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ABSTRACT

Developing transformer-based models in online reinforcement learning (RL) faces
a wide range of difficulties such as training instability or suboptimal behavior. In
this paper, we find out whether the transformer architecture can be considered
as a backbone for RL algorithms. We show that transformers can be trained by
classical online RL algorithms without requiring global changes in the training
process. Moreover, we explore different transformer architectures and ways to
train them. As a result we form a set of recommendations and practical takeaways
about how to develop stable approaches of transformer training. We hope that
our work will help in understanding the intricacies of configuring transformers for
reinforcement learning and will allow to formulate the basic principles of forming
a training pipeline for transformer-based architectures.

1 INTRODUCTION

The introduction of the transformer model (Vaswani et al., 2017) turned out to be a driving force
in a wide range of fields connected with deep learning solutions. The reinforcement learning (RL)
domain has also been influenced by transformers, especially in Partially Observable Markov Decision
Process (POMDP) environments and memory-demanding tasks (Ni et al., 2023; Pleines et al., 2023;
Lampinen et al., 2021; Goyal et al., 2022). Another key advantage of transformers lies in their
ability to process multimodal input (Xu et al., 2023). The efficient processing of multimodal data
helps to create Vision models (Radford et al., 2021), Vision-Language models (Lu et al., 2024) ,
Vision-Language-Action models (Kim et al., 2024), multitask agents (Grigsby et al., 2024), or even
generalist agents (Team et al., 2024; Jiang et al., 2022; Reed et al., 2022).

All these benefits in the RL domain can be achieved mostly by using offline datasets (Chen et al.,
2021; Janner et al., 2021; Zheng et al., 2022) and an offline pretraining stage (Nair et al., 2020;
Schwarzer et al., 2021; Sun et al., 2023). On the one hand, the supervised learning approach is
well-studied, so we have a set of measures that stabilize transformers and provide a performance
gain during training. On the other hand, classical RL works under the assumptions of a fully online
training setting, and there may be many obstacles to obtaining offline data, such as the high costs of
collecting it or the absence of trained policy which can do it. Various efforts (Zheng et al., 2022; Sun
et al., 2023; Elawady et al., 2024) have been made to improve transformer performance, but they still
require offline data, which contradicts the fully online setting.

The main question we want to answer in this paper is: “What limits the potential of transformers
in online RL, and how to overcome these limitations?”. To answer this question we created a list
of recommendations and practical takeaways that facilitate working with transformers.

Our key contributions are as follows:

• Transformer Viability in Online RL: We demonstrate that transformers can be effectively
trained in online RL for continuous control tasks, not requiring explicit memory usage,
achieving performance comparable to MLP-based baselines even in MDP settings.

• Empirical Insights and Training Recommendations: We conduct a series of experiments
to gain a deeper understanding of transformer performance in online control tasks. Our find-

∗Equal contribution.
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ings provide valuable insights and practical recommendations for stabilizing and effectively
training transformers in Online RL.

2 TRANSFORMERS IN ONLINE RL

To the best of our knowledge, unlike fully-offline and semi-offline approaches, which are well-
developed, online setting faces more difficulties and less covered by the research. Esslinger et al.
(2022) utilizes transformer model with Deep Q-Network-like (DQN) training algorithm to train
model from scratch in online setting. Initially developed for natural language processing (NLP),
Transformer-XL (Dai, 2019) (TrXL) has a recurrent structure of processing input sequences which
eliminates the need of capturing all dependent tokens into one sequence. Parisotto et al. (2020)
proposed a modification of the TrXL which is developed especially for the RL, enhanced by gating
mechanisms and turned out to be a powerful model in memory tasks (Pleines et al., 2023). Gating
mechanisms stabilize large multi-layered transformers by giving them the opportunity to bypass
the attention and feed-forward network inside the transformers block. Addressing the problems
of transformer’s quadratic computational comlexity, Pramanik et al. (2023) proposed Recurrent
Linear Transformer (ReLiT) and Approximate Recurrent Linear Transformer (AReLiT) with context-
independent inference cost and their gated versions.

3 BACKGROUND

3.1 TRANSFORMERS

Transformers (Vaswani et al., 2017) have become a widely used model in various domains due to
their attention module, which detects dependencies between input sequences of tokens. Formally, the
attention module can be described by equation 1.

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (1)

where: Q = XWQ – query matrix, K = XWK – key matrix, V = XWV – value matrix, X –
input sequence, dk – inner dimension, WQ,WK ,WV – learnable parameters

3.2 REINFORCEMENT LEARNING

Markov Decision Process (MDP) is defined as a tuple: M = (S,A,P,R, γ) where: S is a finite set
of states, A is a finite set of actions, P(s′|s, a) is a state transition probability function, R(s, a, s′) –
a reward function, and γ ∈ [0, 1] – a discount factor.

The goal in the RL is to find a policy π∗(a|s) that maximizes the expected cumulative reward
E [

∑∞
t=0 γ

trt] where rt is the reward received at time t.

4 EXPERIMENTAL SETUP

4.1 ENVIRONMENTS

MuJoCo (Todorov et al., 2012) is a set of motion control tasks which trains agent to efficiently control
movements. In this paper, we use HalfCheetah-v4, Ant-v4, Hopper-v4, Humanoid-v4, Walker-v4,
Pusher-v4, Reacher-v4 tasks. All the environments used in this work are vector-based.

ManiSkill3 (Tao et al., 2024) is a framework for robotic manipulation powered by SAPIEN (Xiang
et al., 2020). It has a wide range of robotic tasks which can be solved by RL algorithms. We
choose PushT-v0, PickCube-v0, TriFingerRotateCube-v0, PushCube-v0 and PullCube-v0 tasks to
demonstrate transformers ability to solve them and use vector-based environments for both of them.

4.2 TRANSFORMER BASELINES

In this study, we employed both on-policy and off-policy RL algorithms: Twin Delayed Deep
Deterministic Policy Gradient (TD3), Soft-Actor-Critic (SAC) (Haarnoja et al., 2018), and Proximal
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Policy Optimization (PPO) to train transformer-based models. Our goal was to identify general
patterns in transformer training within online RL settings, independent of the specific RL algorithms
and their parameters. For PPO and TD3 detailed description see subsection A.1 and subsection A.2
respectively.

As the transformer backbone, we employed a transformer architecture without any special modifica-
tions for the RL setting. One of the primary transformer backbones used for preprocessing sequences
of observations was GPT-2 (Radford et al., 2019), integrated with flash attention (Dao, 2023) to
speed up training. The corresponding model variations are referred to as TD3-GPT, SAC-GPT and
PPO-GPT (Figure 1). Additionally, we experimented with a TD3 Vanilla Transformer Encoder
variant (TD3-TransEncoder), which utilizes a classical transformer encoder (Vaswani et al., 2017) for
actor and uses MLP-based critic.
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Figure 1: PPO-GPT, TD3-GPT with shared sequence encoder and TD3-TransEncoder with separated
MLP critic.

4.3 EXPERIMENTAL PROTOCOL

For each experiment, we conducted three runs of the agents with different initializations and performed
evaluation during training using 100 random seeds ranging from 0 to 99. The results are presented as
the mean episodic reward (or success rate) ± the standard deviation (std). All the parameters of the
models used in the experiments are listed in Table 5 and Table 6.

5 EXPERIMENTS

Developing transformers in online RL requires careful handling to ensure stability and high per-
formance. In this section, we conduct a study of the transformer architecture: we compare it with
classical baselines, study it’s weaknesses and subtleties of the replay buffer design, check transformers
resistance to scaling, provide an exploration of the gatings behavior and compare transformer with its
sequence-to-sequence alternatives.

To ensure consistency and eliminate potential bias from hyperparameter tuning, we fixed all RL
algorithm parameters for TD3, SAC and PPO at the beginning of our experiments. These parameters
remained unchanged across all modifications and experimental setups, allowing us to isolate the
effects of transformer architectures on learning dynamics.
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5.1 TRANSFORMER COMPARISON WITH MLP AND LSTM BASELINES

Research Question. How effectively and stably can transformer-based models be trained in control
tasks by online RL algorithms, and how do their performance compare to MLP and LSTM-based
models under identical RL parameter settings?

Figure 2: Performance of the baselines on HalfCheetah (left), Ant (center) and Hopper (right).

Figure 3: Performance on ManiSkill3 tasks:
PickCube (above), PushT (middle), TriFinger-
RotateCube (below).

Details. In this experiment, we used TD3, PPO and
Soft-Actor-Critic (SAC) algorithms to evaluate our
baselines in MuJoCo and ManiSkill environments.
All the RL parameters are fixed and listed in Table 3.
TD3 and PPO algorithms were taken from the offi-
cial CleanRL implementation with fixed original RL
parameters. SAC implementation was taken from
the original ManiSkill3 codebase with its original
parameters. We compare TD3-TransEncoder and
PPO-GPT with these baselines by training in con-
trol environments such as HalfCheetah, Ant, Hopper.
Also, we provide experiments with PickCube, PushT
and TriFinger- RotateCube environments using SAC
GPT. Experiments with TD3 algorithm on PushCube
and PullCube environments are available in the Ap-
pendix.

Interpretation. Results on Figures 2, 3 show that
transformer-encoder modification achieves perfor-
mance comparable to MLP model on TD3 algo-
rithm while GPT-based architecture trained on SAC
achieves results comparable to SAC MLP, despite the
conventional expectation that transformers require
more data and computational resources for effective
training. This indicates that even small transform-
ers can be adequately optimized in online RL tasks
without major modifications to the training pipeline.

Additionally, according to Figures 2, 3 the training
stability of transformers remained at an acceptable
level compared to MLP models, regardless of their higher complexity. This suggests that transformers
can effectively leverage sequential representations without significant failures in learning.

Practical Takeaway: Even without extensive hyperparameter tuning, transformer-based
models can achieve performance comparable to well-established MLP-based baselines in
continuous control MDP tasks across both on-policy and off-policy RL algorithms. This
indicates that transformers can be effectively used in online RL without requiring major
modifications to the algorithm.

5.2 COMPARISON OF SCALING

Research Question. How well do transformers scale compared to MLPs in terms of performance,
and should we expect a loss of stability from larger models?
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Details. To evaluate the change in performance of transformers and MLPs as the number of model
parameters increases, we tested two variations: PPO-MLP and PPO-GPT. We fixed the RL parameters
across both models and increased: the number of transformer layers from 1 to 6 and the hidden
dimension from 128 to 256. Similarly, for MLP: the number of layers from 2 to 5 and the hidden
dimension from 64 to 512 (see Table 6). As a result, both models had a comparable number of
parameters (about 1.5M). We then tested these models on three standard Mujoco environments.

Figure 5: Performance of 1.5M PPO-GPT and PPO-MLP on HalfCheetah (left), Ant (center) and
Hopper (right).

Interpretation. Our results showed that increasing the number of parameters in MLP-based models
caused them to fail to learn properly under the original training settings. As seen in Figure 5, learning
quality significantly degraded. In contrast, transformers were less affected by the parameter increase,
showing higher performance.

Practical Takeaway: Transformers are more robust to parameter scaling rather than MLPs:
MLP-based models does not scale well without careful tuning.

5.3 SHARED/SEPARATE TRANSFORMER ENCODER

Research Questions. How does the separation or sharing of the transformer encoder between the
actor and the critic affect the stability and efficiency of learning in actor-critic RL algorithms?

Details. In this experiment, we employed TD3-GPT – an actor-critic algorithm, integrating a
transformer backbone to encode the sequence of observations. We tested different methods of using
the transformer encoder:

1. Shared Transformer – the actor and critic share a common transformer, which both can update
via their gradients. 2. Shared Transformer with Freezing – the actor and critic share a common
transformer, but during backpropagation from the critic’s loss, the transformer backbone is frozen.
Only the actor can update the transformer. 3. Separate Transformer – both the actor and the critic
have their own transformer for processing observation sequences.

To isolate the impact of other training effects associated with transformer-based actor-critic models,
as discussed in Section 5.5, we conducted this experiment in environments without terminations,
such as HalfCheetah, Pusher, and Reacher.

Figure 6: Comparison of different TD3-GPT architectures on HalfCheetah (left), Pusher (center) and
Reacher (right).

Interpretation. Experiments (Figure 6) revealed that when both the actor and the critic update the
same transformer, gradient conflicts arise: the actor attempts to optimize the policy by maximizing
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rewards, on the other hand, the critic, learns to predict state values by minimizing TD error. These
two objectives are distinct and can even partially contradict each other. As a result, the transformer
receives conflicting gradient updates, leading to unstable learning or even complete suppression due
to gradient conflict.

Practical Takeaway: Sharing a transformer backbone between actor and critic in off-policy
algorithms leads to gradient conflicts and instability. A separate transformer ensures stability
but increases computational cost. Freezing the shared transformer for the critic offers a
balanced trade-off between efficiency and stability.

5.4 SHARED/SEPARATE MLP OBSERVATION ENCODER

Research Question. Previous research has reported similar issues with sharing in RNN-based
off-policy architectures (Ni et al., 2023). Is this a general issue across all sequential models, or does
it extend beyond them? Do such problems also arise with MLP-based encoders?

Details. To conduct this experiment, similarly to the previous one but with MLP, we added an
additional linear layer to the TD3-MLP architecture for preprocessing observations. We then tested
two settings: 1. Shared MLP Encoder Layer – The actor and critic share an MLP encoder layer,
which both can update using their gradients. 2. Separate MLP Encoder Layer – The actor and critic
each have their own MLP encoder layer for processing observation sequences.

Figure 7: Comparison of different TD3-MLP architectures on HalfCheetah (left), Pusher (center) and
Reacher (right).

Interpretation. Results in Figure 7 show that the issues associated with encoder sharing are not
exclusive to sequential models; they also arise in MLP architectures. Our experiment demonstrated
that similar learning instabilities occur when an MLP agent shares an encoder without freezing it.

The experiment confirmed that the issues previously observed in RNNs and transformers with shared
encoders also manifest themselves in MLPs. When the actor and critic share an MLP encoder and
update it with their gradients, conflicts in learning arise, leading to convergence degradation.

Practical Takeaway: The sharing issue is not unique to sequential models (RNNs, Trans-
formers) but is also present in MLPs. This indicates a fundamental difficulty in jointly training
the actor and critic in off-policy alorithms with the same feature extraction function in state
based enviroments.

5.5 COMPARISON OF DIFFERENT BATCH FORMATION METHODS

Research Question. How does batch formation impact off-policy transformer-based models training
in online RL on continuous control tasks?
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Details. In this experiment, we trained TD3-GPT
in environments with fixed and variable episode
lengths using different batch formation methods:
Method 1 - rolling window of context length within
episodes, Method 2 - rolling window of context
length across all episodes. According to the Fig-
ure 8, the key difference between Method 2 and
Method 1 is the ability to create sequences that
include observations from multiple episodes. Figure 8: Visualization of different batch forma-

tion: Method 1 (left), Method 2 (right).

Figure 9: Comparison of different batch formation methods for TD3-GPT on Humanoid (left), Walker
(center) and Hopper (right).

Interpretation. Results in Figure 9 show that in environments with a fixed episode length, such as
HalfCheetah, Pusher, and Reacher, both methods performed well. However, in environments where
early episode termination is possible, such as Humanoid, Walker and Hopper, training with Method 1
failed to work effectively. In these environments, the agent needs to take correct actions from the
very first steps. The sequential nature of transformer models causes the data in training batches to
become highly correlated, especially at the initial stages of training in environments that allow early
termination. This high correlation makes it more difficult for the learning signal associated with
successful actions to propagate. Method 1 constructs batches only within a single episode, causing
the training to overlook cases where the agent quickly terminates an episode due to poor actions.

In these environments, Method 2 (batching across episodes) is preferable because it allows the
inclusion of data from different episodes. This provides the model with a clearer learning signal and
insights into which actions lead to early termination failures and which lead to successful episode
continuation, thereby making the training more effective.

Practical Takeaway: If early episode termination is possible, the model must see enough
successful cases to learn effective strategies. For environments that allow early episode
termination, batching across episodes is preferable because it improves adaptation from the
start of an episode and provides the model with a clearer learning signal.

5.6 GATINGS IMPACT ON THE LEARNING PROCESS

Research Question. How attention mechanism adjust to MDP environments during training of the
transformer-based models and how gating mechanisms influence the adaptation of transformer-based
models?

Details. In this experiment, we incorporated gating mechanisms into the transformer architecture.
Specifically, we employed GRU-based gating, as proposed by Parisotto et al. (2020), to control the
information flow through the attention mechanism. Instead of using a standard skip connections, we
replaced it with a two GRU gatings: the first one is applied after the multihead attention, and the
second one is applied after the FFN module.

r = σ(W (l)
r y + U (l)

r x), z = σ(W (l)
z y + U (l)

z x− b(l)g ),

ĥ = tanh(W (l)
g y + U (l)

g (r ⊙ x)), g(l)(x, y) = (1− z)⊙ x+ z ⊙ ĥ.
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To quantify the effect of this modification, we logged mean values of 1 − z during training. This
vector determines how much of the information bypasses the attention or FFN module versus how
much is updated based on the attention outputs. A high value of 1− z for attention gate implies that
a significant portion of the input information bypasses the attention mechanism, because the gate
itself allows the transformer to completely ignore the information coming from the attention block,
so potentially the transformer can be reduced to an MLP-based model if (1− z) → I .

We conducted experiments using the TD3-TransEncoder architecture in two robotic manipulation
environments from ManiSkill3.

Figure 10: Success rate (top) and gate bypass proportion (bottom) on PushCube (left) and PullCube
(right) tasks of TD3-TransEncoder.

Interpretation. Our results on the Figure 10 reveal a clear trend: throughout training, in both
PushCube and PullCube, the GRU gating module bypasses up to about 75% of the information from
the attention module, allowing it to pass unchanged through the network. This suggests that the
transformer learns to rely less on attention-based updates and instead prioritizes direct propagation of
previous information. This insight can be interpreted from the perspective that the gating mechanism
helps transformer ”understand” the MDP properties of the environment and bypass information
directly to the FFN module. This theory is partially supported by the fact that the mean value of the
FFN decreases to about 30% during training, indicating that the transformer uses its skip connection
for only 30% of the information.

At the same time, the gated transformer exhibits approximately the same performance during training.
Despite the significant impact of gatings in memory tasks which require multi-layered transformers,
small models in MDP environments do not benefit from them. Other comparisons can be found in
the Figure 17.

Practical Takeaway: GRU-based gating mechanisms allow transformers to regulate their re-
liance on the attention mechanism by dynamically adjusting how much information bypasses
attention blocks. In MDP environments, the transformer naturally shifts toward bypassing
attention, indicating that the model can efficiently extract task-relevant information from state
observations alone.

5.7 ATTENTION ALTERNATIVES

Research Question. How do models based on alternative attention mechanisms compare to the
standard self-attention mechanism in continuous control MDP tasks? Can replacing traditional
attention-based transformers with alternative architectures improve performance?

Details. In this experiment, we investigated whether modifying the attention mechanism could
enhance model performance in online reinforcement learning. Specifically, we evaluated TD3-
TransEncoder (”Vanilla Transformer” on the Figure 11) and its two modifications: Differential
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Attention Transformer and Mamba-based model. These models were tested on multiple continuous
control environments to assess their effectiveness compared to the standard transformer encoder.

Differential Attention Transformer (Ye et al., 2024) introduces an attention modification that partitions
the query and key vectors into two groups, producing separate softmax attention maps that are then
subtracted. This aims to improve stability by denoising the attention mechanism.

Mamba (Gu & Dao, 2023), on the other hand, replaces the attention mechanism with a structured
state-space model (SSM). Unlike transformers, which rely on self-attention with quadratic complexity,
Mamba processes sequences using a recurrent structure with linear-time complexity, making it a
potential alternative for long-range dependencies.

Figure 11: Averaged reward on Ant (left) and success rate on PushCube (right) environments.

Interpretation. According to Figure 11, the differential attention does not impact the training process
and failed to achieve superior overall results. In some cases, it reached peak performance faster (e.g.,
in the PushCube task), but in others, it underperformed compared to the standard transformer. Other
comparisons can be found in the Figure 18. Also the recurrent properties of Mamba do not contribute
to the stabilization or improvement of the learning process. On the contrary, in almost all experiments,
Mamba performed worse, requiring more time to achieve efficiency comparable to the transformer,
or not achieving it at all.

Practical Takeaway: A simple replacement of the attention mechanism with Differential
Attention or Mamba does not provide clear advantages in MDP continuous control tasks.

6 DISCUSSION

TD3-GPT(ours) TD3-MLP(ours) TD3-MLP* SAC-MLP* PPO-GRU* A2C-GRU* SAC-Transformer* VRM* MF-RNN* GPIDE-ESS* RESeL*

AntBLT-V-v0 922 ± 82 549 ± 221 476 ± 114 651 ± 65 690 ± 158 264 ± 60 692 ± 89 291 ± 23 1137 ± 178 1017 ± 80 1971 ± 60
HalfCheetahBLT-V-v0 1324 ± 150 343 ± 96 177 ± 115 513 ± 77 1072 ± 195 -412 ± 191 -449 ± 72 -1443 ± 220 2073 ± 69 1886 ± 165 2678 ± 176
HopperBLT-V-v0 759 ± 80 98 ± 58 223 ± 28 243 ± 4 438 ± 126 301 ± 155 240 ± 79 476 ± 28 1003 ± 426 2537 ± 167 2480 ± 91
AntBLT-P-v0 1984 ± 105 846 ± 34 897 ± 83 1147 ± 49 2103 ± 80 916 ± 60 894 ± 36 323 ± 37 352 ± 88 2597 ± 76 2829 ± 56
HalfCheetahBLT-P-v0 1788 ± 319 824 ± 137 906 ± 19 970 ± 47 1460 ± 143 353 ± 74 1400 ± 655 -1317 ± 217 2802 ± 88 2466 ± 129 2900 ± 179
HopperBLT-P-v0 1971 ± 243 525 ± 224 490 ± 140 310 ± 35 1592 ± 60 467 ± 78 1763 ± 493 557 ± 85 2234 ± 102 2373 ± 568 2769 ± 85
WalkerBLT-P-v0 1516 ± 190 451 ± 109 505 ± 32 483 ± 86 651 ± 156 200 ± 104 1150 ± 352 372 ± 96 940 ± 272 1502 ± 521 2505 ± 96

Table 1: Average Return on the Mujoco tasks with masked velocities/positions at 1.5M steps ± std
over 6 seeds. * – results from Luo et al. (2024).

Through a series of experiments, we have demonstrated that transformer-based models perform
competitively in MDP continuous control tasks. Their ability to achieve results comparable to well-
established baselines suggests that transformers can be a viable alternative to traditional architectures
in online reinforcement learning for continuous control. Furthermore, our experiments in POMDP
(Table 1) environments indicate promising results when compared to other baseline models. These
findings highlight the potential of transformers to effectively capture temporal dependencies and
leverage sequential representations even in settings where full observability is not guaranteed.

Given these insights, we see potential for transformers to become a universal architecture for online
RL, much like their success in supervised learning. However, realizing this vision requires a deeper
understanding of how transformers behave across different settings and task distributions in online
RL. Stability, training efficiency, and adaptability remain key areas for investigation. Future research
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should focus on evaluating transformers’ ability to generalize, especially in multi-task RL and meta-
learning settings. Additionally, further studies are needed to explore their role in memory retention,
credit assignment, and long-horizon planning for continuous control tasks. By addressing these
challenges, we can unlock the full potential of transformers in online RL and establish more robust
and scalable training pipelines.

7 CONCLUSION

In this work, we investigated the potential of transformer-based models in online RL for continuous
control tasks. Our primary objective was to assess whether transformers can be effectively trained in
fully online settings without requiring substantial modifications to the training pipeline. Through a
series of experiments, we demonstrated that transformers can achieve performance comparable to
classical MLP-based architectures when trained using standard online RL algorithms such as TD3
and PPO. Additionally, we provided insights into the challenges and design choices necessary for
stabilizing transformer training in online RL.

Our results highlight the capability of transformers to function as a viable alternative to traditional
architectures, offering flexibility in handling sequential dependencies. However, our study primarily
focused on MDP environments, and the behavior of transformers in POMDP settings remains an
open question. Exploring their robustness in partially observable environments and extending their
application to vision-based online RL tasks are promising directions for future research.

We believe that our work provides valuable insights into the training dynamics of transformers in
online RL and serves as a stepping stone for further advancements in this field.
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A APPENDIX

Figure 12: TD3-MLP, TD3-
LSTM and TD3-Trans Encoder
comparison on Ant.

Figure 13: TD3-MLP, TD3-
LSTM and TD3-Trans Encoder
comparison on Hopper.

Figure 14: TD3-MLP, TD3-
LSTM and TD3-Trans Encoder
comparison on PullCube (Re-
ward).

Figure 15: TD3-MLP, TD3-LSTM and TD3-
Trans Encoder comparison on PushCube en-
vironment (Reward).

Figure 16: TD3-MLP, TD3-LSTM and TD3-
Trans Encoder comparison on PullCube envi-
ronment (Success Rate).

Table 2: Correlations of training parameters and average episodic reward in MuJoCo environments.

PARAMETER CORRELATION

γ-DISCOUNT +0.76
τ -SOFT UPDATE +0.14
POLICY NOISE +0.03
NOISE CLIP +0.01
EXPLORATION NOISE -0.14
BATCH SIZE -0.23

Table 3: Hyperparameters for TD3-based baselines.

TD3 TRANSFORMER ENCODER TD3-GPT TD3-MLP

PARAMETER MANISKILL MUJOCO MUJOCO MUJOCO

γ-DISCOUNT 0.8 0.99 0.99 0.99
τ -SOFT UPDATE 0.01 0.007 0.005 0.005
POLICY NOISE 0.2 0.2 0.2 0.2
NOISE CLIP 0.5 0.2 0.5 0.5
EXPLORATION NOISE 0.1 0.1 0.1 0.1
BATCH SIZE 500 256 256 256
LEARNING RATE 3× 10−4 3× 10−4 3× 10−4 3× 10−4

BUFFER SIZE 0.05× 106 0.5× 106 1.5× 106 1.5× 106

LEARNING STARTS 600 25000 25000 25000
SEEDS 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

NUM LAYERS 1 1 1 2
NUM HEADS 2 2 4 -
DIM MODEL 256 256 128 -
DIM FEEDFORWARD 512 512 256 256
DROPOUT 0.05 0.05 0.0 -
CONTEXT LEN 3 3 10 -
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Table 4: Hyperparameters for SAC-based baselines.

PARAMETER SAC-GPT SAC-LSTM SAC-MLP

γ (DISCOUNT) 0.8 0.8 0.8
τ (TAU) 0.01 0.01 0.01
α (ALPHA) 0.2 0.2 0.2
UPDATE EPOCHS 10 10 10
BATCH SIZE 1024 1024 1024
LEARNING STARTS 4000 4000 4000
LEARNING RATE 3× 10−4 3× 10−4 3× 10−4

SEEDS 1,2,3,4 1,2,3,4 1,2,3,4

NUM. LAYERS 1 1 3
NUM. HEADS 2 - -
DIM. MODEL 256 256 256
DIM. FEEDFORWARD 512 512 512
CONTEXT LENGTH 10 10 -

Table 5: Hyperparameters for PPO-based baselines.

PARAMETER PPO-GPT PPO-MLP

γ-DISCOUNT 0.99 0.99
GAE λ 0.95 0.95
MAX GRAD NORM 0.5 0.5
CLIP COEF 0.2 0.2
VF COEF 0.5 0.5
UPDATE EPOCH 10 10
NUM MINIBATCHES 32 32
BATCH SIZE 2048 2048
LEARNING RATE 3× 10−4 3× 10−4

SEEDS 1,2,3,4 1,2,3,4

NUM LAYERS 1 3
NUM HEADS 4 -
DIM MODEL 128 -
DIM FEEDFORWARD 128 64
CONTEXT LEN 10 -

Table 6: Hyperparameters for the scaling experiment.

PARAMETER PPO-GPT PPO-MLP

γ-DISCOUNT 0.99 0.99
GAE λ 0.95 0.95
MAX GRAD NORM 0.5 0.5
CLIP COEF 0.2 0.2
VF COEF 0.5 0.5
UPDATE EPOCH 10 10
NUM MINIBATCHES 32 32
BATCH SIZE 2048 2048
LEARNING RATE 3× 10−4 3× 10−4

SEEDS 1,2,3,4 1,2,3,4

NUM LAYERS 6 5
NUM HEADS 4 -
DIM MODEL 256 -
DIM FEEDFORWARD 128 512
CONTEXT LEN 10 -
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Supplementary materials for gating exploration :

Figure 17: HalfCheetah(left), Ant(center), Hopper(right) rewards with their corresponding bypass
proportions.

Supplementary materials for attention alternatives exploration :

`

Figure 18: top line: averaged rewards on Hopper(left), HalfCheetah(middle), PushCube(right)
bottom line: averaged reward(left) and success rate(right) on PullCube.
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A.1 PPO ALGORITHM

Proximal Policy Optimization (PPO) Schulman et al. (2017) is an on-policy algorithm that improves
stability and efficiency over traditional policy gradient methods. It achieves this by constraining the
policy update to prevent overly large changes, which can destabilize training.

PPO optimizes a surrogate objective function with a clipped probability ratio:

J(θ) = Et [min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] (2)

where: rt(θ) =
πθ(at|st)
πθold (at|st) is the probability ratio of the new and old policies. At is the advantage

function, estimating the relative benefit of taking action at in state st. ϵ is a small clipping threshold
(e.g., 0.2), limiting how much rt(θ) can deviate from 1.

PPO also employs a value function loss for training the critic network:

LV (θ) = Et

[
(Vθ(st)−Rt)

2
]

(3)

where Vθ(st) is the estimated state value and Rt is the empirical return.

A.2 TD3 ALGORITHM

Twin Delayed Deep Deterministic Policy Gradient Fujimoto et al. (2018) (TD3) is an off-policy
algorithm that utilizes a replay buffer to learn an optimal policy. It uses an actor-critic pipeline for
training: the actor πϕ(s) improves its performance by updating its weights in the direction of the
critic’s gradient ascent. At the same time, the critic Qθ(s, a) is trained to approximate the Q-value
function by minimizing the temporal difference error. In order to avoid overly optimal estimations
of the critic like in Deep Deterministic Policy Gradient Lillicrap (2015), TD3 has two critics that
approximate Q-function separately.

Critic Loss: The loss for each critic is computed as the mean squared error between the predicted
and target Q-value:

Lcritic =
1

N

N∑
i=1

(
Qθj (si, ai)− yi

)2
, j ∈ {1, 2} (4)

where yi = ri + γminj=1,2 Q̂θj (si+1, π̂ϕ(si+1) + ϵ) is a target value, ri is a reward, π̂ϕ, Q̂θj is a
target actor, j-th target critic, ϵ ∼ clip(N (0, σ2),−c, c) is clipped Gaussian noise and N is a batch
size.

Actor Loss: The actor loss is computed to maximize the expected Q-value under the current policy:

Lactor = − 1

N

N∑
i=1

Qθ1(si, πϕ(si)) (5)

A.3 GRU-GATE DESCRIPTION

r = σ(W (l)
r y + U (l)

r x),

z = σ(W (l)
z y + U (l)

z x− b(l)g ),

ĥ = tanh(W (l)
g y + U (l)

g (r ⊙ x)),

g(l)(x, y) = (1− z)⊙ x+ z ⊙ ĥ (6)

Where x, y is input data flow, (1− z) represents the proportion of information received from the skip
connection and W

(l)
r , U

(l)
r ,W

(l)
z , U

(l)
z ,W

(l)
g , U

(l)
g are learnable parameters.
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