
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A NEW PERSPECTIVE ON TRANSFORMERS IN
ONLINE RL FOR CONTINUOUS CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Developing transformer-based models in online reinforcement learning (RL) faces
a wide range of difficulties such as training instability or suboptimal behavior. In
this paper, we find out whether the transformer architecture can be considered
as a backbone for RL algorithms. We show that transformers can be trained by
classical online RL algorithms without requiring global changes in the training
process. Moreover, we explore different transformer architectures and ways to
train them. As a result we form a set of recommendations and practical takeaways
about how to develop stable approaches of transformer training. We hope that
our work will help in understanding the intricacies of configuring transformers for
reinforcement learning and will allow to formulate the basic principles of forming
a training pipeline for transformer-based architectures.

1 INTRODUCTION

The introduction of the transformer model (Vaswani et al., 2017) turned out to be a driving force
in a wide range of fields connected with deep learning solutions. The reinforcement learning (RL)
domain has also been influenced by transformers, especially in Partially Observable Markov Decision
Process (POMDP) environments and memory-demanding tasks (Ni et al., 2023; Pleines et al., 2023;
Lampinen et al., 2021; Goyal et al., 2022). Another key advantage of transformers lies in their
ability to process multimodal input (Xu et al., 2023). The efficient processing of multimodal data
helps to create Vision models (Radford et al., 2021), Vision-Language models (Lu et al., 2024) ,
Vision-Language-Action models (Kim et al., 2024), multitask agents (Grigsby et al., 2024), or even
generalist agents (Team et al., 2024; Jiang et al., 2022; Reed et al., 2022).

All these benefits in the RL domain can be achieved mostly by using offline datasets (Chen et al.,
2021; Janner et al., 2021; Zheng et al., 2022) and an offline pretraining stage (Nair et al., 2020;
Schwarzer et al., 2021; Sun et al., 2023). On the one hand, the supervised learning approach is
well-studied, so we have a set of measures that stabilize transformers and provide a performance
gain during training. On the other hand, classical RL works under the assumptions of a fully online
training setting, and there may be many obstacles to obtaining offline data, such as the high costs of
collecting it or the absence of trained policy which can do it. Various efforts (Zheng et al., 2022; Sun
et al., 2023; Elawady et al., 2024) have been made to improve transformer performance, but they still
require offline data, which contradicts the fully online setting.

The main question we want to answer in this paper is: “What limits the potential of transformers
in online RL, and how to overcome these limitations?”. To answer this question we created a list
of recommendations and practical takeaways that facilitate working with transformers.

Our key contributions are as follows:

• Transformer Viability in Online RL: We demonstrate that transformers can be effectively
trained in online RL for continuous control tasks, not requiring explicit memory usage,
achieving performance comparable to MLP-based baselines even in MDP settings.

• Empirical Insights and Training Recommendations: We conduct a series of experiments
to gain a deeper understanding of transformer performance in online control tasks. Our find-
ings provide valuable insights and practical recommendations for stabilizing and effectively
training transformers in Online RL.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 TRANSFORMERS IN ONLINE RL

To the best of our knowledge, unlike fully-offline and semi-offline approaches, which are well-
developed, online setting faces more difficulties and less covered by the research. Esslinger et al.
(2022) utilizes transformer model with Deep Q-Network-like (DQN) training algorithm to train
model from scratch in online setting. Initially developed for natural language processing (NLP),
Transformer-XL (Dai, 2019) (TrXL) has a recurrent structure of processing input sequences which
eliminates the need of capturing all dependent tokens into one sequence. Parisotto et al. (2020)
proposed a modification of the TrXL which is developed especially for the RL, enhanced by gating
mechanisms and turned out to be a powerful model in memory tasks (Pleines et al., 2023). Gating
mechanisms stabilize large multi-layered transformers by giving them the opportunity to bypass
the attention and feed-forward network inside the transformers block. Addressing the problems
of transformer’s quadratic computational comlexity, Pramanik et al. (2023) proposed Recurrent
Linear Transformer (ReLiT) and Approximate Recurrent Linear Transformer (AReLiT) with context-
independent inference cost and their gated versions.

3 BACKGROUND

3.1 TRANSFORMERS

Transformers (Vaswani et al., 2017) have become a widely used model in various domains due to
their attention module, which detects dependencies between input sequences of tokens. Formally, the
attention module can be described by equation 1.

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (1)

where: Q = XWQ – query matrix, K = XWK – key matrix, V = XWV – value matrix, X –
input sequence, dk – inner dimension, WQ,WK ,WV – learnable parameters

3.2 REINFORCEMENT LEARNING

Markov Decision Process (MDP) is defined as a tuple: M = (S,A,P,R, γ) where: S is a finite set
of states, A is a finite set of actions, P(s′|s, a) is a state transition probability function, R(s, a, s′) –
a reward function, and γ ∈ [0, 1] – a discount factor.

The goal in the RL is to find a policy π∗(a|s) that maximizes the expected cumulative reward
E [

∑∞
t=0 γ

trt] where rt is the reward received at time t.

4 EXPERIMENTAL SETUP

4.1 ENVIRONMENTS

MuJoCo (Todorov et al., 2012) is a set of motion control tasks which trains agent to efficiently control
movements. In this paper, we use HalfCheetah-v4, Ant-v4, Hopper-v4, Humanoid-v4, Walker-v4,
Pusher-v4, Reacher-v4 tasks. All the environments used in this work are vector-based.

ManiSkill3 (Tao et al., 2024) is a framework for robotic manipulation powered by SAPIEN (Xiang
et al., 2020). It has a wide range of robotic tasks which can be solved by RL algorithms. We
choose PushCube-v0 and PullCube-v0 tasks to demonstrate transformers ability to solve them and
use vector-based environments for both of them.

4.2 TRANSFORMER BASELINES

In this study, we employed both on-policy and off-policy RL algorithms: Twin Delayed Deep
Deterministic Policy Gradient (TD3) and Proximal Policy Optimization (PPO) to train transformer-
based models. Our goal was to identify general patterns in transformer training within online RL
settings, independent of the specific RL algorithms and their parameters. For PPO and TD3 detailed
description see subsection A.1 and subsection A.2 respectively.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

As the transformer backbone, we employed a transformer architecture without any special modifica-
tions for the RL setting. One of the primary transformer backbones used for preprocessing sequences
of observations was GPT-2 (Radford et al., 2019), integrated with flash attention (Dao, 2023) to speed
up training. The corresponding model variations are referred to as TD3-GPT and PPO-GPT (Figure 1).
Additionally, we experimented with a TD3 Vanilla Transformer Encoder variant (TD3-TransEncoder),
which utilizes a classical transformer encoder (Vaswani et al., 2017) for actor and uses MLP-based
critic.

Observation
Encoder

GPT-2

Value head Action head

Action
Encoder

MLP

x

Observation
Encoder

GPT-2

Value head Action head

: concatenation: stop grad: connection

PPO GPT TD3 GPT

M: context size

Transformer Encoder

Value head Action head

TD3 TransEncoder

x

MLP

Observation
Encoder

Observation
Encoder

Action
Encoder

Figure 1: PPO-GPT, TD3-GPT with shared sequence encoder and TD3 TransEncoder with separated
MLP critic.

4.3 EXPERIMENTAL PROTOCOL

For each experiment, we conducted three runs of the agents with different initializations and performed
evaluation during training using 100 random seeds ranging from 0 to 99. The results are presented as
the mean episodic reward (or success rate) ± the standard deviation (std). All the parameters of the
models used in the experiments are listed in Table 4 and Table 5.

5 EXPERIMENTS

Developing transformers in online RL requires careful handling to ensure stability and high per-
formance. In this section, we conduct a study of the transformer architecture: we compare it with
classical baselines, study it’s weaknesses and subtleties of the replay buffer design, check transformers
resistance to scaling, provide an exploration of the gatings behavior and compare transformer with its
sequence-to-sequence alternatives.

To ensure consistency and eliminate potential bias from hyperparameter tuning, we fixed all RL
algorithm parameters for TD3 and PPO at the beginning of our experiments. These parameters
remained unchanged across all modifications and experimental setups, allowing us to isolate the
effects of transformer architectures on learning dynamics.

5.1 TRANSFORMER COMPARISON WITH MLP AND LSTM BASELINES

Research Question. How effectively and stably can transformer-based models be trained in control
tasks by online RL algorithms, and how do their performance compare to MLP and LSTM-based
models under identical RL parameter settings?

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Performance of the baselines on HalfCheetah (left), Ant (center) and Hopper (right).

Figure 3: Performance of the baselines
on ManiSkill3 tasks: PullCube (above),
PushCube (below).

Details. In this experiment, we used TD3-MLP, TD3-
LSTM and PPO-MLP as the baselines and fixed all
RL parameters listed in Table 3. We compare TD3-
TransEncoder and PPO-GPT with these baselines by
training in control environments such as HalfCheetah,
Ant, Hopper, PushCube and PullCube.

Interpretation. Results in Figures 2, 3 show that
transformer-encoder modification achieves perfor-
mance comparable to MLP model on TD3 algo-
rithm while GPT-based architecture trained on PPO
achieves results comparable to PPO MLP, despite the
conventional expectation that transformers require
more data and computational resources for effective
training. This indicates that even small transform-
ers can be adequately optimized in online RL tasks
without major modifications to the training pipeline.

Additionally, according to Figures 2, 3 the training
stability of transformers remained at an acceptable
level compared to MLP models, regardless of their
higher complexity. This suggests that transformers
can effectively leverage sequential representations
without significant failures in learning.

Practical Takeaway: Even without extensive hyperparameter tuning, transformer-based
models can achieve performance comparable to well-established MLP-based baselines in
continuous control MDP tasks across both on-policy and off-policy RL algorithms. This
indicates that transformers can be effectively used in online RL without requiring major
modifications to the algorithm.

5.2 COMPARISON OF SCALING

Research Question. How well do transformers scale compared to MLPs in terms of performance,
and should we expect a loss of stability from larger models?

Details. To evaluate the change in performance of transformers and MLPs as the number of model
parameters increases, we tested two variations: PPO-MLP and PPO-GPT. We fixed the RL parameters
across both models and increased: the number of transformer layers from 1 to 6 and the hidden
dimension from 128 to 256. Similarly, for MLP: the number of layers from 2 to 5 and the hidden
dimension from 64 to 512 (see Table 5). As a result, both models had a comparable number of
parameters (about 1.5M). We then tested these models on three standard Mujoco environments.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 5: Performance of 1.5M PPO-GPT and PPO-MLP on HalfCheetah (left), Ant (center) and
Hopper (right).

Interpretation. Our results showed that increasing the number of parameters in MLP-based models
caused them to fail to learn properly under the original training settings. As seen in Figure 5, learning
quality significantly degraded. In contrast, transformers were less affected by the parameter increase,
showing higher performance.

Practical Takeaway: Transformers are more robust to parameter scaling rather than MLPs:
MLP-based models does not scale well without careful tuning.

5.3 SHARED/SEPARATE TRANSFORMER ENCODER

Research Questions. How does the separation or sharing of the transformer encoder between the
actor and the critic affect the stability and efficiency of learning in actor-critic RL algorithms?

Details. In this experiment, we employed TD3-GPT – an actor-critic algorithm, integrating a
transformer backbone to encode the sequence of observations. We tested different methods of using
the transformer encoder:

1. Shared Transformer – the actor and critic share a common transformer, which both can update
via their gradients. 2. Shared Transformer with Freezing – the actor and critic share a common
transformer, but during backpropagation from the critic’s loss, the transformer backbone is frozen.
Only the actor can update the transformer. 3. Separate Transformer – both the actor and the critic
have their own transformer for processing observation sequences.

To isolate the impact of other training effects associated with transformer-based actor-critic models,
as discussed in Section 5.5, we conducted this experiment in environments without terminations,
such as HalfCheetah, Pusher, and Reacher.

Figure 6: Comparison of different TD3-GPT architectures on HalfCheetah (left), Pusher (center) and
Reacher (right).

Interpretation. Experiments (Figure 6) revealed that when both the actor and the critic update the
same transformer, gradient conflicts arise: the actor attempts to optimize the policy by maximizing
rewards, on the other hand, the critic, learns to predict state values by minimizing TD error. These
two objectives are distinct and can even partially contradict each other. As a result, the transformer
receives conflicting gradient updates, leading to unstable learning or even complete suppression due
to gradient conflict.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Practical Takeaway: Sharing a transformer backbone between actor and critic in off-policy
algorithms leads to gradient conflicts and instability. A separate transformer ensures stability
but increases computational cost. Freezing the shared transformer for the critic offers a
balanced trade-off between efficiency and stability.

5.4 SHARED/SEPARATE MLP OBSERVATION ENCODER

Research Question. Previous research has reported similar issues with sharing in RNN-based
off-policy architectures (Ni et al., 2023). Is this a general issue across all sequential models, or does
it extend beyond them? Do such problems also arise with MLP-based encoders?

Details. To conduct this experiment, similarly to the previous one but with MLP, we added an
additional linear layer to the TD3-MLP architecture for preprocessing observations. We then tested
two settings: 1. Shared MLP Encoder Layer – The actor and critic share an MLP encoder layer,
which both can update using their gradients. 2. Separate MLP Encoder Layer – The actor and critic
each have their own MLP encoder layer for processing observation sequences.

Figure 7: Comparison of different MLP TD3 architectures on HalfCheetah (left), Pusher (center) and
Reacher (right).

Interpretation. Results in Figure 7 show that the issues associated with encoder sharing are not
exclusive to sequential models; they also arise in MLP architectures. Our experiment demonstrated
that similar learning instabilities occur when an MLP agent shares an encoder without freezing it.

The experiment confirmed that the issues previously observed in RNNs and transformers with shared
encoders also manifest themselves in MLPs. When the actor and critic share an MLP encoder and
update it with their gradients, conflicts in learning arise, leading to convergence degradation.

Practical Takeaway: The sharing issue is not unique to sequential models (RNNs, Trans-
formers) but is also present in MLPs. This indicates a fundamental difficulty in jointly training
the actor and critic in off-policy alorithms with the same feature extraction function in state
based enviroments.

5.5 COMPARISON OF DIFFERENT BATCH FORMATION METHODS

Research Question. How does batch formation impact off-policy transformer-based models training
in online RL on continuous control tasks?

Details. In this experiment, we trained TD3-GPT
in environments with fixed and variable episode
lengths using different batch formation methods:
Method 1 - rolling window of context length within
episodes, Method 2 - rolling window of context
length across all episodes. According to the Fig-
ure 8, the key difference between Method 2 and
Method 1 is the ability to create sequences that
include observations from multiple episodes. Figure 8: Visualization of different batch forma-

tion: Method 1 (left), Method 2 (right).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 9: Comparison of different batch formation methods for GPT-2 TD3 on Humanoid (left),
Walker (center) and Hopper (right).

Interpretation. Results in Figure 9 show that in environments with a fixed episode length, such as
HalfCheetah, Pusher, and Reacher, both methods performed well. However, in environments where
early episode termination is possible, such as Humanoid, Walker and Hopper, training with Method 1
failed to work effectively.

Interpretation. Results in Figure 9 show that in environments with a fixed episode length, such as
HalfCheetah, Pusher, and Reacher, both methods performed well. However, in environments where
early episode termination is possible, such as Humanoid, Walker and Hopper, training with Method 1
failed to work effectively. In these environments, the agent needs to take correct actions from the very
first steps. With Method 1, such critical trajectories do not appear in the batch, preventing the agent
from learning properly. For environments where early termination is possible (Humanoid, Walker,
Hopper), it is crucial for the agent to learn to take correct actions from the start of an episode to avoid
termination. However, Method 1 constructs batches only within a single episode, causing training to
overlook important cases where the agent quickly terminates an episode due to poor actions.

In these environments, Method 2 (batching across episodes) is preferable as it allows the inclusion
of data from different episodes. This provides the model with insights into which actions lead to
early termination failures and which lead to successful episode continuation, making training more
effective.

Practical Takeaway: If early episode termination is possible, the model must see enough
termination cases to learn effective strategies. For environments which allows early episode
termination batching across episodes is preferable as it improves adaptation from the start of
an episode, it’s helps the agent observe diverse initial states and their consequences, which is
crucial for environments dependent on early-stage actions.

5.6 GATINGS IMPACT ON THE LEARNING PROCESS

Research Question. How attention mechanism adjust to MDP environments during training of the
transformer-based models and how gating mechanisms influence the adaptation of transformer-based
models?

Details. In this experiment, we incorporated gating mechanisms into the transformer architecture.
Specifically, we employed GRU-based gating, as proposed by Parisotto et al. (2020), to control the
information flow through the attention mechanism. Instead of using a standard skip connections, we
replaced it with a two GRU gatings: the first one is applied after the multihead attention, and the
second one is applied after the FFN module.

r = σ(W (l)
r y + U (l)

r x), z = σ(W (l)
z y + U (l)

z x− b(l)g ),

ĥ = tanh(W (l)
g y + U (l)

g (r ⊙ x)), g(l)(x, y) = (1− z)⊙ x+ z ⊙ ĥ.

To quantify the effect of this modification, we logged mean values of 1 − z during training. This
vector determines how much of the information bypasses the attention or FFN module versus how
much is updated based on the attention outputs. A high value of 1− z for attention gate implies that
a significant portion of the input information bypasses the attention mechanism, because the gate
itself allows the transformer to completely ignore the information coming from the attention block,
so potentially the transformer can be reduced to an MLP-based model if (1− z) → I .

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We conducted experiments using the TD3-TransEncoder architecture in two robotic manipulation
environments from ManiSkill3.

Figure 10: Success rate (top) and gate bypass proportion (bottom) on PushCube (left) and PullCube
(right) tasks.

Interpretation. Our results on the Figure 10 reveal a clear trend: throughout training, in both
PushCube and PullCube, the GRU gating module bypasses up to about 75% of the information from
the attention module, allowing it to pass unchanged through the network. This suggests that the
transformer learns to rely less on attention-based updates and instead prioritizes direct propagation of
previous information. This insight can be interpreted from the perspective that the gating mechanism
helps transformer ”understand” the MDP properties of the environment and bypass information
directly to the FFN module. This theory is partially supported by the fact that the mean value of the
FFN decreases to about 30% during training, indicating that the transformer uses its skip connection
for only 30% of the information.

At the same time, the gated transformer exhibits approximately the same performance during training.
Despite the significant impact of gatings in memory tasks which require multi-layered transformers,
small models in MDP environments do not benefit from them. Other comparisons you can see on
the Figure 17.

Practical Takeaway: GRU-based gating mechanisms allow transformers to regulate their re-
liance on the attention mechanism by dynamically adjusting how much information bypasses
attention blocks. In MDP environments, the transformer naturally shifts toward bypassing
attention, indicating that the model can efficiently extract task-relevant information from state
observations alone.

5.7 ATTENTION ALTERNATIVES

Research Question. How do models based on alternative attention mechanisms compare to the
standard self-attention mechanism in continuous control MDP tasks? Can replacing traditional
attention-based transformers with alternative architectures improve performance?

Details. In this experiment, we investigated whether modifying the attention mechanism could
enhance model performance in online reinforcement learning. Specifically, we evaluated TD3-
TransEncoder (”Vanilla Transformer” on the Figure 11) and its two modifications: Differential
Attention Transformer and Mamba-based model. These models were tested on multiple continuous
control environments to assess their effectiveness compared to the standard transformer encoder.

Differential Attention Transformer (Ye et al., 2024) introduces an attention modification that partitions
the query and key vectors into two groups, producing separate softmax attention maps that are then
subtracted. This aims to improve stability by denoising the attention mechanism.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Mamba (Gu & Dao, 2023), on the other hand, replaces the attention mechanism with a structured
state-space model (SSM). Unlike transformers, which rely on self-attention with quadratic complexity,
Mamba processes sequences using a recurrent structure with linear-time complexity, making it a
potential alternative for long-range dependencies.

Figure 11: Averaged reward on Ant (left) and success rate on PushCube (right) environments.

Interpretation. According to Figure 11, the differential attention does not impact the training process
and failed to achieve superior overall results. In some cases, it reached peak performance faster (e.g.,
in the PushCube task), but in others, it underperformed compared to the standard transformer. Other
comparisons you can see on the Figure 18. Also the recurrent properties of Mamba do not contribute
to the stabilization or improvement of the learning process. On the contrary, in almost all experiments,
Mamba performed worse, requiring more time to achieve efficiency comparable to the transformer,
or not achieving it at all.

Practical Takeaway: A simple replacement of the attention mechanism with Differential
Attention or Mamba does not provide clear advantages in MDP continuous control tasks.

6 DISCUSSION

TD3-GPT(ours) TD3-MLP(ours) TD3-MLP* SAC-MLP* PPO-GRU* A2C-GRU* SAC-Transformer* VRM* MF-RNN* GPIDE-ESS* RESeL*

AntBLT-V-v0 801 ± 120 549 ± 221 476 ± 114 651 ± 65 690 ± 158 264 ± 60 692 ± 89 291 ± 23 1137 ± 178 1017 ± 80 1971 ± 60
HalfCheetahBLT-V-v0 1260 ± 125 343 ± 96 177 ± 115 513 ± 77 1072 ± 195 -412 ± 191 -449 ± 72 -1443 ± 220 2073 ± 69 1886 ± 165 2678 ± 176
HopperBLT-V-v0 588 ± 220 98 ± 58 223 ± 28 243 ± 4 438 ± 126 301 ± 155 240 ± 79 476 ± 28 1003 ± 426 2537 ± 167 2480 ± 91

Table 1: Average Return on the Mujoco tasks with masked velocities at 1.5M steps ± std over 6 seeds.
* – results from Luo et al. (2024)

Through a series of experiments, we have demonstrated that transformer-based models perform
competitively in MDP continuous control tasks. Their ability to achieve results comparable to well-
established baselines suggests that transformers can be a viable alternative to traditional architectures
in online reinforcement learning for continuous control. Furthermore, our experiments in POMDP
(Table 1) environments indicate promising results when compared to other baseline models. These
findings highlight the potential of transformers to effectively capture temporal dependencies and
leverage sequential representations even in settings where full observability is not guaranteed.

Given these insights, we see potential for transformers to become a universal architecture for online
RL, much like their success in supervised learning. However, realizing this vision requires a deeper
understanding of how transformers behave across different settings and task distributions in online
RL. Stability, training efficiency, and adaptability remain key areas for investigation. Future research
should focus on evaluating transformers’ ability to generalize, especially in multi-task RL and meta-
learning settings. Additionally, further studies are needed to explore their role in memory retention,
credit assignment, and long-horizon planning for continuous control tasks. By addressing these
challenges, we can unlock the full potential of transformers in online RL and establish more robust
and scalable training pipelines.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 CONCLUSION

In this work, we investigated the potential of transformer-based models in online RL for continuous
control tasks. Our primary objective was to assess whether transformers can be effectively trained in
fully online settings without requiring substantial modifications to the training pipeline. Through a
series of experiments, we demonstrated that transformers can achieve performance comparable to
classical MLP-based architectures when trained using standard online RL algorithms such as TD3
and PPO. Additionally, we provided insights into the challenges and design choices necessary for
stabilizing transformer training in online RL.

Our results highlight the capability of transformers to function as a viable alternative to traditional
architectures, offering flexibility in handling sequential dependencies. However, our study primarily
focused on MDP environments, and the behavior of transformers in POMDP settings remains an
open question. Exploring their robustness in partially observable environments and extending their
application to vision-based online RL tasks are promising directions for future research.

We believe that our work provides valuable insights into the training dynamics of transformers in
online RL and serves as a stepping stone for further advancements in this field.

REFERENCES

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Zihang Dai. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL
https://arxiv.org/abs/2307.08691.

Ahmad Elawady, Gunjan Chhablani, Ram Ramrakhya, Karmesh Yadav, Dhruv Batra, Zsolt Kira, and
Andrew Szot. Relic: A recipe for 64k steps of in-context reinforcement learning for embodied ai.
arXiv preprint arXiv:2410.02751, 2024.

Kevin Esslinger, Robert Platt, and Christopher Amato. Deep transformer q-networks for partially
observable reinforcement learning. arXiv preprint arXiv:2206.01078, 2022.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Anirudh Goyal, Abram Friesen, Andrea Banino, Theophane Weber, Nan Rosemary Ke, Adria Puig-
domenech Badia, Arthur Guez, Mehdi Mirza, Peter C Humphreys, Ksenia Konyushova, et al.
Retrieval-augmented reinforcement learning. In International Conference on Machine Learning,
pp. 7740–7765. PMLR, 2022.

Jake Grigsby, Justin Sasek, Samyak Parajuli, Daniel Adebi, Amy Zhang, and Yuke Zhu. Amago-2:
Breaking the multi-task barrier in meta-reinforcement learning with transformers. arXiv preprint
arXiv:2411.11188, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei,
Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with multimodal
prompts. arXiv preprint arXiv:2210.03094, 2(3):6, 2022.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

10

https://arxiv.org/abs/2307.08691


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Andrew Lampinen, Stephanie Chan, Andrea Banino, and Felix Hill. Towards mental time travel: a
hierarchical memory for reinforcement learning agents. Advances in Neural Information Processing
Systems, 34:28182–28195, 2021.

TP Lillicrap. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Hao Yang, et al. Deepseek-vl: towards real-world vision-language understanding.
arXiv preprint arXiv:2403.05525, 2024.

Fan-Ming Luo, Zuolin Tu, Zefang Huang, and Yang Yu. Efficient recurrent off-policy rl requires
a context-encoder-specific learning rate, 2024. URL https://arxiv.org/abs/2405.
15384.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine
in rl? decoupling memory from credit assignment. Advances in Neural Information Processing
Systems, 36:50429–50452, 2023.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International conference on machine learning, pp. 7487–7498.
PMLR, 2020.

Marco Pleines, Matthias Pallasch, Frank Zimmer, and Mike Preuss. Memory gym: Partially observ-
able challenges to memory-based agents in endless episodes. arXiv preprint arXiv:2309.17207,
2023.

Subhojeet Pramanik, Esraa Elelimy, Marlos C Machado, and Adam White. Recurrent linear trans-
formers. arXiv preprint arXiv:2310.15719, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI, 2019. URL
https://cdn.openai.com/better-language-models/language_models_
are_unsupervised_multitask_learners.pdf. Accessed: 2024-11-15.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp. 8748–8763. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/radford21a.html.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist
agent. arXiv preprint arXiv:2205.06175, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R De-
von Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-efficient
reinforcement learning. Advances in Neural Information Processing Systems, 34:12686–12699,
2021.

Yanchao Sun, Shuang Ma, Ratnesh Madaan, Rogerio Bonatti, Furong Huang, and Ashish
Kapoor. Smart: Self-supervised multi-task pretraining with control transformers. arXiv preprint
arXiv:2301.09816, 2023.

11

https://arxiv.org/abs/2405.15384
https://arxiv.org/abs/2405.15384
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://proceedings.mlr.press/v139/radford21a.html
https://arxiv.org/abs/1707.06347


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan, Chen Bao,
Xinsong Lin, Yulin Liu, Tse-kai Chan, et al. Maniskill3: Gpu parallelized robotics simulation and
rendering for generalizable embodied ai. arXiv preprint arXiv:2410.00425, 2024.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033, 10 2012.
doi: 10.1109/IROS.2012.6386109.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
11097–11107, 2020.

Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal learning with transformers: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(10):12113–12132, 2023.

Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu, Gao Huang, and Furu Wei. Differential
transformer. arXiv preprint arXiv:2410.05258, 2024.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international
conference on machine learning, pp. 27042–27059. PMLR, 2022.

12

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

Figure 12: MLP, LSTM and
Transformer comparison on Ant
environment.

Figure 13: MLP, LSTM and
Transformer comparison on
Hopper environment.

Figure 14: MLP, LSTM and
Transformer comparison on Pull-
Cube environment (Reward).

Figure 15: MLP, LSTM and Transformer
comparison on PushCube environment (Re-
ward).

Figure 16: MLP, LSTM and Transformer
comparison on PullCube environment (Suc-
cess Rate).

Table 2: Correlations of training parameters and average episodic reward in MuJoCo environments.

PARAMETER CORRELATION

γ-DISCOUNT +0.76
τ -SOFT UPDATE +0.14
POLICY NOISE +0.03
NOISE CLIP +0.01
EXPLORATION NOISE -0.14
BATCH SIZE -0.23

Table 3: Hyperparameters for TD3-based baselines.

TD3 TRANSFORMER ENCODER TD3-GPT TD3-MLP

PARAMETER MANISKILL MUJOCO MUJOCO MUJOCO

γ-DISCOUNT 0.8 0.99 0.99 0.99
τ -SOFT UPDATE 0.01 0.007 0.005 0.005
POLICY NOISE 0.2 0.2 0.2 0.2
NOISE CLIP 0.5 0.2 0.5 0.5
EXPLORATION NOISE 0.1 0.1 0.1 0.1
BATCH SIZE 500 256 256 256
LEARNING RATE 3× 10−4 3× 10−4 3× 10−4 3× 10−4

BUFFER SIZE 0.05× 106 0.5× 106 1.5× 106 1.5× 106

LEARNING STARTS 600 25000 25000 25000

NUM LAYERS 1 1 1 2
NUM HEADS 2 2 4 -
DIM MODEL 256 256 128 -
DIM FEEDFORWARD 512 512 256 256
DROPOUT 0.05 0.05 0.0 -
CONTEXT LEN 3 3 10 -

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 4: Hyperparameters for PPO-based baselines.

PARAMETER PPO-GPT PPO-MLP

γ-DISCOUNT 0.99 0.99
GAE λ 0.95 0.95
MAX GRAD NORM 0.5 0.5
CLIP COEF 0.2 0.2
VF COEF 0.5 0.5
UPDATE EPOCH 10 10
NUM MINIBATCHES 32 32
BATCH SIZE 2048 2048
LEARNING RATE 3× 10−4 3× 10−4

NUM LAYERS 1 3
NUM HEADS 4 -
DIM MODEL 128 -
DIM FEEDFORWARD 128 64
CONTEXT LEN 10 -

Table 5: Hyperparameters for the scaling experiment.

PARAMETER PPO-GPT PPO-MLP

γ-DISCOUNT 0.99 0.99
GAE λ 0.95 0.95
MAX GRAD NORM 0.5 0.5
CLIP COEF 0.2 0.2
VF COEF 0.5 0.5
UPDATE EPOCH 10 10
NUM MINIBATCHES 32 32
BATCH SIZE 2048 2048
LEARNING RATE 3× 10−4 3× 10−4

NUM LAYERS 6 5
NUM HEADS 4 -
DIM MODEL 256 -
DIM FEEDFORWARD 128 512
CONTEXT LEN 10 -

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Supplementary materials for gating exploration :

Figure 17: HalfCheetah(left), Ant(center), Hopper(right) rewards with their corresponding bypass
proportions.

Supplementary materials for attention alternatives exploration :

`

Figure 18: top line: averaged rewards on Hopper(left), HalfCheetah(middle), PushCube(right)
bottom line: averaged reward(left) and success rate(right) on PullCube.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.1 PPO ALGORITHM

Proximal Policy Optimization (PPO) Schulman et al. (2017) is an on-policy algorithm that improves
stability and efficiency over traditional policy gradient methods. It achieves this by constraining the
policy update to prevent overly large changes, which can destabilize training.

PPO optimizes a surrogate objective function with a clipped probability ratio:

J(θ) = Et [min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] (2)

where: rt(θ) =
πθ(at|st)
πθold (at|st) is the probability ratio of the new and old policies. At is the advantage

function, estimating the relative benefit of taking action at in state st. ϵ is a small clipping threshold
(e.g., 0.2), limiting how much rt(θ) can deviate from 1.

PPO also employs a value function loss for training the critic network:

LV (θ) = Et

[
(Vθ(st)−Rt)

2
]

(3)

where Vθ(st) is the estimated state value and Rt is the empirical return.

A.2 TD3 ALGORITHM

Twin Delayed Deep Deterministic Policy Gradient Fujimoto et al. (2018) (TD3) is an off-policy
algorithm that utilizes a replay buffer to learn an optimal policy. It uses an actor-critic pipeline for
training: the actor πϕ(s) improves its performance by updating its weights in the direction of the
critic’s gradient ascent. At the same time, the critic Qθ(s, a) is trained to approximate the Q-value
function by minimizing the temporal difference error. In order to avoid overly optimal estimations
of the critic like in Deep Deterministic Policy Gradient Lillicrap (2015), TD3 has two critics that
approximate Q-function separately.

Critic Loss: The loss for each critic is computed as the mean squared error between the predicted
and target Q-value:

Lcritic =
1

N

N∑
i=1

(
Qθj (si, ai)− yi

)2
, j ∈ {1, 2} (4)

where yi = ri + γminj=1,2 Q̂θj (si+1, π̂ϕ(si+1) + ϵ) is a target value, ri is a reward, π̂ϕ, Q̂θj is a
target actor, j-th target critic, ϵ ∼ clip(N (0, σ2),−c, c) is clipped Gaussian noise and N is a batch
size.

Actor Loss: The actor loss is computed to maximize the expected Q-value under the current policy:

Lactor = − 1

N

N∑
i=1

Qθ1(si, πϕ(si)) (5)

A.3 GRU-GATE DESCRIPTION

r = σ(W (l)
r y + U (l)

r x),

z = σ(W (l)
z y + U (l)

z x− b(l)g ),

ĥ = tanh(W (l)
g y + U (l)

g (r ⊙ x)),

g(l)(x, y) = (1− z)⊙ x+ z ⊙ ĥ (6)

Where x, y is input data flow, (1− z) represents the proportion of information received from the skip
connection and W

(l)
r , U

(l)
r ,W

(l)
z , U

(l)
z ,W

(l)
g , U

(l)
g are learnable parameters.

16


