
ML for Computer Architecture and Systems (MLArchSys), ISCA, 2023

Accuracy Boosters: Epoch-Driven Mixed-Mantissa
Block Floating Point for DNN Training
Simla Burcu Harma∗, Ayan Chakraborty∗, Babak Falsafi∗, Martin Jaggi∗, Yunho Oh†,

∗EcoCloud, EPFL simla.harma@epfl.ch, ayan.chakraborty@epfl.ch babak.falsafi@epfl.ch martin.jaggi@epfl.ch
†ComSys, Korea University yunho oh@korea.ac.kr

Abstract—The unprecedented growth in DNN model complex-
ity, size, and amount of training data has led to a commensurate
increase in demand for computing and a search for minimal
encoding. Recent research advocates Hybrid Block Floating
Point (HBFP) to minimize silicon provisioning in accelerators by
converting the majority of arithmetic operations in training to 8-
bit fixed point. In this paper, we perform a full-scale exploration
of the HBFP design space using mathematical tools to study the
interplay among various parameters and identify opportunities
for even smaller encodings across layers and epochs. Based on our
findings, we propose Accuracy Boosters, an epoch-driven mixed-
mantissa HBFP technique that uses 6-bit mantissas only in the
last epoch and first/last layers, and 4-bit mantissas for 99.7% of
all other arithmetic operations in training. Using analytic models,
we show Accuracy Boosters enable increasing arithmetic density
for an HBFP training accelerator by up to 21.3× compared
to FP32 and up to 4.4× compared to another SOTA format
BFloat16 , while preserving or outperforming FP32 accuracy.

I. INTRODUCTION

Over the past decade, improvements in Deep Neural Net-
work (DNN) algorithms have led to unprecedented growth
in model complexity and dataset size and, consequently, the
required computational resources to train DNN models. One
of the largest DNN models (GPT-3) [2] has 175 billion
parameters and requires 3.14×1023 FLOPs to train. With
the slowdown in Moore’s law, researchers and vendors have
begun to search for alternate ways to improve the arithmetic
density of the underlying hardware platforms. Narrower bit-
width (with lower precision) number formats [24], [25], [31],
[32], [35] have emerged as a promising approach to increase
arithmetic density, as well as, reduce the required operand
storage and communication bandwidth while maintaining high
training accuracy.

Recently there have been several proposals for block float-
ing point [7], [20], [38], a numerical encoding that groups a
block of mantissas which rely on only fixed-point arithmetic
with a single exponent. Block floating point asymptotically
approaches the arithmetic density of fixed point with larger
block sizes and naturally lends itself well to mixed-precision
hardware where a block with the same number of exponent bits
can have a fixed-point datapath which is bitsliced for various
multiples of mantissa bit encodings (e.g., the same way as
today’s CPU cores implement SIMD). While block floating
point has been promising in use for inference (e.g., Microsoft
Floating Point [6]), most proposals to train with block floating
point have either failed to reach its full potential by requiring
small blocks and/or just fall short of reaching FP32 accuracy.

One specific proposal, Hybrid Block Floating Point
(HBFP) [10], uses a mixed-precision format where the dom-
inant fraction of training which are the dot products, happen
in block floating point (e.g., convolutions, matrix multiplica-
tions), and FP32 is used for other less frequent operations
requiring larger numerical ranges (e.g., activations, regular-
izations). HBFP simultaneously offers the high accuracy of
floating point and the superior hardware density of fixed
point, delivering up to 8.5× higher throughput than FP16 with
2× more compact models [11]. Prior work on HBFP only
presented a preliminary design space analysis for power-of-
two mantissa bit widths (e.g., 2, 4, 8 bits).

In this paper, we make the observation that the parameter
space for HBFP is quite rich, presenting several opportunities
for further improving efficiency and density in hardware
platforms. First, custom accelerators can support non-power-
of-two numerical formats, and minimizing the number of bits
improves operand storage and communication linearly and
arithmetic logic quadratically. Second, there is an interplay
between the block size and the number of mantissa bits, allow-
ing for an overall denser numerical format with smaller blocks
while maintaining accuracy. Finally, HBFP allows for mixed-
mantissa block floating point encodings. Prior work studies
training with various HBFP formats in isolation; however, the
design space of mixed-mantissa HBFP is yet to be explored.

We fully explore the parameter space of HBFP and show
the boundaries of block floating point by studying the interplay
between the block size and the number of mantissa bits. To the
best of our knowledge, this is the first paper conducting a full
design space exploration for training DNNs with block floating
point. We show that HBFP6 (HBFP with 6 bits of mantissa)
is the smallest HBFP format achieving competitive accuracies
with no sensitivity to block size. Our main contribution is
the design of Accuracy Boosters, a DNN training mechanism
performing a large fraction of epochs in low precision, i.e.
HBFP4. Our method improves epoch-wise mixed-precision
training by introducing high precision, i.e. HBFP6, to the
training process only at the last epoch. Accuracy Boosters
enable increasing arithmetic density by up to 21.3× compared
to FP32, and up to 4.4× compared to another SOTA format
BFloat16 , while preserving or outperforming FP32 accuracy.

II. HBFP PARAMETER SPACE

HBFP is a mixed-precision DNN training technique that
uses block floating point for all dot product operations and

1

mailto:simla.harma@epfl.ch
mailto:ayan.chakraborty@epfl.ch
mailto:babak.falsafi@epfl.ch
mailto:martin.jaggi@epfl.ch
mailto:yunho_oh@korea.ac.kr

FP32 for the rest of the operations, enabling accurate training
with dense fixed-point arithmetic. We observe that HBFP is
also suitable for inference for the popular CNN and Trans-
former models without any accuracy loss, in line with prior
work on inference with block floating point [6], showing
that HBFP is a versatile technique for both training and
inference. Prior work on HBFP shows that the area and energy
expenditure of HBFP8 is around an order of magnitude lower
than FP32 [11]. Exploring the parameter space of HBFP and
pushing its boundaries can increase this ratio dramatically.

HBFP has a rich parameter space, including the number of
mantissa bits, block size, and the number of exponent bits. The
hardware area and energy expenditure of HBFP accelerators
are determined by the number of mantissa bits and the block
size because the overhead of the exponent bits is negligible
due to blocking1. One of the key advantages of HBFP is that
we can conservatively find a lower bound for the number of
exponent bits that covers all of the design space exploration
for block size and the number of mantissa bits. Therefore, we
work with 10-bit exponents as in prior work [10] and explore
the HBFP design space by varying the mantissa bit width
and the block size. Once we fix the number of exponent bits,
we can vary other parameters, which enables a reconfigurable
microarchitecture and gives rise to mixed-mantissa HBFP.

Smaller mantissa bit widths and larger block sizes are key to
improving block-floating-point hardware efficiency due to the
increasing fraction of fixed-point operations [6]. There is an
interplay between the number of mantissa bits and block sizes,
allowing for an overall denser numerical format with smaller
blocks while maintaining accuracy. This interplay is the result
of how the block floating point conversion works. Block
floating point shares a single exponent across a block of values
using the exponent of the largest element. Since block floating
point format does not apply normalization (It is calculated as
2exponent × 0.mantissa instead of 2exponent × 1.mantissa),
the precision within a block is highly dependent on the largest
element in that block, which decides the exponent value. The
interval between two consecutive representable numbers is
calculated as in Equation 1.

interval =
2largest exponent

2# of mantissa bits
(1)

As the number of elements sharing the same exponent in-
creases, the likelihood of disparity in the magnitude of ele-
ments also increases, leading to a precision loss for the small
elements in the block. As the number of mantissa bits de-
creases, the model’s sensitivity to the block size increases with
the corresponding increase in the interval leading to a higher
quantization error. More mantissa bits make the distribution
more resilient to the quantization error and larger block size,
as each element can be represented more accurately.

HBFP’s power footprint is not only a function of the
HBFP parameters but also of outside factors. Mixed-precision
training has emerged as a popular technique to increase

1Even for the block size of 4, HBFP4 with 5-bit exponent is only 1.1×
more area-efficient than HBFP4 with 10-bit exponent

the fraction of leaner arithmetic formats within the training
process, motivating us to explore the design space of mixed-
mantissa HBFP; because HBFP provides the opportunity to
fix the exponent width and vary the number of mantissa bits
across layers and epochs.

For CNN models, prior work indicates that the first convo-
lution layer and the last fully connected layer have a larger
impact on the final model accuracy, and keeping these layers
in high precision allows for reducing precision in the rest
of the layers [3], [24], [34], [39]. The first layer takes the
input images and filters the images with several convolution
kernels and returns feature maps. Thus, it is critical for the
final model to keep the input information fully accurate and
to preserve the data in the initial feature map. Similarly, for
Transformers, the first layer is the input embedding layer,
where input tokens are mapped to dense word vectors. The
last layer of DNN models returns a probability distribution
over the possible outcomes for the underlying DNN task. The
important roles of the first and last layers in DNN models
make it crucial to retain information better for these layers.

In addition to layers, each training epoch has a different
effect on the final model’s accuracy [13], [14]. [28] and
[36] show that DNNs first learn low-frequency components,
where the frequency is defined for the coordinates of the
input space. [36] also empirically show that for CNN models,
the high-frequency components have higher complexities and
are learned in the last epochs. In light of these findings, we
hypothesize that high-frequency functional components are
more sensitive to quantization errors. Thus, higher precision
is required for the last stage of DNN training, where the
optimization occurs after an appropriate amount of general-
ization in the network. After reaching a certain loss value in
low-precision training, switching the tensors to high precision
enable the sensitive fine-tuning performed in the final epochs
and help increase the accuracy even more.

III. MINIMIZING HBFP

Our goal is to minimize HBFP to increase the hardware
efficiency of training without losing accuracy. For a block
size of 576, even though HBFP4 incurs a 2.4× improvement
in area/power relative to HBFP8, it lacks the precision to
reach FP32 accuracy. As prior work on HBFP [10], [11] only
investigated power-of-two mantissa bits and focused mostly on
the design space of HBFP8, the interplay between the number
of mantissa bits and the block size is left unexplored. While
power-of-two-bit numbers align naturally with the memory
structure and encode matrices in a tightly-packed way, non-
power-of-two-bit mantissas can improve the arithmetic density
even further, as studied by [6] and can be easily integrated into
custom accelerators. We investigate the whole design space of
HBFP by varying both parameters and claim that reducing the
block size will enable reducing the number of mantissa bits,
and thus improve hardware efficiency. In this section, we show
how to minimize HBFP step by step, give an explanation of
the limitations of HBFP and propose a new mixed-precision
schema to minimize HBFP further.

2

To study the relationship between model accuracy and
HBFP parameters, we measure the similarity between block-
floating-point and FP32 distributions of various tensors using
Wasserstein distance, mathematically defined as in Equation 2.

W (P,Q) = inf
γ∈Π(P,Q)

E(x,y)∼γ [||x− y||] (2)

where Π(P,Q) is the set of all joint distributions γ(x, y)
whose marginal distributions are equal to P and Q. γ(x, y) can
be interpreted as the amount of mass that must be transported
from x to y to transform P to Q [1]. Unlike KL-Divergence,
which is commonly used to compare quantized tensors to their
full-precision counterparts [6], [26], Wasserstein distance is
symmetric, and thus is mathematically a metric. Moreover,
because DNNs often deal with distributions where KL Diver-
gence is not defined (or infinite), we need to add a noise term
to the model distribution to be able to use KL Divergence,
which causes disturbance in the results.

We observe that the tensor distribution is preserved when
the elements are converted to block floating point format
with 6 bits of mantissa and wider for reasonably large block
sizes2. Figure 1 shows Wasserstein distances between FP32
and HBFP6 and HBFP4 with various block sizes for the
weight tensors of four different layers of ResNet20 trained
on CIFAR10. For all the tensors, HBFP6 has a much smaller
distance to FP32, and the distances are fairly close to each
other for a given tensor across all block sizes. However, the
Wasserstein distance of HBFP4 is more than 3.5× higher than
HBFP6 across all block sizes, and the distances dramatically
increase with the block size. Indeed, the R-squared (the
strength of the relationship between two data sets) values
between the model accuracy and various Wasserstein distances
are around 0.99, validating the strength of our metric.

16 64 576256

W
as
se
rs
te
in

D
is
ta
n
ce

layer1.2.conv2.weight

layer2.0.conv1.weight

fc.weight

conv1.weight

HBFP6 HBFP4
16 64 576256

0

0.02

0.03

0.04

0.01

Fig. 1: Wasserstein distance between FP32 and HBFP with
various block sizes for various layers.

Even though reducing the block size incurs smaller Wasser-
stein distances and helps increase the accuracy, HBFP4 still
fails to reach FP32 accuracy because it does not have enough
precision to minimize the loss and has a high generalization er-
ror. [22] introduce a methodology to visualize loss landscapes

2Block sizes of up to 256 already achieves more than 95% of the maximum
hardware benefit for HBFP6

in order to better understand the effect of loss landscapes
on generalization. Figure 2 shows log-scale loss landscapes
for various configurations, sliced along the x-axis (y=0) for
simplicity. The center of the plot corresponds to the current
state of the minimizer, and the axis parameterizes a random
direction with filter-wise normalization. HBFP4 converges
to a much worse minimum compared to HBFP6 and FP32
indicating poor accuracy. Although the minimum of HBFP4
is flat, it does not indicate better generalization because the
minimum itself is much worse.

HBFP6

FP32

HBFP4
HBFP4+Layers

Acc.Boosters

1.00 0.000.50 0.50 1.00

0

4

2

2

4

Lo
g

Lo
ss

Fig. 2: Loss landscapes of ResNet20 on CIFAR10 for various
configurations, sliced along the x-axis.

Following the insights from prior work, we study the effect
of the first and last layers of CNNs on model accuracy. The
dotted and solid red lines in Figure 1 show the first and last
layers, respectively, and it is clear that these layers are the
most affected by lowering the precision, especially for HBFP4.
Thus, we keep the first and last layers of CNNs in HBFP6
during HBFP4 training to increase its accuracy. However, the
increase in precision HBFP6 provides for the first and last
layers still does not achieve enough optimization to reach
FP32 accuracy. In Figure 2, the red dashed curve shows this
configuration, and the curve gets sharper and lower compared
to HBFP4-only training. However, the generalization and
optimization power of the model is still unbalanced, leading
to convergence to another bad local minima.

We introduce Accuracy Boosters, an epoch-driven mixed-
mantissa HBFP that uses HBFP6 only in the last epoch and
converts 99.7% of all arithmetic operations in training to
HBFP4. We hypothesize that using HBFP6 for the last epoch is
sufficient to boost the accuracy, while the rest of the epochs are
trained using HBFP4. We leverage the insight that last epochs
have more effect on the final model’s accuracy [13], [14], [28],
[36]. We claim that training with 4-bit mantissas helps the
model generalize and reach a certain loss value. Afterward,
switching to 6-bit mantissas helps the model optimize and
fine-tune in the final epochs and increase accuracy to the FP32
level. The loss landscape for Accuracy Boosters (the red solid
curve in Figure 2) supports our hypothesis. We see that the
curve gets really close (note that the plot is in log scale, thus
−2 is closer to −4 compared to 0) to HBFP6 and FP32 curves
and finally achieves FP32 accuracy.

3

IV. EXPERIMENTAL RESULTS

We experiment on the state-of-the-art models and datasets
for various DNN tasks to test our hypotheses. We train
ResNet20/74 [15], and DenseNet40 [16] on CIFAR10 and
CIFAR100 [19] datasets for image classification. We also
train a Transformer-Base [33] on the WMT16 English-German
dataset for machine translation. Models trained on CIFAR10
are trained for 160 epochs, whereas for CIFAR100, the total
number of epochs for all models is 300. The transformer
is trained for 70 epochs. We use FP32 as the baseline for
both model accuracies and hardware comparisons. For the
image classification experiments, we report the Top1 validation
accuracies; for machine translation, we report the BLEU
scores. Moreover, to show the impact of our method, we tune
the hyperparameters of FP32 models and then train the same
models from scratch with the same hyperparameters in HBFP,
showing that our method can be used out of the box without
further hyperparameter tuning.

We use an analytic model to estimate the area of the most
basic operation in DNN training—Dot product followed by
activation unit for different encodings. Fixing the operation en-
ables us to compare the arithmetic density ((operations/s)/area)
solely on the amount of area. Thus, we define the gain
in arithmetic density to be the same as the gain in the
area. For FP32 dot product units of size N , we estimate
the hardware cost as the sum of the cost of N − 1 FP32
adders, N FP32 multipliers, one FP32 accumulator (adder),
and one floating-point activation unit. For HBFP dot product
units, we estimate the hardware cost as the sum of the cost
of N − 1 fixed-point adders, N fixed-point multipliers, one
FP32 accumulator (adder), one floating-point activation unit,
and one adder for signed exponents. We also add the costs
of conversions between FP32 and fixed-point numbers by
modeling the converter blocks.

A. Minimizing HBFP

Table I shows the Top1 validation accuracies for ResNet20,
ResNet74, and DenseNet40 on CIFAR10 and CIFAR100
datasets trained with various HBFP configurations. We observe
that HBFP6 is the smallest HBFP configuration that gives
accuracies within 2% of FP32 accuracy for block sizes up
to 256. Larger blocks will contain a larger variety of values in
terms of magnitude (affected e.g., by outliers), so it will result
in larger approximation errors than smaller blocks and lower
accuracy in training.

We also report HBFP4 accuracies to show the limitations
of HBFP. Even for the small models like ResNet20, with a
block size of 16, the accuracy drops more than 9%. As the
accuracy drop for ResNet74 and DenseNet40 on CIFAR100
is considerably high even with HBFP5 (not shown here for
compactness), we did not train these models with HBFP4.
We observe that for HBFP4, the sensitivity to the block size
increases for all the models because the distortions in the
tensor distributions increase (see Section II).

TABLE I: Top-1 validation accuracies of various CNN models
for various HBFP configurations

Models and Datasets

CIFAR10 CIFAR100

Number
Format

Block
/Area

ResNet20 ResNet74 ResNet74 DenseNet40

FP32 - 91.72 93.57 74.55 72.42

HBFP8 576/10.0 91.52 93.36 74.32 73.73

HBFP6

16/11.2 91.12 93.38 73.51 72.08
25/12.3 91.09 92.54 73.20 71.77
36/13.1 91.29 92.61 72.87 71.83
49/13.6 91.33 92.93 72.40 71.87
64/13.9 91.12 92.93 72.40 71.81
256/14.8 91.38 92.79 72.53 71.50
576/15.0 90.65 92.19 72.51 71.02

HBFP4

16/15.5 82.59 76.85 - 63.70
25/17.8 81.82 78.62 - 64.25
36/19.3 80.84 76.64 - 63.34
49/20.4 79.32 71.19 - 65.55
64/21.3 80.18 74.35 - 62.37
256/23.4 76.96 60.65 - 60.02
576/23.9 75.33 66.70 - 59.77

Total Number of
FLOPs required to

train the model
41M 174M 326M 542M

B. Accuracy Boosters

Considering HBFP hardware model, a block size of 64 is
within 90% of the maximum area/power gain while achieving
accuracies with less than 1% degradation for HBFP6. Thus,
we choose block size of 64 as the sweet spot and test Accuracy
Boosters using this block size. We perform the last epoch
of the training in HBFP6 and the rest in HBFP4 for all the
experimental settings. We also trained by keeping the last 10
epochs in HBFP6 to observe the improvement in accuracy for
the CNN models. We keep all CNN models’ first and last
layers in HBFP6. The first and last layers of the CNN models
account for a negligible amount of computation; thus, keeping
them in slightly higher precision during HBFP training does
not result in a significant increase in the hardware area or
energy consumption. We can see that for most of the CNN
models, Accuracy Boosters outperforms FP32. When we keep
the last 10 epochs in HBFP6, we observe that the accuracies
slightly increase (see Table II).

TABLE II: Top-1 validation accuracies of various CNN models
for Accuracy Boosters

Models and Datasets

CIFAR10 CIFAR100

Epochs using
HBFP6 ResNet20 ResNet74 ResNet74 DenseNet40

Only last 91.24 92.62 73.74 73.61
Last 10 91.36 93.02 74.28 74.10

FP32 91.72 93.57 74.55 72.42

Table III shows the results of applying Accuracy Boosters to

4

the Transformer. We observe that for the Transformer, HBFP6
performs similarly to FP32. While standalone HBFP4 does not
incur a significant accuracy loss, Accuracy Boosters still help
further bridge the gap to FP32 and even outperform it.

TABLE III: BLEU Scores for Transformer-Base trained on
IWSLT’14 De→En task for various encodings

FP32 HBFP6 HBFP4 Booster

BLEU Score 34.77 34.47 32.64 36.08

We observe that mixed-mantissa training using Accuracy
Boosters can be carried out on arithmetic units designed for
HBFP4. The small fraction of total training operations that
use HBFP6 can be bit-sliced to fit on the 4-bit arithmetic
units, similar to techniques proposed in prior work [38],
while maintaining the same throughput. Thus, we claim the
arithmetic density of a hardware accelerator using Accuracy
Boosters will be approximately equal to the arithmetic density
of HBFP4.

In conclusion, Accuracy Boosters offers up to 21.3× higher
arithmetic density compared to FP32 by using only 4 bits
for 99.7% of total training computations while achieving
comparable or better accuracy. Our analytic model estimates
another state-of-the-art reduced precision format—BFloat16
only offers 4.9× higher arithmetic density compared to FP32.
Hence, the much superior arithmetic density of HBFP4 enables
Accuracy Boosters to offer a further 4.4× higher arithmetic
density compared to BFloat16 . Apart from arithmetic density,
4-bit mantissas promise significant memory savings, but the
exact value depends on the layout and scheme and is outside
the scope of this work.

V. RELATED WORK

In recent years, there has been a significant amount of
research on inference and training [4], [5], [8], [17], [21],
[23], [29], [39] with narrow numerical representations. Google
Brain’s bfloat16 [35], NVIDIA’s mixed-precision training
with FP16 [25], and another mixed-precision scheme using
FP8 [31] are the most commonly-used ones. Recent research
advocates the use of Block Floating-Point for DNN train-
ing [11] and inference [6]. Flexpoint [20] and Dynamic Fixed-
Point [7] propose block-floating-point formats for training with
a 16-bit mantissa and a shared exponent. Prior work proposed
a novel format for training DNNs with BFP, called Hybrid
Block Floating-Point (HBFP) [10]. In this paper, we argue
that reducing the mantissa bit width in HBFP significantly
improves silicon efficiency while designing hardware for DNN
training.

Many have proposed techniques to compensate for the data
loss introduced by narrower numerical representations [12],
[24], [31], [32]. Mixed-precision training has emerged as a
popular technique to recover the information loss caused by
quantization. Several techniques vary the precision layer-wise
by using higher precision arithmetic for layers with greater
significance [18], [30], [37]. Specifically, [3], [24], [34], [39]

use FP32 for the first and last layers. [13] employ fixed-
point arithmetic with different bit widths epoch-wise over the
course of training. Combining the layer-wise and epoch-wise
approaches, [14], [27], [38] vary the precision adaptively per
epoch and layer at the same time using control mechanisms.
While all the aforementioned studies employ leaner arithmetic
for a fraction of the training process, they fail to make leaner
arithmetic the common case of the training process.

Recent work [9] suggests that during mixed-precision FP16
training, the optimizer states can be reduced to 8 bits by
using a block-wise quantization method. This observation is in
line with our work that applies quantization by extracting the
largest exponent per block. Similarly, FAST [38] uses a block-
floating-point-based layer-wise mixed precision approach us-
ing 2 and 4-bit mantissa. Unlike our work, FAST requires
fine-tuning several additional hyperparameters for its training
algorithm, making it difficult to apply to other DNN models.
Another block-floating-point-based work, FlexBlock [27], uses
4 and 8-bit mantissa with various block sizes and also needs
higher-precision block-floating-point formats only for weight
gradient calculations that suffer more from quantization errors.

VI. CONCLUSION

Several low-precision training techniques and specialized
numerical formats have been introduced over the past decade
to increase the arithmetic density of the DNN accelerators.
One such format, Hybrid Block Floating-Point (HBFP), which
allows for a majority of the DNN’s arithmetic operations (i.e.,
dot products) to be performed using fixed-point arithmetic has
been shown to achieve FP32 accuracy with 8-bit mantissa.
However, a smaller number of mantissa bits allow for excep-
tional improvements in arithmetic density. In this paper, we
perform a full-scale exploration of the HBFP design space
for emerging models and datasets. We show that HBFP6 is
the smallest HBFP format achieving FP32 accuracy for all
block sizes. We propose the Accuracy Boosters technique to
bring HBFP4 into training, using HBFP6 in the last epoch,
leveraging the insight that each epoch has a different effect
on training. We show that the last stage of training requires
more precision than the rest. We use an analytic model to
show that our method achieves up to 21.3× higher arithmetic
density over FP32 and 4.4× higher density over BFloat16 ,
while maintaining or outperforming FP32 accuracy.

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers and the mem-
bers of PARSA at EPFL for their precious comments and
feedback. We would also like to thank Nicholas Sperry for
his contributions to the loss landscape experiments. This work
has been partially funded by a Microsoft PhD Fellowship, and
the following grant: ”Unified Accelerators for Post-Moore Ma-
chine Learning” from the Swiss National Science Foundation
(SNSF).

5

REFERENCES

[1] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” CoRR,
vol. abs/1701.07875, 2017. [Online]. Available: http://arxiv.org/abs/
1701.07875

[2] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Advances
in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.
cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[3] J. Choi, Z. Wang, S. Venkataramani, P. I. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “PACT: parameterized clipping activation
for quantized neural networks,” CoRR, vol. abs/1805.06085, 2018.
[Online]. Available: http://arxiv.org/abs/1805.06085

[4] M. Courbariaux, Y. Bengio, and J. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, Eds., 2015, pp. 3123–
3131. [Online]. Available: https://proceedings.neurips.cc/paper/2015/
hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html

[5] M. Courbariaux, Y. Bengio, and J. David, “Low precision arithmetic
for deep learning,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Workshop Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.
[Online]. Available: http://arxiv.org/abs/1412.7024

[6] B. Darvish Rouhani, D. Lo, R. Zhao, M. Liu, J. Fowers, K. Ovtcharov,
A. Vinogradsky, S. Massengill, L. Yang, R. Bittner, A. Forin, H. Zhu,
T. Na, P. Patel, S. Che, L. Chand Koppaka, X. SONG, S. Som,
K. Das, S. T, S. Reinhardt, S. Lanka, E. Chung, and D. Burger,
“Pushing the limits of narrow precision inferencing at cloud scale
with microsoft floating point,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020,
pp. 10 271–10 281. [Online]. Available: https://proceedings.neurips.cc/
paper/2020/file/747e32ab0fea7fbd2ad9ec03daa3f840-Paper.pdf

[7] D. Das, N. Mellempudi, D. Mudigere, D. D. Kalamkar, S. Avancha,
K. Banerjee, S. Sridharan, K. Vaidyanathan, B. Kaul, E. Georganas,
A. Heinecke, P. Dubey, J. Corbal, N. Shustrov, R. Dubtsov, E. Fomenko,
and V. O. Pirogov, “Mixed precision training of convolutional neural
networks using integer operations,” in 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. [Online]. Available: https://openreview.net/forum?id=H135uzZ0-

[8] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “Llm.int8():
8-bit matrix multiplication for transformers at scale,” CoRR, vol.
abs/2208.07339, 2022. [Online]. Available: https://doi.org/10.48550/
arXiv.2208.07339

[9] T. Dettmers, M. Lewis, S. Shleifer, and L. Zettlemoyer, “8-bit
optimizers via block-wise quantization,” in The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. [Online]. Available:
https://openreview.net/forum?id=shpkpVXzo3h

[10] M. Drumond, T. Lin, M. Jaggi, and B. Falsafi, “Training DNNs with
Hybrid Block Floating Point,” arXiv:1804.01526 [cs, stat], Dec. 2018,
arXiv: 1804.01526. [Online]. Available: http://arxiv.org/abs/1804.01526

[11] M. P. Drumond, “Coltrain: Co-located dnn training and inference,” p.
115, 2020. [Online]. Available: http://infoscience.epfl.ch/record/280118

[12] S. Fox, S. Rasoulinezhad, J. Faraone, D. Boland, and P. H. W. Leong,
“A block minifloat representation for training deep neural networks,”
in 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
[Online]. Available: https://openreview.net/forum?id=6zaTwpNSsQ2

[13] Y. Fu, H. Guo, M. Li, X. Yang, Y. Ding, V. Chandra, and Y. Lin,
“CPT: efficient deep neural network training via cyclic precision,”
in 9th International Conference on Learning Representations, ICLR

2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
[Online]. Available: https://openreview.net/forum?id=87ZwsaQNHPZ

[14] Y. Fu, H. You, Y. Zhao, Y. Wang, C. Li, K. Gopalakrishnan,
Z. Wang, and Y. Lin, “Fractrain: Fractionally squeezing bit savings
both temporally and spatially for efficient DNN training,” in Advances
in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.
cc/paper/2020/hash/8dc5983b8c4ef1d8fcd5f325f9a65511-Abstract.html

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016. IEEE Computer Society, 2016, pp. 770–778. [Online].
Available: https://doi.org/10.1109/CVPR.2016.90

[16] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected
convolutional networks,” CoRR, vol. abs/1608.06993, 2016. [Online].
Available: http://arxiv.org/abs/1608.06993

[17] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio, “Binarized neural networks,” in Advances in Neural
Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, D. D. Lee, M. Sugiyama, U. von
Luxburg, I. Guyon, and R. Garnett, Eds., 2016, pp. 4107–
4115. [Online]. Available: https://proceedings.neurips.cc/paper/2016/
hash/d8330f857a17c53d217014ee776bfd50-Abstract.html

[18] S. Khoram and J. Li, “Adaptive quantization of neural networks,” p. 13,
2018.

[19] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Toronto, Ontario, Tech. Rep. 0,
2009.

[20] U. Köster, T. Webb, X. Wang, M. Nassar, A. K. Bansal, W. Constable,
O. Elibol, S. Gray, S. Hall, L. Hornof, A. Khosrowshahi, C. Kloss,
R. J. Pai, and N. Rao, “Flexpoint: An Adaptive Numerical Format
for Efficient Training of Deep Neural Networks,” in Advances in
Neural Information Processing Systems, vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://papers.nips.cc/paper/2017/hash/
a0160709701140704575d499c997b6ca-Abstract.html

[21] F. Li and B. Liu, “Ternary weight networks,” CoRR, vol.
abs/1605.04711, 2016. [Online]. Available: http://arxiv.org/abs/1605.
04711

[22] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing
the loss landscape of neural nets,” in Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., 2018, pp.
6391–6401. [Online]. Available: https://proceedings.neurips.cc/paper/
2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html

[23] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point
quantization of deep convolutional networks,” in Proceedings of the
33nd International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, ser. JMLR Workshop
and Conference Proceedings, M. Balcan and K. Q. Weinberger,
Eds., vol. 48. JMLR.org, 2016, pp. 2849–2858. [Online]. Available:
http://proceedings.mlr.press/v48/linb16.html

[24] N. Mellempudi, S. Srinivasan, D. Das, and B. Kaul, “Mixed
Precision Training With 8-bit Floating Point,” arXiv:1905.12334
[cs, stat], May 2019, arXiv: 1905.12334. [Online]. Available:
http://arxiv.org/abs/1905.12334

[25] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu,
“Mixed Precision Training,” arXiv:1710.03740 [cs, stat], Feb. 2018,
arXiv: 1710.03740. [Online]. Available: http://arxiv.org/abs/1710.03740

[26] S. Migacz, “8-bit Inference with TensorRT,” May 2017. [Online]. Avail-
able: https://on-demand.gputechconf.com/gtc/2017/presentation/s7310-
8-bit-inference-with-tensorrt.pdf

[27] S.-H. Noh, J. Koo, S. Lee, J. Park, and J. Kung, “Flexblock: A flexible
dnn training accelerator with multi-mode block floating point support,”
2022. [Online]. Available: https://arxiv.org/abs/2203.06673

[28] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. A.
Hamprecht, Y. Bengio, and A. C. Courville, “On the spectral bias of
neural networks,” in Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,

6

http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1701.07875
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/1805.06085
https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
http://arxiv.org/abs/1412.7024
https://proceedings.neurips.cc/paper/2020/file/747e32ab0fea7fbd2ad9ec03daa3f840-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/747e32ab0fea7fbd2ad9ec03daa3f840-Paper.pdf
https://openreview.net/forum?id=H135uzZ0-
https://doi.org/10.48550/arXiv.2208.07339
https://doi.org/10.48550/arXiv.2208.07339
https://openreview.net/forum?id=shpkpVXzo3h
http://arxiv.org/abs/1804.01526
http://infoscience.epfl.ch/record/280118
https://openreview.net/forum?id=6zaTwpNSsQ2
https://openreview.net/forum?id=87ZwsaQNHPZ
https://proceedings.neurips.cc/paper/2020/hash/8dc5983b8c4ef1d8fcd5f325f9a65511-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/8dc5983b8c4ef1d8fcd5f325f9a65511-Abstract.html
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1608.06993
https://proceedings.neurips.cc/paper/2016/hash/d8330f857a17c53d217014ee776bfd50-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/d8330f857a17c53d217014ee776bfd50-Abstract.html
https://papers.nips.cc/paper/2017/hash/a0160709701140704575d499c997b6ca-Abstract.html
https://papers.nips.cc/paper/2017/hash/a0160709701140704575d499c997b6ca-Abstract.html
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1605.04711
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
http://proceedings.mlr.press/v48/linb16.html
http://arxiv.org/abs/1905.12334
http://arxiv.org/abs/1710.03740
https://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf
https://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf
https://arxiv.org/abs/2203.06673

California, USA, ser. Proceedings of Machine Learning Research,
K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 2019,
pp. 5301–5310. [Online]. Available: http://proceedings.mlr.press/v97/
rahaman19a.html

[29] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,”
in Computer Vision - ECCV 2016 - 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part
IV, ser. Lecture Notes in Computer Science, B. Leibe, J. Matas,
N. Sebe, and M. Welling, Eds., vol. 9908. Springer, 2016, pp. 525–542.
[Online]. Available: https://doi.org/10.1007/978-3-319-46493-0 32

[30] J. Shen, Y. Wang, P. Xu, Y. Fu, Z. Wang, and Y. Lin, “Fractional
skipping: Towards finer-grained dynamic CNN inference,” in The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020. AAAI Press, 2020, pp. 5700–5708. [Online].
Available: https://ojs.aaai.org/index.php/AAAI/article/view/6025

[31] X. Sun, J. Choi, C.-Y. Chen, N. Wang, S. Venkataramani,
V. V. Srinivasan, X. Cui, W. Zhang, and K. Gopalakrishnan,
“Hybrid 8-bit Floating Point (HFP8) Training and Inference for
Deep Neural Networks,” in Advances in Neural Information
Processing Systems, vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper/2019/hash/
65fc9fb4897a89789352e211ca2d398f-Abstract.html

[32] X. Sun, N. Wang, C.-Y. Chen, J. Ni, A. Agrawal, X. Cui,
S. Venkataramani, K. El Maghraoui, V. V. Srinivasan, and
K. Gopalakrishnan, “Ultra-Low Precision 4-bit Training of Deep
Neural Networks,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp.
1796–1807. [Online]. Available: https://proceedings.neurips.cc/paper/
2020/file/13b919438259814cd5be8cb45877d577-Paper.pdf

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio,
H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds.,
2017, pp. 5998–6008. [Online]. Available: https://proceedings.neurips.
cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[34] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan,
“Training deep neural networks with 8-bit floating point numbers,” in
Proceedings of the 32nd International Conference on Neural Information
Processing Systems, ser. NIPS’18. Red Hook, NY, USA: Curran
Associates Inc., 2018, p. 7686–7695.

[35] S. Wang and P. Kanwar, “BFloat16: The secret to high performance on
Cloud TPUs,” Aug. 2019.

[36] Z. J. Xu, Y. Zhang, T. Luo, Y. Xiao, and Z. Ma, “Frequency principle:
Fourier analysis sheds light on deep neural networks,” CoRR, vol.
abs/1901.06523, 2019. [Online]. Available: http://arxiv.org/abs/1901.
06523

[37] L. Yang and Q. Jin, “Fracbits: Mixed precision quantization via
fractional bit-widths,” in Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative
Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI
2021, Virtual Event, February 2-9, 2021. AAAI Press, 2021,
pp. 10 612–10 620. [Online]. Available: https://ojs.aaai.org/index.php/
AAAI/article/view/17269

[38] S. Q. Zhang, B. McDanel, and H. T. Kung, “FAST: DNN Training
Under Variable Precision Block Floating Point with Stochastic
Rounding,” arXiv:2110.15456 [cs], Oct. 2021, arXiv: 2110.15456.
[Online]. Available: http://arxiv.org/abs/2110.15456

[39] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-
Net: Training Low Bitwidth Convolutional Neural Networks with
Low Bitwidth Gradients,” arXiv:1606.06160 [cs], Feb. 2018, arXiv:
1606.06160.

7

http://proceedings.mlr.press/v97/rahaman19a.html
http://proceedings.mlr.press/v97/rahaman19a.html
https://doi.org/10.1007/978-3-319-46493-0_32
https://ojs.aaai.org/index.php/AAAI/article/view/6025
https://proceedings.neurips.cc/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://proceedings.neurips.cc/paper/2020/file/13b919438259814cd5be8cb45877d577-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/13b919438259814cd5be8cb45877d577-Paper.pdf
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/1901.06523
http://arxiv.org/abs/1901.06523
https://ojs.aaai.org/index.php/AAAI/article/view/17269
https://ojs.aaai.org/index.php/AAAI/article/view/17269
http://arxiv.org/abs/2110.15456

	Introduction
	HBFP Parameter Space
	Minimizing HBFP
	Experimental Results
	Minimizing HBFP
	Accuracy Boosters

	Related Work
	Conclusion
	References

