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Abstract
We introduce FAITHSCORE (Faithfulness to001
Atomic Image Facts Score), a reference-free002
and fine-grained evaluation metric that mea-003
sures the faithfulness of the generated free-form004
answers from large vision-language models005
(LVLMs). The FAITHSCORE evaluation first006
identifies sub-sentences containing descriptive007
statements that need to be verified, then extracts008
a comprehensive list of atomic facts from these009
sub-sentences, and finally conducts consistency010
verification between fine-grained atomic facts011
and the input image. Meta-evaluation demon-012
strates that our metric highly correlates with013
human judgments of faithfulness. We col-014
lect two benchmark datasets (i.e. LLaVA-1k015
and MSCOCO-Cap) for evaluating LVLMs016
instruction-following hallucinations. We mea-017
sure hallucinations in state-of-the-art LVLMs018
with FAITHSCORE on the datasets. Results re-019
veal that current systems are prone to generate020
hallucinated content unfaithful to the image,021
which leaves room for future improvements.022
We hope our metric FAITHSCORE can help023
evaluate future LVLMs in terms of faithfulness024
and provide insightful advice for enhancing025
LVLMs’ faithfulness.026

1 Introduction027

Large Language Models (LLMs), such as GPT-028

3 (Brown et al., 2020) and ChatGPT (OpenAI,029

2022), have demonstrated various language model-030

ing capabilities. Despite their achievements, they031

still lack the capacity to handle multimodal inputs032

effectively. As a result, a significant amount of033

research has shifted its focus towards Large Vision-034

Language Models (LVLMs) (Liu et al., 2023e;035

Ye et al., 2023; Sun et al., 2023) by incorporat-036

ing powerful LLMs (Touvron et al., 2023; Chi-037

ang et al., 2023) and Vision Foundation Mod-038

els (VFMs) (Dosovitskiy et al., 2021; Bommasani039

et al., 2021). LVLMs have shown strong perfor-040

mance on various multimodal tasks, such as Visual041

- There is a man.
Atomic Facts

Prompt: What is unusual about this image?

The unusual aspect of this image
is that  a man is ironing clothes
while standing on the back of a
car. This is not a typical scene, as
ironing clothes is usually done
indoors, in a  stationary position,
and with proper safety measures.

- There are clothes.
- There is a car.
- The main is ironing clothes.
- The man is standing on     
   the  back of a car.

FaithScore: 100%

LVLM-1 Generated Answer

Atomic Facts

This is an unconventional sight,
as  ironing clothes is typically
conducted indoors, in a
stationary position, and  with
appropriate safety precautions.
However, the man is ironing
clothes while standing on the
front of a car. The man's actions
are not only out of the ordinary
but also potentially hazardous.

FaithScore: 80%

LVLM-2 Generated Answer

- There is a man.
- There are clothes.
- There is a car.
- The main is ironing clothes.
- The man is standing on     
   the front of a car.

Figure 1: Illustration of how FAITHSCORE evaluation
works. Given the answers generated by an LVLM, in
step 1, we identify the descriptive content (with an
LLM); In step 2, we extract corresponding atomic facts
from the identified sentences; In step 3, the faithful-
ness of all atomic facts is verified according to the input
image. In this example, the underlined part denotes
objective descriptive content in the answer. The blue
contents denote hallucinations in the answers. FAITH-
SCORE allows a more fine-grained and interpretable
evaluation of the factual precision of free-form answers.

Question Answering (Antol et al., 2015), Image 042

Captioning (Lin et al., 2014), and Multimodal Con- 043

versation (Liu et al., 2023e). 044

Despite the effectiveness of LVLMs, the problem 045

of hallucination is pervasive, often leading these 046

models to generate fabricated information that is in- 047

congruent with the provided visual input (Rohrbach 048

et al., 2018; Liu et al., 2023b,a; Yin et al., 2023). In 049

the context of LVLM, the problem of hallucination 050

can manifest as answers containing descriptions of 051
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the input image that are incorrect (Li et al., 2023c).052

As shown in Figure 1, the LVLM-2 generates an an-053

swer with an inaccurate description (i.e., standing054

on the front of a car), which is not faithful towards055

the input image. The phenomenon of hallucina-056

tion in LVLMs introduces potential hazards that057

could result in significant consequences such as058

misinformation and safety concerns, thus degrad-059

ing the model’s reliability in practical applications060

inevitably (MacLeod et al., 2017). Hence, it is im-061

perative that these issues are thoroughly measured062

and addressed (Ji et al., 2023).063

Nevertheless, there have been limited explo-064

rations that measure the hallucination problem in065

LVLMs. Li et al. (2023c) was among the first066

to measure the hallucinations of LVLMs with a067

polling-based object probing evaluation method. In068

addition, Gunjal et al. (2023) annotated a multi-069

modal hallucination detection dataset tailored for070

detailed image description evaluation. Lovenia071

et al. (2023) devised Negative Object Presence072

Evaluation (NOPE), which used VQA to quanti-073

tatively evaluate object hallucination in LVLMs.074

These approaches, however, exhibit two key weak-075

nesses: (1) they focus on the limited setting of076

image captioning, and none of them explored eval-077

uating hallucination of the complex and free-form078

answers to the open-ended questions (OpenAI,079

2023) (e.g. multimodal conversations (Liu et al.,080

2023e; Sundar and Heck, 2022), world knowledge-081

based VQA (Schwenk et al., 2022) and visual sto-082

rytelling (Huang et al., 2016)); (2) they ignore fine-083

grained hallucinations of visual attributes in the084

generated answer.085

Evaluating hallucinations present in free-form086

answer is especially challenging for two primary087

reasons: (1) Free-form answers contain a hy-088

brid of descriptive and analytical contents. Un-089

like close-domain tasks such as image caption-090

ing, answering open-domain questions in a free-091

form manner does not only require generating the092

question-relevant descriptive content of the given093

image. It may also involve analytical content such094

as rationales that include external commonsense095

knowledge. As depicted in Figure 1, certain sub-096

sentences (i.e., those without the underline) do not097

require verification with the image input due to098

their analytical nature. Because they encompass099

subjective analytical content that extends beyond a100

direct description of the visual inputs. Neglecting101

to distinguish between analytical and descriptive102

content inevitably distracts the factual measure-103

ment. Thus, pinpointing the descriptive content 104

within the answers generated by LVLMs is signifi- 105

cant. (2) Model outputs are prone to the multi- 106

plicity of hallucinations. Current methodologies 107

offer a constricted view on evaluating hallucina- 108

tions, primarily concentrating on coarse-grained 109

object existences (Rohrbach et al., 2018; Lovenia 110

et al., 2023), while neglecting other fine-grained 111

elements, such as counts, colors, and the interre- 112

lations between objects (e.g., the spatial relation 113

between the person and the car in Figure 1), which 114

also form a significant portion of visual hallucina- 115

tions (Gunjal et al., 2023). Consequently, devising 116

a method to holistically evaluate fine-grained hallu- 117

cinations of visual attributes is also important. 118

To address the aforementioned challenges, we 119

propose the FAITHSCORE metric, which can eval- 120

uate fine-grained hallucinations in various multi- 121

modal tasks, such as image captioning and open- 122

ended questions. This metric comprises three pri- 123

mary components: Descriptive Sub-sentence Iden- 124

tification, Atomic Fact Generation, and Fact Veri- 125

fication, as illustrated in Figure 2. The first com- 126

ponent is tasked with discerning descriptive sub- 127

sentences within the composite content of the gen- 128

erated free-form answer. Thereafter, the second 129

component deconstructs this descriptive content 130

into fine-grained elements (i.e., atomic facts) (Min 131

et al., 2023). These atomic facts cover compre- 132

hensive types, such as objects attributes and in- 133

terrelationships. The last component emphasizes 134

verifying the consistency between the visual infor- 135

mation and the derived atomic facts via a Visual 136

Entailment Model (VEM) (Xie et al., 2019). Based 137

on the proposed metric, we evaluated several ad- 138

vanced LVLMs, such as LLaVA (Liu et al., 2023e) 139

and MiniGPT-4 (Zhu et al., 2023). From the results, 140

we conclude that current LVLMs still face chal- 141

lenges of answers that are not faithful to the input 142

image, which leaves a large room for improvement. 143

In summary, our contributions are as follows: 144

(1) We introduce FAITHSCORE, a metric tailored 145

to assess hallucinations in LVLMs free-form an- 146

swers to open-ended questions, which is not yet 147

addressed by current studies; (2) To the best of 148

our knowledge, we are the first to systematically 149

study the LVLMs free-form answers and evaluate 150

the fine-grained hallucinations of various types in 151

LVLMs; (3) In our quest to understand the hallu- 152

cinations manifested by LVLMs, we embark on 153

comprehensive experiments with six open source 154

models across diverse tasks and datasets. Our find- 155
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ings underscore that the hallucination phenomenon156

remains a pressing challenge for current LVLMs.157

2 Related Work158

Large Vision-Language Model Motivated by159

the success of the pretraining technique in LLMs160

and VFMs, the multimodal learning research com-161

munity has recently shifted the research attention162

to LVLMs (Awadalla et al., 2023; Li et al., 2023a).163

Contemporary advanced LVLMs predominantly164

feature three core components: a text encoder, an165

image encoder, and a cross-modal alignment mod-166

ule (Rohrbach et al., 2018). Specifically, the text167

encoder often takes the form of a language model,168

as seen in examples like LLaMA (Touvron et al.,169

2023) and Vicuna (Chiang et al., 2023). Conversely,170

the image encoder is typically derived from VFMs,171

such as ViT (Dosovitskiy et al., 2021). The func-172

tion of the cross-modal alignment module is to173

bridge visual content with textual representation,174

enhancing the text encoder’s capacity to interpret175

visual semantics. To accomplish visual understand-176

ing, LVLMs typically undergo multiple training177

phases (Gong et al., 2023; Zhu et al., 2023; Liu178

et al., 2023d,e; Ye et al., 2023; Dai et al., 2023). For179

instance, Liu et al. (2023e) first aligns the image180

features with the word embeddings of a pre-trained181

LLM during an initial pre-training stage, and sub-182

sequently fine-tunes the LVLM using specialized183

language-image instruction-following datasets. For184

efficiency enhancement, LVLMs often freeze pa-185

rameters of the LLM or VFM and are trained with186

efficient fine-tuned techniques (Ye et al., 2023; Dai187

et al., 2023), such as LoRA (Hu et al., 2022).188

However, in spite of the considerable advance-189

ments made by LVLMs, they consistently grapple190

with hallucination issues. These issues markedly191

impact their efficacy across a range of vision-192

language tasks (Rohrbach et al., 2018).193

Vision-language Model Hallucinations and Eval-194

uations Though hallucination phenomenons and195

mitigation methods have been extensively studied196

in the text generation literature (Ji et al., 2023;197

Min et al., 2023), it is much less investigated198

in vision-language models (Dai et al., 2023; Liu199

et al., 2023e). Although there are a few existing200

works tackling this issue, they mainly focus on the201

constraint problem setting such as image caption-202

ing (Johnson et al., 2016). For example, Rohrbach203

et al. (2018) propose caption hallucination assess-204

ment with image relevance (CHAIR), which is205

The unusual aspect of this image is a man 
ironing clothes on the back of a minivan 
or van. This is not a typical place to 
perform this activity, as one would 
usually iron clothes in a more stationary 
and safe location, such as a home, using a 
regular ironing...

Answer

The unusual aspect of this image is a man 
ironing clothes on the back of a minivan 
or van. This is not a typical place to 
perform this activity, as one would 
usually iron clothes in a more stationary 
and safe location, such as a home, using a 
regular ironing……

Descriptive Content

Atomic Facts
 A man is ironing clothes. A man is ironing clothes. A man is ironing clothes. A man is ironing clothes.

Image

Recognizer

Verifier (VEM)

Decomposer

Figure 2: An overview of estimating FAITHSCORE,
which mainly consists of three steps: Descriptive Sub-
sentence Identification, Atomic Fact Generation, and
Fact Verification. These steps are implemented by three
modules: Recognizer, Decomposer, and Verifier. The
underlined part denotes recognized descriptive content.

a popular metric for evaluating object hallucina- 206

tion in sentence-level captions. They also show 207

that popular metrics like METEOR (Banerjee and 208

Lavie, 2005) and CIDEr (Vedantam et al., 2015) do 209

not capture this. Li et al. (2023c) extends CHAIR 210

and proposes “POPE”, a polling-based query tech- 211

nique for probing objects. Besides, Lovenia et al. 212

(2023) devised Negative Object Presence Evalua- 213

tion (NOPE) to quantitatively assess object hallu- 214

cination through VQA, based on “POPE”. Gunjal 215

et al. (2023) further proposed to detect hallucina- 216

tions in more detailed image captions and investi- 217

gated utilizing a reward model for mitigating them. 218

Lu et al. (2023) introduced an evaluation bench- 219

mark that contains more diverse types of questions, 220

such as Yes-or-No and Fill-in-the-Blank. 221

Different from all the above, we are the first to 222

propose a general metric for evaluating the answers 223

in the open-ended visual question-answering set- 224

ting, where answers are of free form and can be 225

lengthy. 226

3 Estimating FAITHSCORE 227

In this section, we begin by clearly defining the 228

research problem in Section 3.1, followed by a 229

detailed framework of estimating FAITHSCORE in 230

Section 3.2. 231
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3.1 Task and Settings232

Suppose we have an image I and a corresponding233

prompt Q. We then feed them into the LVLM234

denoted as M, to obtain the generated answer A.235

Our objective is to design a scoring framework to236

estimate FAITHSCORE f based on the input prompt237

Q, the input image I , and the generated answer A.238

It is defined as: s = F(A,Q, I). s is a scalar value239

ranging between 0.0 and 1.0. Notably, the devised240

evaluation method is reference-free and doesn’t241

require a ground truth answer.242

3.2 The Evaluation Framework243

In order to estimate FAITHSCOREof the generated244

answers, we introduce a novel framework to im-245

plement the scoring function F . The framework246

comprises three key steps: descriptive sub-sentence247

identification, atomic fact generation, and fact veri-248

fication, as depicted in Figure 2.249

Descriptive Sub-sentence Identification. Faith-250

fulness in the context of LVLMs refers to the con-251

sistency between the input visual content and the252

generated answer. Notably, we focus on the details253

in the answer that describe the input image objec-254

tively, to obtain a more precise and fine-grained255

understanding of the hallucination. As shown in256

Figure 1, only some sub-sentences (i.e., those with257

the underline) from the answer require verification258

with the image input. Hence, we need to identify259

the descriptive sub-sentences from the answer us-260

ing a recognizer. The sub-sentences denote the261

short sentences that are split by punctuation in the262

answer.263

Humans are capable of distinguishing descrip-264

tive sub-sentences from other contents (referred265

to as analytical sub-sentences) by analyzing the266

semantics of the answers generated by LVLMs.267

However, manually identifying descriptive sub-268

sentences is a resource-intensive process, requiring269

plenty of human labor. To address this problem,270

we turn to ChatGPT to implement the recognizer271

as a practical solution, since it has demonstrated272

remarkable semantics understanding capabilities273

across a wide range of natural language processing274

tasks (OpenAI, 2022). Section 4.2 shows that Chat-275

GPT can achieve promising performance on this276

task.277

To be more specific, our approach first crafts278

a prompt P that encompasses task instructions279

and K1 in-context learning examples. We280

feed this designed prompt along with the to-281

be-processed answer A into the ChatGPT, gen- 282

erating the recognized results, defined by the 283

equation Â = ChatGPT (A,P ), where Â = 284

{{a1, l1}, · · · , {ak, lk}} signifies the generated re- 285

sult, in which the answer is split into sun-sentences 286

a, and every sub-sentence is assigned a label l 287

(i.e., descriptive or analytical). Then we extract 288

all descriptive sub-sentences denoted as A′ = 289

{a′1, · · · , a′t}. For a more comprehensive under- 290

standing of the specific prompt P utilized in this 291

process, please refer to Section J of the Appendix. 292

Atomic Fact Generation. Despite we have iden- 293

tified descriptive sub-sentences from the answer, 294

there are still multiple facts hybrid in each sub- 295

sentence. Each descriptive sub-sentence consists of 296

multiple pieces of information (i.e., atomic facts), 297

each of which may contain hallucination. There- 298

fore, to access a fine-grained evaluation, we design 299

a decomposer to further break the sub-sentences 300

into atomic facts. In particular, we define atomic 301

facts as an element belonging to an entity, relation, 302

or attribute, inspired by the existing works (Min 303

et al., 2023; Hu et al., 2023). Importantly, the 304

atomic fact is a minimal unit of information. This 305

handling can ensure the verification of each ele- 306

ment in the answer without being disturbed by 307

other information. Atomic facts include three types: 308

entity existence, attributes, and relations. An entity 309

fact indicates an object’s existence. Attribute facts 310

relate to characteristics like color and shape. Re- 311

lation facts describe inter-entity relationships, e.g., 312

the spatial relation. In Figure 1, we show some 313

examples of atomic facts. 314

To achieve this, similar to the process of iden- 315

tifying descriptive sub-sentences, we also utilize 316

the ChatGPT for the generation of atomic facts. 317

This is because ChatGPT has shown a strong abil- 318

ity in information extraction (Wei et al., 2023). 319

More precisely, we annotate a set of K2 exam- 320

ples for demonstrations and prompt the ChatGPT 321

for atomic fact generation with P ′ as follows: 322

Ei = ChatGPT (A′, P ′), i ∈ [1, C], where A′ 323

are all descriptive sentences identified in step 1, 324

Ei = {e1i , · · · , e
ni
i } represents all ni atomic facts 325

belonging to the i-th category, and C stands for 326

the total number of categories (i.e., C = 5 in our 327

case). Further details regarding the specific prompt 328

P ′ utilized in this process can be found in Section J 329

of the Appendix. 330

Fact Verification. In this stage, we compare the 331

atomic facts derived above with the image to de- 332
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termine if the facts are faithful to the input visual333

information. Specifically, to calculate the FAITH-334

SCORE for the derived atomic facts, we first com-335

pute the score for each fact and then aggregate336

them to derive the overall score using the following337

formula:338

ŝ =

∑C
i=1

∑ni
j=1w

j
i · s(e

j
i , I)∑C

i=1 ni

, (1)339

where ŝ represents the overall FAITHSCORE of the340

answer A. The function s(eji , I) refers to the ver-341

ification function (i.e., Verifier), which measures342

whether eji can be supported by the input image I .343

The parameter wj
i is a weighted factor that can be344

used to assign different weights to different atomic345

facts for various tasks. To implement function346

s(eji , I), we resort to the Visual Entailment Model347

(VEM) (e.g., OFA (Wang et al., 2022)), which is348

able to predict whether the image semantically en-349

tails the text. We elaborate on selections of the350

verifier models in Section 4.3. In particular, when351

the output of the VEM is positive, indicating that352

the image I semantically entails the text eji result-353

ing in s(e, I) = 1, and negative otherwise. In this354

work, we set all the weights wj
i to 1, following the355

setting of the existing work (Min et al., 2023; Kr-356

ishna et al., 2023). In addition, we further introduce357

a sentence-level FAITHSCORE metric as follows,358

ŝs = 1 − Sh/S, where S is the total number of359

descriptive sub-sentences in the answer and Sh is360

the total number of descriptive sub-sentences with361

hallucinations.362

4 Meta-evaluate FAITHSCORE363

To verify that our automatic evaluation correlates364

with human judgment, we conduct human evalua-365

tions in terms of hallucination. We select the test366

dataset from the LLaVA paper (Liu et al., 2023e)367

(LLAVA-Bench) for human evaluation, which is368

constructed based on the MSCOCO dataset. This369

test set is a visual instruction following dataset370

comprising three distinct question types: detailed371

description, conversation, and complex question.372

For each type, this dataset includes 90 questions.373

We select answers from LLaVA (Liu et al., 2023e)374

and mPLUG-Owl (Ye et al., 2023) models for eval-375

uation.376

4.1 Human Evaluations of Hallucinations377

For each test example, we craft an annotation pro-378

cess to assign the faithfulness score to models’ gen-379

erated answers via the subsequent steps.380

Recognizer LVLM OverallLLaVA InstructBLIP

ChatGPT 89.84 91.58 90.74
LLaMA-7B 68.01 71.39 69.75
LLaMA-7B (w/ context) 72.80 66.76 69.68

Table 1: Comparison of recognizer LLMs’ accuracy (%)
on identifying descriptive sub-sentences. For LLaMA,
we used two different prompt settings, either to input
only the sub-sentence or both the sub-sentence and its
context into the model (LLaMA-7B w/ context).

Step 1: Sub-sentence Identification. Annotators 381

first review the given question, the corresponding 382

answer, and the associated image. Subsequently, 383

they evaluate each sub-sentence extracted from the 384

answer. If a sub-sentence is an objective descrip- 385

tion of visual information, they mark it as the “de- 386

scriptive” category; otherwise, it’s categorized as 387

“analytical”. For the “analytical” sub-sentence, an- 388

notators should skip the following steps. Otherwise, 389

they should follow the next steps. 390

Step 2: Atomic Fact Generation and Revision. 391

In this step, human annotators are asked to decom- 392

pose the descriptive sub-sentences into a sequence 393

of atomic facts. To optimize the annotation process 394

and reduce the time required, we pre-supply atomic 395

facts derived from ChatGPT. Annotators then have 396

the flexibility to use or modify these facts as needed. 397

In particular, annotators examine each atomic fact 398

to ensure its fidelity to the given sub-sentence. The 399

facts that are either redundant or non-atomic are 400

asked to be removed. Subsequently, the focus shifts 401

to the linguistic aspect, ensuring that each atomic 402

fact is articulated in a coherent manner and that it 403

accurately represents the original entity or concept 404

of the answer by revising facts manually. Addition- 405

ally, any missing atomic facts from the descriptive 406

sub-sentence are added. For the process of remov- 407

ing and revising atomic facts, please refer to the 408

Interface functionalities in the Appendix. 409

Step 3: Fact Verification. In this step, for every 410

individual atomic fact derived from the descrip- 411

tive sub-sentence, annotators assess its consistency 412

with the given image. If the content of atomic facts 413

is not present or contradicts the image, it’s identi- 414

fied as a hallucination, and accordingly marked as 415

“yes”. Conversely, if the element is in alignment 416

with the image, it’s validated and marked as “no”. 417

To quantify the human evaluation of faithfulness, 418

we employ the Likert Scale (Likert, 1932). This 419

approach transforms human evaluations into a tan- 420
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Verifier LVLM OverallLLaVA InstructBLIP

OFA-EM 81.07 78.08 79.42
OFA 84.47 80.71 82.39
mPLUG 84.95 83.86 84.35
BLIP-2-flant5xl 78.64 77.42 77.97
BLIP-2-flant5xxl 82.36 83.20 82.83
LLaVA 67.25 67.10 67.17
LLaVA-1.5 85.65 84.49 85.07

Table 2: Comparison of the Verifier LLMs accuracy on
verifying the atomic facts (the third step).

gible scale, ranging from 1 (being the poorest) to 5421

(being the best). The details about the annotation422

process are given in Section A of the Appendix.423

4.2 Recognizer Accuracy on Descriptive424

Sub-sentence Identification425

To obtain the performance of recognizers (e.g.426

LLMs) on the sub-sentence identification task,427

we construct a sub-sentence identification dataset428

based on our annotated samples. The final label for429

each sub-sentence is determined by the majority430

voting scheme. The total number of sub-sentences431

is 1, 382 and the average number of sub-sentences432

in the answer is 7.68. We select the superior Chat-433

GPT (Proprietary) and LLaMA-7B (Public) models434

for this task and report their accuracy on identifying435

descriptive sub-sentences. The results are shown436

in Table 1. ChatGPT outperforms LLaMA-7B on437

sub-sentence identification. For LLaMA-7B based438

method, when additional context beyond the sub-439

sentence itself is included, there is an improvement440

on LLaVA answers test set, but overall there is no441

significant improvement.442

4.3 Verifier Accuracy on Fact Verification443

Another key factor of our automatic method is the444

reliability of the verifier visual entailment model445

(VEM). Hence, we also evaluate the accuracy of446

different VEMs on the annotated samples. Be-447

cause of the atomic fact revision operation during448

the annotation process, there may be some differ-449

ences in atomic facts labeled by different annota-450

tors. To improve reliability, we only keep these451

atomic facts annotated by all three annotators for452

VEM evaluation. The final label for each atomic453

fact is determined by the majority voting scheme.454

The total number of atomic facts derived from de-455

scriptive sub-sentences is 1, 380 and the average456

number of atomic facts in each descriptive sub-457

Metric r (%) ρ (%) τ (%)

BLEU-4 -1.9 -8.2 -5.8
ROUGE-L -8.7 -6.2 -4.7
METEOR -12.2 -8.5 -6.3
CHAIR 16.8 19.2 14.8
CLIP-Score 19.8 16.6 11.7
SPICE 20.2 21.3 25.4

Ours 48.2 38.4 47.6

Table 3: Correlation between each evaluation metric and
human judgment on LVLM hallucinations, measured by
Pearson’s r, Spearman’s ρ, and Kendall’s τ .

sentence is 2.04. For verifier VEMs, we evaluate 458

OFA-EM, OFA (Wang et al., 2022), mPLUG (Li 459

et al., 2022), BLIP-2-flant5xl, BLIP-2-flant5xxl (Li 460

et al., 2023b), LLaVA, LLaVA-1.5 (Table 2). More 461

details about these models are shown in Section B 462

of the Appendix. Among all models, LLaVA-1.5 463

performs best on fact verification, so we use it for 464

estimating FAITHSCORE in Section 5. 465

4.4 Correlations with Human Evaluations 466

To prove the superiority of our proposed metric 467

FAITHSCORE, we compare it with several multi- 468

modal generation evaluation metrics: 1) reference- 469

based: BLEU-{4} (Papineni et al., 2002), Rouge- 470

{L} (Lin, 2004), METEOR (Banerjee and Lavie, 471

2005), CHAIR (Rohrbach et al., 2018), SPICE (An- 472

derson et al., 2016) and 2) reference-free: CLIP- 473

Score (Hessel et al., 2021). Table 3 delineates 474

the correlation between various evaluation met- 475

rics and human judgment regarding LVLM faithful- 476

ness. Among all metrics, our metric FAITHSCORE 477

achieved the best correlation with human correla- 478

tion. More details and analysis about human corre- 479

lation can be found in Section F of the Appendix. 480

5 Evaluating Vision-Language Model 481

Hallucinations with FAITHSCORE 482

5.1 Models 483

We selected six open-source LVLMs for evaluation. 484

1) MiniGPT-4 (Zhu et al., 2023); 2) LLaVA (Liu 485

et al., 2023e); 3) InstrucBLIP (Dai et al., 2023); 4) 486

Multimodal-GPT (Gong et al., 2023); 5) mPLUG- 487

Owl (Ye et al., 2023); 6) LLaVA-1.5 (Liu et al., 488

2023d). In particular, these LVLMs are composed 489

of three essential components: a visual encoding 490

module, an alignment mechanism, and a large lan- 491

guage model. Furthermore, all of these models 492

have undergone fine-tuning using curated datasets 493

of visual instruction data. For example, LLaVA 494
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Figure 3: Answer lengths distributions of different mod-
els on two benchmark datasets.

leverages text-only GPT-4 to expand the existing495

COCO (Lin et al., 2014) dataset to a multimodal496

instruction-following dataset.497

5.2 Datasets498

To assess the performance of existing LVLMs, we499

conducted experiments using two datasets. Here is500

a description of each dataset: (1) MSCOCO-Cap:501

This dataset is designed for the image captioning502

task. We randomly select 1,000 images from the503

MSCOCO (Lin et al., 2014) validation set and de-504

vised the prompt as “Generate a concise caption505

for the given image”; (2) LLaVA-1k: We extract506

1,000 images from the MSCOCO validation set and507

generated three types of prompt-answer pairs (i.e.,508

detailed description, conversation, and complex509

question) for each image by ChatGPT, following510

the data generation method in (Liu et al., 2023e).511

5.3 Hallucination Evaluation512

Table 4 presents a comprehensive performance513

comparison of various models in terms of FAITH-514

SCORE when benchmarked on the LLaVA-1k and515

MSCOCO-Cap datasets. We observe that: (1)516

LLaVA-1.5 outperforms their counterparts in most517

situations. This demonstrates their preeminent ca-518

pability in achieving and maintaining faithfulness519

during generation processes. (2) It’s worth not-520

ing that different models have similar performance521

across tasks. For instance, MiniGPT achieved522

0.5679, 0.5768, and 0.5691 FAITHSCORE on the523

“Conversation”, “Detailed Description”, and “Com-524

plex Question” tasks, respectively. (3) For most525

models, the performance on the MSCOCO-Cap526

dataset is better than their performance on the527

LLaVA-1K dataset. The potential reason may be528
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Figure 4: The relation between FAITHSCORE and num-
bers of objects (i.e., entities) in the answers (LLaVA-1k
dataset). As the number of entities increases, model
performance (i.e., FAITHSCORE) drops significantly.

that model answers to the MSCOCO-Cap ques- 529

tions are usually shorter than their answers to the 530

LLaVA-1K questions (see Figure 3). 531

5.4 Sentence-level Hallucination Evaluation 532

To further understand the faithfulness of LVLMs, 533

we evaluate them with the FAITHSCORE (sentence- 534

level). Table 5 shows the sentence-level 535

FAITHSCORE evaluation across different LVLMs. 536

Multimodal-GPT achieves poor performance in 537

FAITHSCORE it also performs less favorably in 538

terms of sentence-level hallucination evaluation. 539

In addition, LLaVA-1.5 performs well in terms of 540

FAITHSCORE and FAITHSCORE (sentence-level). 541

This indicates the consistency between FAITH- 542

SCORE and sentence-level FAITHSCORE. 543

5.5 Other Analysis 544

The Influence of Answer Length on Halluci- 545

nations. To further elucidate the impact of an- 546

swer length on hallucinations, we analyze answer 547

lengths across various LVLMs on different datasets. 548

As illustrated in Figure 3, there’s a significant varia- 549

tion in the distribution of answer lengths produced 550

by different models. Multimodal GPT consistently 551

generates the lengthiest responses, potentially com- 552

promising its performance across tasks. In con- 553

trast, mPLUG-Owl tends to produce shorter an- 554

swers than its counterparts, hence it may generate 555

fewer hallucinations. Meanwhile, the image cap- 556

tioning task showed better faithfulness in generated 557

content than the other task for most LVLMs. This 558

may be attributed to the fact that captioning sen- 559

tences mainly are brief descriptions and shorter. 560
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LLaVA-1k MSCOCO-Cap
Conversation Detailed Description Complex Question Overall -

Multimodal-GPT 0.5321 0.5299 0.5385 0.5335 0.5440
MiniGPT-4 0.5679 0.5768 0.5691 0.5713 0.6359
mPLUG-Owl 0.7246 0.7240 0.7015 0.7167 0.8546
InstructBLIP 0.8061 0.8161 0.8049 0.8091 0.9392
LLaVA 0.8302 0.8386 0.8392 0.8360 0.8729
LLaVA-1.5 0.8569 0.8611 0.8516 0.8566 0.9425

Table 4: FAITHSCORE evaluation results (↑) of different LVLMs on the LLaVA-1k and MSCOCO-Cap datasets.

LLaVA-1k MSCOCO-Cap
Conversation Detailed Description Complex Question Overall -

Multimodal-GPT 0.4615 0.4827 0.5131 0.4858 0.6277
MiniGPT-4 0.6441 0.6489 0.6499 0.6476 0.6017
LLaVA 0.7106 0.6979 0.7038 0.7041 0.6681
InstructBLIP 0.7231 0.7327 0.7149 0.7236 0.7970
mPLUG-Owl 0.7369 0.7163 0.7344 0.7292 0.6447
LLaVA-1.5 0.7722 0.7717 0.7699 0.7713 0.8258

Table 5: FAITHSCORE (sentence-level) evaluation results (↑) of different LVLMs.
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Figure 5: FAITHSCORE on each type of atomic facts
on the LLaVA-1k benchmark. The types are ENTITY,
RELATION, COLOR, COUNT, and OTHERS.

The Influence of Multiple Objects. Figure 4561

shows how the number of objects in the answer562

generated by different models affects the FAITH-563

SCOREṪhe model’s faithfulness varies with the564

number of objects. While all models start with rel-565

atively high scores when there are few objects in566

the answer, their performance generally drop as the567

number of objects increases. For example, Instruct-568

BLIP starts with a high FAITHSCORE of 0.895 for569

1 object and sustains a relatively low score of 0.662570

for 10 objects.571

Analysis on Types of Hallucination To deduce572

the model strengths and vulnerabilities of each in573

maintaining faithfulness, we compared the faithful-574

ness performance of various models across differ-575

ent categories of hallucination. We mainly investi- 576

gated the five distinct categories: ENTITY, COUNT, 577

COLOR, RELATION, and OTHER attributes, moti- 578

vated by the existing works. From Figure 5, we can 579

observe that while LLaVA-1.5 consistently excels 580

across most categories, other models also show- 581

case strengths in specific domains. The bad per- 582

formance of some types may provide insightful 583

information for model improvement. Importantly, 584

achieving consistently high faithfulness across a 585

diverse range of categories remains a formidable 586

challenge for LVLMs. This demonstrates the im- 587

portance of fine-grained hallucination evaluation. 588

6 Conclusion 589

In this paper, we introduce a novel metric 590

called FAITHSCORE for evaluating free-form and 591

open-domain answers generated by large vision- 592

language models. Compared to previous metrics, 593

FAITHSCORE offers a finer level of granularity, 594

interpretability, and closer alignment with human 595

judgments. Our quantitative analysis demonstrates 596

that current LVLMs are prone to visual hallucina- 597

tion problems. We also find that the answer length 598

and number of objects could affect the faithfulness 599

of LVLMs. In addition, the faithfulness perfor- 600

mance of LVLMs on different types of atomic facts 601

varies. We expect that FAITHSCORE will be of 602

great value for evaluating forthcoming advanced 603

LVLMs. 604
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Limitations605

It’s worth noting that, at present, FAITH-606

SCORErelies on ChatGPT, which can be compu-607

tationally expensive. Therefore, in the future, re-608

searchers can implement this metric using open-609

source models to make it more accessible and610

widely applicable.611
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A Likert Scale Guideline898

For human evaluation, we utilize the Likert Scale899

to get the final faithfulness score for each testing900

sample. Specifically, suppose the generated answer901

consists of n atomic facts, out of which x atomic902

facts are determined as hallucinations. Both n and903

x are labeled by the annotators. The benchmark904

scoring guideline is outlined as follows:905

• Score 1: All atomic facts are hallucinations,906

symbolized as x == n;907

• Score 2: More than half of the atomic facts908

are hallucinations, represented as x > n/2;909

• Score 3: Half or fewer atomic facts are hallu-910

cinations, represented as n/3 <= x < n/2;911

• Score 4: Less than one-third of the atomic912

facts are hallucinations, which translates to913

x < n/3;914

• Score 5: All atomic facts accurately represent915

the visual content, meaning x = 0.916

B Details about VEMs917

We select OFA-EM, OFA1 (Wang et al., 2022),918

mPLUG2 (Li et al., 2022), BLIP-2-flant5xl, BLIP-919

2-flant5xxl3 (Li et al., 2023b), LLaVA (Liu et al.,920

2023e), and LLaVA-1.54 (Liu et al., 2023d) as921

VEM and evaluate them based on our annotated922

dataset.. OFA-EM is an open-source model which923

was finetuned on the SNLE-VE dataset (Xie et al.,924

2019). Hence, this model can tackle visual entail-925

ment tasks directly. For the OFA-EM model, the926

“neutral” is categorized as hallucination because927

the OFA can’t decide whether the verified content928

appears in the input image. For the other models,929

they are also open-source and finetuned on the vi-930

sual question answering dataset. To enable them to931

tackle the visual entailment task, we get an input932

a prompt “Statement: {atomic facts} Is this state-933

ment right according to the image? Please output934

yes or no.”, into models.935

C Testing Examples of GPT-4Vision936

Hallucination in Advanced GPT-4Vision Here937

we test the GPT-4Vision model on four examples.938

Based on the results, we can come to the conclusion939

1https://github.com/OFA-Sys/OFA.
2https://github.com/X-PLUG/mPLUG.
3https://github.com/salesforce/LAVIS/tree/main/projects/blip2.
4https://github.com/haotian-liu/LLaVA.

that the GPT-4Vision answers still contain various 940

hallucinations despite it may have very large pa- 941

rameters and have been trained with a large corpus, 942

as shown in Figure 6. 943

D More benchmarks 944

We further compute our metric on one dataset: 945

LRV-Instruction (Liu et al., 2023c). The results 946

are shown as follows, which are consistent with 947

the experimental results on datasets LLaVA-1k and 948

MSCOCO-Cap: InstructBLIP 0.6626, Multimodal- 949

GPT 0.4903, mPLUG-Owl 0.6433, MiniGPT-4 950

0.4638, LLaVA 0.7017, LLaVA-1.5 0.7855. 951

E Examples of Evaluation 952

Here we show three examples of how FAITH- 953

SCORE is computed and the existing best reference- 954

free CLIP-Score value in Figure 7, Figure 8, and 955

Figure 9. Additionally, we present an example 956

(see Figure 10) where the proposed metric score 957

diverges from human judgment, illustrating a dis- 958

crepancy attributed to an error generated by the 959

recognizer system. 960

F More Details about Human Evaluation 961

We employ 3 workers for annotation and each per- 962

son annotated 180 testing samples, via Amazon 963

Mechanical Turk5. Every worker is a native En- 964

glish speaker. They are paid 15-20 USD per hour. 965

Every worker went through a qualification test of 2 966

hours and was tested to be highly qualified. We de- 967

signed one HIT to consist of one question-answer 968

pair. The average time to complete one HIT (in- 969

cluding all steps of the annotation process) is 212.8 970

seconds. After the annotation, we calculate the 971

inter-annotator agreement rate by the Fleiss’ κ. 972

Firstly, we computed the Fleiss’ κ values across all 973

annotators for the sub-sentence identification task, 974

arriving at a value of 75.97%. This signifies a ro- 975

bust consensus among the annotators (Moore et al., 976

2006). Additionally, for the definitive faithfulness 977

score (1-5 Likert Scale), we computed the values 978

involving all annotators and achieved a result of 979

60.0%. This concordance among the evaluation 980

participants suggests the human evaluation results 981

are reliable. 982

We show our human evaluation results and auto- 983

matic evaluation results in Table 6. From this Ta- 984

ble, we find that models that perform better in the 985

5https://requester.mturk.com/.
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Model Human Automatic

LLaVA 0.7708 0.6997
InstructBLIP 0.7804 0.7165

Table 6: Human evaluation results and automatic evalu-
ation results of different LVLMs on the LLaVA dataset.

Metric Pearson’s r % Spearman’s ρ % Kendall’s τ %

BLEU-1 -15.1 -10.3 -7.5
BLEU-2 -12.7 -9.0 -6.6
BLEU-3 -7.2 -10.6 -7.6
BLEU-4 -1.9 -8.2 -5.8
ROUGE-1 -6.6 -3.0 -2.7
ROUGE-2 -5.7 -4.4 -3.4
ROUGE-L -8.7 -6.2 -4.7
METEOR -12.2 -8.5 -6.3
CHAIR 16.8 19.2 14.8
CLIP-Score 19.8 16.6 11.7
SPICE 20.2 21.3 25.4

Ours 48.17 38.44 47.61

Table 7: Correlation between each evaluation metric and
human judgment on LVLM hallucinations, measured by
Pearson’s r, Spearman’s ρ, and Kendall’s τ .

manual evaluations also have better performance986

in the automated evaluations. This indicates the987

high correlation between objective and subjective988

evaluation.989

To facilitate the annotator’s working process, we990

designed a user interface, as shown in Figure 13.991

Annotators have the option to start by reading the992

instructions located at the top of the interface, and993

they can access more detailed instructions through994

a link (refer to Figure 14). Following this, annota-995

tors can proceed to review the task description. In996

the third section, annotators can utilize buttons for997

sub-sentence identification and atomic fact verifica-998

tion. Simultaneously, they are able to add, modify,999

or delete atomic facts to enhance the quality of1000

the atomic information. For example, the annotator1001

should remove the duplicated atomic and add entity1002

category fact “There are suitcases.” in Figure 11.1003

Besides, we show a comprehensive correlation1004

comparison in Table 7. Traditional metrics that1005

require references (i.e., BLEU, ROUGE, and ME-1006

TEOR), have a poor correlation with human eval-1007

uation. For the open-ended question, it is hard to1008

get a ground truth answer. For the reference an-1009

swer, we use the answers provided by the LLaVA1010

paper. This leads to a poor correlation between1011

these metrics and human evaluation.1012

Surprisingly, CLIP-Score shows a similar corre-1013

lation with CHAIR which is specifically devised for1014

object hallucination evaluation. This demonstrates1015

Metric Pearson’s r % Spearman’s ρ % Kendall’s τ %

OFA_EM 31.85 21.27 29.03
BLIP-2-flant5xxl 41.80 28.52 36.81
LLaVA-1.5 48.17 38.44 47.61

Table 8: Correlation between our ablation methods and
human judgment on LVLM hallucinations, measured by
Pearson’s r, Spearman’s ρ, and Kendall’s τ .

the robustness and generalization of CLIP-Score. 1016

The original CHAIR show reflects the severity of 1017

the hallucinations. The larger the value of CHAIR, 1018

the more serious the hallucination problem of the 1019

model. The original CHAIR exhibits a pronounced 1020

negative correlation with human evaluation. Hence, 1021

we use the negative of CHAIR to compute the cor- 1022

relation. 1023

Compared with FAITHSCORE, CHAIR achieves 1024

a sub-optimal degree of correlation. A potential rea- 1025

son for CHAIR’s deviation from human evaluation 1026

could be rooted in its inherent design, which nar- 1027

rows its focus predominantly to a limited range of 1028

objects. This constrained evaluation scope may not 1029

adeptly deal with fine-grained and open-domain 1030

hallucinations, thus diminishing its validity and 1031

resonance with more comprehensive human evalu- 1032

ations. To justify our viewpoint, we compute the 1033

average number of objects with CHAIR for each an- 1034

swer and the result is 2.4, which is far less than the 1035

average number of atomic facts (i.e., 11.3) found 1036

in our human evaluation. Amid the varied metrics 1037

landscape, our metric FAITHSCORE achieved best 1038

correlation with human correlation. 1039

Table 8 reports the correlation between FAITH- 1040

SCORE calculated by VE models answers and hu- 1041

man answers. We observed that the higher VE 1042

model performance is directly related to the human 1043

correlation. Table 9 reports the correlation between 1044

FAITHSCORE and different VE models calculated 1045

by the annotated atomic facts. Similarly, the higher 1046

VE model performance is directly related to the 1047

human correlation. 1048

G Experimental Detail 1049

We run all VLMs on an NVIDIA A100 GPU. 1050

H Proportions of the descriptive 1051

sub-sentences and analytical 1052

sub-sentences 1053

To prove the necessity of the sentence identifica- 1054

tion step, we calculate the proportion of descriptive 1055

and analytical sub-sentences in answers to differ- 1056
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Metric Pearson’s r % Spearman’s ρ % Kendall’s τ %

OFA_EM 32.34 22.28 30.12
BLIP-2-flant5xxl 45.84 31.62 40.09
LLaVA-1.5 58.46 42.67 56.23

Table 9: Correlation between vem models with the an-
notated atomic facts and human judgment on LVLM
hallucinations, measured by Pearson’s r, Spearman’s ρ,
and Kendall’s τ .

ent classes of input questions (Figure 12). We can1057

observe that the distribution of sub-sentences is sig-1058

nificantly different in different category questions.1059

For example, detailed description questions only1060

have a small portion of analytical sub-sentences,1061

while complex questions have the opposite. In ad-1062

dition, analytical sub-sentences account for nearly1063

half of the distribution of clauses in the overall1064

annotated dataset, illustrating the importance of1065

identifying analytical sub-sentences and excluding1066

them from the fact checking step.1067

I Samples of Description/Analytics1068

Sub-sentence1069

We provide three examples of "descrip-1070

tion"/"analytics" sub-sentence, where [A]1071

denotes the analytical sub-sentence label and [D]1072

denotes the descriptive sub-sentence label. (1) The1073

skateboard is positioned on a ramp, [D] with the1074

skateboarder standing on it. [D] (2) The image1075

features a white bird, [D] which is likely a swan.1076

[A] (3) The image features a young boy standing1077

on a skateboard, [D] which is placed on a wooden1078

ramp. [D] The boy is wearing a green shirt and1079

brown shorts, [D] and he is positioned on the1080

ramp, ready to ride down. [D] The wooden ramp1081

is placed on a sidewalk, [D] which is a common1082

location for skateboarding. [A] The presence of1083

the ramp and the sidewalk suggests that the boy1084

is likely practicing or enjoying skateboarding1085

in a public space. [A] The overall composition1086

of the image highlights the boy’s focus and1087

determination as he prepares to ride down the1088

ramp, [A] showcasing the excitement and thrill of1089

skateboarding. [A]1090

J Prompts1091

We detailed the prompts of sub-sentence identifi-1092

cation and atomic fact generation in Figure 15 and1093

Figure 16, respectively.1094
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Image:

Prompt:

Answer:

What is the position of the skateboard in the
image? 

The image primarily focuses on a person standing
on an upside-down skateboard.

Image:

Prompt:

Answer:

Is the person riding a motorbike or scooter?

The person is riding a scooter.

Image:

Prompt:

Answer:

What kind of objects are included in the art
installation?

The art installation in the image includes:

1. Large spherical objects painted with vibrant and
colorful designs. Specifically:
   - One sphere is painted with a design that
resembles a stylized tiger face with a mix of bright
colors, including orange, black, pink, and green.
   - Another sphere, partially visible to the right, has
a design that appears to be another animal face, with
blue as one of the dominant colors……

Image:

Prompt:

Answer:

Can you describe the main features of this
image for me?

Certainly! Here's a detailed description of the main
features of the image…… 
There are two main individuals in the foreground:
  1. **Man**: He is wearing a red shirt and blue
pants. On his head, he has an umbrella hat with
multicolored panels, predominantly in red, yellow,
and blue.
  2. **Woman**: She is wearing a blue dress with a
design on the front, possibly a yellow symbol or
character…….

Figure 6: Illustration of answers generated from GPT-4Vision. Similar to existing open-source VLMs, GPT-4Vision
is still prone to the hallucination problem in the generated answer. The blue contents denote hallucinations.
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There is a desk.

Atomic Facts

Image:

Prompt:

LLaVA Answer:

What is the main object in the image?

The main object in the image is a colorful beach
umbrella.

- The beach umbrella is colorful.
- The beach umbrella is the main object in
the image.

- There is a beach umbrella.

FaithScore: 100%

CLIP-Score: 0.34

Figure 7: Illustration of how FAITHSCORE is computed
for a testing sample. The underlined contents denote
recognized descriptive content.

There is a desk.

Atomic Facts

Image:

Prompt:

Answer:

Can you elaborate on the elements of the
picture provided? 

The image features a desk with a newspaper, a pair
of sunglasses, and a book. The desk is cluttered with
various items, including a pen, a pencil, and a
notebook. The newspaper is spread out on the desk,
and the sunglasses are placed on top of it. The book
is also present on the desk, possibly indicating that
the person using the desk is reading or studying. The
overall scene suggests a workspace or study area
where the person has various items and resources
available for their tasks

- There is a newspaper.
- The newspaper is on the desk.

- There is a pair of sunglasses.

- There is a book.

- There are various items.
- The items are cluttered on the desk.
- The desk is cluttered.

- There is a pen.

- There is a pencil.

- There is a notebook.

- The newspaper is spread out on the desk.
- The sunglasses are placed on top of
newspaper.
- The book is on the desk.

- There is a desk.

FaithScore: 86%

CLIP-Score: 0.37

Figure 8: Illustration of how FAITHSCORE is computed
for a testing sample. The underlined contents denote
recognized descriptive content.
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There is a desk.

Atomic Facts

Image:

Prompt:

Answer:

Explain the visual content of the image in great
detail.

The image depicts a group of people walking down
a dirt road in a rural area. One person is riding a
motorcycle, while others are walking alongside the
road. There are several cars parked along the side of
the road, likely belonging to the people who are
walking or riding on the motorcycle.  In addition to
the people and vehicles, there are several trees
scattered throughout the scene, adding to the natural
setting

- There is a dirt road.
- There is a rural area.
- People are walking down a dirt road.
- The dirt road is in a rural area. 

- There is a person. 
- There is a motorcycle.
- The person is riding a motorcycle.

- There are others.
- Others are walking alongside the road.
- Others are walking. 

- There are cars. 
- The cars are parked.

- The trees are scattered.

- There is a group of people.

FaithScore: 80%

- There are trees.

CLIP-Score: 0.31

Figure 9: Illustration of how FAITHSCORE is computed
for a testing sample. The contents highlighted by the
underline denote recognized descriptive content.

Image:

Prompt:

Answer:

What is the position of the skateboard in the image? 

The image primarily focuses on a person standing on an upside-
down skateboard.

Human Annotated

FaithScore: 80%

- There is a person.
- There is a skateboard.
- The skateboard is 
upside-down. 
- A pearson is standing on an
upside-down skateboard.

Automatic

- There is a person.
- There is a skateboard.
- The skateboard is 
upside-down. 
- A pearson is standing on an
upside-down skateboard.

FaithScore: 100%

Figure 10: Illustration of the case that the proposed
metric score disagrees with human judgement

Atomic Facts

The two suitcases in the image are
black.

Generated Answer

There are two suitcases.
The suitcases are black.
There are two suitcases.
A person is standing on a sketaboard.

Figure 11: Illustration of atomic facts generated by
ChatGPT. The red contents denote the duplicated atomic
fact.
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Figure 12: Illustration of the proportions of the descrip-
tive sub-sentences and analytical sub-sentences in the
answers. “Detailed” and “Complex” denote the “de-
tailed description” and “complex question” categories,
respectively. The results are obtained from the 180 an-
notated samples.
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Annotation Instructions
If there is any definition that you cannot understand, please refer to the google doc .
Annotation Procedures:
1.Read the question, answer, and image.
2.Read each sub-sentence that is extracted from the answer. If it is a description sentence, check the “description” box. Otherwise, check the “analytical” box.
3.If you check the “analytical” box, please skip the following steps and repeat step 2 on other sub-sentences.
4.Read all elements in the sub-sentence. To ensure elements are faithful to the above image, you should check them by the following process:

a.Check whether each element is reasonable according to the sub-sentence. If the element is repeated or doesn’t appear in the corresponding sub-sentence, click 
“remove” to delete it. If the element is not atomic, click the “remove” to delete it.
b.Check whether the element is a natural sentence or the sentence correctly describes the element/entity. If not, please rephrase/revise them.
c.Check whether there is any element in the sub-sentence that is not described in the elements part. If so, click “Add an Element” to add it.

i.If you find the index of an element is not correct, please ignore it.
5.For each element, check whether it contains a hallucination. If so, click “yes”. Otherwise, click “no”.

Task
We would like to request your feedback on the performance of an AI assistant in response to the user question displayed below. We are evaluating the quality of the 
generated answer by Vision-Language Models (VLMs). The VLMs can generate a response for multimodal input. The VLMs seem to generate the content (e.g., 
‘‘person’’ in the above image) which don’t exist in the image input. There are various types of hallucinations, such as entities, relations, and attributes. In addition, some 
content in the answer may not be a hallucination despite the fact that the content doesn't appear in the input image. Because they are reasonable analyses within the 
context. Our task is to identify hallucinations that appear in the answers

Elapsed Time: 0:13:3

Question:
What is the position of the skateboard in the image?
Image:

Answer:
The skateboard is positioned on a ramp, with the skateboarder standing on it.

Whether this sub-sentence is a descriptive sentence?
sub-sentence 1: The skateboard is positioned on a ramp. descriptive analytical
Do these elements contain hallucination?

Remove element 1: There is a skateboard. yes no
Remove element 2: There is a ramp. yes no
Remove element 3: The skateboard is positioned on a ramp. yes no
Remove element 4: The skateboard is on a ramp. yes no
Add an Element

Whether this sub-sentence is a descriptive sentence?
sub-sentence 2: with the skateboarder standing on it. descriptive analytical
Do these elements contain hallucination?

Remove element 1:  There is a skateboarder. yes no
Remove element 2: The skateboarder is standing on a skateboard. Yes no
Add an Element

-

+

+

-

-
-

-
-

Figure 13: System software User Interface (UI) for annotators. Annotators can read the instructions at the top of the
interface and get detailed instructions (see Figure 14) via a link. Then the annotator can read the task description. In
the third part, the annotator can click buttons for sub-sentence identification and atomic fact verification. Meanwhile,
they can add, edit, and remove atomic facts to get high-quality atomic information.
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Figure 14: Instructions for data annotation. The instruction includes some definitions (e.g. atomic facts and
descriptive sub-sentence) to help annotators understand this task. Meanwhile, it also details the annotation
procedures.
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Figure 15: A prompt given to ChatGPT to identify descriptive sub-sentence from answers of VLMs.
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Figure 16: A prompt given to ChatGPT to generate atomic facts of VLMs answers.
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