**, a geometry-aware principle inspired by quantum information. As shown in Figure 1, green represents **known** classes and red represents **novel**<sup>1</sup> classes. The upper panel illustrates how conventional GCD methods, by enforcing compactness, cause dimensional collapse, leading to uninformative feature dimensions (grey area). BIA restores geometry, enhancing separability by encouraging isotropy. BIA aligns the empirical class-token covariance with an isotropic prior by minimizing the *Bures distance* (Jozsa, 1994), a canonical metric that instantiates the 2-Wasserstein geometry over covariance operators. Conceptually, BIA redistributes spectral energy across eigen-directions, prevents dimensional collapse, and yields uniform, full-rank token manifolds that capture richer intra-class semantics without sacrificing discrimination.

BIA comes with a practical and rigorous surrogate. Under mild row-norm or trace control, minimizing the Bures distance to identity is equivalent to *maximizing the nuclear norm of stacked class tokens*. This equivalence connects isotropy alignment with a simple few-line implementation that is architecture-agnostic and training-protocol compatible. It also bridges information geometry with GCD’s capacity-oriented diagnostics: by homogenizing the spectrum, BIA increases the von Neumann entropy (Nielsen & Chuang, 2010) and the effective rank of the class-token autocorrelation, which we observe to correlate with more reliable class-number estimation and more stable clustering.

We integrate BIA into representative GCD frameworks (contrastive and prototype-based) without modifying backbones and loss schedules. BIA consistently improves All/Old/New accuracy across standard coarse- and fine-grained benchmarks, while reducing class-number estimation error. Ablations show that BIA stabilizes pseudo-label assignment in GCD, attenuates early collapse, and remains robust across backbones and batch sizes, at negligible computational overhead thanks to a Gram-matrix implementation (Borgwardt et al., 2006).

- We introduce BIA, casting GCD as isotropy alignment of class-token covariance via the Bures distance, thereby restoring representation geometry rather than compressing it blindly.
- We establish an equivalence between BIA and nuclear-norm maximization under a trace constraint, explaining BIA’s effect on eigen-spectrum uniformity, von Neumann entropy, and effective rank, and linking information geometry to capacity-aware diagnostics in GCD.
- We provide a plug-and-play implementation that yields consistent gains on strong GCD baselines in both clustering accuracy and  $K$ -estimation, with minimal code and overhead.

## 2 RELATED WORKS

### 2.1 GENERALIZED CATEGORY DISCOVERY

Generalized category discovery (Vaze et al., 2022b; Zhao et al., 2023; Wen et al., 2023; Choi et al., 2024) jointly recognizes known classes and discovers unseen ones. The seminal framework (Vaze et al., 2022b) integrates semi-supervised k-means; SimGCD (Wen et al., 2023) introduces a parametric classifier with entropy regularization and self-distillation; CMS (Choi et al., 2024) enhances representations via mean-shift clustering; and (Zhao et al., 2023) adapts prototype counts at inference. ActiveGCD (Ma et al., 2024) further queries labels for selected unlabeled samples to improve discovery. Most GCD methods still prioritize compact clustering and thus overlook a central GCD desideratum: restoring a well-posed geometry that preserves intra-class completeness while maintaining inter-class separability. We instead provide a concise, method-agnostic mechanism that enforces Bures-isotropy representations, thereby sharpening decision boundaries across GCD pipelines.

### 2.2 REPRESENTATION COMPLETENESS

Representation completeness collapse (Grill et al., 2020; Caron et al., 2020; Shi et al., 2023; Jing et al., 2021) occurs when embeddings concentrate in a low-dimensional subspace, limiting diversity and expressiveness. DirectCLR (Jing et al., 2021) directly optimizes the representation space without a trainable projector, promoting a more uniform dispersion. Whitening (Tao et al., 2024) equalizes covariance contributions; the non-contrastive objective for collaborative filtering (Chen et al., 2024) emphasizes alignment and compactness without augmentation or negatives; The Bregman matrix divergence (Zhang et al., 2024) pulls covariance toward the identity; and random orthogonal

<sup>1</sup>In the task setting of GCD, we do not differentiate between ‘Old/New’ and ‘Known/Novel’.

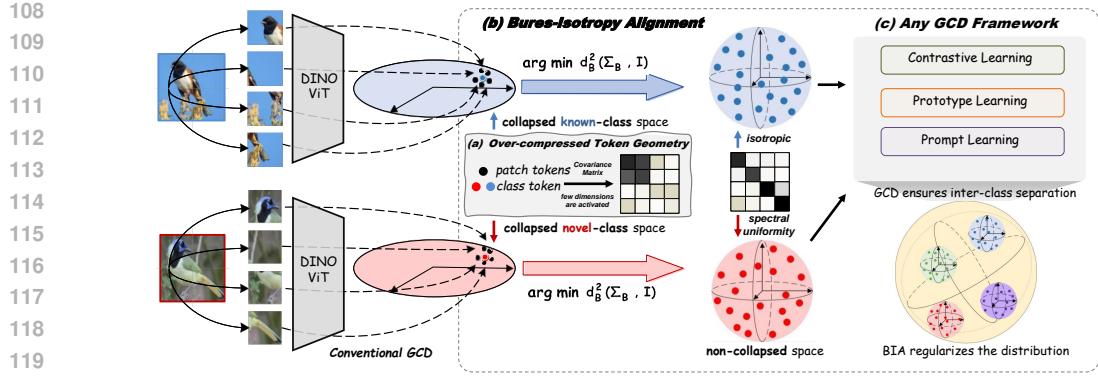


Figure 2: **Overview of Bures-Isotropy Alignment.** (a) BIA targets the geometry of the `[cls]` token, which summarizes sample information. (b) The core mechanism restores over-compressed, low-rank representations to a high-rank, isotropic state, preserving richer intra-class semantics. (c) The resulting embeddings are plug-and-play compatible with any GCD framework.

projection modeling (Haghigat et al., 2023) broadens the search for characteristics. Rather than directly targeting collapse, we reformulate GCD as isotropy alignment of class-token covariance measured by the Bures distance, prioritizing the restoration of representation geometry over blind compression.

### 2.3 BURES METRIC

The Bures metric (Šafránek, 2017) is based on the Bures distance and is originally defined to quantify the difference between quantum states. It is widely applied in the study of quantum information geometry (Cho & Jae, 2025), quantum physics (Alsing et al., 2023), and related areas. By interpreting density matrices as a generalized form of probability distributions, the Bures metric becomes an effective method for comparing probability distributions or positive definite matrices. For example, in (Ji et al., 2019), it is employed as an alternative to the Wasserstein distance (Panaretos & Zemel, 2019) to measure the discrepancy between generated and real distributions in a more stable manner. The kernelized Bures metric (Gilo et al., 2024) leverages the Bures metric within a reproducing kernel Hilbert space to compare source and target domain distributions. Existing analyses of Bures distance have treated it as a metric. We have amplified its advantages and, for the first time, extrapolated it to serve as an optimization objective for category discovery in open-world environments.

## 3 METHODOLOGY

### 3.1 NOTATION AND PRELIMINARIES OF GCD

For each dataset, consider a labeled subset  $\mathcal{D}_l = \{(\mathbf{x}_i^l, y_i^l)\} \subset \mathcal{X} \times \mathcal{Y}_l$  and an unlabeled subset  $\mathcal{D}_u = \{(\mathbf{x}_i^u, y_i^u)\} \subset \mathcal{X} \times \mathcal{Y}_u$ . Only known classes can be found in  $\mathcal{D}_l$ , while  $\mathcal{D}_u$  encompasses known and novel classes, translating to  $\mathcal{Y}_l = \mathcal{C}_{\text{known}}$  and  $\mathcal{Y}_u = \mathcal{C}_{\text{known}} \cup \mathcal{C}_{\text{novel}}$ . The task of models involves clustering on both the known and novel classes in  $\mathcal{D}_u$ . The number of novel classes represented as  $K_{\text{novel}}$  can be determined beforehand (Vaze et al., 2022b; Zhao et al., 2023). The functions  $f(\cdot)$  and  $g(\cdot)$  perform as the feature extractor and projection head, respectively. Both the feature  $\mathbf{h}_i = f(\mathbf{x}_i)$  and the projected embedding  $\mathbf{z}_i = g(\mathbf{h}_i)$  are under  $\ell_2$ -normalization. A ViT-style encoder (Dosovitskiy, 2020) provides one class token `[cls]` and  $H \times W$  visual tokens per image.

### 3.2 TOKEN GEOMETRY

**Scope.** As shown in Figure 2, we first formalize the class-token space regulated by our method, keeping `[cls]` formation concise while retaining key mechanics for downstream spectral analysis. By *token geometry*, we mean the spectral/metric structure of class tokens (pairwise angles, covariance eigen-spectrum, effective rank, isotropy) computed over batches.

To simplify `[cls]`'s evidence aggregation, we summarize one attention step (locally aggregating token evidence into a global summary). After linear projections  $Q, K, V = XW_Q, XW_K, XW_V \in \mathbb{R}^{(1+HW) \times d_k}$  (or  $d$  for  $V$ ;  $W_Q, W_K, W_V$  learnable,  $d_k$  query/key dimension), let  $q_c \in \mathbb{R}^{1 \times d_k}$  be `[cls]`'s row in  $Q$ . The class attention weights are:

$$\alpha_c = \text{softmax}\left(\frac{q_c K^\top}{\sqrt{d_k}}\right) \in \mathbb{R}^{1 \times (1+HW)}, \quad (1)$$

where  $\alpha_c$  is a probability vector over all  $(1+HW)$  tokens. These normalized weights guide token evidence distribution and update `[cls]` residually. With the attention:

$$[\text{cls}]' = [\text{cls}] + \alpha_c V \in \mathbb{R}^{1 \times d}, \quad (2)$$

where  $[\text{cls}]'$  is the updated `[cls]` and  $V$  is the value matrix. Repeated across layers, Equations 1 and 2 defines `[cls]` for subsequent batch-scale geometric analysis. For GCD, token geometry governs two coupled goals: preserving intra-class completeness for known categories and enabling cohesive emergence of novel ones; in contrast, anisotropic, low-rank geometry under pseudo-label noise tends to induce spurious merges or over-fragmentations (Figure 1).

**Batch-scale token geometry.** To study geometry at the mini-batch scale, consider an unlabeled mini-batch  $\mathcal{B}^u$  of size  $B$  and stack per-image class tokens row-wise as

$$Z = \text{stack}([\text{cls}]_1, \dots, [\text{cls}]_B) \in \mathbb{R}^{B \times d}, \quad \Sigma_B = ZZ^\top \in \mathbb{R}^{B \times B}, \quad (3)$$

where  $\text{stack}(\cdot)$  concatenates row vectors,  $d$  is the embedding dimension of each class token, and  $\Sigma_B$  is the batch Gram (Gatys et al., 2015) (sample–sample covariance) of class tokens. Under row  $\ell_2$ -normalization,  $\text{tr}(\Sigma_B) = \|Z\|_F^2 = \sum_{i=1}^B \|Z_{i:}\|_2^2 \approx B$ , and each entry  $(\Sigma_B)_{ij} = \langle Z_{i:}, Z_{j:} \rangle$  reduces to a cosine similarity; thus the spectrum of  $\Sigma_B$  compactly captures how class tokens co-occupy directions in feature space.

Because  $Z^\top Z \in \mathbb{R}^{d \times d}$  (feature Gram) and  $ZZ^\top$  share the same nonzero singular spectrum, spectral statements readily transfer between feature and sample domains; we will therefore diagnose geometry either via  $\Sigma_B$  (small, batch-sized eigensolve) or via the feature autocorrelation  $A$  (Sec. 3.4). In particular, a *uniform* eigen-spectrum indicates isotropic support across many directions (high effective rank), while a *spiky* spectrum signals anisotropy and potential collapse into a few dominant axes.

For GCD, batch-scale token geometry matters because the unlabeled pool mixes known and novel categories within each batch: the more isotropic (discriminative) the class-token manifold is, the more robust the subsequent clustering/prototype updates become to label noise and class imbalance. Empirically, more uniform spectra correspond to higher effective rank and better tolerance to open-world uncertainty, stabilizing pseudo-labels and improving class-number estimation.

### 3.3 BURES–ISOTROPY ALIGNMENT

**Motivation.** Token geometry strongly affects discovery quality, yet most GCD pipelines do not *explicitly* correct it in open-world settings. Building on our analysis above, we borrow the Bures metric (Bures, 1969; Uhlmann, 1976) from quantum information (a field that also values representation quality) and turn this metric into a simple optimization that matches GCD.

We first need a way to quantify “how far” a batch’s class-token covariance is from an isotropic target; a natural choice is the Bures distance to identity

$$d_B^2(\Sigma_B, I) = \text{tr}(\Sigma_B) + B - 2 \text{tr}(\Sigma_B^{1/2}), \quad (4)$$

where  $\Sigma_B = ZZ^\top \in \mathbb{R}^{B \times B}$  is the batch Gram of stacked class tokens  $Z \in \mathbb{R}^{B \times d}$ ,  $B$  is batch size, and  $I$  is the  $B \times B$  identity; with row  $\ell_2$ -norms, the trace terms change little, so minimizing  $d_B^2$  mainly *increases*  $\text{tr}(\Sigma_B^{1/2})$  and thus spreads spectral energy.

To implement this without changing the training loop, we relate the square-root trace to a familiar surrogate that depends directly on  $Z$ :

$$\text{tr}(\Sigma_B^{1/2}) = \sum_j \sqrt{\mu_j} = \sum_j s_j = \|Z\|_*, \quad (5)$$

where  $\{\mu_j\}$  are eigenvalues of  $\Sigma_B$  and  $\{s_j\}$  are singular values of  $Z$  and this identity converts the metric into the nuclear norm of stacked class tokens.

**Metric-to-loss.** With this link in place, aligning to isotropy becomes an extremely simple optimization on  $Z$  under standard normalization:

$$\arg \min_Z d_B^2(\Sigma_B, I) \equiv \arg \max_Z \|Z\|_*. \quad (6)$$

Intuitively, maximizing  $\|Z\|_*$  lifts rank and homogenizes the spectrum, which raises entropy, reduces collapse, and stabilizes discovery in noisy unlabeled batches, while computing the loss on the smaller  $B \times B$  Gram for speed and stability.

In code we use either the metric itself or its nuclear-norm surrogate; both behave the same once row norms are stabilized (e.g., by LayerNorm (Ba et al., 2016))

$$\mathcal{L}_{\text{BIA}} = d_B^2(\Sigma_B, I) \quad \text{or} \quad \mathcal{L}_{\text{BIA}}^{\text{nuc}} = -\|Z\|_*. \quad (7)$$

This keeps the BIA architecture-agnostic and adds only a single scalar term to the base GCD objective:

$$\mathcal{L} = \mathcal{L}_{\text{GCD}} + \lambda \mathcal{L}_{\text{BIA}}. \quad (8)$$

The BIA loss (both in the Bures distance form and nuclear norm surrogate) is differentiable, with gradients computed via standard, differentiable SVD/eigendecomposition (Ionescu et al., 2015), ensuring numerical stability (Bhatia, 2013). In summary, token geometry is central to GCD but seldom corrected explicitly; by importing the Bures metric and recasting it as a nuclear-norm objective, BIA offers a direct, batch-level way to restore isotropy in the class-token manifold and thereby improve open-world discovery.

### 3.4 BIA INCREASES VON NEUMANN ENTROPY

The autocorrelation matrix (Schölkopf & Smola, 2002) of the sample’s token geometry is  $\mathcal{A} \triangleq \sum_{i=1}^N \frac{1}{N} [\text{cls}]_i [\text{cls}]_i^\top = \text{CLS}^\top \text{CLS}/N$ . We employ von Neumann entropy (Petz, 2001; Boes et al., 2019) to measure token geometry. This gives the advantage of focusing exclusively on the eigenvalues, allowing for graceful handling of eigenvalues that are extremely close to 0. The von Neumann entropy can be expressed as  $\hat{H}(\mathcal{A}) \triangleq -\sum_j \lambda_j \log \lambda_j$ , representing the Shannon entropy (Shannon, 1948) of the eigenvalues of  $\mathcal{A}$ , with values ranging between 0 and  $\log d$ . A larger  $\hat{H}(\mathcal{A})$  indicates a greater token geometry capacity of the features. Von Neumann entropy is an effective measure for assessing the uniformity of distributions and managing extreme values.

As illustrated in Figure 3, the incorporation of BIA results in a von Neumann entropy for the embeddings that is significantly higher than that of the original scheme. It is possible to relate von Neumann entropy to the rank of the  $[\text{cls}]$ . When  $\mathcal{A}$  possesses uniformly distributed eigenvalues with full rank, the entropy is maximized. We clarify the connection between BIA and VNE. BIA serves as a local optimization objective for mini-batch Gram matrices ( $\Sigma_B$ ). In contrast, VNE

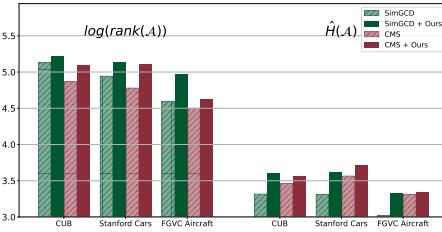


Figure 3: Comparison between  $\log(\text{rank}(\mathcal{A}))$  and  $\hat{H}(\mathcal{A})$ . The count of the largest eigenvalues necessary to account for 99% of the total eigenvalue energy serves as a surrogate for the rank.

270  
271Table 1: Experimental results on fine-grained datasets, evaluated *with* the  $K$  for clustering.272  
273  
274

| Method                                                                         | CUB         |             |             | Stanford Cars |             |             | FGVC Aircraft |             |             |
|--------------------------------------------------------------------------------|-------------|-------------|-------------|---------------|-------------|-------------|---------------|-------------|-------------|
|                                                                                | All         | Old         | New         | All           | Old         | New         | All           | Old         | New         |
| <i>Clustering with the ground-truth number of classes <math>K</math> given</i> |             |             |             |               |             |             |               |             |             |
| Agglomerative                                                                  | 37.0        | 36.2        | 37.3        | 12.5          | 14.1        | 11.7        | 15.5          | 12.9        | 16.9        |
| RankStats+                                                                     | 33.3        | 51.6        | 24.2        | 28.3          | 61.8        | 12.1        | 26.9          | 36.4        | 22.2        |
| UNO+                                                                           | 35.1        | 49.0        | 28.1        | 35.5          | 70.5        | 18.6        | 40.3          | 56.4        | 32.2        |
| ORCA                                                                           | 35.3        | 45.6        | 30.2        | 23.5          | 50.1        | 10.7        | 22.0          | 31.8        | 17.1        |
| GCD                                                                            | 51.3        | 56.6        | 48.7        | 39.0          | 57.6        | 29.9        | 45.0          | 41.1        | 46.9        |
| ProtoGCD                                                                       | 63.2        | 68.5        | 60.5        | 53.8          | 73.7        | 44.2        | 56.8          | 62.5        | 53.9        |
| PrCAL                                                                          | 62.9        | 64.4        | 62.1        | 50.2          | 70.1        | 40.6        | 52.2          | 52.2        | 52.3        |
| ActiveGCD                                                                      | 66.6        | 66.5        | 66.7        | 48.4          | 57.7        | 39.3        | 53.7          | 51.5        | 56.0        |
| PIM                                                                            | 62.7        | 75.7        | 56.2        | 43.1          | 66.9        | 31.6        | -             | -           | -           |
| SelEx                                                                          | 78.7        | <b>81.3</b> | 77.5        | 55.9          | 76.9        | 45.8        | 60.8          | <b>70.3</b> | 56.2        |
| + Ours                                                                         | <b>80.6</b> | 81.0        | <b>80.4</b> | 57.0          | <b>77.3</b> | 47.2        | <b>61.8</b>   | 68.2        | <b>59.2</b> |
|                                                                                | <b>+1.9</b> | <b>-0.3</b> | <b>+2.9</b> | <b>+1.1</b>   | <b>+0.4</b> | <b>+1.4</b> | <b>+1.0</b>   | <b>-2.1</b> | <b>+3.0</b> |
| SimGCD                                                                         | 60.7        | 65.6        | 57.7        | 51.2          | 69.4        | 42.4        | 54.0          | 58.8        | 51.5        |
| + Ours                                                                         | 62.1        | 65.8        | 60.3        | 52.3          | 70.0        | 43.7        | 55.1          | 58.9        | 53.1        |
|                                                                                | <b>+1.4</b> | <b>+0.2</b> | <b>+2.6</b> | <b>+1.1</b>   | <b>+0.6</b> | <b>+1.3</b> | <b>+1.1</b>   | <b>+0.1</b> | <b>+1.6</b> |
| CMS†                                                                           | 67.1        | 74.9        | 63.2        | 56.7          | 76.8        | 37.5        | 53.6          | 60.3        | 47.0        |
| + Ours                                                                         | 71.1        | 74.1        | 66.9        | 57.4          | 79.4        | 36.2        | 55.7          | 63.7        | 47.9        |
|                                                                                | <b>+4.0</b> | <b>-0.8</b> | <b>+3.7</b> | <b>+0.7</b>   | <b>+2.6</b> | <b>-1.3</b> | <b>+2.1</b>   | <b>+3.4</b> | <b>+0.9</b> |
| SPTNet                                                                         | 62.0        | 69.2        | 56.0        | 56.2          | 70.3        | 46.6        | 51.6          | 60.7        | 45.9        |
| + Ours                                                                         | 63.3        | 70.7        | 59.6        | <b>58.8</b>   | 75.4        | <b>50.8</b> | 54.7          | 65.3        | 48.5        |
|                                                                                | <b>+1.3</b> | <b>+1.5</b> | <b>+3.6</b> | <b>+2.6</b>   | <b>+5.1</b> | <b>+4.2</b> | <b>+3.1</b>   | <b>+4.5</b> | <b>+2.6</b> |
| <b>Avg. <math>\Delta</math></b>                                                | <b>+2.2</b> | <b>+0.2</b> | <b>+3.2</b> | <b>+1.4</b>   | <b>+2.2</b> | <b>+1.1</b> | <b>+1.8</b>   | <b>+1.5</b> | <b>+2.0</b> |

291

292

293

functions as a global diagnostic metric derived from the complete dataset’s autocorrelation matrix (A). BIA enhances the feature geometry directly, whereas VNE assesses the resulting improvements by evaluating spectral uniformity and effective rank.

294

## 4 EXPERIMENTS

295

### 4.1 SETUP

296

**Benchmarks.** BIA is evaluated on coarse- and fine-grained benchmarks. These include two conventional datasets, CIFAR100 (Krizhevsky & Hinton, 2009) and ImageNet100 (Geirhos et al., 2019), and four fine-grained datasets, CUB-200-2011 (Wah et al., 2011), Stanford Cars (Krause et al., 2013), FGVC Aircraft (Maji et al., 2013), and Herbarium19 (Tan et al., 2019). To segregate target classes into sets of known and unknown, we adhere to the splits defined by the Semantic Shift Benchmark (Vaze et al., 2022a) when working with CUB, Stanford Cars, and FGVC Aircraft. The splits from the previous study (Vaze et al., 2022b) are employed for the remaining datasets, we designate 80% of the classes as known under the CIFAR100 benchmark. For the rest of the benchmarks, the proportion of known classes stands at 50%. Our labeled set  $\mathcal{D}_l$ , comprises 50% images from the known classes for all benchmarks.

311

**Evaluation Protocols.** We assess BIA’s effectiveness via a two-step process. First, we cluster the complete collection of images defined as  $\mathcal{D}$ . Then, we measure the accuracy on the set  $\mathcal{D}_u$ . In line with previous research (Vaze et al., 2022b), accuracy is determined by comparing the assignments to the actual labels using the Hungarian optimal matching (Kuhn, 1955). This method bases the match on the number of instances that intersect between each pair of classes. Instances that do not belong to any pair, *i.e.*, unpaired classes, are viewed as incorrect predictions. On the other hand, instances belonging to the most abundant class within each ground-truth cluster are taken as correct for accuracy calculations. We present the accuracy for all unlabeled data, and the accuracy is classified as old/known and new/novel, respectively. The accuracy using the estimated number of classes and the ground-truth  $K$  are reported. This allows us to compare BIA with previous studies that have assumed the availability of the  $K$  during the evaluation phase.

322

323

**Implementation Details.** The purpose of BIA is to empower existing GCD schemes to improve the completeness of representation. We closely adhere to their initial implementation details for an effective comparison. We use a pre-trained DINO ViT-B/16 (Caron et al., 2021; Dosovitskiy, 2020), as

324 Table 2: Experimental results on coarse- and fine-grained datasets, evaluated *with* the  $K$  for clustering.  
325

| Method                                                                         | CIFAR100 |      |      | ImageNet100 |      |      | Herbarium 19 |      |      |
|--------------------------------------------------------------------------------|----------|------|------|-------------|------|------|--------------|------|------|
|                                                                                | All      | Old  | New  | All         | Old  | New  | All          | Old  | New  |
| <i>Clustering with the ground-truth number of classes <math>K</math> given</i> |          |      |      |             |      |      |              |      |      |
| Agglomerative                                                                  | 56.9     | 56.6 | 57.5 | 73.1        | 77.9 | 70.6 | 14.4         | 14.6 | 14.4 |
| RankStats+                                                                     | 58.2     | 77.6 | 19.3 | 37.1        | 61.6 | 24.8 | 27.9         | 55.8 | 12.8 |
| UNO+                                                                           | 69.5     | 80.6 | 47.2 | 70.3        | 95.0 | 57.9 | 28.3         | 53.7 | 14.7 |
| ORCA                                                                           | 69.0     | 77.4 | 52.0 | 73.5        | 92.6 | 63.9 | 20.9         | 30.9 | 15.5 |
| GCD                                                                            | 73.0     | 76.2 | 66.5 | 74.1        | 89.8 | 66.3 | 35.4         | 51.0 | 27.0 |
| ProtoGCD                                                                       | 81.9     | 82.9 | 80.0 | 84.0        | 92.2 | 79.9 | 44.5         | 59.4 | 36.5 |
| PrCAL                                                                          | 81.2     | 84.2 | 75.3 | 83.1        | 92.7 | 78.3 | 37.0         | 52.0 | 28.9 |
| ActiveGCD                                                                      | 71.3     | 75.7 | 66.8 | 83.3        | 90.2 | 76.5 | -            | -    | -    |
| PIM                                                                            | 78.3     | 84.2 | 66.5 | 83.1        | 95.3 | 77.0 | 42.3         | 56.1 | 34.8 |
| SelEx                                                                          | 80.0     | 84.8 | 70.4 | 82.3        | 93.9 | 76.5 | 36.2         | 46.0 | 30.9 |
| + Ours                                                                         | 80.7     | 84.3 | 72.1 | 82.8        | 94.1 | 77.8 | 36.8         | 47.5 | 31.0 |
|                                                                                | +0.7     | -0.5 | +1.7 | +0.5        | +0.2 | +1.3 | +0.6         | +1.5 | +0.1 |
| SimGCD                                                                         | 80.1     | 81.5 | 77.2 | 83.3        | 92.1 | 78.9 | 44.7         | 57.4 | 37.9 |
| + Ours                                                                         | 80.2     | 81.5 | 77.5 | 86.7        | 93.1 | 83.6 | 45.6         | 57.8 | 39.0 |
|                                                                                | +0.1     | +0.0 | +0.3 | +3.4        | +1.0 | +4.7 | +0.9         | +0.4 | +1.1 |
| CMS†                                                                           | 79.5     | 85.4 | 67.7 | 83.0        | 95.6 | 76.6 | 36.5         | 55.4 | 26.4 |
| + Ours                                                                         | 79.0     | 85.5 | 66.1 | 84.8        | 95.6 | 79.5 | 36.3         | 56.5 | 25.4 |
|                                                                                | -0.5     | +0.1 | -1.6 | +1.8        | +0.0 | +2.9 | -0.2         | +1.1 | -1.0 |
| SPTNet                                                                         | 81.3     | 84.3 | 75.6 | 85.4        | 93.2 | 81.4 | 43.4         | 58.7 | 35.2 |
| + Ours                                                                         | 82.1     | 84.8 | 76.2 | 85.4        | 93.4 | 81.3 | 44.2         | 58.9 | 36.3 |
|                                                                                | +0.8     | +0.5 | +0.6 | +0.0        | +0.2 | -0.1 | +0.8         | +0.1 | +1.1 |
| Avg. $\Delta$                                                                  | +0.3     | +0.1 | +0.3 | +1.4        | +0.4 | +2.2 | +0.5         | +0.8 | +0.3 |

346 Table 3: GCD Accuracy on coarse- and fine-grained datasets, evaluated *without* the  $K$  for clustering.  
347

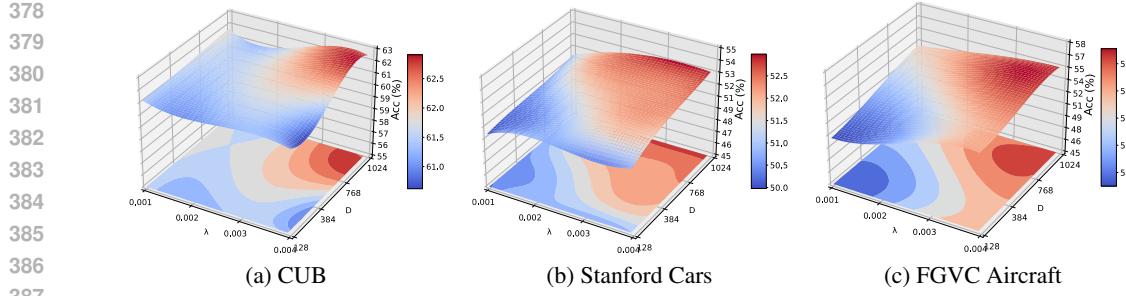
| Method                                                                            | CIFAR100 |      |      | ImageNet100 |      |      | CUB  |      |      | Stanford Cars |      |      | FGVC Aircraft |      |      | Herbarium 19 |      |      |
|-----------------------------------------------------------------------------------|----------|------|------|-------------|------|------|------|------|------|---------------|------|------|---------------|------|------|--------------|------|------|
|                                                                                   | All      | Old  | New  | All         | Old  | New  | All  | Old  | New  | All           | Old  | New  | All           | Old  | New  | All          | Old  | New  |
| <i>Clustering without the ground-truth number of classes <math>K</math> given</i> |          |      |      |             |      |      |      |      |      |               |      |      |               |      |      |              |      |      |
| Agglomerative                                                                     | 56.9     | 56.6 | 57.5 | 72.2        | 77.8 | 69.4 | 35.7 | 33.3 | 36.9 | 10.8          | 10.6 | 10.9 | 14.1          | 10.3 | 16.0 | 13.9         | 13.6 | 14.1 |
| GCD                                                                               | 70.8     | 77.6 | 57.0 | 77.9        | 91.1 | 71.3 | 51.1 | 56.4 | 48.4 | 39.1          | 58.6 | 29.7 | -             | -    | 37.2 | 51.7         | 29.4 |      |
| GPC                                                                               | 75.4     | 84.6 | 60.1 | 75.3        | 93.4 | 66.7 | 52.0 | 55.5 | 47.5 | 38.2          | 58.9 | 27.4 | 43.3          | 40.7 | 44.8 | 36.5         | 51.7 | 27.9 |
| PIM                                                                               | 75.6     | 81.6 | 63.6 | 83.0        | 95.3 | 76.9 | 62.0 | 75.7 | 55.1 | 42.4          | 65.3 | 31.3 | -             | -    | -    | 42.0         | 55.5 | 34.7 |
| CMS                                                                               | 77.8     | 84.0 | 65.3 | 83.4        | 95.6 | 77.3 | 66.2 | 69.7 | 64.4 | 51.8          | 72.9 | 31.3 | 52.3          | 58.9 | 45.8 | 38.5         | 57.3 | 28.4 |
| + Ours                                                                            | 79.5     | 84.7 | 69.1 | 84.3        | 95.7 | 78.8 | 68.7 | 74.1 | 66.0 | 52.5          | 72.7 | 32.9 | 53.4          | 60.1 | 46.7 | 38.0         | 56.9 | 27.9 |
| Avg. $\Delta$                                                                     | +1.7     | +0.7 | +3.8 | +0.9        | +0.1 | +1.5 | +2.5 | +4.4 | +1.6 | +0.7          | -0.2 | +1.6 | +1.1          | +1.2 | +0.9 | -0.5         | -0.4 | -0.5 |

358 our image encoder along with a projection head, an approach consistent with existing methods (Vaze  
359 et al., 2022b; Zhang et al., 2023; Pu et al., 2023). All experiments are performed on four NVIDIA  
360 RTX 4090 GPUs. **We follow the original training parameter details of each scheme to illustrate  
361 the generality and applicability of BIA.**

362 

## 4.2 MAIN RESULTS

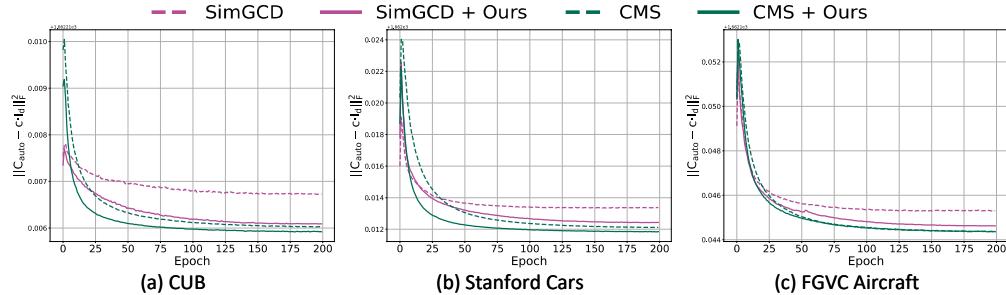
363 **Evaluation on GCD.** As shown in Tables 1, 2 and 3, BIA brings consistent and notable gains  
364 across all evaluated GCD methods and datasets, under both known and unknown class number  
365 settings. Key findings are as follows: **1 Compatibility.** BIA improves all baselines including  
366 SimGCD, CMS, SPTNet, and SelEx without any architectural changes or tuning. For example,  
367 on CUB with known class number, BIA enhances SimGCD by 2.6% and CMS by 4.0%. On  
368 ImageNet100, it improves SimGCD by 3.4% in the All setting and boosts CMS by 2.9% on novel  
369 classes. These results highlight BIA’s strong generalization across frameworks and confirm its  
370 plug-and-play compatibility. **2 Generality.** BIA yields stable gains on both coarse-grained datasets  
371 like CIFAR100 and ImageNet100 and fine-grained ones like CUB and Cars. Notably, on CUB, BIA  
372 improves CMS (known) by 4.4% under unknown class number settings. Average improvements on  
373 novel classes range from about 1.0% to 3.8% across datasets, demonstrating the robustness to domain  
374 complexity and label granularity.

Figure 4: Hyperparameter sensitivity of the degree of BIA ( $\lambda$ ) and features dimensionality ( $D$ ).

**Ablation study.** The only hyperparameter of BIA is the coefficient  $\lambda$  of the loss. To gain a deeper understanding of the correlation between the degree of maximum token manifold capacity and the dimensionality  $D$  of the features, we conducted an ablation experiment on it, as shown in Figure 4. It can be observed that BIA is not sensitive to hyperparameters and can uniformly enhance clustering accuracy. A more thought-provoking finding is that directly reducing  $D$  to avoid dimensionality collapse is suboptimal. The reason is that each dimension of the manifold contributes to the representation, and a reduction in  $D$  will directly lead to a loss of information. Even with BIA, it is impossible to make the representation complete. An appropriate number of dimensions enriches the representation while using BIA to prevent dimensionality collapse, which can maximize the model’s performance enhancement.

## 5 HIERARCHICAL ANALYSIS OF WHY BIA IS EFFECTIVE

We conduct a comprehensive analysis from multiple dimensions: 1) eigenvalue distribution and Frobenius norm, 2) estimation of embedded space distribution, 3) dimensional collapse, and 4) comparison with similar schemes, to understand the necessity and effectiveness of BIA for GCD.

Figure 5: The Frobenius norm  $\|\mathcal{A} - c \cdot I_d\|_F^2$  on three fine-grained benchmarks.

### 5.1 BIA HOMOGENIZES EIGENVALUE DISTRIBUTION AND REDUCES FROBENIUS NORM

The autocorrelation matrix of the test sample token geometry is denoted as  $\mathcal{A}$ . Given  $\|\mathbf{cls}_i\|_2 = 1$  and  $\mathcal{A} \geq 0$ , it follows that  $\sum_j \lambda_j = 1$  and  $\forall_j \lambda_j \geq 0$  (Parkhi et al., 2015; Liu et al., 2017; Mettes et al., 2019), where  $\{\lambda_j\}$  are the eigenvalues of  $\mathcal{A}$ . Under ideal conditions, where  $\mathcal{A} \rightarrow c \cdot I_d$ , the eigenvalue distribution of  $\mathcal{A}$  becomes uniform, z uncorrelated (Cogswell et al., 2015), full-rank (Hua et al., 2021), and isotropic (Vershynin, 2018).  $\mathcal{A}$  is linked to various representation characteristics. The Frobenius norm (Ma et al., 1994; Peng et al., 2016), extensively studied in self-supervised learning methods (Cogswell et al., 2015; Xiong et al., 2016; Choi & Rhee, 2019; Zbontar et al., 2021), measures whether the representation depends on a few dimensions. A smaller Frobenius norm indicates a larger manifold capacity. We applied singular value decomposition (SVD) (Golub & Reinsch, 1971) to the autocorrelation matrix of the feature embeddings, plotting the first 200 singular values in Figure 6 and visualizing the Frobenius norm  $\|\mathcal{A} - c \cdot I_d\|_F^2$  in Figure 5. Compared to SimGCD and CMS, BIA achieves a more uniform and stable eigenvalue distribution.

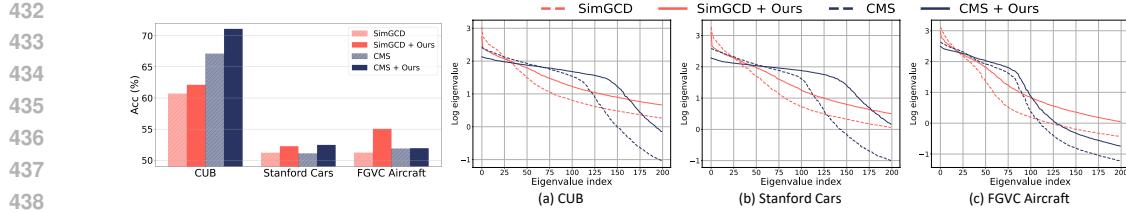


Figure 6: BIA effectively mitigates dimensional collapse by providing a more uniform eigenvalue distribution and improves the clustering accuracy.

## 5.2 BIA UNRAVELS DIMENSIONAL COLLAPSE.

We further explored the relationship between the accuracy and eigenvalues of GCD, respectively, and dimensional collapse, as shown in Figure 6 and our findings are as follows: (1) Feature Completeness and Clustering Accuracy: Complete features improve intra-class representations, which enhances clustering accuracy by providing richer, higher manifold capacity. (2) BIA’s Impact: BIA increases manifold capacity, leading to higher singular values and more accurate clustering by better approximating the true distribution. (3) Dimension Collapse and Limitations of CMS/SimGCD: CMS and SimGCD operate in lower-dimensional spaces, limiting manifold capacity and causing incomplete representations (Caron et al., 2020; Shi et al., 2023). Dimension collapse results in oversimplified models, while BIA maximizes intra-class completeness for better decision boundaries. This breakdown highlights how BIA addresses limitations in existing methods by optimizing the manifold capacity and the richness of intra-class representations, leading to improved model performance. Our analysis illustrates key issues such as poor eigen-structure, skewed energy distribution, and fragile decision regions. Figures 6 and A1 expose the deficient eigen-structure of baseline methods, while Figure 3 assesses the skewed energy distribution using von Neumann entropy. Figure 5 addresses fragile decision regions and demonstrates BIA’s geometric improvement via the Frobenius norm.

## 5.3 BIA PROVIDES ACCURATE DISTRIBUTION ESTIMATION

We present the gap between BIA and SOTAs in estimating the number of clusters in Table 4. By leveraging CMS, which requires no specific hyperparameters to estimate  $K$ , our optimization target becomes  $\mathcal{L}_{\text{CMS}} + \mathcal{L}_{\text{BIA}}$ . Results demonstrate significant improvement with BIA incorporated into the CMS framework. Notably, on the complex and diverse ImageNet100 dataset, our method achieves a 100% correct estimation rate. The improvement in estimating the number of clusters highlights the importance of representation completeness, enabling better capture of intra-class nuances and sharper inter-class separation.

## 5.4 COMPARISON WITH OTHER ISOTROPIC DISTRIBUTION SCHEMES

From the perspective of motivation and self-supervised learning based on Isotropic Distribution, to which BIA is similar, we chose representatives CorInfoMax (Ozsoy et al., 2022) and VICReg (Bardes et al., 2022) as challengers. As shown in Table 5, in the context of GCD, VICReg, while promoting variance and reducing covariance, does not explicitly focus on maximizing intra-class representation completeness, which is crucial for distinguishing fine-grained categories. CorInfoMax, on the other hand, primarily maximizes mutual information but does not explicitly prevent dimensional collapse or ensure

Table 4: Estimated number and error rate of  $K$ .

| Method       | CIFAR100 |        | ImageNet100 |        | CUB |        | Stanford Cars |        | FGVC Aircraft |        |
|--------------|----------|--------|-------------|--------|-----|--------|---------------|--------|---------------|--------|
|              | K        | Err(%) | K           | Err(%) | K   | Err(%) | K             | Err(%) | K             | Err(%) |
| Ground truth | 100      | -      | 100         | -      | 200 | -      | 196           | -      | 100           | -      |
| GCD          | 100      | 0      | 100         | 9      | 231 | 15.5   | 230           | 17.3   | -             | -      |
| DCCL         | 146      | 46     | 129         | 29     | 172 | 9      | 192           | 0.02   | -             | -      |
| PIM          | 95       | 5      | 102         | 2      | 227 | 13.5   | 169           | 13.8   | -             | -      |
| GPC          | 100      | 0      | 103         | 3      | 212 | 6      | 201           | 0.03   | -             | -      |
| CMS†         | 94       | 6      | 98          | 2      | 176 | 12     | 149           | 23.9   | -             | -      |
| + Ours       | 96       | 4      | 100         | 0      | 180 | 10     | 159           | 18.9   | 89            | 11     |

Table 5: Comparison on accuracy in GCD with representative isotropic feature distribution schemes.

| Method      | CUB         |             |             | Stanford Cars |             |             | FGVC Aircraft |             |             | Average     |             |             |
|-------------|-------------|-------------|-------------|---------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|
|             | All         | Old         | New         | All           | Old         | New         | All           | Old         | New         | All         | Old         | New         |
| SimGCD      | 60.7        | 65.6        | 57.7        | 51.2          | 69.4        | 42.4        | 54.0          | 58.8        | 51.5        | 55.3        | 64.6        | 50.5        |
| +CorInfoMax | 60.7        | 64.8        | 58.6        | 50.0          | 67.4        | 41.6        | 54.4          | 59.0        | 52.1        | 55.0        | 63.7        | 50.8        |
| +VICReg     | 61.1        | <b>66.0</b> | 58.1        | 52.0          | 68.6        | <b>44.1</b> | 54.6          | 56.2        | <b>53.8</b> | 55.9        | 63.6        | 52.0        |
| +Ours       | <b>62.1</b> | 65.8        | <b>60.3</b> | <b>52.3</b>   | <b>70.0</b> | 43.7        | <b>55.1</b>   | 58.9        | 53.1        | <b>56.5</b> | <b>64.9</b> | <b>52.4</b> |
| CMS         | 67.1        | 74.9        | 63.2        | 56.7          | 76.8        | 37.5        | 53.6          | 60.3        | 47.0        | 59.1        | 70.7        | 49.2        |
| +CorInfoMax | 65.7        | 76.4        | 58.7        | 55.8          | 73.1        | 39.2        | 52.4          | 61.9        | 42.8        | 58.0        | 70.5        | 46.9        |
| +VICReg     | 68.3        | <b>78.1</b> | 55.0        | <b>57.8</b>   | 76.7        | <b>39.7</b> | 55.2          | <b>65.2</b> | 45.1        | 60.4        | 73.3        | 46.6        |
| +Ours       | <b>71.1</b> | 74.1        | <b>66.9</b> | 57.4          | <b>79.4</b> | 36.2        | <b>55.7</b>   | 63.7        | <b>47.9</b> | <b>61.4</b> | 72.4        | <b>50.3</b> |

Table 5: Comparison on accuracy in GCD with representative isotropic feature distribution schemes.

486 richer intra-class representations. As a result, both methods struggle to capture the full complexity of  
 487 the structure of the data, limiting their effectiveness in accurately discovering novel categories.  
 488

489 **BIA’s formulation as a soft, spectrum-wise regularizer makes it uniquely suited for GCD tasks.** Unlike  
 490 hard whitening objectives such as VICReg and CorInfoMax, which rigidly enforce isotropy, BIA  
 491 encourages a more flexible, smooth uniformity in the spectrum, allowing it to counteract dimensional  
 492 collapse while preserving meaningful semantic anisotropy. As shown in A1, BIA achieves dynamic  
 493 geometry recovery by actively reshaping the spectrum of the class-token Gram throughout training.  
 494 This prevents the manifold collapse that other SSL methods permit, preserving the geometric capacity  
 495 needed to represent subtle novel categories.  
 496

## 6 CONCLUSION

497 We introduce Bures-Isotropy Alignment, a simple yet powerful method for enhancing generalized  
 498 category discovery, which identifies known classes and discovers novel ones from unlabeled data  
 499 containing both categories as a core demand of open-world learning. BIA effectively addresses  
 500 the limitation of traditional GCD methods, which often sacrifice representation quality for compact  
 501 clustering (causing dimensional collapse, distorted eigen-structure), and fragile feature distributions  
 502 that hinder category discovery. Inspired by quantum information science’s pursuit of representational  
 503 completeness, BIA optimizes class-token covariance toward an isotropic prior by minimizing the  
 504 Bures distance. Under a mild trace constraint, this equals maximizing the nuclear norm of class tokens  
 505 (no model architecture changes), restoring the over-flattened feature space to ensure complete, rich  
 506 intra-class representations while preserving inter-class separability. BIA significantly boosts accuracy  
 507 (All/Old/New) and class-number estimation of GCD baselines with negligible computational cost. By  
 508 restoring feature geometry, BIA unlocks the model’s full potential, meets GCD’s needs, and serves as  
 509 an effective tool for more adaptable machine learning models in open-world scenarios.  
 510

511  
 512  
 513  
 514  
 515  
 516  
 517  
 518  
 519  
 520  
 521  
 522  
 523  
 524  
 525  
 526  
 527  
 528  
 529  
 530  
 531  
 532  
 533  
 534  
 535  
 536  
 537  
 538  
 539

540  
541  
**ETHICS STATEMENT**

542 This study strictly adheres to the ethical guidelines and submission requirements of ICLR. The data  
 543 and code used are legally sourced, with no unauthorized usage. The experimental code is either  
 544 independently developed or reasonably modified based on open-source projects, in compliance with  
 545 intellectual property regulations, and is prepared for public release as required. All authors declare  
 546 no relevant conflicts of interest, and the research conclusions are not unduly influenced. The entire  
 547 work fully meets the academic ethics and compliance standards of ICLR.

548  
549  
**REPRODUCIBILITY STATEMENT**  
550

551 The code is provided in the supplementary materials to replicate the empirical results.  
552

553  
554  
**REFERENCES**

555 Paul M Alsing, Carlo Cafaro, Orlando Luongo, Cosmo Lupo, Stefano Mancini, and Hernando  
 556 Quevedo. Comparing metrics for mixed quantum states: Sjöqvist and bures. *Physical Review A*,  
 557 107(5):052411, 2023.

558 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint*  
 559 *arXiv:1607.06450*, 2016.  
560

561 Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-invariance-covariance regularization  
 562 for self-supervised learning. In *International Conference on Learning Representations*, 2022. URL  
 563 <https://openreview.net/forum?id=xm6YD62D1Ub>.

564 Rajendra Bhatia. *Matrix analysis*, volume 169. Springer Science & Business Media, 2013.  
565

566 Paul Boes, Jens Eisert, Rodrigo Gallego, Markus P Müller, and Henrik Wilming. Von neumann  
 567 entropy from unitarity. *Physical review letters*, 122(21):210402, 2019.  
568

569 Karsten M Borgwardt, Arthur Gretton, Malte J Rasch, Hans-Peter Kriegel, Bernhard Schölkopf,  
 570 and Alex J Smola. Integrating structured biological data by kernel maximum mean discrepancy.  
 571 *Bioinformatics*, 22(14):e49–e57, 2006.

572 Donald Bures. An extension of kakutani's theorem on infinite product measures to the tensor product  
 573 of semifinite  $w^*$ -algebras. *Transactions of the American Mathematical Society*, 135:199–212,  
 574 1969.

575 Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.  
 576 Unsupervised learning of visual features by contrasting cluster assignments. *Advances in neural*  
 577 *information processing systems*, 33:9912–9924, 2020.  
578

579 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and  
 580 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the*  
 581 *IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

582 Huiyuan Chen, Vivian Lai, Hongye Jin, Zhimeng Jiang, Mahashweta Das, and Xia Hu. Towards  
 583 mitigating dimensional collapse of representations in collaborative filtering. In *Proceedings of the*  
 584 *17th ACM International Conference on Web Search and Data Mining*, pp. 106–115, 2024.  
585

586 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for  
 587 contrastive learning of visual representations. In *International conference on machine learning*, pp.  
 588 1597–1607. PMLR, 2020.

589 Gunhee Cho and Jeongwoo Jae. Support-projected petz monotone geometry of two-qubit families:  
 590 Three-channel identity and non-reduction of curvatures. *arXiv preprint arXiv:2509.14578*, 2025.  
591

592 Daeyoung Choi and Wonjong Rhee. Utilizing class information for deep network representation  
 593 shaping. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pp. 3396–  
 3403, 2019.

594 Sua Choi, Dahyun Kang, and Minsu Cho. Contrastive mean-shift learning for generalized cate-  
 595 gory discovery. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*  
 596 *Recognition*, pp. 23094–23104, 2024.

597 Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry Zitnick, and Dhruv Batra. Reducing overfit-  
 598 ting in deep networks by decorrelating representations. *arXiv preprint arXiv:1511.06068*, 2015.

600 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.  
 601 *arXiv preprint arXiv:2010.11929*, 2020.

602 John Duchi. Derivations for linear algebra and optimization. *Berkeley, California*, 3(1):2325–5870,  
 603 2007.

605 Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style. *arXiv*  
 606 *preprint arXiv:1508.06576*, 2015.

607 Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and  
 608 Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape bias  
 609 improves accuracy and robustness. In *International Conference on Learning Representations*,  
 610 2019. URL <https://openreview.net/forum?id=Bygh9j09KX>.

612 Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Recent advances in open set recognition: A  
 613 survey. *IEEE transactions on pattern analysis and machine intelligence*, 43(10):3614–3631, 2020.

614

615 Obsa Giló, Jimson Mathew, and Samrat Mondal. Kernelized bures metric: A framework for effective  
 616 domain adaptation in sensor data analysis. *Expert Systems with Applications*, 255:124725, 2024.

617 Gene H Golub and Christian Reinsch. Singular value decomposition and least squares solutions. In  
 618 *Handbook for Automatic Computation: Volume II: Linear Algebra*, pp. 134–151. Springer, 1971.

619

620 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena  
 621 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,  
 622 et al. Bootstrap your own latent-a new approach to self-supervised learning. *Advances in neural*  
 623 *information processing systems*, 33:21271–21284, 2020.

624 Maryam Haghigat, Peyman Moghadam, Shaheer Mohamed, and Piotr Koniusz. Pre-training with  
 625 random orthogonal projection image modeling. *arXiv preprint arXiv:2310.18737*, 2023.

626

627 Kai Han, Andrea Vedaldi, and Andrew Zisserman. Learning to discover novel visual categories via  
 628 deep transfer clustering. In *Proceedings of the IEEE/CVF International Conference on Computer*  
 629 *Vision*, pp. 8401–8409, 2019.

630 Tianyu Hua, Wenxiao Wang, Zihui Xue, Sucheng Ren, Yue Wang, and Hang Zhao. On feature decor-  
 631 relation in self-supervised learning. In *Proceedings of the IEEE/CVF International Conference on*  
 632 *Computer Vision*, pp. 9598–9608, 2021.

633

634 Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu. Matrix backpropagation for deep  
 635 networks with structured layers. In *Proceedings of the IEEE international conference on computer*  
 636 *vision*, pp. 2965–2973, 2015.

637 Xu Ji, Joao F Henriques, and Andrea Vedaldi. Invariant information clustering for unsupervised  
 638 image classification and segmentation. In *Proceedings of the IEEE/CVF international conference*  
 639 *on computer vision*, pp. 9865–9874, 2019.

640

641 Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in  
 642 contrastive self-supervised learning. *arXiv preprint arXiv:2110.09348*, 2021.

643

644 Richard Jozsa. Fidelity for mixed quantum states. *Journal of modern optics*, 41(12):2315–2323,  
 1994.

645

646 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron  
 647 Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. *Advances in neural*  
 648 *information processing systems*, 33:18661–18673, 2020.

648 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained  
 649 categorization. In *Proceedings of the IEEE international conference on computer vision workshops*,  
 650 pp. 554–561, 2013.

651

652 Alex Krizhevsky and Geoffrey Hinton. Cifar-10 dataset. <https://www.cs.toronto.edu/~kriz/cifar.html>, 2009. Accessed: 2025-05-20.

653

654 Harold W Kuhn. The hungarian method for the assignment problem. *Naval research logistics quarterly*,  
 655 2(1-2):83–97, 1955.

656

657 Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep  
 658 hypersphere embedding for face recognition. In *Proceedings of the IEEE conference on computer  
 659 vision and pattern recognition*, pp. 212–220, 2017.

660

661 Changxue Ma, Yves Kamp, and Lei F Willems. A frobenius norm approach to glottal closure  
 662 detection from the speech signal. *IEEE Transactions on Speech and Audio Processing*, 2(2):  
 663 258–265, 1994.

664

665 Shijie Ma, Fei Zhu, Zhun Zhong, Xu-Yao Zhang, and Cheng-Lin Liu. Active generalized cate-  
 666 gory discovery. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern  
 667 Recognition*, pp. 16890–16900, 2024.

668

669 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained  
 670 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

671

672 AW Marshall. Inequalities: Theory of majorization and its applications, 1979.

673

674 Pascal Mettes, Elise Van der Pol, and Cees Snoek. Hyperspherical prototype networks. *Advances in  
 675 neural information processing systems*, 32, 2019.

676

677 Michael A Nielsen and Isaac L Chuang. *Quantum computation and quantum information*. Cambridge  
 678 university press, 2010.

679

680 Serdar Ozsoy, Shadi Hamdan, Sercan Arik, Deniz Yuret, and Alper Erdogan. Self-  
 681 supervised learning with an information maximization criterion. In S. Koyejo, S. Mo-  
 682 hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural In-  
 683 formation Processing Systems*, volume 35, pp. 35240–35253. Curran Associates, Inc.,  
 684 2022. URL [https://proceedings.neurips.cc/paper\\_files/paper/2022/file/e4cd50120b6d7e8daff1749d6bbaa889-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2022/file/e4cd50120b6d7e8daff1749d6bbaa889-Paper-Conference.pdf).

685

686 Victor M Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. *Annual review of  
 687 statistics and its application*, 6(1):405–431, 2019.

688

689 Omkar Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition. In *BMVC 2015-  
 690 Proceedings of the British Machine Vision Conference 2015*. British Machine Vision Association,  
 691 2015.

692

693 Xi Peng, Canyi Lu, Zhang Yi, and Huajin Tang. Connections between nuclear-norm and frobenius-  
 694 norm-based representations. *IEEE transactions on neural networks and learning systems*, 29(1):  
 695 218–224, 2016.

696

697 Dénes Petz. Entropy, von neumann and the von neumann entropy: Dedicated to the memory of alfred  
 698 wehrl. In *John von Neumann and the foundations of quantum physics*, pp. 83–96. Springer, 2001.

699

700 Nan Pu, Zhun Zhong, and Nicu Sebe. Dynamic conceptional contrastive learning for generalized  
 701 category discovery. In *Proceedings of the IEEE/CVF conference on computer vision and pattern  
 702 recognition*, pp. 7579–7588, 2023.

703

704 Dominik Šafránek. Discontinuities of the quantum fisher information and the bures metric. *Physical  
 705 Review A*, 95(5):052320, 2017.

706

707 Bernhard Schölkopf and Alexander J Smola. *Learning with kernels: support vector machines,  
 708 regularization, optimization, and beyond*. MIT press, 2002.

702 Claude E Shannon. A mathematical theory of communication. *The Bell system technical journal*, 27  
 703 (3):379–423, 1948.

704

705 Yujun Shi, Jian Liang, Wenqing Zhang, Chuhui Xue, Vincent YF Tan, and Song Bai. Understanding  
 706 and mitigating dimensional collapse in federated learning. *IEEE Transactions on Pattern Analysis  
 707 and Machine Intelligence*, 2023.

708 Kiat Chuan Tan, Yulong Liu, Barbara Ambrose, Melissa Tulig, and Serge Belongie. The herbarium  
 709 challenge 2019 dataset. *arXiv preprint arXiv:1906.05372*, 2019.

710 Yang Tao, Kai Guo, Yizhen Zheng, Shirui Pan, Xiaofeng Cao, and Yi Chang. Breaking the curse of  
 711 dimensional collapse in graph contrastive learning: A whitening perspective. *Information Sciences*,  
 712 657:119952, 2024.

713

714 MTCAJ Thomas and A Thomas Joy. *Elements of information theory*. Wiley-Interscience, 2006.

715 Armin Uhlmann. The “transition probability” in the state space of a-algebra. *Reports on Mathematical  
 716 Physics*, 9(2):273–279, 1976.

717

718 Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Open-set recognition: A good  
 719 closed-set classifier is all you need. In *International Conference on Learning Representations*,  
 720 2022a. URL <https://openreview.net/forum?id=5hLP5JY9S2d>.

721 Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Generalized category discovery.  
 722 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.  
 723 7492–7501, 2022b.

724 Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*,  
 725 volume 47. Cambridge university press, 2018.

726

727 C. Wah, N. Rasiwasia, D. Hsu, J. Yao, L. Li, and G. Mori. Caltech-ucsd birds 200-2011 (cub-  
 728 200-2011). <http://www.vision.caltech.edu/visipedia/CUB-200.html>, 2011.  
 729 Accessed: 2025-05-20.

730

731 Xin Wen, Bingchen Zhao, and Xiaojuan Qi. Parametric classification for generalized category  
 732 discovery: A baseline study. In *Proceedings of the IEEE/CVF International Conference on  
 733 Computer Vision*, pp. 16590–16600, 2023.

734

735 Jianzong Wu, Xiangtai Li, Shilin Xu, Haobo Yuan, Henghui Ding, Yibo Yang, Xia Li, Jiangning  
 736 Zhang, Yunhai Tong, Xudong Jiang, et al. Towards open vocabulary learning: A survey. *IEEE  
 737 Transactions on Pattern Analysis and Machine Intelligence*, 2024.

738

739 Wei Xiong, Bo Du, Lefei Zhang, Ruimin Hu, and Dacheng Tao. Regularizing deep convolutional  
 740 neural networks with a structured decorrelation constraint. In *2016 IEEE 16th international  
 741 conference on data mining (ICDM)*, pp. 519–528. IEEE, 2016.

742

743 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised  
 744 learning via redundancy reduction. In *International conference on machine learning*, pp. 12310–  
 745 12320. PMLR, 2021.

746

747 Sheng Zhang, Salman Khan, Zhiqiang Shen, Muzammal Naseer, Guangyi Chen, and Fahad Shahbaz  
 748 Khan. Promptcal: Contrastive affinity learning via auxiliary prompts for generalized novel  
 749 category discovery. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern  
 750 Recognition*, pp. 3479–3488, 2023.

751

752 Yifei Zhang, Hao Zhu, Zixing Song, Yankai Chen, Xinyu Fu, Ziqiao Meng, Piotr Koniusz, and Irwin  
 753 King. Geometric view of soft decorrelation in self-supervised learning. In *Proceedings of the 30th  
 754 ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 4338–4349, 2024.

755

756 Bingchen Zhao, Xin Wen, and Kai Han. Learning semi-supervised gaussian mixture models for  
 757 generalized category discovery. In *Proceedings of the IEEE/CVF International Conference on  
 758 Computer Vision*, pp. 16623–16633, 2023.

759

760 Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A  
 761 survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(4):4396–4415, 2022.

756 USE OF LLMs  
757

758 We use large language models (LLMs) solely for language polishing of the final manuscript (cor-  
759 recting grammatical errors and refining expression). The models play no part in conceptualization,  
760 experimental design, theoretical analysis, or any substantive writing. All scientific viewpoints and  
761 results remain our sole responsibility.

762  
763 A DETAILS OF OPTIMIZATION OBJECTIVE OF GCD  
764

765 The existing GCD proposals are all proposed for compact clustering. Summarizing the optimiza-  
766 tion objectives of mainstream schemes GCD (Vaze et al., 2022b), CMS (Choi et al., 2024) and  
767 SimGCD (Wen et al., 2023), it can be observed that they are based on contrastive learning or proto-  
768 type learning to significantly reduce the distance between potentially similar samples in the feature  
769 space.

770  
771 A.1 GCD  
772

773 The pioneering work (Vaze et al., 2022b) divided the mini-batch  $\mathcal{B}$  into labeled  $\mathcal{B}^l$   
774 and unlabeled  $\mathcal{B}^u$ , using supervised (Khosla et al., 2020) contrastive learning  $\mathcal{L}_{\text{GCD}}^l =$   
775  $-\frac{1}{|\mathcal{B}^l|} \sum_{i \in \mathcal{B}^l} \frac{1}{|\mathcal{B}^l(i)|} \sum_{j \in \mathcal{B}^l(i)} \log \frac{\exp(\mathbf{z}_i^\top \mathbf{z}'_j / \tau)}{\sum_{n \neq i} \exp(\mathbf{z}_i^\top \mathbf{z}'_n / \tau)}$ , and self-supervised (Chen et al., 2020) con-  
776 trastive learning  $\mathcal{L}_{\text{GCD}}^u = -\frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \log \frac{\exp(\mathbf{z}_i^\top \mathbf{z}'_i / \tau)}{\sum_{n \neq i} \exp(\mathbf{z}_i^\top \mathbf{z}'_n / \tau)}$  and balancing them using coefficients  
777  $\lambda: \mathcal{L}_{\text{GCD}} = (1 - \lambda) \mathcal{L}_{\text{GCD}}^u + \lambda \mathcal{L}_{\text{GCD}}^l$ , where  $\mathcal{B}^l(i)$  represents the collection of samples with the same  
778 label as  $i$ . The  $\mathbf{z}$  and  $\mathbf{z}'$  are augmented from two different views, and the  $\tau$  is the temperature.

779  
780 A.2 CMS  
781

782 CMS (Choi et al., 2024) and GCD introduces similar supervised and self-supervised contrastive  
783 learning. The difference is that CMS introduced mean-shift into unsupervised learning. For the  
784  $i$ -th sample, CMS collects the feature set  $\mathcal{V} = \{\mathbf{z}_i\}_{i=1}^N$  of training samples and calculates the k-  
785 nearest neighbours  $\mathcal{N}(\mathbf{z}_i) = \{\mathbf{z}_i\} \cup \text{argmax}_{\mathbf{z}_j \in \mathcal{V}} \mathbf{z}_i \cdot \mathbf{z}_j$ , where  $\text{argmax}_{\mathbf{z}_j \in \mathcal{S}}(\cdot)$  returns a subset of  
786 the top- $k$  items. By aggregating neighbor embeddings with weight kernel  $\varphi(\cdot)$ , it obtains the new  
787 embedded representation of samples after mean-shift:  $\hat{\mathbf{z}}_i = \frac{\sum_{\mathbf{z}_j \in \mathcal{N}(\mathbf{z}_i)} \varphi(\mathbf{z}_j - \mathbf{z}_i) \mathbf{z}_j}{\|\sum_{\mathbf{z}_j \in \mathcal{N}(\mathbf{z}_i)} \varphi(\mathbf{z}_j - \mathbf{z}_i) \mathbf{z}_j\|}$ .  $\mathcal{L}_{\text{CMS}}$  and  $\mathcal{L}_{\text{GCD}}$   
788 are formally approximate.

789  
790 A.3 SIMGCD  
791

792 SimGCD (Wen et al., 2023) constructs a prototype classifier  $\mathbf{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_{K_{\text{known}} + K_{\text{novel}}}\}$  for both  
793 known and unknown classes. It obtains the posterior probability  $\mathbf{p}_i^{(k)} = \frac{\exp(\mathbf{h}_i^\top \mathbf{c}_k) / \tau}{\sum_{k'} \exp(\mathbf{h}_i^\top \mathbf{c}'_{k'}) / \tau}$  in a similar  
794 way to FixMatch and uses cross-entropy loss  $\mathcal{L}_{\text{SimGCD}}^l = \frac{1}{|\mathcal{B}^l|} \sum_{i \in \mathcal{B}^l} \ell(y_i, \mathbf{p}_i)$  on labeled samples.  
795 Self-distillation and entropy regularization  $\mathcal{L}_{\text{SimGCD}}^u = \frac{1}{|\mathcal{B}|} \ell(\mathbf{p}'_i, \mathbf{p}_i) - \lambda_e H(\frac{1}{2|\mathcal{B}|} \sum_{i \in \mathcal{B}} (\mathbf{p}_i + \mathbf{p}'_i))$   
796 are performed using augmented samples with probability  $\mathbf{p}'_i$ .

800  
801 B PROOFS OF THEOREM  
802

803 **Lemma 1.** *Given non-negative values  $p_i$  such that  $\sum_{i=1}^n p_i = 1$ , the entropy function  
804  $H(p_1, \dots, p_n) = -\sum_{i=1}^n p_i \log p_i$  is strictly concave. Furthermore, it is upper-bounded by  $\log n$ ,  
805 as demonstrated by the inequality:*

$$806 \log n = H(1/n, \dots, 1/n) \geq H(p_1, \dots, p_n) \geq 0. \quad (9)$$

807 **Proof B.1.** Refer to Section D.1 in (Marshall, 1979).

810  
811 **Lemma 2.** *The Kullback-Leibler (KL) divergence between two zero-mean,  $d$ -dimensional multivariate  
812 Gaussian distributions can be formulated as follows:*

$$813 \quad D_{\text{KL}}(\mathcal{N}(0, \Sigma_1) \| \mathcal{N}(0, \Sigma_2)) \\ 814 \quad = \frac{1}{2} \left[ \text{tr}(\Sigma_2^{-1} \Sigma_1) - d + \log \frac{|\Sigma_2|}{|\Sigma_1|} \right]. \quad (10)$$

815 **Proof B.2.** Refer to Section 9 in (Duchi, 2007).

816 **Theorem 1.** For a given `[cls]` autocorrelation matrix  $\mathcal{A} = \mathbf{CLS}^\top \mathbf{CLS}/N \in \mathbb{R}^{d \times d}$  of rank  $k$   
( $\leq d$ ),

$$817 \quad \log(\text{rank}(\mathcal{A})) \geq \hat{H}(\mathcal{A}), \quad (11)$$

818 where equality holds if the eigenvalues of  $\mathcal{A}$  are uniformly distributed with  $\forall_{j=1}^k \lambda_j = 1/k$  and  
819  $\forall_{j=k+1}^d \lambda_j = 0$ .

820 **Proof B.3.** We rely on the property that the sum of eigenvalues equals 1 (see belows for the detailed  
821 proof).

$$822 \quad \log(\text{rank}(\mathcal{A})) = \log(k) \quad (12)$$

$$823 \quad \geq H(\lambda_1, \dots, \lambda_k) \quad (\text{by Lemma 1}) \quad (13)$$

$$824 \quad = - \sum_{j=1}^k \lambda_j \log \lambda_j \quad (14)$$

$$825 \quad = - \sum_{j=1}^d \lambda_j \log \lambda_j \quad (15)$$

$$826 \quad = \hat{H}(\mathcal{A}). \quad (16)$$

827 According to Lemma 1, the inequality equation 13 attains equality if and only if  $\lambda_j = \frac{1}{k}$  for all  
828  $j = 1, 2, \dots, k$ . Equation equation 15 adheres to the convention that  $0 \log 0 = 0$ , as per the definition  
829 in (Thomas & Joy, 2006).

830 Here we provide the detailed proof that the sum of eigenvalues of the autocorrelation matrix  $\mathcal{A}$  is 1.

831 Suppose we have a set of  $n$  normalized vectors  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in \mathbb{R}^d$ , where the  $\ell_2$ -norm of each  
832 vector is 1, i.e.,  $\|\mathbf{v}_i\|_2 = 1$  for all  $i$ . The autocorrelation matrix  $\mathcal{A}$  is defined as the average of the  
833 outer products:

$$834 \quad \mathcal{A} = \frac{1}{n} \sum_{i=1}^n \mathbf{v}_i \mathbf{v}_i^\top. \quad (17)$$

835 We seek to show that  $\sum_{j=1}^d \lambda_j = 1$ , where  $\{\lambda_j\}$  are the eigenvalues of  $\mathcal{A}$ . Recall that the trace of a  
836 matrix is equal to the sum of its eigenvalues, i.e.,  $\text{tr}(\mathcal{A}) = \sum_{j=1}^d \lambda_j$ .

837 By the linearity of the trace operator, we have:

$$838 \quad \text{tr}(\mathcal{A}) = \text{tr} \left( \frac{1}{n} \sum_{i=1}^n \mathbf{v}_i \mathbf{v}_i^\top \right) = \frac{1}{n} \sum_{i=1}^n \text{tr}(\mathbf{v}_i \mathbf{v}_i^\top). \quad (18)$$

839 Using the cyclic property of the trace, specifically  $\text{tr}(\mathbf{x}\mathbf{y}^\top) = \mathbf{x}^\top \mathbf{y}$ , we obtain:

$$840 \quad \text{tr}(\mathbf{v}_i \mathbf{v}_i^\top) = \mathbf{v}_i^\top \mathbf{v}_i = \|\mathbf{v}_i\|_2^2. \quad (19)$$

841 Since the vectors are normalized ( $\|\mathbf{v}_i\|_2 = 1$ ), it follows that  $\|\mathbf{v}_i\|_2^2 = 1$ . Substituting this back into  
842 the trace equation:

$$843 \quad \text{tr}(\mathcal{A}) = \frac{1}{n} \sum_{i=1}^n 1 = \frac{1}{n} \cdot n = 1. \quad (20)$$

844 Thus, the sum of the eigenvalues of  $\mathcal{A}$  is exactly 1.

Our findings highlight the intrinsic link between local geometric optimization and global representational quality. First, although the BIA objective operates locally on mini-batch Gram matrices  $\Sigma_B$ , its influence propagates throughout the representation space: optimizing BIA consistently drives the global autocorrelation matrix  $A$  of the full test set toward a higher entropy and higher effective rank. This indicates that local alignment can induce global geometric restoration, thereby enhancing the expressive capacity of the entire feature manifold. Second, Theorem 1 formalizes the relationship between VNE and the rank of  $A$ , establishing VNE as a lower bound for  $\log(\text{rank}(A))$ . Consequently, observing consistent VNE growth under BIA empirically certifies that our method enlarges the effective dimensionality and prevents the dimensional-collapse phenomenon that often impairs GCD performance. Finally, we emphasize a conceptual distinction: BIA functions as an optimization objective providing stable and geometry-aware gradients, whereas VNE serves solely as a post-hoc diagnostic for assessing the resulting feature-space structure. Together, this interplay between objective and diagnostic gives a coherent and theoretically grounded framework for understanding representation improvement.

## B.1 BIA’S SURROGATE UNDER A TRACE CONSTRAINT

For completeness, we justify the equivalence between the Bures-based loss and the nuclear-norm surrogate used in our implementation. Here we provide a proof sketch and defer further discussion to this appendix.

Let  $Z \in \mathbb{R}^{B \times d}$  be the matrix of class tokens in a mini-batch after LayerNorm, and define the batch Gram  $\Sigma_B = ZZ^\top \in \mathbb{R}^{B \times B}$ . Since LayerNorm makes each row approximately unit-norm, we have

$$\|z_i\|_2 \approx 1 \implies \text{tr}(\Sigma_B) = \text{tr}(ZZ^\top) = \|Z\|_F^2 \approx B. \quad (21)$$

Thus, throughout training the trace of  $\Sigma_B$  is well concentrated around the constant  $B$ . In other words, the eigenvalues  $\{\mu_j\}_{j=1}^B$  of  $\Sigma_B$  lie on the simplex  $\sum_j \mu_j \approx B$ .

The squared Bures distance between  $\Sigma_B$  and the identity  $I_B$  is

$$d_B^2(\Sigma_B, I_B) = \text{tr}(\Sigma_B) + \text{tr}(I_B) - 2\text{tr}(\Sigma_B^{1/2}) = \text{tr}(\Sigma_B) + B - 2\text{tr}(\Sigma_B^{1/2}). \quad (22)$$

Combining equation 21 and equation 22, and treating  $\text{tr}(\Sigma_B)$  as approximately constant, we obtain

$$d_B^2(\Sigma_B, I_B) \approx 2B - 2\text{tr}(\Sigma_B^{1/2}). \quad (23)$$

Consequently, minimizing the Bures loss is (up to an additive constant) equivalent to maximizing  $\text{tr}(\Sigma_B^{1/2})$ .

We now relate  $\text{tr}(\Sigma_B^{1/2})$  to the nuclear norm of  $Z$ . Let  $\{\mu_j\}_{j=1}^B$  denote the eigenvalues of  $\Sigma_B$  and  $\{s_j(Z)\}$  the singular values of  $Z$ . By construction  $\Sigma_B = ZZ^\top$ , so its non-zero eigenvalues coincide with the squared singular values of  $Z$ :

$$\mu_j = s_j(Z)^2 \quad \text{for all non-zero modes } j. \quad (24)$$

Therefore

$$\text{tr}(\Sigma_B^{1/2}) = \sum_j \sqrt{\mu_j} = \sum_j s_j(Z) = \|Z\|_*, \quad (25)$$

the nuclear norm of  $Z$ .

Putting equation 23 and equation 25 together, we obtain the following lemma.

**Lemma 3** (Bures–nuclear norm equivalence). *Let  $Z \in \mathbb{R}^{B \times d}$  and  $\Sigma_B = ZZ^\top$ . Suppose that  $\text{tr}(\Sigma_B)$  is (approximately) constant, as induced by LayerNorm or  $\ell_2$  normalization on rows of  $Z$ . Then any minimizer of the Bures distance  $d_B^2(\Sigma_B, I_B)$  is a maximizer of the nuclear norm  $\|Z\|_*$ , and conversely, up to an additive constant independent of  $Z$ .*

**Proof B.4** (Proof sketch). *Under the trace constraint  $\text{tr}(\Sigma_B) \approx B$ , the term  $\text{tr}(\Sigma_B) + B$  in equation 22 is effectively constant, so minimizing  $d_B^2(\Sigma_B, I_B)$  is equivalent to maximizing  $\text{tr}(\Sigma_B^{1/2})$ , see equation 23. Equation equation 25 shows that  $\text{tr}(\Sigma_B^{1/2})$  equals the nuclear norm of  $Z$ . Thus any  $Z$  that maximizes  $\|Z\|_*$  (under the same trace constraint) also minimizes  $d_B^2(\Sigma_B, I_B)$ , and vice versa.*

918 **On the ‘Mild’ Trace Constraint and Approximation Quality.** The “mild” nature of our trace  
 919 constraint stems from its satisfaction by standard normalization practices in modern deep learning.  
 920 We distinguish between two common scenarios.

921 **Exact Equivalence with  $\ell_2$  Normalization.** Many GCD and representation learning methods apply  
 922  $\ell_2$  normalization to the final embeddings  $z_i$ . If each row  $z_i$  of the stacked matrix  $Z$  is  $\ell_2$ -normalized  
 923 such that  $\|z_i\|_2 = 1$ , then the trace of the Gram matrix  $\Sigma_B = ZZ^\top$  becomes a strict constant:

$$925 \quad \text{tr}(\Sigma_B) = \text{tr}(ZZ^\top) = \sum_{i=1}^B \|z_i\|_2^2 = \sum_{i=1}^B 1 = B.$$

927 In this scenario, the  $\text{tr}(\Sigma_B)$  term in the Bures distance formula is constant, and minimizing the Bures  
 928 distance becomes *exactly equivalent* to maximizing the nuclear norm  $\|Z\|_*$ , as shown in equation 23  
 929 and equation 25.

930 **High-Fidelity Approximation with LayerNorm.** Our method is applied after a LayerNorm layer,  
 931 a standard component in Transformer architectures. While LayerNorm does not strictly enforce  
 932  $\|z_i\|_2 = 1$ , it normalizes the features of each sample to have zero mean and unit variance across the  
 933 feature dimension, followed by a learned affine transformation. This operation ensures that the row  
 934 norms  $\|z_i\|_2$  are tightly concentrated around a stable value during training, making  $\text{tr}(\Sigma_B)$  nearly  
 935 constant. This renders the nuclear norm an extremely high-fidelity and empirically effective surrogate  
 936 for the Bures distance objective. Our experiments confirm this: using the exact Bures loss versus the  
 937 nuclear-norm surrogate yields nearly identical training dynamics and final performance on all GCD  
 938 benchmarks, validating that Lemma 3 captures the relevant regime for our method.

## 939 C MORE ANALYSIS

### 940 C.1 COMPARISON WITH SELF-SUPERVISED LEARNING SCHEMES

941 In Section 5.4 we empirically compare BIA with two representative isotropy-related regularizers,  
 942 VICReg (Bardes et al., 2022) and CorInfoMax (Ozsoy et al., 2022). Here we give a concise but more  
 943 detailed analysis of how these objectives differ and why BIA is particularly effective in the GCD  
 944 setting.

#### 952 C.1.1 OBJECTIVES AND LEVEL OF OPERATION

953 **VICReg.** VICReg is a self-supervised pre-training method combining three terms: (i) an invariance  
 954 loss between two augmented views, (ii) a per-dimension variance term enforcing non-degenerate  
 955 variance, and (iii) a covariance term penalizing off-diagonal entries of the feature covariance. Given  
 956 a batch of features  $Z \in \mathbb{R}^{B \times d}$ , the covariance penalty acts on  $\text{Cov}(Z)$  via

$$958 \quad L_{\text{cov}} = \sum_{i \neq j} \text{Cov}(Z)_{ij}^2,$$

959 while the variance term keeps each  $\text{Var}(Z)_i$  above a threshold. Thus VICReg regularizes features at  
 960 the *instance level* and per-coordinate statistics.

962 **CorInfoMax.** CorInfoMax is also proposed in a self-supervised context and aims to maximize  
 963 mutual information between representations and an auxiliary target distribution. It discourages  
 964 trivial collapse by requiring representations to remain informative, but does not explicitly control the  
 965 eigen-spectrum of the covariance matrix.

967 **BIA.** BIA instead operates on the *batch class-token matrix* used directly for GCD decisions. Let  
 968  $Z \in \mathbb{R}^{B \times d}$  be the stacked class tokens after LayerNorm, and let  $\Sigma_B = ZZ^\top \in \mathbb{R}^{B \times B}$  denote the  
 969 batch Gram. Since LayerNorm makes each row satisfy  $\|z_i\|_2 \approx 1$ , we have

$$970 \quad \text{tr}(\Sigma_B) = \sum_{i=1}^B \|z_i\|_2^2 \approx B,$$

972 which is nearly constant. BIA minimizes the Bures distance between  $\Sigma_B$  and  $I$ ,

$$974 \quad d_B^2(\Sigma_B, I) = \text{tr}(\Sigma_B) + B - 2 \text{tr}(\Sigma_B^{1/2}).$$

975  
976 Under the trace constraint this is equivalent to *maximizing*  $\text{tr}(\Sigma_B^{1/2})$ . If  $\{\mu_j\}$  are the eigenvalues of  
977  $\Sigma_B$ , then

$$978 \quad \text{tr}(\Sigma_B^{1/2}) = \sum_j \sqrt{\mu_j} = \sum_j s_j(Z) = \|Z\|_*,$$

980 the nuclear norm of  $Z$ . Hence BIA can be seen as a spectrum-shaping objective that maximizes a  
981 concave function of the eigenvalues of  $\Sigma_B$  under a mild trace constraint.

982 In summary, VICReg and CorInfoMax act primarily at the instance/coordinate level, whereas BIA di-  
983 rectly regularizes the batch class-token Gram in the space where GCD methods perform classification,  
984 clustering, and prototype updates.

### 987 C.1.2 INSTANCE-WISE VS. SPECTRUM-WISE REGULARIZATION

989 A key distinction is that VICReg and CorInfoMax are essentially *coordinate-wise* or *instance-wise*  
990 regularizers, while BIA is explicitly *spectrum-wise*.

991 The covariance term of VICReg drives  $\text{Cov}(Z)$  towards a diagonal matrix with controlled diagonal  
992 entries. This decorrelates coordinates and constrains per-dimension variance, but does not directly  
993 reason about the global shape of the eigen-spectrum beyond these coordinate-level constraints.  
994 CorInfoMax promotes informative representations, but information can still concentrate in a low-  
995 dimensional subspace; there is no explicit mechanism to prevent highly unbalanced eigenvalues.

996 By contrast, BIA treats the eigenvalues  $\{\mu_j\}$  of  $\Sigma_B$  as a whole. Under  $\sum_j \mu_j = \text{tr}(\Sigma_B) \approx B$ ,  
997 maximizing  $\sum_j \sqrt{\mu_j}$  is a Schur-concave objective: it favors eigenvalue configurations that are more  
998 uniform. Intuitively, BIA redistributes energy from overly dominant principal components to smaller  
999 ones, increasing the effective rank and von Neumann entropy of the class-token autocorrelation  
1000 matrix. This directly targets the dimensional collapse and skewed energy distribution observed in  
1001 GCD.

### 1004 C.1.3 ALIGNMENT WITH THE GCD SETTING

1006 The GCD setting introduces two challenges that are absent in standard self-supervised pre-training:

- 1008 • unlabeled batches contain a mixture of known and novel classes; and
- 1009 • pseudo-labels for novel classes are noisy, often combined with class imbalance and domain  
1010 gap.

1011 In this regime, the three regularizers behave differently:

1013 **VICReg.** The invariance term encourages strong instance-level invariance. With noisy pseudo-  
1014 labels and fine-grained novel categories, this can over-compress intra-class variability and merge  
1015 distinct novel sub-classes into overly compact clusters. The coordinate-wise covariance penalty may  
1016 also suppress directions that remain informative for subtle novel distinctions, making performance  
1017 sensitive to the loss weight and augmentation strength.

1019 **CorInfoMax.** Maximizing mutual information can encode both signal and noise. Under noisy  
1020 pseudo-labels, high mutual information with an imperfect target does not guarantee a well-conditioned  
1021 geometry and can reinforce spurious correlations. Without an explicit anti-collapse or spectrum-  
1022 flattening term, CorInfoMax does not systematically correct the eigen-structure drift induced by GCD  
1023 training.

1024 **BIA.** BIA acts only on the geometry induced by the underlying GCD loss (e.g., SimGCD, CMS).  
1025 The GCD objective shapes semantic directions by pulling samples of the same (pseudo-)class together

1026 and pushing different classes apart. BIA does not attempt to re-learn this structure; instead, it prevents  
 1027 it from collapsing into a few dominant directions. By increasing the effective rank and entropy of  
 1028 the class-token Gram, BIA enlarges the manifold capacity available to encode intra-class variability,  
 1029 which is crucial for distinguishing multiple novel categories that differ only subtly. Since BIA is  
 1030 defined at the batch class-token level, where prototypes and the number of clusters are estimated,  
 1031 a better-conditioned Gram leads to more stable prototype updates and sharper decision boundaries  
 1032 under noisy pseudo-labels.

1033 Empirically, this alignment with the GCD decision space translates into consistent gains in overall  
 1034 and, in particular, novel-class accuracy when BIA is plugged into strong GCD baselines, whereas  
 1035 directly transplanting VICReg or CorInfoMax often yields mixed or fragile improvements.

1036

1037

#### 1038 C.1.4 ROBUSTNESS AND HYPERPARAMETER SENSITIVITY

1040 Finally, we observe a practical difference in robustness. VICReg and CorInfoMax introduce strong  
 1041 instance-level or information-theoretic constraints whose interaction with pseudo-label noise and  
 1042 class imbalance is highly sensitive to loss weights and augmentation policies; hyperparameters tuned  
 1043 on one backbone or dataset do not transfer easily.

1044 BIA instead relies on a single scalar weight  $\lambda$  and the mild trace constraint from LayerNorm. Because  
 1045 it only reshapes the spectrum of already task-aligned class tokens, its effect is more uniform across  
 1046 backbones and datasets. Our ablations show that BIA is stable over a wide range of  $\lambda$  and feature  
 1047 dimensionality, and we use essentially the same  $\lambda$  across all GCD methods and benchmarks.

1048 **Discussion.** Overall, VICReg and CorInfoMax are strong self-supervised methods, but are not  
 1049 tailored to the mixed known/novel, pseudo-label-driven nature of GCD. BIA is explicitly designed  
 1050 as a batch class-token spectrum regularizer under a trace constraint, complementary to existing  
 1051 GCD objectives. This design explains why BIA yields more consistent gains on both overall and  
 1052 novel-category accuracy, as well as improved class-number estimation, in our experiments.

1053

1054

#### 1055 C.1.5 DETAILED COMPARISON AND HYPERPARAMETER ANALYSIS OF SSL METHODS

1057 To provide a more thorough assessment of BIA against other isotropy-promoting schemes, we offer a  
 1058 detailed analysis of the compared self-supervised learning (SSL) methods, CorInfoMax and VICReg.  
 1059 Our goal is to clarify their design motivations and conduct a new, in-depth hyperparameter analysis  
 1060 to investigate their sensitivity within the GCD context.

1061 **Design Motivations and Implementation Details.** First, we clarify the design and implementation  
 1062 of the compared methods.

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

- **CorInfoMax** is an SSL method that maximizes the mutual information between representations. Its loss function consists of a similarity term to align different views of the same sample and a covariance term to regularize the feature covariance matrix. Following the original paper, we set the internal weights for the similarity loss to 500 and the covariance loss to 1. For the overall loss coefficient  $\lambda$ , we searched around the value used for BIA (0.004) and found this to be optimal for our main experiments.
- **VICReg** is an SSL method that learns representations by enforcing three principles: an **invariance** term (aligning augmented views), a **variance** term (preventing informational collapse along feature dimensions), and a **covariance** term (decorrelating feature dimensions). The full loss is a weighted sum of these three components.

**Hyperparameter Sensitivity in the GCD Context.** We hypothesize that for the GCD task, VICReg’s **invariance** term is conceptually redundant with the contrastive objectives already present in GCD baselines like SimGCD. Therefore, the core of its isotropy-promoting effect resides in the **variance** and **covariance** penalties, controlled by coefficients  $\mu$  and  $\nu$ , respectively.

To investigate this and ensure a fair comparison, we conducted a new, comprehensive hyperparameter sweep. We integrated only VICReg’s variance and covariance terms into the SimGCD baseline and

varied their respective coefficients on three fine-grained datasets. The results are summarized in Table A1, Table A2, and Table A3.

Table A1: Hyperparameter ablation for VICReg’s uniformity loss components (variance coeff.  $\mu$  and covariance coeff.  $\nu$ ) on the **CUB** dataset, integrated into SimGCD. We report All/Old/New accuracy (%).

| $\nu \setminus \mu$ | 10                        | 25                 | 40                 |
|---------------------|---------------------------|--------------------|--------------------|
| 0.2                 | 57.3 / 59.9 / 55.4        | 58.3 / 62.7 / 56.0 | 60.2 / 64.5 / 57.6 |
| 1                   | 56.5 / 61.2 / 53.9        | 61.1 / 66.0 / 58.1 | 59.8 / 62.1 / 58.5 |
| 5                   | <b>61.3</b> / 62.7 / 60.0 | 60.1 / 66.5 / 57.2 | 59.5 / 64.3 / 57.1 |

Table A2: Hyperparameter ablation for VICReg’s uniformity loss components on the **Stanford Cars** dataset.

| $\nu \setminus \mu$ | 10                        | 25                 | 40                 |
|---------------------|---------------------------|--------------------|--------------------|
| 0.2                 | 50.6 / 67.8 / 42.3        | 51.1 / 66.5 / 43.4 | 50.6 / 65.9 / 43.7 |
| 1                   | 51.1 / 67.7 / 42.3        | 52.0 / 68.6 / 44.1 | 47.1 / 62.7 / 38.7 |
| 5                   | <b>52.1</b> / 69.1 / 42.1 | 49.3 / 65.4 / 42.5 | 48.2 / 66.9 / 39.8 |

Table A3: Hyperparameter ablation for VICReg’s uniformity loss components on the **FGVC Aircraft** dataset.

| $\nu \setminus \mu$ | 10                 | 25                 | 40                        |
|---------------------|--------------------|--------------------|---------------------------|
| 0.2                 | 52.5 / 56.1 / 50.8 | 52.4 / 60.0 / 48.9 | 52.6 / 55.6 / 50.8        |
| 1                   | 52.2 / 56.2 / 50.1 | 54.6 / 56.2 / 53.8 | <b>54.8</b> / 55.6 / 53.5 |
| 5                   | 48.8 / 54.7 / 45.7 | 49.3 / 59.1 / 44.7 | 50.7 / 56.2 / 47.8        |

**Conclusion from SSL Methods.** Our new experiments reveal two important findings. First, the performance of VICReg is highly sensitive to the choice of hyperparameters, and the optimal setting varies significantly across datasets. For instance, on CUB (Table A1), the best All accuracy (61.3%) is achieved with  $(\mu, \nu) = (10, 5)$ , while on Stanford Cars (Table A2), the best result (52.1%) requires  $(\mu, \nu) = (10, 5)$ . Second, even after this extensive tuning, the best-performing VICReg configuration on each dataset still does not surpass the results of our proposed BIA method (BIA achieves 62.1% All accuracy on SimGCD+CUB, outperforming most VICReg settings and being more stable than its peak). BIA remains robust and uses a single hyperparameter setting across all datasets.

These findings reinforce our conclusion: while general isotropy regularizers like VICReg can be beneficial, BIA provides a more direct, robust, and effective solution specifically tailored to the geometric challenges of GCD.

## C.2 COMPARISON WITH ISOTROPY-ENCOURAGING REGULARIZERS

### C.2.1 INTRODUCTION OF ISO-FROB AND ISO-ENT

In addition to VICReg and CorInfoMax, we also considered two simple, more “direct” isotropy objectives applied to the batch class-token Gram matrix  $\Sigma_B = ZZ^\top$ :

$$L_{\text{iso-frob}} = \left\| \Sigma_B - \frac{\text{tr}(\Sigma_B)}{B} I \right\|_F^2, \quad (26)$$

$$L_{\text{iso-ent}} = -H(\tilde{\Sigma}_B), \quad \tilde{\Sigma}_B = \frac{\Sigma_B}{\text{tr}(\Sigma_B)}, \quad (27)$$

1134 where  $H(\tilde{\Sigma}_B) = -\text{tr}(\tilde{\Sigma}_B \log \tilde{\Sigma}_B)$  is the von Neumann entropy. We refer to these as *Iso-Frob*  
 1135 and *Iso-Ent*, respectively. All three objectives (BIA, Iso-Frob, Iso-Ent) promote more isotropic  
 1136 geometry, but they differ in how they act on the eigenvalues of  $\Sigma_B$  and how strongly they constrain  
 1137 the covariance, which has practical consequences for GCD.

1138 **Spectral view under a trace constraint.** Let  $\{\mu_j\}_{j=1}^B$  be the eigenvalues of  $\Sigma_B$ . Because we apply  
 1139 BIA after LayerNorm on class tokens, each row  $z_i$  satisfies  $\|z_i\|_2 \approx 1$  and thus  $\text{tr}(\Sigma_B) = \sum_j \mu_j \approx B$   
 1140 is nearly constant. In this regime, all three losses can be interpreted as functions on the simplex  
 1141

$$1142 \mathcal{S}_B = \{\mu \in \mathbb{R}_+^B : \sum_{j=1}^B \mu_j = B\}.$$

1143 **BIA.** The Bures loss is

$$1144 d_B^2(\Sigma_B, I) = \text{tr}(\Sigma_B) + B - 2 \text{tr}(\Sigma_B^{1/2}), \quad (28)$$

1145 which, up to an additive constant, is equivalent to maximizing  $\text{tr}(\Sigma_B^{1/2}) = \sum_j \sqrt{\mu_j}$  under  $\sum_j \mu_j = B$ . Hence the effective spectral objective is

$$1146 f_{\text{BIA}}(\mu) = - \sum_{j=1}^B \sqrt{\mu_j}. \quad (29)$$

1147 The map  $\mu \mapsto \sum_j \sqrt{\mu_j}$  is symmetric and concave on  $\mathcal{S}_B$ , i.e. Schur-concave; it is maximized at  
 1148 the uniform point ( $\mu_j = 1$ ) and prefers more balanced spectra, but does not force any eigenvalue  
 1149 to match a fixed target. In particular, small eigenvalues receive relatively large positive gradients  
 1150 ( $\partial \sqrt{\mu_j} / \partial \mu_j = \frac{1}{2} \mu_j^{-1/2}$ ), which gently lifts collapsed directions without overly penalizing moderate  
 1151 anisotropy.

1152 **Iso-Frob.** For Iso-Frob, the spectral form of equation 26 under  $\sum_j \mu_j = B$  is

$$1153 f_{\text{Frob}}(\mu) = \sum_{j=1}^B (\mu_j - 1)^2. \quad (30)$$

1154 This objective also has its minimum at the uniform point, but it penalizes *quadratic* deviations from  
 1155 the exact spherical target  $\mu_j = 1$  along each eigen-direction. As a result, Iso-Frob behaves like a strict  
 1156 whitening penalty: any structured anisotropy (even if it is semantically meaningful for separating  
 1157 classes) is penalized proportionally to the squared deviation. In the GCD setting, where batches mix  
 1158 known and novel classes and pseudo-labels are noisy, we find this rigidity undesirable:

- 1159 • When pseudo-labels are imperfect, some anisotropy reflects meaningful semantic structure;  
 1160 aggressively driving  $\Sigma_B$  towards a scaled identity can partially undo class separation learned  
 1161 by the GCD loss.
- 1162 • Quadratic penalties yield gradients that grow linearly with  $|\mu_j - 1|$ , so large deviations  
 1163 (e.g. caused by outliers or class imbalance) dominate the update and can lead to over-  
 1164 regularization of a few directions.

1165 Empirically, Iso-Frob improves baselines modestly but is consistently weaker and less stable than  
 1166 BIA in our GCD experiments.

1167 **Iso-Ent.** For Iso-Ent, using the normalized spectrum  $\tilde{\mu}_j = \mu_j / \sum_k \mu_k = \mu_j / B$ , the von Neumann  
 1168 entropy reduces to Shannon entropy:

$$1169 H(\tilde{\Sigma}_B) = - \sum_{j=1}^B \tilde{\mu}_j \log \tilde{\mu}_j, \quad f_{\text{Ent}}(\mu) = -H(\tilde{\Sigma}_B) = \sum_{j=1}^B \tilde{\mu}_j \log \tilde{\mu}_j. \quad (31)$$

1170 This is again a symmetric, Schur-concave function maximized at the uniform spectrum. However, its  
 1171 gradient with respect to  $\mu_j$  is proportional to  $\log \tilde{\mu}_j + 1$ , which diverges as  $\tilde{\mu}_j \rightarrow 0$ . Thus Iso-Ent  
 1172 strongly amplifies very small eigenvalues, making it numerically and statistically sensitive:

- 1173 • Small eigenvalues, which may correspond to noise or spurious directions induced by incor-  
 1174 rect pseudo-labels, receive extremely large updates and can be over-emphasized.
- 1175 • Computing matrix logarithms and the corresponding gradients is less stable than the SVD-  
 1176 based square root used in BIA, especially when  $\Sigma_B$  is near-singular early in training.

1188 Table A4: Comparison with more isotropy-encouraging regularizers on the CUB dataset.  
1189

| 1190 <b>Regularizer + Batch Size</b> | 1191 <b>CUB (All)</b> | 1192 <b>CUB (Known)</b> | 1193 <b>CUB (Novel)</b> |
|--------------------------------------|-----------------------|-------------------------|-------------------------|
| <b>Iso-Frob</b>                      |                       |                         |                         |
| 1194 32                              | 51.9                  | 55.9                    | 49.9                    |
| 1195 64                              | 60.3                  | 70.7                    | 55.3                    |
| 1196 128                             | 61.5                  | 69.4                    | 57.4                    |
| <b>Iso-Ent</b>                       |                       |                         |                         |
| 1197 32                              | 48.8                  | 56.0                    | 45.2                    |
| 1198 64                              | 59.3                  | 68.9                    | 54.9                    |
| 1199 128                             | 61.8                  | 68.1                    | 57.1                    |
| <b>BIA (Ours)</b>                    |                       |                         |                         |
| 1200 32                              | 53.1                  | 58.5                    | 50.4                    |
| 1201 64                              | 59.5                  | 69.3                    | 54.6                    |
| 1202 128                             | 62.1                  | 65.8                    | 60.3                    |

1204  
1205 **C.2.2 COMPARISON WITH ISOTROPY REGULARIZERS UNDER VARYING BATCH SIZES**1206  
1207 To further situate BIA, we conducted additional experiments comparing it against two simple, more  
1208 “direct” isotropy objectives applied to the class-token Gram matrix  $\Sigma_B$ . This analysis examines the  
1209 robustness of each regularizer to changes in batch size, a critical factor for training stability and  
1210 performance.1211 We integrated these regularizers and BIA into the SimGCD baseline and evaluated their performance  
1212 on three fine-grained datasets with batch sizes of 32, 64, and 128. The results are presented in  
1213 Table A4.1214 As shown in Table A4, our analysis yields several key insights. First, BIA consistently outperforms  
1215 both Iso-Frob and Iso-Ent across all datasets and batch sizes, demonstrating its superior effectiveness.  
1216 Second, BIA exhibits remarkable robustness to variations in batch size, with performance remaining  
1217 stable from 32 to 128. In contrast, both Iso-Frob and, particularly, Iso-Ent show greater sensitivity,  
1218 with performance degrading more noticeably at smaller batch sizes.1219 These empirical results align with our theoretical understanding. (i) **Iso-Frob** enforces a rigid  
1220 whitening penalty, attempting to match an exactly spherical covariance. This can be overly restrictive  
1221 in the noisy GCD setting, where some degree of structured anisotropy learned from pseudo-labels  
1222 may be beneficial for class separation. The aggressive regularization can thus suppress useful  
1223 semantic information. (ii) **Iso-Ent**, which involves matrix logarithms, is known to be numerically  
1224 sensitive, especially to small eigenvalues that are common early in training or with small batches.  
1225 This sensitivity likely contributes to its more volatile performance.1226 In contrast, BIA’s Bures / nuclear-norm formulation avoids these pitfalls. It maximizes a concave  
1227 function of the eigenvalues under a mild trace constraint, which encourages a more uniform spectrum  
1228 by *reshaping* it (lifting smaller eigenvalues and gently suppressing larger ones) without forcing all  
1229 directions to a specific target. This more flexible and robust mechanism for promoting isotropy  
1230 appears exceptionally well-suited to the noisy, mixed known/novel regime of GCD.1231 **C.3 IMPACT OF EMBEDDING QUALITY**1232 In Table 2, the accuracy gains on the CIFAR100 and Herbarium19 datasets are marginal. We use this  
1233 as a starting point to analyze the conflict between enhancing feature completeness and low embedding  
1234 quality in GCD. DINO, through self-supervision, already has a good feature representation capability,  
1235 but due to the distribution of data, its embedding quality remains low. One source of low quality is  
1236 the data size, and the other is data semantics.1237 (1) Specifically, when the small-sized CIFAR100 images are interpolated and input into ViT, the high-  
1238 frequency information is lost. For example, when identifying animal categories, the low-frequency  
1239 features such as the outline of the animal may be captured relatively well, but the detailed features  
1240 such as the texture and eyes of the animal (high-frequency features) are difficult to accurately extract.  
1241

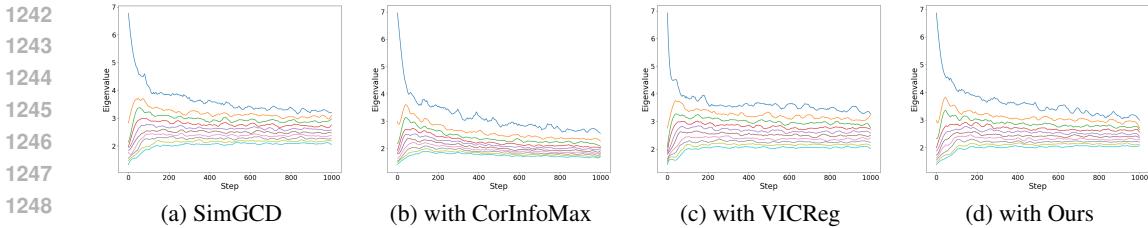


Figure A1: Trends in the top 10 eigenvalues as the number of training steps grows.

In this case, the model can only cluster through some shortcut information, rather than accurately clustering based on the complete intra-class features. Since the manifold dimension of the low-frequency features is relatively low, it is unable to fully capture the diversity and complexity within the class. Therefore, enhancing the completeness of the intra-class representation on small-sized data is challenging.

(2) Herbarium19 is a large-scale herbal plant recognition dataset, which is not in the model’s training data and inherently cannot provide highly discriminative representations. Additionally, the large number of categories makes the decision boundary more chaotic, and existing GCD schemes cannot cluster well. Therefore, enhancing the completeness of intra-class representation on overly low-quality embeddings is not feasible, as the overlap of feature spaces across categories is too large, and samples within a cluster come from multiple categories.

#### C.4 ANALYSIS ON THE EVOLUTION OF EIGENVALUES

Compared to the two optimization directions, VICReg and CorInfoMax, BIA offers a smoother and more uniform convergence of feature values, addressing some key limitations in both methods (Figure A1). VICReg, as a variance-based regularization approach, promotes feature variance and decorrelation but lacks explicit emphasis on intra-class representation completeness. This results in less expressive class boundaries and less effective fine-grained category separation. CorInfoMax, on the other hand, focuses on maximizing mutual information between features and their target distribution but does not sufficiently prevent dimensional collapse or guarantee richer intra-class representations. Both methods, while effective in some contexts, fail to fully capture the complex, high-dimensional structure of the data.

In contrast, BIA directly targets the manifold capacity of class tokens, ensuring that intra-class representations remain complete and informative. By maximizing the nuclear norm of the class token’s singular values, BIA ensures that feature values converge uniformly, without the collapse seen in other methods. This leads to more robust and accurate clustering, particularly when discovering novel categories. The smooth convergence of BIA reflects its ability to optimize representation quality while maintaining high inter-class separability, which is critical for open-world learning tasks.

#### C.5 COMPUTATIONAL OVERHEAD AND ROBUSTNESS ANALYSIS

We quantitatively analyze the computational overhead of BIA to substantiate our claim that it is a lightweight, plug-and-play module.

**Theoretical Complexity.** From a complexity perspective, the additional computation introduced by BIA depends only on the batch size  $B$  and the embedding dimension  $d$ . Per training step, BIA adds two main operations:

- A batch Gram matrix computation,  $\Sigma_B = ZZ^\top$ , with a cost of  $O(B^2d)$ .
- An eigendecomposition or SVD of the resulting  $B \times B$  matrix, with a cost of  $O(B^3)$ .

1296 In contrast, the forward-backward pass of the ViT backbone scales with both  $B$  and the number of  
 1297 image tokens, and typically dominates the overall runtime. In standard GCD settings where  $B$  is  
 1298 moderate (e.g.,  $B = 128$ ), the added cost of BIA is theoretically small.  
 1299

1300 **Empirical Validation.** To verify this empirically, we conducted two sets of measurements. First,  
 1301 we measured the wall-clock time of the SVD step (the most complex part of BIA) and its relative  
 1302 overhead compared to the backbone’s computation time. As shown in Table A5, the SVD step’s  
 1303 contribution is minimal, accounting for less than 1.5% of the backbone’s compute time even with a  
 1304 batch size of 256. This confirms that the core operation of BIA is negligible in practice.  
 1305

1306 Table A5: Relative wall-clock time overhead of the SVD computation in BIA with respect to the ViT  
 1307 backbone’s forward-backward pass, measured across different batch sizes.  
 1308

| Batch Size        | 64    | 128   | 192   | 256   |
|-------------------|-------|-------|-------|-------|
| Time Overhead (%) | 0.37% | 0.81% | 1.01% | 1.47% |

1312 Second, we evaluated the total wall-clock time per epoch and peak GPU memory for representative  
 1313 GCD frameworks with and without BIA. The results in Table A6 show that integrating BIA increases  
 1314 the total training time by less than 1% and the peak memory usage by only a few tens of megabytes  
 1315 across diverse methods like SelEx, SimGCD, CMS, and SPTNet.  
 1316

1317 Table A6: Total training time per epoch and peak GPU memory overhead of BIA when integrated  
 1318 into representative GCD frameworks on the CUB dataset.  
 1319

| Method                      | SelEx | SimGCD | CMS   | SPTNet |
|-----------------------------|-------|--------|-------|--------|
| <i>Peak GPU Memory (MB)</i> |       |        |       |        |
| Original                    | 8640  | 6354   | 6040  | 23322  |
| <b>+ BIA (Ours)</b>         | 8674  | 6390   | 6074  | 23670  |
| <i>Time per Epoch (s)</i>   |       |        |       |        |
| Original                    | 24.99 | 24.50  | 28.81 | 22.09  |
| <b>+ BIA (Ours)</b>         | 25.16 | 24.67  | 28.99 | 22.26  |

1328 Collectively, these results provide strong quantitative evidence that BIA is computationally efficient,  
 1329 imposing a negligible burden on standard training pipelines while delivering significant performance  
 1330 gains.  
 1331

### 1332 C.5.2 ROBUSTNESS ANALYSIS AND STRESS TESTS

1335 To provide a more comprehensive evaluation of BIA’s robustness, we conducted a series of new  
 1336 experiments addressing challenging yet realistic scenarios: smaller batch sizes, significant label  
 1337 noise, and severe class imbalance. These tests go beyond standard GCD evaluation protocols and  
 1338 demonstrate the practical utility of BIA’s geometric regularization.  
 1339

1340 **Robustness to Varying Batch Sizes.** While our main experiments follow the standard batch size of  
 1341 128 from prior GCD work, we performed an ablation study on the impact of smaller, more challenging  
 1342 batch sizes of 32 and 64. We evaluated both a prototype-based method (SimGCD) and a contrastive  
 1343 method (SelEx).  
 1344

1345 The results, presented in Table A7 and Table A8, show a clear trend: as the batch size decreases, the  
 1346 performance of baseline methods degrades, as smaller batches provide a less stable learning signal.  
 1347 However, our key finding is that **BIA consistently improves performance across all tested batch**  
 1348 **sizes.** For instance, with SimGCD on CUB (Table A7), reducing the batch size to 32 causes the  
 1349 baseline’s ‘All’ accuracy to drop to 49.7%. In this challenging setting, BIA provides a substantial  
 +3.4 point gain. This pattern demonstrates that BIA’s regularization provides a robust structural prior  
 that helps stabilize training even when the batch Gram matrix  $\Sigma_B$  is constructed from fewer, and thus  
 noisier, samples.

1350  
1351 Table A7: Ablation study on the impact of batch size with the **SimGCD** framework. We report  
1352 All/Old/New accuracy (%). BIA consistently improves performance, especially at smaller batch  
1353 sizes.

| Batch Size | Method       | CUB         |             |             | Stanford Cars |             |             | CIFAR100    |             |             |
|------------|--------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|
|            |              | All         | Old         | New         | All           | Old         | New         | All         | Old         | New         |
| 32         | SimGCD       | 49.7        | 54.8        | 47.1        | 48.0          | 65.4        | 39.6        | 66.9        | 69.6        | 61.4        |
|            | SimGCD + BIA | <b>53.1</b> | <b>58.5</b> | <b>50.4</b> | <b>48.4</b>   | <b>67.7</b> | <b>39.7</b> | <b>67.1</b> | <b>70.5</b> | 60.4        |
| 64         | SimGCD       | 59.2        | 68.4        | 54.6        | 49.5          | 66.5        | 41.1        | 71.5        | 76.9        | 60.5        |
|            | SimGCD + BIA | <b>59.5</b> | <b>69.3</b> | <b>54.6</b> | <b>52.2</b>   | <b>73.4</b> | <b>42.0</b> | <b>72.0</b> | <b>77.5</b> | <b>60.9</b> |
| 128        | SimGCD       | 60.7        | 65.6        | 57.7        | 54.0          | 58.8        | 51.5        | 80.1        | 81.5        | 77.2        |
|            | SimGCD + BIA | <b>62.1</b> | <b>65.8</b> | <b>60.3</b> | <b>55.1</b>   | <b>58.9</b> | <b>53.1</b> | <b>80.2</b> | <b>81.5</b> | <b>77.5</b> |

1363  
1364 Table A8: Ablation study on the impact of batch size with the **SelEx** framework. BIA’s gains are  
1365 consistent across all settings.

| Batch Size | Method      | CUB         |             |             | Stanford Cars |             |             | CIFAR100    |             |             |
|------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|
|            |             | All         | Old         | New         | All           | Old         | New         | All         | Old         | New         |
| 32         | SelEx       | 68.0        | 72.4        | 65.8        | 41.8          | 61.4        | 32.6        | 77.1        | 82.1        | 67.1        |
|            | SelEx + BIA | <b>70.0</b> | <b>74.5</b> | <b>67.7</b> | <b>42.8</b>   | <b>63.5</b> | <b>32.9</b> | <b>77.2</b> | 81.7        | <b>68.3</b> |
| 64         | SelEx       | 73.6        | 76.5        | 72.1        | 53.2          | 72.9        | 43.7        | 78.8        | 84.4        | 67.7        |
|            | SelEx + BIA | <b>74.9</b> | <b>77.1</b> | <b>73.8</b> | <b>53.8</b>   | <b>75.8</b> | 43.1        | <b>79.7</b> | <b>84.6</b> | <b>69.7</b> |
| 128        | SelEx       | 78.7        | 81.3        | 77.5        | 60.8          | 70.3        | 56.2        | 80.0        | 84.8        | 70.4        |
|            | SelEx + BIA | <b>80.6</b> | 81.0        | <b>80.4</b> | <b>61.8</b>   | 68.2        | <b>59.2</b> | <b>80.7</b> | <b>84.3</b> | <b>72.1</b> |

1377  
1378 **Robustness to Label Noise.** We performed a stress test by injecting **30% symmetric label noise**  
1379 into the labeled training set  $\mathcal{D}_l$ , corrupting the supervised signal. As shown in Table A9 and Table A10,  
1380 performance drops for all methods, but BIA consistently improves resilience. With SimGCD on  
1381 CIFAR-100, noise severely impacts novel class discovery (73.6%), but BIA provides a remarkable  
1382 recovery to **78.4%**. This indicates that by enforcing a well-conditioned feature geometry, BIA makes  
1383 the model less susceptible to erroneous supervised signals, preserving the integrity of the feature  
1384 space.

1385 Table A9: Stress test with **30% label noise** on the labeled set, using the **SimGCD** framework.

| Method | CUB         |             |             | Stanford Cars |             |             | CIFAR-100   |      |             |
|--------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|------|-------------|
|        | All         | Old         | New         | All           | Old         | New         | All         | Old  | New         |
| SimGCD | 44.9        | 50.9        | 41.9        | 28.8          | 48.6        | 19.3        | 73.1        | 72.8 | 73.6        |
|        | <b>46.4</b> | <b>51.4</b> | <b>44.0</b> | <b>30.1</b>   | <b>49.4</b> | <b>20.9</b> | <b>74.5</b> | 72.6 | <b>78.4</b> |

1393 Table A10: Stress test with **30% label noise** on the labeled set, using the **SelEx** framework.

| Method | CUB         |      |             | Stanford Cars |             |             | CIFAR-100   |             |      |
|--------|-------------|------|-------------|---------------|-------------|-------------|-------------|-------------|------|
|        | All         | Old  | New         | All           | Old         | New         | All         | Old         | New  |
| SelEx  | 61.0        | 73.3 | 54.9        | 28.8          | 45.7        | 20.5        | 74.8        | 77.9        | 68.4 |
|        | <b>61.1</b> | 73.3 | <b>55.0</b> | <b>29.8</b>   | <b>48.3</b> | <b>20.8</b> | <b>75.2</b> | <b>78.6</b> | 68.3 |

1402  
1403 **Robustness to Class Imbalance.** Finally, we simulated long-tailed distributions within each batch  
1404 to test for robustness against class imbalance. Table A11 shows results for SimGCD on CUB with  
1405 imbalance ratios from 5:1 to an extreme 20:1. As imbalance increases, baseline performance declines.

BIA consistently provides a buffer against this degradation. Notably, under a 20:1 imbalance, the baseline ‘Old’ class accuracy struggles at 51.4%. Here, BIA provides a significant **+5.1** point boost to **56.5%**, showing it effectively protects minority class representations from being overwhelmed. This confirms that BIA’s geometric regularization leads to a more stable and equitable representation space, critical for realistic long-tailed scenarios.

Table A11: Class imbalance stress test with SimGCD on the CUB dataset. BIA provides a buffer against performance degradation, especially for known (and minority) classes under severe imbalance.

| Imbalance Ratio | All Accuracy |              | Old Accuracy |              | New Accuracy |              |
|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                 | SimGCD       | SimGCD + BIA | SimGCD       | SimGCD + BIA | SimGCD       | SimGCD + BIA |
| 5:1             | 53.0         | <b>53.7</b>  | 59.0         | <b>60.5</b>  | 48.1         | <b>48.5</b>  |
| 10:1            | 48.8         | <b>50.0</b>  | 55.2         | <b>55.4</b>  | 43.7         | <b>45.7</b>  |
| 15:1            | 47.8         | <b>48.2</b>  | 54.1         | <b>56.6</b>  | 42.8         | 41.4         |
| 20:1            | 47.3         | <b>47.9</b>  | 51.4         | <b>56.5</b>  | 43.9         | 40.2         |

## C.6 EFFECTIVENESS OF BIA ON DIFFERENT FEATURE REPRESENTATIONS

Our primary experiments focus on the `[cls]` token, a standard practice in the GCD literature (e.g., SimGCD, CMS, SelEx) that ensures a direct and fair comparison with prior work. To provide a more comprehensive analysis, we conducted a new ablation study to investigate the impact of incorporating patch-level information. We evaluated BIA’s effectiveness on representations that combine the `[cls]` token with patch tokens, using both a prototype-based method (SimGCD) and a contrastive method (SelEx).

Our experimental setup for this analysis is as follows. We create an enhanced global representation by concatenating the `[cls]` token with the average-pooled features from all patch tokens. We then apply the BIA loss to this combined representation. The results are presented in Table A12 and Table A13.

From these results, we draw two main conclusions:

1. **Incorporating patch tokens can be beneficial but is not a universal solution.** As seen in Table A12, including patch tokens with SimGCD on Stanford Cars substantially lifts the ‘All’ accuracy from 51.2% to 55.1%. However, on CIFAR-100, the same strategy hurts ‘New’ class performance, causing a drop from 77.2% to 74.9%. This suggests that simply adding more features can introduce noise that complicates the discovery of novel classes in some scenarios.
2. **BIA consistently improves performance in all settings.** Crucially, our method boosts the performance of baselines regardless of whether patch tokens are used. BIA improves the patch-enhanced SelEx on CUB from 80.7% to **82.2%** ‘All’ accuracy (Table A13) and recovers the performance drop for SimGCD on CIFAR-100-New from 74.9% to **77.0%** (Table A12). This demonstrates that BIA addresses a more fundamental problem. Its objective is to restore the geometric quality of the final batch-level representation matrix  $Z$ . Whether the rows of  $Z$  are derived from `[cls]` tokens alone or from a combination with patch tokens, BIA effectively counteracts dimensional collapse and promotes a healthier manifold structure, leading to more robust clustering.

This comprehensive ablation study validates the robustness and generality of BIA, confirming its value as a feature-agnostic regularizer for improving representation geometry in GCD.

1458  
 1459  
 1460  
 1461  
 1462  
 1463  
 1464  
 1465  
 1466  
 1467  
 1468  
 1469

Table A12: Ablation on patch token integration with the **SimGCD** framework. Performance is reported as All/Old/New accuracy (%). BIA consistently improves results for both representation types.

| <b>Method</b>                      | <b>CUB</b>  |             |             | <b>Stanford Cars</b> |             |             | <b>CIFAR-100</b> |      |             |
|------------------------------------|-------------|-------------|-------------|----------------------|-------------|-------------|------------------|------|-------------|
|                                    | All         | Old         | New         | All                  | Old         | New         | All              | Old  | New         |
| [cls] token only                   | 60.7        | 65.6        | 57.7        | 51.2                 | 69.4        | 42.4        | 80.1             | 81.5 | 77.2        |
| [cls] token only + <b>BIA</b>      | <b>62.1</b> | <b>65.8</b> | <b>60.3</b> | <b>52.3</b>          | <b>70.0</b> | <b>43.7</b> | <b>80.2</b>      | 81.5 | <b>77.5</b> |
| [cls] w/ patch tokens              | 62.8        | 66.0        | 61.2        | 55.1                 | 68.3        | 48.7        | 80.4             | 83.1 | 74.9        |
| [cls] w/ patch tokens + <b>BIA</b> | <b>63.0</b> | <b>67.5</b> | 60.8        | <b>55.4</b>          | <b>70.9</b> | <b>49.1</b> | <b>81.0</b>      | 83.0 | <b>77.0</b> |

1470  
 1471  
 1472  
 1473  
 1474  
 1475  
 1476  
 1477  
 1478  
 1479  
 1480  
 1481  
 1482  
 1483  
 1484  
 1485  
 1486  
 1487  
 1488  
 1489  
 1490  
 1491  
 1492  
 1493

Table A13: Ablation on patch token integration with the **SelEx** framework. BIA demonstrates its generality by boosting performance regardless of the input feature composition.

| <b>Method</b>                      | <b>CUB</b>  |             |             | <b>Stanford Cars</b> |             |             | <b>CIFAR-100</b> |      |             |
|------------------------------------|-------------|-------------|-------------|----------------------|-------------|-------------|------------------|------|-------------|
|                                    | All         | Old         | New         | All                  | Old         | New         | All              | Old  | New         |
| [cls] token only                   | 78.7        | 81.3        | 77.5        | 55.9                 | 76.9        | 45.8        | 80.0             | 84.8 | 70.4        |
| [cls] token only + <b>BIA</b>      | <b>80.6</b> | 81.0        | <b>80.4</b> | <b>57.0</b>          | <b>77.3</b> | <b>47.2</b> | <b>80.7</b>      | 84.3 | <b>72.1</b> |
| [cls] w/ patch tokens              | 80.7        | 80.5        | 80.8        | 56.7                 | 77.1        | 46.9        | 79.4             | 85.5 | 67.1        |
| [cls] w/ patch tokens + <b>BIA</b> | <b>82.2</b> | <b>84.1</b> | <b>81.3</b> | <b>58.2</b>          | <b>77.4</b> | <b>48.9</b> | <b>80.0</b>      | 85.5 | <b>68.4</b> |

1504  
 1505  
 1506  
 1507  
 1508  
 1509  
 1510  
 1511