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Abstract

Deep Neural Networks (DNNs) excel at learning complex abstractions within their internal
representations. However, the concepts they learn remain opaque, a problem that becomes
particularly acute when models unintentionally learn spurious correlations. In this work,
we present DORA (Data-agnOstic Representation Analysis), the first data-agnostic frame-
work for analyzing the representational space of DNNs. Central to our framework is the
proposed Extreme-Activation (EA) distance measure, which assesses similarities between
representations by analyzing their activation patterns on data points that cause the highest
level of activation. As spurious correlations often manifest in features of data that are
anomalous to the desired task, such as watermarks or artifacts, we demonstrate that internal
representations capable of detecting such artifactual concepts can be found by analyzing
relationships within neural representations. We validate the EA metric quantitatively, demon-
strating its effectiveness both in controlled scenarios and real-world applications. Finally,
we provide practical examples from popular Computer Vision models to illustrate that
representations identified as outliers using the EA metric often correspond to undesired and
spurious concepts.
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1 Introduction

The ability of Deep Neural Networks (DNNs) to perform complex tasks and achieve state-of-the-art performance
in various fields can be attributed to the rich and hierarchical representations that they learn Bengio et al.
(2013). Far beyond the handcrafted features that were inductively imposed by humans on learning machines
in classical Machine Learning methods Marr and Nishihara (1978); Jackson; Fogel and Sagi (1989), Deep
Learning approaches exploit the network’s freedom to learn complex abstractions. However, a prevalent
concern remains that the nature of concepts, learned by the model remains unknown. The rapid progress in
representation learning only exacerbates the issue of interpretability, since DNNs are frequently trained using
self-supervised methodologies Jaiswal et al. (2020); LeCun and Misra (2021) on immense volumes of data
Brown et al. (2020); Bommasani et al. (2021), which accelerated the unpredictability concerning the scope of
possible learned concepts and their mutual relations Goh et al. (2021).

The increasing popularity of Deep Learning techniques across various fields, coupled with the difficulty
of interpreting the decision-making processes of complex models, has led to the emergence of the field of
Explainable AI (XAI) (e.g. Montavon et al. (2018); Samek et al. (2019); Xu et al. (2019); Gade et al. (2019);
Rudin (2019); Samek et al. (2021)). Research within XAI has revealed that the internal representations
that form the basis of DNNs are susceptible to learning harmful and undesired concepts, such as biases
Guidotti et al. (2018); Jiang and Nachum (2020), Clever Hans (CH) effects Lapuschkin et al. (2019), and
backdoors Anders et al. (2022). These malicious concepts often are unnatural or anomalous in relation to the
relevant concepts within the dataset. Examples include watermarks in the PASCAL 2007 image classification
task Lapuschkin et al. (2019), Chinese logographic watermarks in ImageNet dataset Li et al. (2022), colored
band-aids in skin-cancer detection problem Anders et al. (2022) or tokens in a pneumonia detection problem
Zech et al. (2018).

To enhance our understanding of the decision-making processes within complex machines and to prevent biased
or potentially harmful decisions, it is crucial to explain the concepts learned during training. By analyzing
the relationships between internal neural representations, we can gain insights into the model’s predictive
strategies. In this work, we introduce Representation Analysis, a framework dedicated to exploring the
representations of a particular model layer. Our approach utilizes a proposed Extreme-Activation (EA) metric,
which measures the similarity between various learned representations within the networks by examining
the common activation patterns on Activation-Maximisation Signals (AMS). These signals represent data
points where the representations exhibit their highest activations and can be identified through either a
data-aware (natural) process from an existing data corpus Borowski et al. (2020) or a data-agnostic process,
in which the signals are synthetically generated Erhan et al. (2009); Olah et al. (2017). We refer to the
representation analysis conducted with the latter method as DORA∗ (Data-agnOstic Representation Analysis).
We demonstrate the interpretability of our proposed distance measure and study the connections between
natural and synthetic Activation-Maximisation Signals. Moreover, we quantitatively assess the alignment
between the functional EA distance and human perception — we demonstrate that EA distances between
representations generally align with human judgment regarding the similarity of concepts, particularly in
scenarios where the concepts underlying the representations are known. Additionally, we highlight our
proposed distance measure’s ability to establish a robust baseline for detecting inserted anomalous concepts
in controlled scenarios. Lastly, through practical experiments conducted on popular Computer Vision models,
we reveal that anomalous representations identified by our framework often correspond to undesirable spurious
concepts.

2 Related Work

To address the concerns regarding the black-box nature of complex learning machines Baehrens et al. (2010);
Vidovic et al. (2015); Buhrmester et al. (2019); Samek et al. (2021), the field of Explainable AI (XAI) has
emerged. While some recent research focuses on inducing the self-explaining capabilities through changes in
the architecture and the learning process Gautam et al. (2022a;b); Chen et al. (2018); Gautam et al. (2021),
the majority of XAI methods (typically referred to as post-hoc explanation methods) are decoupled from the

∗PyTorch implementation of the proposed method can be found by the following link: https://github.com/lapalap/dora .
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training procedure. A dichotomy of post-hoc explanation methods could be performed based on the scope of
their explanations, i.e., the model behavior can be either explained on a local level, where the decision-making
strategy of a system is explained for one particular input sample, or on a global level, where the aim is to
explain the prediction strategy learned by the machine across the population and investigate the purpose of
its individual components in a universal fashion detached from single datapoints (similar to feature selection
Guyon and Elisseeff (2003)).

Local explanation methods typically interpret the prediction by attributing relevance scores to the features of
the input signal, highlighting the influential characteristics that affected the prediction the most. Various
methods, such as Layer-wise Relevance Propagation (LRP) Bach et al. (2015), GradCAM Selvaraju et al.
(2019), Occlusion Zeiler and Fergus (2014), MFI Vidovic et al. (2016), Integrated Gradient Sundararajan
et al. (2017), have proven effective in explaining Graph Neural Networks Wang et al. (2021); Tiddi et al.
(2020) as well as Bayesian Neural Networks Bykov et al. (2021); Brown and Talbert (2022). To further boost
the quality of interpretations, several enhancing techniques were introduced, such as SmoothGrad Smilkov
et al. (2017); Omeiza et al. (2019), NoiseGrad and FusionGrad Bykov et al. (2022). Considerable attention
also has been paid to analyzing and evaluating the quality of local explanation methods (e.g. Samek et al.
(2016); Hedström et al. (2022); Guidotti (2021); Binder et al. (2023)). However, while the local explanation
paradigm is incredibly powerful in explaining the decision-making strategies for a particular data sample,
the main limitation of such methods is their inability to effectively investigate the unexplored behaviors of
the models, such as the detection of previously unknown spurious correlations and computational shortcuts
Adebayo et al. (2022).

Global explanation methods aim to interpret the general behavior of learning machines by investigating the
role of particular components, such as neurons, channels, or output logits, which we refer to as representations.
Existing methods mainly aim to connect internal representations to human understandable concepts, making
the purpose and semantics of particular network sub-function transparent to humans. Methods such as
Network Dissection Bau et al. (2017; 2018) and Compositional Explanations of Neurons Mu and Andreas
(2020) aim to associate representations with human-understandable concepts. They achieve this by examining
the intersection between the concept-relevant information provided by a binary mask and the activation
map of the corresponding representation. The MILAN method Hernandez et al. (2021) generates a text
description of the representation by searching for a text string that maximizes the mutual information with
the image regions in which the neuron is active.

2.1 Activation-Maximisation Methods

The family of Activation-Maximization (AM) Erhan et al. (2009) methods aims to globally explain the
concepts behind neurons by identifying the input that triggers maximal activation in a particular neuron or
network layer, thereby visualizing the features learned. These inputs, which we will refer to as Activation-
Maximization Signals (AMS), could be either natural, found in a data-aware fashion by selecting a “real”
example from an existing data corpus Borowski et al. (2020), or artificial, found in a data-agnostic mode
by generating a synthetic input through optimization Erhan et al. (2009); Olah et al. (2017); Szegedy et al.
(2013).

In comparison to earlier synthetic AM methods, Feature Visualization (FV) Olah et al. (2017) performs
optimization in the frequency domain by parametrizing the image with frequencies obtained from the Fourier
transformation. This reduces adversarial noise in resulting explanations (e.g. Erhan et al. (2009); Szegedy
et al. (2013)) — improving the interpretability of the obtained signals. Additionally, the FV method applies
multiple stochastic image transformations, such as jittering, rotating, or scaling, before each optimization
step, as well as frequency penalization, which either explicitly penalizes the variance between neighboring
pixels or applies bilateral filters on the input.

2.2 Spurious Correlations

Deep Neural Networks are prone to learn spurious representations — patterns that are correlated with a target
class on the training data but not inherently relevant to the learning problem Izmailov et al. (2022). Reliance
on spurious features prevents the model from generalizing, which subsequently leads to poor performance on
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sub-groups of the data where the spurious correlation is absent (cf. Lapuschkin et al. (2016; 2019); Geirhos
et al. (2020)). In the field of Computer Vision, such behavior could be characterized by the model’s reliance
on aspects such as an images background Xiao et al. (2020), object textures Geirhos et al. (2018), or the
presence of semantic artifacts in the training data Wallis and Buvat (2022); Lapuschkin et al. (2019); Geirhos
et al. (2020); Anders et al. (2022). Artifacts can be added to the training data on purpose as Backdoor
attacks Gu et al. (2017); Tran et al. (2018), or emerge naturally and might persist unnoticed in the training
corpus, resulting in Clever Hans effects Lapuschkin et al. (2019).

Recently, XAI methods have demonstrated their potential in revealing the underlying mechanisms of
predictions made by models, particularly in the presence of artifacts such as Clever Hans or Backdoor
artifacts. Spectral Relevance analysis (SpRAy) aims to provide a global explanation of the model by analyzing
local explanations across the dataset and clustering them for manual inspection Lapuschkin et al. (2019).
While successful in certain cases Schramowski et al. (2020), SpRAy requires a substantial amount of human
supervision and may not detect artifacts that do not exhibit consistent shape and position in the original
images. SpRAY-based Class Artifact Compensation Anders et al. (2022) method allowed for less human
supervision and demonstrated its capability to suppress the artifactual behavior of DNNs.

2.3 Comparison of Representations

The study of representation similarity in DNN architectures is a topic of active research. Numerous methods
comparing network representations have been applied to different architectures, including Neural Networks
of varying width and depth Nguyen et al. (2020), Bayesian Neural Networks Grinwald et al. (2022), and
Transformer Neural Networks Raghu et al. (2021). Some works Ramsay et al. (1984); Laakso (2000); Kornblith
et al. (2019); Nguyen et al. (2022) argue that the representation similarity should be based on the correlation
of a distance measure applied to layer activations on training data. Other works Raghu et al. (2017); Morcos
et al. (2018) compute similarity values by applying variants of Canonical Correlation Analysis (CCA) Hardoon
et al. (2005); Bießmann et al. (2010) on the activations or by calculating mutual information Li et al. (2015),
or employ kernel methods to quantify the evolution of the representations Montavon et al. (2011); Braun
et al. (2008). However, these methods are predominantly utilized for the comparison of whole representation
spaces, e.g. layers, and not individual components, and as a result often overlook the semantics of learned
concepts. Furthermore, those methods are dependent on the availability of data.

3 Distance Metrics between Neural Representations

In the following, we start with the definition of a neural representation as a sub-function of a given network
that depicts the computation graph, from the input of the model to the output of a specific neuron.
Definition 1 (Neural representation). We define a neural representation f as a real-valued function f : D → R,
mapping from the data domain D to the real numbers R.

The following definition is introduced to highlight the distinction between the traditional notion of a neuron
and the broader computational process encapsulated in the term neural representation. Conventionally,
a neuron is defined as a function that takes inputs from its preceding neurons. In contrast, a neural
representation describes the entire computational process, starting from the input and yielding the activation
of a specific neuron (unit). While some neurons in DNNs produce multidimensional outputs, depending on the
specific use cases, multidimensional functions could be regarded either as a set of individual representations
or alternatively could be aggregated to achieve scalar output. For example, in the case of convolutional
neurons that output activation maps containing the dot product between filter weights and input data at each
location, activation maps could be aggregated by average- or max-pool operations for the sake of simplifying
the explanation of the semantic concept underlying the function. The choice depends on the particular aim
and scope of the analysis and does not alter the network itself.

The scalar output of representations often corresponds to the amount of evidence or similarity between
concepts present in the input and internally learned abstractions. Various sub-functions within the model
could be considered as neural representations, ranging from the neurons in the initial layers that are often
regarded as elementary edge or color detectors Le and Kayal (2021), to the model output. Throughout this
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work, we primarily focus on the high-level abstractions that emerge in the latest layers of networks, such as
the feature-extractor layers in well-known Computer Vision architectures, as they are frequently employed for
transfer learning Zhuang et al. (2020).

In DNNs, neural representations are combined into layers — collections of individual neural representations
that typically share the same computational architecture and learn abstractions of similar complexity. In
the scope of the following work, we mainly focused on the analysis of the relations between representations
within one selected layer from the network.
Definition 2 (Layer). We define a layer F = {f1, ..., fk} as a set comprising k individual neural representa-
tions.

To examine the relationships between representations, we can begin by analyzing the behavior of functions with
respect to a given dataset. We define a dataset, D, consisting of N data points denoted as D = {x1, ..., xN }.
This set is referred to as the evaluation dataset and is used to measure the relationship between two neural
representations. We make the assumption that these data points, x1, ..., xN , are independently and identically
distributed (i.i.d.) samples from the overall data distribution D. Additionally, we standardize the activations
of representations on this evaluation dataset, resulting in a mean of 0 and a standard deviation of 1.

For a neural representation fi ∈ F and an evaluation dataset D = {x1, ..., xN }, we define a vector of
activations

ai = (fi(x1), ..., fi(xN )) , (1)
where

µi := 1
N

N∑
t=1

fi(xt) = 0, σi :=

√√√√ 1
N − 1

N∑
t=1

(fi(xt) − µi)2 = 1. (2)

Standardizing the vectors in this way can help to mitigate any differences in scale between the vector
components and ensure that each component contributes equally to the distance calculation. Below, we present
three widely recognized metrics that can be utilized to measure the distance between neural representations.

• Minkowski distance:

dM (fi, fj) =
(

N∑
t=1

|fi(xt) − fj(xt)|p
) 1

p

, (3)

where p ≥ 1, p ∈ Z determines the degree of the norm, which gauges the sensitivity of the metric to
differences between the components of the vectors being compared. In general, larger values of p lead
to a greater emphasis on larger differences between the components of the vectors. Conversely, smaller
values of p reduce the influence of larger differences, leveraging an increased uniform weighting of all
components.

• Pearson distance:
dP (fi, fj) = 1√

2

√
1 − ρp (ai, aj), (4)

where ρp(a, b) is the Pearson correlation coefficient between the vectors a and b. The Pearson
correlation coefficient is a widely used metric for measuring the linear dependence between two
random variables. It is an interpretable measure of similarity, however, it is also sensitive to outliers,
which can significantly affect the calculated distance.

• Spearman distance:
dS (fi, fj) = 1√

2

√
1 − ρs (ai, aj), (5)

where ρs(a, b) is the Spearman rank-correlation coefficient between vectors a and b. The Spearman
correlation is a non-parametric rank-based metric commonly used to measure the monotonic depen-
dence between two random variables. Its main advantage is that it is robust to outliers and can
handle ties in the data.
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Figure 1: Distribution of activations for the “Siberian husky” representation. From the figure we can
observe the standardized activation distribution of the “Siberian husky” logit from the ResNet18 model trained
on ImageNet. The data was collected across the ILSVRC-2012 validation dataset. Additionally, various input
images are dispalyed over their respective activations. Analyzing the activation of representations can provide
crucial insights into the behavior of the model. For instance, we observe that the model achieves extremely
high activations when there are multiple dogs in the image, corresponding to the “Dogsled” class. However,
we also observe a potential spurious correlation, where the model assigns high scores to images with a snowy
background.

3.1 Data-Aware Extreme-Activation distance

The meaning and semantics of individual representations are frequently characterized and explained by
datapoints where these representations exhibit extreme values. This analysis typically concentrates on the
most positively activating signals, primarily due to the prevalent use of bounded activation functions like
ReLU Glorot et al. (2011). In these functions, positive activation values typically signify the existence of
specific patterns within the input signal.

Given the evaluation dataset D and a neural representation fi ∈ F , we define a collection of natural
Activation-Maximisation signals (n-AMS) as follows:
Definition 3 (n-AMS). Let fi ∈ F be a neural representation, and D = {x1, ..., xN } ⊂ D be an evaluation
dataset with N datapoints. Assume that the dataset D could be split in n disjoint blocks D =

⋃n
i=1 Dt, Dt ={

xtd+1, ..., x(t+1)d+1
}

, ∀t ∈ {0, ..., n − 1} of length d.

We define a collection of n natural Activation-Maximisation signals (n-AMS) as Si =
{

si
1, ..., si

n

}
, where

si
t = arg max

x∈Dt

fi (x) , ∀t ∈ {0, ..., n − 1}. (6)

The suggested definition of n-AMS diverges from the conventional method for explaining the concepts
behind the representation by analyzing signals with the highest activations, that is, signals whose activations
rank highest across the entire dataset. Instead, n-AMS could be seen as samples from the Extreme Value
distribution, thereby allowing for statistical properties to be considered. Additionally, such ditribution is
parameterized with parameter d, referred to as the depth, which represents the size of the subset from which
the signal is obtained. Note that we could examine the highest activation signal of the whole dataset by
setting n = 1 and d = N , however, interpreting the representation’s semantics by using only one signal might
be misleading. Figure 1 illustrates the distribution of activations of the “Siberian husky” logit from the
ResNet18 model trained on ImageNet He et al. (2016) across all the images from the ILSVRC-2012 validation
dataset Russakovsky et al. (2015), where we can observe that the most activating signal corresponds to the
“Dogsled” class. In light of this, we aim to sample several n-AMS from separate data subsets.
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We propose that by examining how two neural representations activate each other’s n-AMS, we can gain
significant insights into the similarity of the learned abstractions. For this, we first introduce the representation
activation vectors (RAVs).
Definition 4. Let F = {f1, ..., fk} be a layer including k neural representations, and S = {S1, ..., Sk}
be a collection of n n-AMS for each of the k representations in the layer. For ∀i, j ∈ {1, ..., k} we define
µi

j = 1
n

∑n
t=1 fj

(
si

t

)
as mean activation of fj given the n-AMS of fi.

For any two representations fi, fj ∈ F , we define their pair-wise representation activation vectors (RAVs)
rij , rji as:

rij =
(

µi
i

µi
j

)
, rji =

(
µj

i

µj
j

)
. (7)

In addition, for each neural representation fi ∈ F , we define the corresponding layer-wise RAV as follows:

ri∗ =

µi
1
...

µi
k

 . (8)

Intuitively, the idea behind RAVs is to capture how one representation’s n-AMS are perceived by other
representations. RAVs capture the direction of n-AMS signals within two-dimensional vectors when dealing
with pair-wise vectors, encoding the information about how two neural representations respond to each
other’s stimuli. In the layer-wise case, the vectors are k-dimensional, utilizing all representations within the
layer as descriptors. In practice, to compute RAVs, n n-AMS are gathered for each representation within the
layer, inferenced by the model. Then, activations across the representations from the layer are collected and
averaged.

To illustrate the concept of Representation Activation Vectors, we calculated n-AMS for five distinct neural
representations extracted from the output layer of the ImageNet pre-trained ResNet18 model. These
representations corresponded to the classes “Siberian husky”, “Alaskan malamute”, “Samoyed”, “Tiger cat”,
and “Aircraft carrier”, which were selected manually to demonstrate the decreasing visual similarity between
the classes and the “Siberian husky” class. Using the ILSVRC-2012 validation dataset, we computed the
signals with a sample size of n = 100 and a subset size of d = 500. Figure 2 presents a scatter plot of
activation values across datapoints and pair-wise RAVs. Our results indicate that the angle between these
vectors increases with the visual dissimilarity between the classes.

To measure the distance between neural representations that reflect the similarity of learned concepts, we
introduce a novel distance metric known as the Extreme-Activation distance. This metric assesses the
similarity between two neural representations based on the angle between their Representation Activation
Vectors. Given that the computation of this distance measure is performed in a data-aware mode and relies
on the presence of a dataset, we refer to this distance as the natural Extreme-Activation distance or EAn.
Definition 5 (Extreme-Activation distance). Let fi, fj ∈ F be two neural representations, and rij , rji be
their pair-wise RAVs. We define a pair-wise Extreme-Activation distance as

dp
EAn

(fi, fj) = 1√
2

√
1 − cos (rij , rji), (9)

where cos(A, B) is the cosine of the angle between vectors A, B.

Additionally, we define layer-wise Extreme-Activation distance between fi, fj as

dl
EAn

(fi, fj) = 1√
2

√
1 − cos (ri∗, rj∗). (10)
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Figure 2: Joint activation and pair-wise RAVs of different ImageNet representations. Four
scatter plots illustrate the joint activations, n-AMS sets, and pair-wise RAVs for distinct pairs of neural
representations. Blue points represent the n-AMS of the representation depicted on the vertical axis, while
orange points represent the n-AMS of the representation shown on the horizontal axis. The representations,
taken from the ResNet18 output logit layer, include “Alaskan malamute”, “Samoyed”, “Tiger cat”, and
“Aircraft carrier”, each compared with the “Siberian husky” representation. We can observe that the angle
between RAVs reflects the visual similarity between classes, representations were trained to learn: the RAVs
of “Siberian husky” and “Alaskan malamute” are almost collinear due to the high visual similarity between
the two dog breeds, while the RAVs of “Siberian husky” and “Aircraft carrier” are orthogonal, indicating
their visual dissimilarity.

3.2 Synthetic Extreme-Activation distance

Although data-aware distance metrics can offer insight into the relationships between representations, their
dependence on the data can be viewed as a limitation potentially acting as a bottleneck when analyzing
the relationships between a model’s internal representations. Modern machine learning models are often
trained on closed-source or very large datasets, making it difficult to obtain the exact dataset the model was
trained on. If the evaluation dataset, i.e. the dataset utilized for n-AMS sampling lacks concepts that were
present in the training data, the resulting n-AMS could potentially be misleading. This is due to the fact
that they might not encapsulate the features that the representation has learned to detect, simply because
such features are absent in the dataset.

To alleviate the dependence on data, we propose a data-agnostic method for computing the Extreme-Activation
distance. This approach employs synthetic Activation-Maximization signals, denoted as s-AMS, in place
of n-AMS. The s-AMS signals are generated by the model itself through an optimization process, thereby
eliminating the need for external generative models or datasets.
Definition 6 (s-AMS). Let fi ∈ F be a neural representation. Synthetic Activation-Maximization (s-AMS)
signal s̃i is defined as a solution to the following optimization problem:

s̃i = arg max
s̃∈Θ

fi(s̃), (11)

where Θ denotes the set of potential solutions, typically defined by the particular signal parametrization
employed for optimization.

Generating s-AMS for a neural representation is a non-convex optimization problem Nguyen et al. (2019)
that typically employs gradient-based methods Erhan et al. (2009); Nguyen et al. (2015); Olah et al. (2017).
Starting from a random noise parametrization of input signals, the gradient-ascend procedure searches for
the optimal set of signal parameters that maximize the activation of a given representation. Early methods
employed standard pixel parametrization Erhan et al. (2009), while modern approaches used Generative
Adversarial Network (GAN) generators Nguyen et al. (2016) or Compositional Pattern Producing Networks
(CPPNs) Mordvintsev et al. (2018); Stanley (2007). In this study, we use the Feature Visualization method
Olah et al. (2017) for s-AMS generation, which parametrizes input signals by frequencies and maps them to
the pixel domain using Inverse Fast Fourier Transformation (IFFT). This method is popular for its simplicity
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and independence from external generative models, as well as for its ability to be human-interpretable Olah
et al. (2020); Goh et al. (2021); Cammarata et al. (2020).

Figure 3: Failing to explain “Star Wars” repre-
sentation with natural images. Comparison of the
s-AMS (left) and most activated images collected from
the ImageNet dataset (right) for unit 744 in the last
convolutional layer of the CLIP ResNet50 model. Due
to the inaccessibility of the training dataset and lack
of specific images due to copyright restrictions, natural
images do not reveal the underlying concept of the
“Star Wars” neuron.

The optimization procedure for s-AMS generation
has several adjustable hyperparameters, including
the optimization method and transformations ap-
plied to signals during the procedure. A key param-
eter is the number of optimization steps (or epochs)
denoted as m. This parameter can be seen as anal-
ogous to the parameter d used in n-AMS generation.
Since different random initializations in the param-
eter space can lead to the convergence of s-AMS
generation into different local solutions, the resulting
s-AMS can vary. This variability mirrors that ob-
served when sampling n-AMS. Therefore, analogous
to Definition 3, for the representation fi, we intro-
duce a set of s-AMS, comprised of n signals, denoted
as S̃i = {s̃i

1, ..., s̃i
n}.

Figure 3 demonstrates the comparison between s-
AMS and most activating signals from the ImageNet
dataset for one unit in CLIP ResNet 50 network†.
The analysis based solely on natural signals leads
to erroneous conclusions about the learned concept
due to the absence of the true concept in the dataset.
As the original training dataset remains undisclosed,
explaining the concepts learned by the representation via identifying the most activating images from ImageNet
may lead to misinterpretation, given the absence of “Star Wars”-related images within the ImageNet dataset.
In contrast, synthetic Activation-Maximization Signals can depict the learned concepts without any dependency
on data.

The Synthetic Extreme-Activation distance, or EAs, is defined in a manner analogous to the EAn distance
(Definition 5), with the key distinction being that Representation Activation Vectors are calculated using
s-AMS instead of n-AMS. Hence, in contrast to EAn, which evaluates the co-activation of representations
based on each other’s natural Activation-Maximization signals, EAs assesses how two representations activate
in response to each other’s synthetic Activation-Maximization signals, i.e., signals generated through an
artificial optimization process.

Definition 7 (Synthetic Extreme-Activation distance). Let F = {f1, ..., fk} be a layer including k neural
representations, and S̃ = {S̃1, ..., S̃k} be a collection of n s-AMS for each of the k representations in the layer.
For ∀i, j ∈ {1, ..., k} we introduce synthetic RAVs, by substituting n-AMS with s-AMS in Definition 4: r̃ij , r̃ji,

— pair-wise synthetic RAVs, r̃i∗, r̃j∗ — layer-wise synthetic RAVs.

We define pair-wise and layer-wise synthetic Extreme-Activation distance between fi and fj as

dp
EAs

(fi, fj) = 1√
2

√
1 − cos (r̃ij , r̃ji), dl

EAs
(fi, fj) = 1√

2

√
1 − cos (r̃i∗, r̃j∗). (12)

Notably, EAn distance is computed using standardized activations. However, due to the data-agnostic nature
of the EAs distance, standardization cannot be performed without accessing the evaluation dataset; hence,
we use the raw representation’s activations. Although this could be considered as a limitation, since the EAs

distance is not shift-invariant, we found in our practical experiments that the angles between synthetic and
natural RAVs are typically maintained.

†Signals were obtained from OpenAI Microscope.
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3.3 Properties and Limitations

A key characteristic of the Extreme-Activation distance, applicable to both natural and synthetic contexts, in
comparison to other metrics, such as Minkowski, Spearman, and Pearson metrics, is that its computation is
based on the activations of two representations given a small subset of AMS, enabling a manual examination
of these data points. Such analysis of AMS provides insights into the shared concepts between the two
representations. Figure 4 illustrates the procedure of calculating EAn distance between two representations
obtained from the logit layer of the ResNet18 network, specifically for the “Zebra” and “Lionfish” repre-
sentations. Examination of the angle between Representation Activation Vectors (RAVs) reveals a mutual
co-activation between the two representations on each other’s n-AMS. By analyzing the signals themselves,
which are displayed on the right section of the figure, we can observe the unique shared concepts between
these two classes — notably the specific black and white striped pattern exhibited by both animals. Thus,
by relying on a limited number of anchor data points, the EA distance facilitates the interpretation of the
reasons behind the functional similarity between representations.

Figure 4: Explaining the Extreme-Activation Distance. Figure illustrates EAn distance between
two logit representations from ResNet18 network, corresponding to “Zebra” and “Lionfish” classes. Left
figure demonstrates that RAVs experience colinearity, implying mutual co-activation on each other n-AMS
(n = 10, d = 10000). The center part of the figure presents the activation distributions of representations
across the evaluation dataset, where the highlighted points correspond to n-AMS. We can observe that both
representations are strongly activated by each other’s n-AMS, with the “Lionfish” represented in orange and
the “Zebra” in blue. The right-hand portion of the figure presents several n-AMS examples, highlighting
the shared feature between the images – the black and white stripe pattern present in both animals – which
explains their mutual co-activation.

EA distance, as discussed above, operates on the premise that the representations could be explained by the
features in input, that maximally activate them. This viewpoint could be seen as an oversimplification, as it
neglects certain attributes that moderately activate or even de-activate representations. Depending on the
specific problem and the type of representations in question, such nuances could hold significant importance
for understanding the internal decision-making mechanisms of the network. Nonetheless, our experimental
findings underline that the EA distance, even when solely focusing on the most activating signals, offers a
potent and practical framework for interpreting Deep Neural Networks. This is particularly applicable when
examining representations with output confined to the positive realm, for instance, post-ReLU activation
function.

One limitation common to all distance metrics between neural representations, including the proposed EA
distance, is their inability to account for the multisemanticity or multimodality Goh et al. (2021) of neural
representations the capacity of a single representation to detect various concepts. In the case of the EA
distance, this behavior can be reflected in the high variance of the RAVs, which results from the fact that
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Figure 5: Outline of the Representation Analysis: The figure depicts the three fundamental stages
of the analysis: 1. Selection of the layer of interest within the specified model. 2. Calculation of EA
distances between representations. 3. Analysis of the relationships between representations, encompassing the
visualization of representation space, identification of outlier representations, and, when necessary, manual
scrutiny of suspicious relationships between representations.

n-AMS originate from multiple modalities, i.e., different concepts. While this remains an open avenue for
future research, our work demonstrates that simply averaging activations for RAVs computation provides an
effective distance measure.

4 Representation Analysis

Traditionally, local XAI methods are used to analyze a model’s decision-making process, particularly when
assessing potential reliance on unwanted spurious concepts. However, these techniques often fall short when
tasked with identifying novel, unfamiliar correlations. In this context, we introduce Representation Analysis

— a global approach for interpreting a model’s decision-making process. This approach is based on the
analysis of the internal representations within the models, as well as their interrelationships. After selecting a
particular layer, relationships between representations are measured using the proposed EA distance measure.
This enables the visualization of the representation space, the analysis of groups of neurons that have learned
similar concepts, and the identification of representations that encode anomalous abstractions.

Depending on the problem specifics, the EA distance computation may be executed in a data-aware mode
using the EAn distance metric or in a data-agnostic mode using the EAs distance metric. We denote the
latter scenario as DORA — Data-agnOstic Representation Analysis. The choice between a data-aware
and a data-agnostic scenario primarily hinges on the availability of data for analysis. DORA reduces the
dependence on data, proving particularly advantageous for interpreting models for which the training data is
either unavailable or exceedingly difficult to obtain. Conversely, in practical applications, n-AMS are generally
easier to comprehend compared to s-AMS.

Figure 5 provides an overview of the three primary stages of the Representation Analysis pipeline, each
of which is further elaborated in the subsequent sections. Initially, a layer of interest is selected from the
model. Subsequently, the Extreme-Activation distances between representations are computed. Finally, the
relationships between the representations are analyzed. This includes visualizing the representation space
via Representation Atlases, automatically identifying outlier representations, and, if necessary, conducting a
thorough manual examination of the causes behind the relationships between representations. As we will
show in the following experiments, these outlier representations often encode undesired concepts.

Visualizing Representation Spaces with Representation Atlases

Inspired by Carter et al. (2019), the visual examination of the functional diversity within one layer can be
done by employing the dimensionality reduction method based on the pre-computed EA distance matrix.
Such a visualization, referred to as representation atlas, allows researchers to visually examine the topological
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Figure 6: Representation Atlas of
the ResNet18 Logit Layer. The fig-
ure presents a UMAP visualization of
the layer-wise EAs distances between
output logit representations from a
ResNet18 trained on ImageNet. Each
point represents a unique class repre-
sentation and is color-coded according
to its corresponding WordNet hyper-
nym, i.e., the broader category.

landscape of learned representations and identify clusters of semanti-
cally similar representations. In the scope of this paper, we employed
the widely used UMAP dimensionality reduction algorithm McInnes
et al. (2018), which has established itself in recent years as an effective
method for visualizing relationships between data points. Figure
6 depicts the representation atlas of the output logit layers of the
ResNet18 model trained on ImageNet. Each point in the figure
corresponds to an individual neural representation among the 1000
representations in the output layer. The color of each point reflects
the WordNet hypernym, a high-level synset, that corresponds to the
learned concept of the particular representation. The UMAP visu-
alization, based on the computed EAs distances, reveals the clusters
of semantically similar representations that are preserved, which can
be observed in Figure 6.

In comparison with other dimensionality reduction methods, such
as t-SNE Van der Maaten and Hinton (2008) and PCA Jolliffe and
Cadima (2016), UMAP is scalable, exhibits a faster computation
time McInnes et al. (2018); Trozzi et al. (2021); Becht et al. (2019);
Wu et al. (2019), and has fewer parameters to tune. Qualitatively,
compared to the other methods, UMAP was reported to improve
visualizations and accurately represent the data structure on the
projected components Trozzi et al. (2021); Becht et al. (2019); Wu
et al. (2019).

Identifying Outlier Representations

Figure 7: Functional similarity between representations
due to shared watermark dependencies. Two represen-
tations from the ResNet18 model, specifically “Broom” and
“Safe”, show significant co-activation on some n-AMS, despite
their visual dissimilarity, which would typically suggest orthog-
onal RAVs. A closer inspection of the mutual n-AMS reveals
that the common feature is the presence of watermarks on the
images, which is shown among 4 n-AMS, mutually activating
both representations.

Despite their proven effectiveness across var-
ious applications, Deep Neural Networks re-
main susceptible to learning unintended arti-
facts and undesired concepts from data. One
potential application of our proposed dis-
tance measure is the identification of anoma-
lous representations, which deviate from the
majority of representations within a layer.
This can be achieved by applying Outlier
Detection methods Ruff et al. (2021) based
on the computed distance matrix. We hy-
pothesize that such anomalies include rep-
resentations that have learned spurious con-
cepts from the data. In subsequent experi-
ments, we demonstrate the efficacy of the EA
distance measure in detecting such outlier
representations under controlled conditions.
During our practical experiments, we found
that while some outlier representations learn
unique, task-relevant concepts, these diver-
gent representations often encode undesirable
concepts, demonstrating shortcut learning or
Clever Hans behavior.

Investigating Individual Relationships

In order to determine the cause behind a specific EA distance, individual relationships between representations
can be examined manually. This can be accomplished through visualizing RAVs and AMS, as discussed
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in Section 3.3. For instance, Figure 7 illustrates the spurious correlation between the “Broom” and “Safe”
representations from the output logit layer of ResNet18, which accounts for the low EA distance between
these representations. Upon examining the shared n-AMS, it becomes clear that the n-AMS, which maximally
activate both representations, contain a single common feature watermarks. Such visualizations can aid in
investigating the underlying functional similarity between representations and offer insight into the reasons
behind such similarities.

5 Evaluation

The practical utility of a distance metric between representations fundamentally depends on its capacity to
gauge the similarity between concepts that various model representations have learned. The manner in which
this similarity is assessed can take on multiple forms, but from a standpoint of explainability, it is important
that the distance metric is aligned Muttenthaler et al. (2022); Gabriel (2020) with human perception - the
computed distances should resonate with our human senses of similarity and difference. Assuming that
we know what abstractions two representations are detecting, an effective distance metric should label
representations that detect concepts perceived as similar by humans as alike, and those identifying concepts
perceived as distinct by humans as dissimilar. Such attributes of the distance metric facilitate the clustering
of representations that are conceptually similar and the identification of outlier representations that encode
concepts anomalous to the task at hand. This has advantages as it aids in revealing shortcuts and Clever
Hans effects, which often appear as out-of-distribution anomalies and are unnatural to the assigned task - for
example, textual watermarks in the context of object classification Lapuschkin et al. (2019) or specific tokens
in medical image classification Geirhos et al. (2020).

To quantitatively evaluate the alignment, we compared human-defined semantic distances between concepts,
which we refer to as semantic baselines, with distance matrices computed between representations trained to
learn these concepts. For our study, we utilized two prevalent computer vision datasets, namely ILSVRC-2012
Russakovsky et al. (2015) and CIFAR-100 Krizhevsky (2009). We established a measure of distance between
concepts by utilizing semantic distances between the class labels. This was accomplished by mapping the
classification labels to entities within the WordNet taxonomy database Miller (1995), a lexical database
that organizes English words into a taxonomy of synonym sets, or synsets. In this taxonomy, each synset
represents a group of words that are synonyms or have the same meaning. WordNet organizes these synsets
into a hierarchy, with more specific concepts being nested under more general ones.

For the ImageNet dataset, class labels were automatically mapped to the corresponding WordNet synsets due
to their inherent linkage, whereas for the CIFAR-100 dataset, the labels were manually matched to their
respective synsets. It is important to note that semantic distance does not directly equate to the visual
similarity between concepts. However, positive correlations between semantic and visual similarities have
been reported, thereby demonstrating a significant positive relationship between semantic and visual distances
Deselaers and Ferrari (2011); Brust and Denzler (2019).

Given the WordNet taxonomy in a form of a graph G = (V, E) with root r ∈ V , the baseline semantic
distances between entities from the WordNet database were computed using the following three distance
measures:

• Shortest-Path distance

Given two vertices ci, cj ∈ V the distance between vertices is determined by the length of the shortest
path that connects the two entities in the taxonomy

dSP (ci, cj) = l(ci, cj).

where l(ci, cj) is the function that returns the minimal number of edges that need to be traversed to
get from ci to cj .

• Leacock-Chodorow distance Leacock and Chodorow (1998)
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Given two vertices ci, cj ∈ V the distance between vertices is determined by a logarithm of the
shortest-path distance with additional scaling by the taxonomy depth:

dLC(ci, cj) = log l(ci, cj) + 1
2T

− log 1
2T

,

where T = maxc∈V l(r, c) is the taxonomy depth.

• Wu-Palmer distance Wu and Palmer (1994)
Given two vertices ci, cj ∈ V the Wu-Palmer distance is defined as:

dSP (ci, cj) = 1 − 2 l(r, lcs(ci, cj))
l(r, ci) + l(r, cj) ,

where lcs(ci, cj) is the Least Common Subsumer Pedersen et al. (2004) of two concepts ci and cj .

Furthermore, we have utilized the textual labels from both ImageNet and CIFAR100 datasets and calculated
the Word2Vec Mikolov et al. (2013) similarity between class labels.

• Word2Vec distance
Given textual labels ti, tj of two concepts ci, cj , we define Word2Vec distance as

dW 2V = 1√
2

√
1 − cosW 2V (ti, tj),

where cosW 2V (A, B) is the cosine of the angle between Word2Vec embeddings of the words A, B.

Figure 8: Comparison between EAs distance matrix and Seamntic Baselines: From left to right:
the EAs distance metric computed for the output logits of the ImageNet pre-trained ResNet18 model,
Shortest-Path, Leacock-Chodorow, Wu-Palmer distances from WordNet taxonomy, and Word2Vec distance.

Figure 8 illustrates the comparison between the functional EAs distance matrix, derived from 1000 represen-
tations from an ImageNet-trained ResNet18 network, and semantic baselines these are the human-defined
distances between ImageNet concepts. To evaluate the alignment between the proposed distance metric and
human-defined baselines, we employed the Mantel Test Mantel (1967), which is often applied in ecology
and evolutionary biology to measure the correlation between two distance matrices. The test calculates the
correlation coefficient ρ, which indicates the strength of the relationship between the two matrices, and the
p-value of the test, which describes the statistical significance of the correlation.

It is essential to note that while we evaluate the alignment based on human-defined semantic benchmarks,
optimizing such metrics should not be the ultimate objective when proposing new distance metrics between
representations. This is because DNNs can naturally employ different decision-making strategies than humans,
and these differences may not always be attributed to spurious correlations. For instance, taxonomy-based
approaches might be sub-optimal compared with attributing freedom to the models to train for the desired
tasks Binder et al. (2012). Conversely, in Computer Vision, network representations are expected to be
aligned to some extent due to the correlations between the visual and semantic similarity of classes.
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5.1 Hyperparameter selection

This section examines the selection of parameters in terms of their ability to attain optimal alignment with
the semantic baselines. In our empirical analysis, we utilized a pre-trained ResNet18 model on ImageNet,
along with the ILSVRC-2012 validation set consisting of 50,000 images and 1,000 classes, employed for the
data-aware metrics. Herein, we calculated the distance metrics between output logit representations, that is,
the pre-softmax representations. For data-aware metrics, outputs of representations underwent normalization
as discussed in Section 3. Conversely, for the data-agnostic distance metric, specifically EAs, no normalization
procedure was undertaken.

Minkowski distance

Figure 9: Impact of Parameter Selec-
tion in Minkowski Distance on Align-
ment with Semantic Baselines. To
assess the alignment with respect to the
four semantic baselines, we calculated the
Minkowski distance on the output logits of
the ResNet18 network while varying the pa-
rameter p. The Mantel correlation statistic
is reported for each semantic baseline at
each parameter value.

To investigate how different values of the parameter p affect
the coherence to semantic baselines, we varied the parameter
and evaluated the alignment with four semantic baselines for
each case. Figure 9 shows the effect of parameter selection on
the Mantel test statistic. We observed that the optimal average
value of the statistic across the four baselines was achieved
for p = 2. However, for future experiments, we selected the
second-best parameter choice with p = 1 due to the natural
connection between Euclidean distance and Pearson correlation.
We also observed that higher values of p generally result in lower
alignment, possibly due to sensitivity to the large amplitudes
of individual datapoints.

EAn distance

EAn is influenced by two key parameters: n, which denotes the
number of n-AMS signals gathered, and d, which represents
the size of the subset collected from each signal. To investigate
the impact of parameter selection, we varied these parameters
for both pair-wise and layer-wise modes. Figure 10 shows
the average Mantel correlation statistic across four semantic
baselines for each hyperparameter choice. Our observations
reveal that, in general, increasing the number of collected n-
AMS, irrespective of the parameter d, has a positive impact on the alignment. However, the optimal depth d
is achieved when n-AMS are taken from subsets of d = 50 datapoints.

EAs distance

In the data-agnostic version of the Extreme-Activation distance, the choice of hyperparameters depends
on the s-AMS generation method used. In our study, we employed the Feature Visualisation method to
generate s-AMS, and we identified two critical hyperparameters: n, which is the number of generated s-AMS
per representation, and m, which is the number of optimization epochs per signal. Figure 11 depicts the
impact of the EAs distance measure’s hyperparameter selection on semantic baseline alignment. We observed
that while increasing the number of generated s-AMS generally has a positive effect, this effect is negligible
compared to the positive impact of increasing the number of optimization epochs per representation. This
is likely due to the generation algorithms’ convergence to better local optima, resulting in improved visual
preciseness of the images, as illustrated on the right side in Figure 11.

5.2 EAs Preserves the Angles Between Natural Representation Activation Vectors

Although both n-AMS and s-AMS activate specific neural representations maximally, the adversarial nature
of synthetic signals needs to be considered. In our experiments, we observed that while the generated s-AMS
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Figure 10: Impact of parameter selection in EAn distance on alignment with semantic baselines.
To assess alignment with four semantic baselines, we calculated data-aware EA distance on the output logits
of the ResNet18 network while varying the parameters n and d for both pair-wise and layer-wise options.
The average Mantel correlation statistic across four semantic baselines is reported at each cell.

Figure 11: Impact of the parameter selection in EAs distance on alignment with semantic
baselines. To evaluate the alignment between the EAs distance and four semantic baselines, we computed
the data-agnostic EAs distance using the ResNet18 network’s output logits while varying the hyperparameters
n and m for both pair-wise and layer-wise options. For each cell, we reported the average Mantel correlation
statistic across the four semantic baselines. The effect of the hyperparameter m, which corresponds to the
number of optimization steps taken for s-AMS generation, on two neural representations from the ResNet18
output logit layer is shown on the right.

are far from the original natural image domain, the angles between natural and synthetic RAVs are consistent,
providing additional evidence to the utility of the EAs distance metric.

To evaluate the angle conservation quantitatively, we employed a ResNet18 pre-trained on the ImageNet
dataset and computed EAn and EAs distances between the output logit representations, i.e., all 1000 ImageNet
classes. It’s important to mention that the EAn distance is calculated over normalized representations, while
EAs is based on the unnormalized output of representations. In this experiment, we kept the number of
signals constant at n = 50 for both distance metrics, yet varied the parameter d for n-AMS generation and
the parameter m for s-AMS generation. Given F = {f1, . . . , fk}, which corresponds to the ResNet18 output
layer with k = 1000 neural representations, we evaluated the Root Mean Square Error (RMSE) between
pairwise EAn and EAs distances:
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Figure 12: Similarity and angle preservation between EAn and EAs distance measures. The left
part of the figure shows the RMSE (lower is better) between pair-wise EAn and EAs distances on the output
layer of the ResNet18 network, with a fixed parameter n = 50 for both metrics, while varying parameters d,
corresponding to the subset size in n-AMS sampling, and m, number of epochs for s-AMS generation. On
the right part of the figure, the distributions of pair-wise activations of s-AMS signals are visualized with
different parameters m for two neural representations, namely “Samoyed” and “Siberian husky”, overlayed
with the direction of natural RAVs computed with n = 50 and m = 1000. The length of natural RAVs was
extended to enhance visibility.

RMSE =

√√√√∑k
i=1
∑k

j=i+1
(
dp

EAn
(fi, fj) − dp

EAs
(fi, fj)

)2

k(k − 1)/2 , (13)

where k(k − 1)/2 corresponds to the number of all unique pairs of two different functions from a set of k
functions.

Figure 12 illustrates the similarity between the computed EAn and EAs distances between the representations
of the 1000 ImageNet classes. In the left part of the figure, which shows RMSE between the two distance
measures for different parameters, we observe that for each parameter m for EAs distance, the lowest error is
achieved with an EAn distance with high values of d.This suggests that the EAs distance accurately captures
the angle between RAVs corresponding to the images with the highest activation percentile. Additionally, we
observed that increasing the parameter m is beneficial to lowering the RMSE between natural and synthetic
measures. Furthermore, the right part of the figure shows the direction of natural RAVs and activations of
s-AMS for “Samoyed” and “Siberian husky” representations from ResNet18. From this figure, we can observe
that the angle between natural RAVs and synthetic RAVs is conserved.

5.3 Evaluating the alignment with human judgment

In this experiment, we quantitatively assess the alignment of the discussed distance metrics with the human-
defined distance measures across different datasets and architectures. To this end, we employed eight different
architectures for two datasets, ImageNet and CIFAR100. For ImageNet, we employed ResNet18 He et al.
(2016), AlexNet Krizhevsky et al. (2017), ViT Dosovitskiy et al. (2020), BEiT Bao et al. (2021), Inception V3
Szegedy et al. (2016), DenseNet 161 Huang et al. (2017), MobileNet V2 Sandler et al. (2018), ShuffleNet V2
Ma et al. (2018), while for CIFAR-100, we used ResNet 18, ResNet 9, MobileNet V2, ShuffleNet V1, and
V2, as well as NASNet Qin and Wang (2019), SqueeeNet Iandola et al. (2016) and VGG 11 Simonyan and
Zisserman (2014).

We computed functional distances with optimal hyperparameters found in Section 5.1, including Minkowski
p = 1, Pearson, Spearman, EAn with n = 50, d = 200, and EAs with n = 3, m = 500, on the output logit
layer for each model. We then compared each distance matrix with four semantic baselines: Shortest-Path,
Leacock-Chodorow, Wu-Palmer distances from WordNet taxonomy, and Word2Vec distance. This comparison
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Table 1: Alignment of Distance Metrics in ImageNet Trained Models: Each cell represents the average
Mantel test statistic (higher is better) across four semantic baselines: Shortest-Path, Leacock-Chodorow,
Wu-Palmer distances, and Word2Vec distance. All results demonstrate statistical significance with p < 0.001.

Minkowski Pearson Spearman EAn EAs

p = 1 p-w l-w p-w l-w
ResNet18 0.49 0.50 0.48 0.49 0.55 0.38 0.47

BeIT 0.32 0.36 0.29 0.44 0.50 0.39 0.47
MobilenetV2 0.46 0.46 0.45 0.47 0.52 0.40 0.50
DenseNet161 0.46 0.47 0.44 0.49 0.54 0.32 0.39
ShuffleNetV2 0.21 0.21 0.19 0.29 0.30 0.19 0.16
InceptionV3 0.31 0.34 0.32 0.38 0.49 0.22 0.27

AlexNet 0.52 0.53 0.52 0.52 0.55 0.42 0.45
ViT 0.53 0.54 0.52 0.54 0.58 0.48 0.53

Mean 0.41 0.43 0.40 0.45 0.50 0.35 0.40

Table 2: Alignment of Distance Metrics in CIFAR100 Trained Models: Each cell represents the
average Mantel test statistic (higher is better) across four semantic baselines: Shortest-Path, Leacock-
Chodorow, Wu-Palmer distances, and Word2Vec distance. All results demonstrate statistical significance
with p < 0.001.

Minkowski Pearson Spearman EAn EAs

p = 1 p-w l-w p-w l-w
ResNet9 0.32 0.37 0.33 0.41 0.52 0.27 0.30

ShuffleNetV2 0.49 0.52 0.49 0.53 0.59 0.43 0.47
MobileNetV2 0.50 0.51 0.49 0.52 0.59 0.40 0.44

ResNet18 0.43 0.47 0.45 0.48 0.57 0.30 0.37
ShuffleNet 0.48 0.51 0.49 0.52 0.58 0.42 0.46

VGG11 0.30 0.31 0.31 0.36 0.43 0.23 0.23
NasNet 0.48 0.51 0.48 0.52 0.59 0.36 0.41

SqueezeNet 0.50 0.52 0.51 0.53 0.59 0.45 0.51
Mean 0.44 0.46 0.44 0.48 0.56 0.36 0.40

yielded four Mantel test statistics per distance metric. The results of the evaluation are presented in Table
1 for ImageNet-trained models and in Table 2 for CIFAR100 models, where we averaged the four Mantel
correlation test statistics for each model and distance metric. Our analysis indicates that the layer-wise EAn

metric’s distance is generally more favorable due to its stronger linear relationship with all four baseline
metrics. Furthermore, we observed that the data-agnostic EAs metric is on par with data-aware metrics in
terms of alignment with the semantic baselines.

5.4 Evaluating Anomaly-Identification capabilities

The alignment of distance metrics between neural representations and human judgment of concepts presents
an intriguing potential application. Specifically, we can identify representations that are semantically
anomalous compared to the majority of learned representations, based on the functional distance. While
these representations may simply learn unique individual concepts, we demonstrate in further experiments
that in real-life scenarios they might correspond to the undesired concepts from spurious correlations in the
training data that diverge from the typical (intended) decision-making strategy.

To assess the usefulness of the alignment between distance metrics and human-defined semantic baseline,
we conducted the experiment, where we measured the ability of the distance metrics to detect anomalous
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representations. For this purpose, we trained a ResNet18 network on a combination of two conceptually
different datasets. The combined dataset comprised the Tiny Imagenet Le and Yang (2015), containing 200
ImageNet classes, and the MNIST handwritten-numbers dataset Deng (2012), containing 10 handwritten
numbers, resulting in a total of 210 classes. MNIST images were upsampled to the size of 3 × 64 × 64
pixels to match the size of images in Tiny ImageNet. After training on the combined dataset in the image
classification task, we computed functional distances between the output logits and evaluated the ability of
different Outlier Detection (OD) methods to detect MNIST logits, given the computed distance matrices only.
For this, we utilized five different Outlier Detection methods: the Angle-based Outlier Detector (ABOD)
Kriegel et al. (2008), Feature Bagging (FB) Lazarevic and Kumar (2005), Isolation Forest (IF) Liu et al.
(2008), Local Outlier Factor (LOF) Breunig et al. (2000) and One-class SVM (OCSVM) Schölkopf et al.
(2001). We evaluated the performance of the Outlier Detection methods using the AUC ROC metric for the
binary classification between Tiny ImageNet and MNIST representations. To ensure stability in light of the
stochastic nature of some outlier detection methods, the results of the outlier detection were repeated 100
times with different random states.

Figure 13: Anomaly-Detection Evaluation Experiment. From left to right, pair-wise EAn distance
matrix between the output logits of the network trained on the combined dataset, the EAs distance matrix,
s-AMS for Tiny ImageNet logits, and s-AMS for MNIST logits. MNIST representations are highlighted on
both distance matrices in the bottom right corner, revealing a block structure in both distance metrics that
suggests a high degree of functional differences between Tiny ImageNet representations and semantically
distinct MNIST representations. On the left, we can visually observe differences between the s-AMS of Tiny
ImageNet and MNIST representations.

We utilized the same hyperparameter configuration for distance computation as described in Section 5.3.
The effectiveness of EA distances, both natural and synthetic, in distinguishing between representations
of Tiny ImageNet and MNIST is demonstrated in Figure 13, as evidenced by the block structure of the
distance matrices. This behavior can be attributed to the visual dissimilarities between the classes, where
Tiny ImageNet classes exhibit natural and diverse features that are typical for natural images, while MNIST
images consist of white digits on a black background. In the case of synthetic EA distance, the ability to
detect MNIST representations is based on the visual differences in the s-AMS, which are depicted in the
right-hand portion of Figure 13. The s-AMS-based EA distance measure depends on the network’s ability to
perceive self-generated s-AMS, and we can observe distinct dissimilarities between the patterns of s-AMS for
Tiny ImageNet classes, which contain high-level natural concepts, and the more data-specific patterns for
MNIST classes, which illustrate the network’s perception of white-on-black handwritten digits and letters.

The results of the described experiment are presented in Table 3, which indicate that, in general, all distance
metrics are capable of detecting MNIST representations. However, the EA distance metrics are generally
more effective in detecting semantically artifactual representations, whereas the pairwise EAn metric is the
most effective.
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Table 3: Anomaly Identification Performance of Distance Metrics. The table displays the average
AUC ROC (higher is better) binary classification performance of the Outlier Detection methods across 100
re-trials, in the task of detecting MNIST representations among the combined Tiny ImageNet and MNIST
representations, specifically in the output layer of the trained network.

Minkowski Pearson Spearman EAn EAs

p = 1 p-w l-w p-w l-w
ABOD 0.56 0.63 0.58 0.91 1.00 0.82 0.71

FB 0.97 0.99 0.81 1.00 1.00 0.89 0.87
IF 0.83 0.87 0.64 0.94 0.70 0.76 0.61

LOF 0.65 0.53 0.55 0.67 0.96 1.00 0.87
OCSVM 1.00 1.00 0.95 1.00 0.67 1.00 0.72

Mean 0.80 0.80 0.71 0.90 0.87 0.89 0.76

6 Experiments: Finding Outlier Representations with DORA

In this section, we illustrate the broad applicability of the DORA framework and demonstrate that outlier
representations, often found in intermediate layers, can frequently encode malicious and undesirable concepts.

6.1 ImageNet pre-trained networks

Pre-trained networks on ImageNet have become an essential component in the field of Computer Vision.
Their capability to recognize a diverse set of objects and scenes makes them particularly useful as a starting
point for a wide range of computer vision tasks. They are frequently utilized for fine-tuning to specific tasks
or as a feature extractor, where the images are encoded by the networks for further computations Zhuang
et al. (2020); Weiss et al. (2016).

In the following, we explore the feature extractor representations of three widely-used pre-trained models:
ResNet18 He et al. (2016), MobileNetV2 Sandler et al. (2018), and DenseNet121 Huang et al. (2017). Using
LOF outlier detection, we found latent layers with representations that appear to be watermark detectors, e.g.,
detecting Chinese and Latin text patterns. As ImageNet does not have a specific category for watermarks, these
representations could be seen as Clever-Hans artifacts and deviate from desired decision-making Lapuschkin
et al. (2019); Anders et al. (2022). To verify these representations can detect watermarks, we created two
binary classification datasets, for Chinese and Latin watermarks, containing normal images and identical
images, with inserted random watermarks, evaluating the sensitivity of individual representations using the
AUC ROC classification measure. To ensure the detection of characters and not specific words/phrases (unlike
CLIP models Goh et al. (2021)), the probing datasets were generated with random characters (for more
details we refer to the Appendix). Our results show that not only the reported outliers but also neighboring
representations in EA distance are affected by artifactual behavior. Lastly, we find that this behavior persists
during transfer learning, posing a risk for safety-critical fields like medicine.

ImageNet ResNet18

We applied DORA to analyze the Average Pooling layer of the ResNet18 model, which consists of the
k = 512 high-level representations that are commonly used without further modification during transfer
learning. Following the DORA approach, we calculated EAs layer-wise distance with n = 5 s-AMS per
each representation and with m = 500, based on our findings in the section 5.1. After calculating the EAs

distances, we used the LOF method with a contamination parameter p = 0.01 (corresponding to the top 1%
of representations), and the number of neighbors was set to 20.

LOF identified five outlier representations, namely neurons 7, 99, 154, 160, 162, and 393. The outlier
neuron 154, displayed a specific, recognizable pattern in s-AMS that could be perceived as the presence of
Chinese logograms. By probing the network on a binary classification problem between images watermarked
with Chinese logograms vs normal images, Neuron 154 showed the highest detection rate (AUC ROC of
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Figure 14: Cluster of Clever-Hans representations in the ResNet18 feature extractor. From left to
right: representation atlas of the ResNet18 average pooling layer with the highlighted cluster of Clever-Hans
representations (left), s-AMS of the representations in the cluster (middle), and AUC ROC sensitivity scores
for the detection of images with Chinese watermarks in the binary classification problem (right), where colored
curves correspond to the behavior of representations in the cluster and gray curves for other representations.
From the s-AMS of neuron 154, we can observe symbolic patterns resembling Chinese logograms learned by
the neuron as well as by its closest neighbor neurons. We can observe that the outlier neuron 154 exhibits
the highest AUC value (green curve), followed by its nearest neighbors.

0.94) towards the class with watermarked images, providing significant evidence that this representation is
susceptible to the Clever-Hans effect. Further analysis of neighboring representations in EAs distance showed
that they also exhibit similar behavior. The results of the analysis of the ResNet 18 average pooling layer are
shown in Figure 14, illustrating the cluster of Clever-Hans representations found, along with their s-AMS
and AUC ROC performance on the binary classification problem. Additional information on the dataset
generation and the identified outlier representations can be found in the Appendix. Note that in general,
the presence of such artifacts could indeed pose serious risks and may lead to a degradation in classifier
performance (see Anders et al. (2022)).

In the further investigation of the model, we inferenced s-AMS signals of representations in the reported
CH-cluster and obtained their predictions by the model. Among the selected signals, the model predominantly
predicted an affiliation of these signals with the classes “carton”, “swab”, “apron”, “monitor” and “broom”,
which is in line with the reported spurious correlation of the “carton” class and Chinese watermarks Li et al.
(2022). Upon computing the corresponding s-AMS signals for these logits, we were able to confirm their
association with CH-behaviour, as they displayed clear, visible logographic patterns, specific to Chinese
character detectors, in their corresponding s-AMS. Corresponding signals and additional information could
be found in Appendix.

ImageNet MobileNetV2

We used DORA with the same parameters as in the previous experiment (n = 5 s-AMS per each representation
and m = 500 epochs for s-AMS generation) to analyze the “features” layer of MobileNetV2 network Sandler
et al. (2018), which consists of k = 1280 channels with 7 × 7 activation maps. The analysis was performed on
channels by averaging the resulting activation maps of neurons. We calculated the EA distances between
representations and applied the LOF method with a contamination parameter of 0.01 which yielded 13 outlier
representations. Upon visual inspection of the s-AMS of these representations, we observed distinct patterns
specific to Chinese character detectors in neurons 397, 484, 806, and 1131. Figure 15 illustrates the s-AMS of
these neurons, as well as the sensitivity of neurons in the Chinese-character detection task. We can observe
that the neighbors of these neurons (397, 484, 806, 1131) are sensitive to CH artifacts and form a distinctive
cluster visible in the representation atlas.

21



Published in Transactions on Machine Learning Research (06/2023)

Figure 15: Cluster of Clever-Hans representations in the MobileNet V2 feature extractor. The
left figure illustrates the outlier representations as identified by the LOF OD method, overlaid on the DORA
representation atlas. The middle figure displays the sensitivity of the neural representations to Chinese
watermarks, where the highly-sensitive cluster of neurons can be clearly observed in the bottom-right part of
the atlas, including 3 reported outlier representations. The right graph illustrates the s-AMS of several of
the reported outlier neurons, which exhibit a distinctive logographic pattern typical of Chinese character
detectors.

Figure 16: DenseNet121 — Latin text detector. Applying DORA to the last layer of the feature
extractor of DenseNet121 yields, among others, Neuron 427 as an outlier, which corresponds to the upper left
of the 4 feature visualizations. From neuron 427 as well as from its three closest neighbors (shown left), we
can observe semantic concepts resembling Latin text characters. The AUC values were computed using the
average channel activations on the Latin probing dataset. As shown, the AUCs are high for the representation
outliers found by DORA, compared to most of the other representations, which indicates that they indeed
learned to detect Latin text patterns.

ImageNet DenseNet 121

We conducted a similar analysis on the last layer of the feature extractor of the ImageNet pre-trained
DenseNet121 model, which consists of k = 1024 channel representations with 7 × 7 activation maps. We
calculated n = 5 s-AMS per representation with m = 150 optimization steps for faster experimentation. The
LOF outlier detection method with a contamination parameter of p = 0.01 identified 10 outlier representations.
One of these, neuron 768, was found to be a Chinese character detector (more information can be found in
the Appendix). By increasing the contamination parameter to p = 0.035 (corresponding to the top 3.5% or
35 representations), we also identified neuron 427, which is susceptible to the detection of Latin text and
watermarks. Figure 16 illustrates the representation atlas, highlighting representation 427 along with several
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neighboring representations, namely neurons 733, 507, and 463, which also exhibit a high detection rate for
unintended concepts.

Given the widespread use of pre-trained models in safety-critical areas, it is essential that the artifacts
embodied in a pre-trained model are made ineffective or unlearned during the transfer learning task (see
also Anders et al. (2022)). To this end, we examined the effect of fine-tuning the pre-trained DenseNet121
model on the CheXpert challenge Irvin et al. (2019), which benchmarks classifiers on a multi-label chest
radiograph dataset. Despite the modification of all model parameters during fine-tuning, neurons 427 and
768, which were Latin and Chinese characters detectors in the pre-trained model, retained their original
artifact-detection capabilities and remained outliers after applying DORA. We studied neuron 427’s ability
to detect Latin text and found that it had an AUC value of 0.84 in the pre-trained model and 0.81 in the
fine-tuned model. Similar behavior was observed with neuron 768, indicating that the Clever-Hans effect
persisted after fine-tuning.

6.2 CLIP ResNet50

Figure 17: AMS for reported outlier
representation. LOF identified neuron
1865 as the strongest outlier. Analysis of s-
AMS and most activating images from Ima-
geNet (obtained from OpenAI Microscope)
indicate that it primarily detects white im-
ages/backgrounds, which is atypical com-
pared to other high-level representations.

CLIP (Contrastive Language-Image Pre-training) models, which
are designed to predict the associations between text and images,
are trained using a contrastive learning objective Dai and Lin
(2017); Hjelm et al. (2018) on extensive datasets. They are
often fine-tuned for tasks like image classification Agarwal et al.
(2021) or text-to-image synthesis, where CLIP models frequently
function as text encoders (e.g., Stable Diffusion Rombach et al.
(2022)).

In this experiment, we explored the representation space of
the CLIP ResNet50 model Radford et al. (2021), with partic-
ular emphasis on the final layer of its image feature extractor
(referred to as “layer 4”). While the training dataset was not
publicly revealed, it is known to be significantly larger than
standard computer vision datasets like ImageNet, leading to a
broader range of concepts compared to ImageNet networks. We
applied DORA to the 2048 channel representations from "layer
4", generating n = 3 signals per representation with m = 512
and employing settings akin to those in (Goh et al., 2021).

Analysis of the outlier representations with contamination pa-
rameter p = 0.0025 yielded 6 outlier neurons, namely 631, 658,
838, 1666, 1865, and 1896. Representation 1865 – neuron with
the highest outlier score – was found to detect the unusual
concept of white images/background, as shown by s-AMS and
most activating images (collected from OpenAI Microscope) in
the Figure 17. However, the other outlier representations could not be concluded to be undesirable as they
seemed to detect rare but natural concepts. Further details and analysis of the other outlier representations
can be found in the Appendix.

After computing the representation atlas for “layer 4”, we manually investigated several distinctive clusters.
Figure 18 illustrates the representation atlas alongside several reported clusters of semantically similar
representations. With our analysis, we found a cluster of Explicit/Pornographic representations. Furthermore,
we were able to confirm the presence of geographical neurons, as reported in (Goh et al., 2021) and we noted
that representations from neighboring geographical regions, such as India, China, and Japan, were located
close to one another. Additional information and more detailed visualizations can be found in the Appendix.
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Figure 18: Representation atlas of CLIP ResNet50 “layer 4”. Representation atlas for CLIP ResNet50
“layer 4”, where several clusters of representations are highlighted. Activation-Maximization signals associated
with the Explicit/Pornographic representations were omitted due to the presence of explicit concepts in the
signals.

7 Discussion and Conclusion

The popularity of Deep Neural Networks (DNNs) across diverse fields has brought to light the significant
challenge posed by their inherent opacity, particularly for the fair and responsible deployment of DNNs. The
presence of artifacts, spurious correlations, or biases in datasets is not a rare occurrence. Therefore, it has
become increasingly crucial to audit these models using Explainable Artificial Intelligence (XAI) methods to
avert potential undesirable or even harmful behavior. To date, audits have primarily employed local XAI
methods, which necessitate data access to elucidate the predictions of a given model and are often found to
be limited when it comes to uncovering new potential biases Adebayo et al. (2022). Prior to our research, as
far as our knowledge extends, there existed no methods for identifying representations that had inadvertently
or malevolently learned unintended concepts.

In our work, we introduced a general Representation Analysis pipeline for exploration of the relationships
between neural representations within a specific layer and introduced DORA as a special case of data-agnostic
analysis. The core of our framework is the newly introduced Extreme-Activation (EA) distance measure,
which allows us to measure the similarity between concepts, learned by representations within the model.
This distance measure is easy to interpret and it allows us to analyze relationships between representations in
the layer, including the identification of the anomalous representations, that we demonstrate in practice often
correspond to the undesired spurious concepts.

Although we have demonstrated the broad applicability of DORA, there exist several limitations that require
attention. Firstly, the proposed approach assumes that undesired behavior in representations is not systematic.
Consequently, DORA may not be able to identify infected representations if such behavior is widespread
across a large number of representations, as it would no longer be considered anomalous. Another limitation
pertains to the potential semantic multimodality of representations Goh et al. (2021) and additional research
is necessary to address this issue.

In summary, DORA expands the scope for auditing "black-box" systems, thereby offering a methodology
that enhances the understanding of learned representations within the model and their interrelationships. By
facilitating a deeper dive into these complex systems, Representation Analysis makes it possible to demystify
the intricacies of the internal model behavior and consequently leads to a more transparent and accountable
machine learning process, encouraging robustness and trustworthiness in the deployment of these models.
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A Appendix

A.1 Evaluation

In the evaluation, two datasets were used: ILSVRC2012 (ImageNet 2012) Deng et al. (2009) and CIFAR-100
Krizhevsky (2009). For ImageNet, we employed eight different pre-trained models: ResNet18 He et al. (2016),
AlexNet Krizhevsky et al. (2017), Inception V3 Szegedy et al. (2016), DenseNet 161 Huang et al. (2017),
MobileNet V2 Sandler et al. (2018), ShuffleNet V2 Ma et al. (2018), obtained from the torchvision-models
package Marcel and Rodriguez (2010), as well as ViT Dosovitskiy et al. (2020) and BEiT Krizhevsky et al.
(2017), obtained from the pytorch-vision-models library Wightman (2019). For the CIFAR-100 dataset,
we trained seven networks: ResNet 18, MobileNet V2, ShuffleNet V1, and V2, NASNet Qin and Wang (2019),
SqueeeNet Iandola et al. (2016), and VGG 11 Simonyan and Zisserman (2014), using the Pytorch-cifar100
GitHub repository git (2020), while the ResNet9 network was trained using a publicly available Kaggle
notebook Wang (2021).

The semantic baseline distances between concepts for both datasets were obtained using the NLTK package
Bird et al. (2009). There is a cross-connection between class labels and WordNet entities for ILSVRC2012,
as the classes are inherently connected with WordNet synsets. For CIFAR-100, we manually connected the
labels to synsets by matching class label names with WordNet synset names. For 98 classes, WordNet synsets
were found. For the remaining two classes, “aquarium fish” and “maple tree”, WordNet synsets for “fish” and
“maple” were used, respectively, due to the absence of a direct name match.

For the Word2Vec distance, we used the WordNet synset name as the textual label. If a textual label
contained multiple words, the distance between two classes was determined as the maximum distance among
all possible word pairs between the textual labels of the two classes.

A.2 Experiments

A.2.1 Probing dataset

Figure 19: Illustration of the Probing Dataset. The figure depicts images from the probing dataset utilized
to evaluate the representation’s capacity to distinguish between watermarked (CH) and non-watermarked
(normal) images. The watermarked class images are identical to the normal class images, except for the
addition of a random test string at a random location on the image.

To assess the ability of the identified representations to detect undesirable concepts, we created two probing
datasets for the binary classification of Chinese and Latin text detection. We modified one class of images
by adding specific watermarks while leaving the other class unchanged. We used a baseline dataset of 998
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ImageNet images ‡ to create 2 probing datasets (Chinese and Latin) by inserting random textual watermarks,
as shown in Figure 19. For the Chinese characters detection problem, the watermarks were generated by
randomly selecting 7 out of the 20 most commonly used Chinese characters Da (2004), and a similar process
was followed using the English alphabet for the Latin text detection problem. The font size for all watermarks
has been set to 30, while the image dimensions remain standard at 224 × 224 pixels. AUC ROC was used as
the performance metric to evaluate the representations’ ability to differentiate between watermarked and
normal classes. The true labels provided by the two datasets were used, where class 1 represents images with
a watermark and class 0 represents images without. We computed the scalar activations for all images from
both classes for a specific neural representation and then calculated the AUC ROC classification score based
on the differences in activations using the binary labels. A score of 1 indicates a perfect classifier, consistently
ranking watermarked images higher than normal ones, while a score of 0.5 indicates a random classifier.

A.2.2 ImageNet ResNet18

In the following, we provide additional details on the ResNet18 He et al. (2016) experiment, discussed in
the main paper. The model was downloaded from the Torchvision library Marcel and Rodriguez (2010) and
s-AMS were generated with parameters n = 5 and m = 500 using the DORA package.

Figure 20 illustrates the cluster of reported representations in the average pooling layer of the model,
specifically neurons 154, 129, 347, 489, 81, 439, and 282, along with the sensitivity of other neurons to
Chinese watermarks. It can be seen that representations close to the reported cluster also exhibit sensitivity
towards malicious concepts. For additional context, Figure 24 shows the natural Activation-Maximisation
signals (n-AMS) for the reported representations, obtained using 1 million subsamples of the ImageNet 2012
train dataset. The presence of Chinese watermarks in the n-AMS further supports our hypothesis of the
Clever-Hans nature of these representations.

To examine which output class logits may be compromised by Clever-Hans (CH) behavior, we used the s-AMS
of the reported neurons to obtain class predictions on these signals. Figure 26 shows several s-AMS for the
reported representations along with the network’s predictions for the corresponding data points. We observed
that certain classes, such as “carton” (478), “apron” (411), “swab, swob, mop” (840), “monitor” (664), and
“broom” (462) were frequently predicted with high scores. When we computed the s-AMS for selected output
logits, we found similar Chinese patterns, similar to those observed in the reported neurons of the average
pooling layer (see Figure 26). These results suggest that such artifacts learned by the network pose a potential
threat to applications due to the network’s tendency to classify images with added watermarks as belonging
to one of these classes.

A.2.3 ImageNet DenseNet121

The DORA framework was employed to investigate the pre-trained DenseNet121 on the ImageNet dataset
Huang et al. (2017). Specifically, attention was focused on the last layer of the feature extractor, which
comprised 1024 channel representations. The study primarily examined two outliers detected by DORA:
neuron 768 and neuron 427, along with some of their nearest neighbors in the EA distance. Following an
analysis of the s-AMS for both neurons, specific symbolic patterns were observed, which were characteristic
of character detectors. Neuron 768 was identified as a Chinese character detector, while neuron 427 was
identified as a Latin text detector. Figure 16 in the main paper and Figure 22 depict these neurons, along
with their closest neighbors in EA distance, which exhibited similar properties. The hypothesis was further
supported by visualizing the n-AMS across the ImageNet dataset, as demonstrated in Figure 23.

As mentioned in Section 6.1, we find that the outliers found by DORA are maintained during fine-tuning on
another dataset, e.g. the CheXpert challenge. The CheXpert challenge benchmarks various deep learning
models on the task of classifying multilabel chest radiographs and additionally provides human experts, e.g.
radiologists, with performance metrics for comparison. The data set itself consists of 224,316 training, 200
validation, and 500 test data points. The current best approach in terms of AUC-ROC score uses an ensemble
of five DenseNet121’s Huang et al. (2017) that were pre-trained on the ImageNet dataset and fine-tuned

‡Images were obtained from https://github.com/EliSchwartz/imagenet-sample-images, with the exception of two images
(of the class "carton" and "terrapin") that already exhibit watermarks.
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Figure 20: Detailed illustration of the cluster of malicious representations found. All of the figures
illustrate the representation atlas of the average pooling layer of ResNet18, calculated using the DORA
distance metric. From left to right: illustration of the reported Chinese detector cluster, the sensitivity
of different representations for detecting Chinese watermarks, and a set of reported outliers among the
representations using the LOF method. From the middle figure, it can be observed that the cluster of reported
representations exhibits high sensitivity towards the artifactual concept of the desired task, and the closer
the representations are to the cluster in the representation atlas, the more they are able to detect malicious
concepts in the data.

Figure 21: Survived Chinese-characters detector. Neuron 768 learns to detect Chinese logographic
symbols during pre-training (top left) and does not unlearn this behavior during fine-tuning on the CheXpert
dataset (top right). The AUC values of the neurons’ activation on images corrupted with Chinese watermarks
are still high after pre-training.
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Figure 22: DenseNet121 — Chinese-characters detector. Applying DORA to the last layer of the
feature extractor of DenseNet121 yields, among others, Neuron 768, which corresponds to the upper left of
the 6 feature visualizations. From Neuron 768 as well as from its five closest neighbors (shown left), we can
observe semantic concepts resembling Chinese logograms. The AUC values were computed using the channel
activations on a data set that was corrupted with watermarks written in Chinese. As shown, the AUCs are
high for the representation outliers found by DORA, compared to most of the other representations, which
indicates that they indeed learned to detect Chinese logograms.

(a) Neuron 768 (b) Neuron 427

Figure 23: Maximally Activating images for different neurons in DenseNet121. Illustration of the
top 15 images that trigger the highest activations for the Chinese watermark detector (neuron 768) and the
Latin text detector (neuron 427) in the ’features’ layer of DenseNet121.

by optimizing a special surrogate loss for the AUC-ROC score Yuan et al. (2021). The training code can
be found in this public repository https://github.com/Optimization-AI/LibAUC/. We choose to finetune
one DenseNet121 using this approach on a downsampled version of the CheXpert data with a resolution of
256x256x3. The converged model yields an AUC-ROC score of 87.93% on the validation dataset. Having
the finetuned DenseNet121 and the outlier neuron 768 at hand we show the Feature Visualizations and
the AUC-ROC curves for both the pre-trained and fine-tuned channel on an ImageNet subset with both
uncorrupted and corrupted images with Chinese watermarks in Figure 21.

A.2.4 CLIP ResNet 50

The s-AMS for the CLIP ResNet 50 was computed using the same parameters as Goh et al. (2021) with
the Lucent library. The number of optimization steps m was set to 512. The analysis was conducted
on representations (channels) from the “layer 4” layer of the model. (Details on the s-AMS generation
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Table 4: Clusters of CLIP “layer4” representations. This table presents several interesting clusters
and the indexes of the corresponding representations that were examined through manual inspection of the
s-AMS and most activating images.

Cluster Representations

Explicit/Pornographic 95, 255, 996, 1502, 2011
Money/Finance 785, 1376, 1731

Reptiles 230, 250, 417, 521, 652, 654, 694, 1008, 1234, 1301, 1340,
1364, 1445, 1598

Fish/Aquarium 1193, 1384

Asia-geographic 13, 165, 235, 536, 780, 931, 1037, 1261, 1247, 1423,
1669, 1761, 1874, 1898

parameters can be found at https://github.com/openai/CLIP-featurevis and Lucent library at https:
//github.com/greentfrapp/lucent)

Star Wars representation

Figure 3 shows the limitations of the n-AMS approach when the data corpus for analysis differs from the
training dataset. Figure 27 further illustrates n-AMS collected from ImageNet and Yahoo Creative Commons
Thomee et al. (2016) datasets via OpenAI Microscope. Text Feature Visualization Goh et al. (2021) supports
our hypothesis that the model is a detector of Star Wars-related concepts.

Outlier representations

Analysis of the representations space of the CLIP model yielded a number of potential candidates to be
considered outlier representations, namely neurons 631, 658, 838, 1666, 1865, and 1896. In Figure 28 we
illustrate 3 s-AMS signals, alongside n-AMS images, collected from the ImageNet dataset per each reported
representation, collected using OpenAI Microscope. While it is hard to explain the anomalous nature of
neurons 631, 658, 838, 1666, and 1896, we can clearly observe how different the concept of neuron 1865 is.

Clusters of representations

We manually examined several distinctive classes of representations in “layer4” of the CLIP model after
computing the representation atlas for the channel representations. Table 4 summarizes the results of our
analysis and shows interesting clusters found along with the associated neurons. Figure 29 shows synthetic
and natural AMS, providing evidence for the assignment of neurons to their respective clusters.

A.3 Experimental setup

All described experiments, if not stated otherwise, were performed on the Google Colab Pro Bisong and
Bisong (2019) environment with the GPU accelerator.

37

https://github.com/openai/CLIP-featurevis
https://github.com/greentfrapp/lucent
https://github.com/greentfrapp/lucent


Published in Transactions on Machine Learning Research (06/2023)

(a) Neuron 154 (b) Neuron 347

(c) Neuron 129 (d) Neuron 489

(e) Neuron 81 (f) Neuron 282

Figure 24: Maximally Activating Images for different ResNet18 neurons, reported in the cluster
of malicious representations. The figure shows the 15 highest Activating Images for various neurons
in the "avgpool" layer of the ResNet18 network, which were identified as being in the cluster of malicious
representations. The signals were calculated using a subset of 1 million images from the ImageNet 2012
training dataset. It can be observed that among the top activating images, there are images of Chinese
watermarks, supporting the hypothesis that these neurons have learned undesirable concepts.
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Figure 25: s-AMS and model predictions for reported neurons in ResNet18. Figure illustrates the
s-AMS signals for four different reported neurons in the average pooling layer of ImageNet-trained ResNet18,
along with the model’s predictions for the top three classes with their respective softmax scores.
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Figure 26: s-AMS for several ResNet18 logits. Figure shows s-AMS for the output logit representations
of ResNet18. Similar to the reported neurons from the average pooling layer, the logits display logographic
patterns, logographic patterns specific to Chinese character detectors, suggesting that these classes may be
particularly affected by CH behavior.
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Figure 27: CLIP ResNet Neuron 744. The figure shows s-AMS and Maximally Activating Images for
neuron 744 in the “layer 4” layer of the model, computed for 2 different data corpora. The observed signals
and explanations from Text Feature Visualization confirm that the neuron can detect Star Wars-related
concepts. Results obtained from OpenAI Microscope.
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Figure 28: s-AMS and Maximally Activating Images for reported outlier neurons. Figure illustrates
s-AMS and Maximally Activating Images for the reported outlier neurons in the “layer 4” layer of the CLIP
ResNet 50 model, collected from OpenAI Microscope.
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Figure 29: s-AMS and maximally activating images from ImageNet for the neurons in the
reported clusters. This figure shows the s-AMS and maximally activating images for representations
assigned to the various reported clusters. The s-AMS were generated, while the maximally activating images
from ImageNet were collected via the OpenAI Microscope. Representations of explicit or pornographic
content were excluded due to the presence of obscene images.
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