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Abstract

We introduce VOYAGER, the first LLM-powered embodied lifelong learning agent
in Minecraft that continuously explores the world, acquires diverse skills, and
makes novel discoveries without human intervention. VOYAGER consists of three
key components: 1) an automatic curriculum that maximizes exploration, 2) an
ever-growing skill library of executable code for storing and retrieving complex
behaviors, and 3) a new iterative prompting mechanism that incorporates environ-
ment feedback, execution errors, and self-verification for program improvement.
VOYAGER interacts with GPT-4 via blackbox queries, which bypasses the need for
model parameter fine-tuning. The skills developed by VOYAGER are temporally
extended, interpretable, and compositional, which compounds the agent’s abilities
rapidly and alleviates catastrophic forgetting. Empirically, VOYAGER shows
strong in-context lifelong learning capability and exhibits exceptional proficiency
in playing Minecraft. It obtains 3.3× more unique items, travels 2.3× longer
distances, and unlocks key tech tree milestones up to 15.3× faster than prior SOTA.
VOYAGER is able to utilize the learned skill library in a new Minecraft world to
solve novel tasks from scratch, while other techniques struggle to generalize.

Figure 1: VOYAGER discovers new Minecraft items and skills continually by self-driven exploration,
significantly outperforming the baselines. X-axis denotes the number of prompting iterations.
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Figure 2: VOYAGER consists of three key components: an automatic curriculum for open-ended
exploration, a skill library for increasingly complex behaviors, and an iterative prompting mechanism
that uses code as action space.

1 Introduction

Building generally capable embodied agents that continuously explore, plan, and develop new skills
in open-ended worlds is a grand challenge for the AI community [1–5]. Classical approaches
employ reinforcement learning (RL) [6, 7] and imitation learning [8–10] that operate on primitive
actions, which could be challenging for systematic exploration [11–15], interpretability [16–18], and
generalization [19–21]. Recent advances in large language model (LLM) based agents harness the
world knowledge encapsulated in pre-trained LLMs to generate consistent action plans or executable
policies [16, 22, 19]. They are applied to embodied tasks like games and robotics [23–27], as well as
NLP tasks without embodiment [28–30]. However, these agents are not lifelong learners that can
progressively acquire, update, accumulate, and transfer knowledge over extended time spans [31, 32].

Let us consider Minecraft as an example. Unlike most other games studied in AI [33, 34, 10],
Minecraft does not impose a predefined end goal or a fixed storyline but rather provides a unique
playground with endless possibilities [23]. Minecraft requires players to explore vast, procedurally
generated 3D terrains and unlock a tech tree using gathered resources. Human players typically start
by learning the basics, such as mining wood and cooking food, before advancing to more complex
tasks like combating monsters and crafting diamond tools. We argue that an effective lifelong learning
agent should have similar capabilities as human players: (1) propose suitable tasks based on its
current skill level and world state, e.g., learn to harvest sand and cactus before iron if it finds itself in
a desert rather than a forest; (2) refine skills based on environmental feedback and commit mastered
skills to memory for future reuse in similar situations (e.g. fighting zombies is similar to fighting
spiders); (3) continually explore the world and seek out new tasks in a self-driven manner.

Towards these goals, we introduce VOYAGER, the first LLM-powered embodied lifelong learning
agent to drive exploration, master a wide range of skills, and make new discoveries continually
without human intervention in Minecraft. VOYAGER is made possible through three key modules
(Fig. 2): 1) an automatic curriculum that maximizes exploration; 2) a skill library for storing
and retrieving complex behaviors; and 3) a new iterative prompting mechanism that generates
executable code for embodied control. We opt to use code as the action space instead of low-level
motor commands because programs can naturally represent temporally extended and compositional
actions [16, 22], which are essential for many long-horizon tasks in Minecraft. VOYAGER interacts
with a blackbox LLM (GPT-4 [35]) through prompting and in-context learning [36–38]. Our approach
bypasses the need for model parameter access and explicit gradient-based training or finetuning.

Empirically, VOYAGER demonstrates strong in-context lifelong learning capabilities. It can construct
an ever-growing skill library of action programs that are reusable, interpretable, and generalizable
to novel tasks. We evaluate VOYAGER systematically against other LLM-based agent techniques
(e.g., ReAct [29], Reflexion [30], AutoGPT [28]) in MineDojo [23], an open-source Minecraft AI
framework. VOYAGER outperforms prior SOTA by obtaining 3.3× more unique items, unlocking key
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Inventory (5/36): {'oak_planks': 3, 'stick': 
4, 'crafting_table': 1, 'stone': 3, 
'wooden_pickaxe': 1}

Biome: river

Inventory (4/36): {'sugar_cane': 3, 'paper': 
3, 'fishing_rod': 1, 'wooden_pickaxe': 1}

Nearby entities: pig, cat, villager

Health: 12/20

Hunger: 0/20

Inventory (6/36): {'furnace': 1, 
'stone_pickaxe': 1, 'oak_planks': 7, 
'crafting_table': 1, 'raw_iron': 4, 'coal': 1}

Time: night

Nearby entities: zombie

Equipment: 'stone_sword', 'shield'

Reasoning: Since you have a wooden pickaxe and some stones, it would be 
beneficial to upgrade your pickaxe to a stone pickaxe for better efficiency.

Task: Craft 1 stone pickaxe.

Reasoning: Since you have a fishing rod in your inventory and you are near a river 
biome, it would be a good opportunity to catch some fish for food and experience. 

Task: Catch 1 fish.

Reasoning: Your hunger is at 0, which means you need to find food to replenish 
your hunger. Since there are pigs nearby, you can kill one to obtain raw porkchops.

Task: Kill 1 pig.

Reasoning: You have raw iron and coal, and you have a furnace. It's time to smelt 
the iron to make iron ingots, which can be used to craft better tools and armor.

Task: Smelt 4 raw iron.

Reasoning: Since it's night and there's a zombie nearby, it's a good opportunity to 
try killing the zombie now that you have a stone sword and a shield equipped.

Task: Kill 1 zombie.

GPT-4

GPT-4

GPT-4

GPT-4

GPT-4

Figure 3: Tasks proposed by the automatic curriculum. We only display the partial prompt for brevity.
See Appendix, Sec. A.6 for the full prompt structure.

tech tree milestones up to 15.3× faster, and traversing 2.3× longer distances. We further demonstrate
that VOYAGER is able to utilize the learned skill library in a new Minecraft world to solve novel tasks
from scratch, while other methods struggle to generalize.

2 Method

Embodied agents encounter a variety of objectives with different complexity levels in open-ended
environments. An automatic curriculum offers numerous benefits for open-ended exploration, ensur-
ing a challenging but manageable learning process, fostering curiosity-driven intrinsic motivation for
agents to learn and explore, and encouraging the development of general and flexible problem-solving
strategies [39–41]. VOYAGER attempts to solve progressively harder tasks proposed by the automatic
curriculum, which takes into account the exploration progress and the agent’s state (Fig. 3). The
curriculum is generated by GPT-4 based on the overarching goal of “discovering as many diverse
things as possible”. This approach can be perceived as an in-context form of novelty search [42, 43].

With the automatic curriculum consistently proposing increasingly complex tasks, it is essential to
have a skill library that serves as a basis for learning and evolution. Inspired by the generality,
interpretability, and universality of programs [44], we represent each skill with executable code
that scaffolds temporally extended actions for completing a specific task proposed by the automatic
curriculum. VOYAGER incrementally builds a skill library by storing the action programs that help
solve a task successfully. Each program is indexed by the embedding of its description, which
can be retrieved in similar situations in the future (Fig. 4). Complex skills can be synthesized by
composing simpler programs, which compounds VOYAGER’s capabilities rapidly over time and
alleviates catastrophic forgetting in other continual learning methods [31, 32].

However, LLMs struggle to produce the correct action code consistently in one shot [45]. To address
this challenge, we propose an iterative prompting mechanism that: (1) executes the generated
program to obtain observations from the Minecraft simulation (such as inventory listing and nearby
creatures) and error trace from the code interpreter (if any) (Fig. A.1); (2) incorporates the feedback
into GPT-4’s prompt for another round of code refinement; and (3) repeats the process until a self-
verification module confirms the task completion (Fig. A.2), at which point we commit the program
to the skill library (e.g., craftStoneShovel() and combatZombieWithSword()) and query the
automatic curriculum for the next milestone (Fig. 2).

See Appendix Sec. A for more method details and Appendix Sec. C for related work.

3 Experiments

We systematically evaluate VOYAGER and baselines (Sec. B.2) on their exploration performance, tech
tree mastery, map coverage, and zero-shot generalization capability to novel tasks in a new world.
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Figure 4: Skill library. Top: Adding a new skill. Each time GPT-4 generates and verifies a new
skill, we add it to the skill library, represented by a vector database. The key is the embedding vector
of the program description (generated by GPT-3.5), while the value is the program itself. Bottom:
Skill retrieval. When faced with a new task proposed by the automatic curriculum, we first leverage
GPT-3.5 to generate a general suggestion for solving the task, which is combined with environment
feedback as the query context. Subsequently, we perform querying to identify the top-5 relevant skills.

Figure 5: Map coverage: bird’s eye views of Minecraft maps. VOYAGER is able to traverse 2.3×
longer distances compared to baselines while crossing diverse terrains.

Significantly better exploration. Results of exploration performance are shown in Fig. 1.
VOYAGER’s superiority is evident in its ability to consistently make new strides, discovering 63
unique items within 160 prompting iterations, 3.3× many novel items compared to its counterparts.
On the other hand, AutoGPT lags considerably in discovering new items, while ReAct and Reflexion
struggle to make significant progress, given the abstract nature of the open-ended exploration goal
that is challenging to execute without an appropriate curriculum.

Consistent tech tree mastery. The Minecraft tech tree tests the agent’s ability to craft and use a
hierarchy of tools. Progressing through this tree (wooden tool → stone tool → iron tool → diamond
tool) requires the agent to master systematic and compositional skills. Compared with baselines,
VOYAGER unlocks the wooden level 15.3× faster (in terms of the prompting iterations), the stone
level 8.5× faster, the iron level 6.4× faster, and VOYAGER is the only one to unlock the diamond level
of the tech tree (Fig. 2 and Table. 1). This underscores the effectiveness of the automatic curriculum,
which consistently presents challenges of suitable complexity to facilitate the agent’s progress.

Extensive map traversal. VOYAGER is able to navigate distances 2.3× longer compared to baselines
by traversing a variety of terrains, while the baseline agents often find themselves confined to local
areas, which significantly hampers their capacity to discover new knowledge (Fig. 5).
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Table 1: Tech tree mastery. Fractions indicate the number of successful trials out of three total runs.
0/3 means the method fails to unlock a level of the tech tree within the maximal prompting iterations
(160). Numbers are prompting iterations averaged over three trials. The fewer the iterations, the
more efficient the method.

Method Wooden Tool Stone Tool Iron Tool Diamond Tool

ReAct [29] N/A (0/3) N/A (0/3) N/A (0/3) N/A (0/3)
Reflexion [30] N/A (0/3) N/A (0/3) N/A (0/3) N/A (0/3)
AutoGPT [28] 92± 72 (3/3) 94± 72 (3/3) 135± 103 (3/3) N/A (0/3)
VOYAGER w/o Skill Library 7± 2 (3/3) 9± 4 (3/3) 29± 11 (3/3) N/A (0/3)
VOYAGER (Ours) 6± 2 (3/3) 11± 2 (3/3) 21± 7 (3/3) 102 (1/3)

Figure 6: Zero-shot generalization to unseen tasks. We visualize the intermediate progress of each
method on two tasks. See Appendix, Sec. B.4.3 for the other two tasks. We do not plot ReAct and
Reflexion since they do not make any meaningful progress.

Efficient zero-shot generalization to unseen tasks. To evaluate zero-shot generalization, we clear
the agent’s inventory, reset it to a newly instantiated world, and test it with unseen tasks. For both
VOYAGER and AutoGPT, we utilize GPT-4 to break down the task into a series of subgoals. Table. A.4
and Fig. 6 show VOYAGER can consistently solve all the tasks, while baselines cannot solve any task
within 50 prompting iterations. What’s interesting to note is that our skill library constructed from
lifelong learning not only enhances VOYAGER’s performance but also gives a boost to AutoGPT.
This demonstrates that the skill library serves as a versatile tool that can be readily employed by other
methods, effectively acting as a plug-and-play asset to enhance performance.

See Appendix Sec. B for more experiment details and ablation studies.

4 Conclusion

In this work, we introduce VOYAGER, the first LLM-powered embodied lifelong learning agent,
which leverages GPT-4 to explore the world continuously, develop increasingly sophisticated skills,
and make new discoveries consistently without human intervention. VOYAGER exhibits superior
performance in discovering novel items, unlocking the Minecraft tech tree, traversing diverse terrains,
and applying its learned skill library to unseen tasks in a newly instantiated world. VOYAGER serves
as a starting point to develop powerful generalist agents without tuning the model parameters.
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A Method

VOYAGER consists of three novel components: (1) an automatic curriculum (Sec. A.1) that suggests
objectives for open-ended exploration, (2) a skill library (Sec. A.2) for developing increasingly
complex behaviors, and (3) an iterative prompting mechanism (Sec. A.3) that generates executable
code for embodied control.

A.1 Automatic Curriculum

Embodied agents encounter a variety of objectives with different complexity levels in open-ended
environments. An automatic curriculum offers numerous benefits for open-ended exploration, ensur-
ing a challenging but manageable learning process, fostering curiosity-driven intrinsic motivation
for agents to learn and explore, and encouraging the development of general and flexible problem-
solving strategies [39–41]. Our automatic curriculum capitalizes on the internet-scale knowledge
contained within GPT-4 by prompting it to provide a steady stream of new tasks or challenges. The
curriculum unfolds in a bottom-up fashion, allowing for considerable adaptability and responsiveness
to the exploration progress and the agent’s current state (Fig. 3). As VOYAGER progresses to harder
self-driven goals, it naturally learns a variety of skills, such as “mining a diamond”.

The input prompt to GPT-4 consists of several components: (1) Directives encouraging diverse
behaviors and imposing constraints, such as “My ultimate goal is to discover as
many diverse things as possible ... The next task should not be too hard
since I may not have the necessary resources or have learned enough skills
to complete it yet.”; (2) The agent’s current state, including inventory, equipment, nearby
blocks and entities, biome, time, health and hunger bars, and position; (3) Previously completed
and failed tasks, reflecting the agent’s current exploration progress and capabilities frontier; and
(4) Additional context: We also leverage GPT-3.5 to self-ask questions based on the agent’s current
state and exploration progress and self-answer questions. We opt to use GPT-3.5 instead of GPT-4
for standard NLP tasks due to budgetary considerations.

A.2 Skill Library

With the automatic curriculum consistently proposing increasingly complex tasks, it is essential to
have a skill library that serves as a basis for learning and evolution. Inspired by the generality, inter-
pretability, and universality of programs [44], we represent each skill with executable code that scaf-
folds temporally extended actions for completing a specific task proposed by the automatic curriculum.

The input prompt to GPT-4 consists of the following components: (1) Guidelines for code genera-
tion, such as “Your function will be reused for building more complex functions.
Therefore, you should make it generic and reusable.”; (2) Control primitive APIs,
and relevant skills retrieved from the skill library, which are crucial for in-context learning [36–38]
to work well; (3) The generated code from the last round, environment feedback, execution
errors, and critique, based on which GPT-4 can self-improve (Sec. A.3); (4) The agent’s current
state, including inventory, equipment, nearby blocks and entities, biome, time, health and hunger
bars, and position; (5) Chain-of-thought prompting [46] to do reasoning before code generation.

We iteratively refine the program through a novel iterative prompting mechanism (Sec. A.3), in-
corporate it into the skill library as a new skill, and index it by the embedding of its description
(Fig. 4, top). For skill retrieval, we query the skill library with the embedding of self-generated task
plans and environment feedback (Fig. 4, bottom). By continuously expanding and refining the skill
library, VOYAGER can learn, adapt, and excel in a wide spectrum of tasks, consistently pushing the
boundaries of its capabilities in the open world.

A.3 Iterative Prompting Mechanism

We introduce an iterative prompting mechanism for self-improvement through three types of feed-
back: (1) Environment feedback, which illustrates the intermediate progress of program execu-
tion (Fig. A.1, left). For example, “I cannot make an iron chestplate because I need:
7 more iron ingots” highlights the cause of failure in crafting an iron chestplate. We use
bot.chat() inside control primitive APIs to generate environment feedback and prompt GPT-
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I cannot make stick because I need:  2 more planks

I cannot make stone_shovel because I need:  2 more stick

throw new Error(`No item named ${name}`);

No item named acacia_axe

at line 18:await craftItem(bot, "acacia_axe", 1);

Environment Feedback Execution Error

GPT-4 GPT-4

Figure A.1: Left: Environment feedback. GPT-4 realizes it needs 2 more planks before crafting
sticks. Right: Execution error. GPT-4 realizes it should craft a wooden axe instead of an acacia axe
since there is no acacia axe in Minecraft. We only display the partial prompt for brevity. The full
prompt structure for code generation is in Appendix, Sec. A.7.

4 to use this function as well during code generation; (2) Execution errors from the program
interpreter that reveal any invalid operations or syntax errors in programs, which are valuable for bug
fixing (Fig. A.1, right); (3) Self-verification for checking task success. Instead of manually coding
success checkers for each new task proposed by the automatic curriculum, we instantiate another
GPT-4 agent for self-verification. By providing VOYAGER’s current state and the task to GPT-4, we
ask it to act as a critic [47–49] and inform us whether the program achieves the task. In addition,
if the task fails, it provides a critique by suggesting how to complete the task (Fig. A.2). Hence,
our self-verification is more comprehensive than self-reflection [30] by both checking success and
reflecting on mistakes.

During each round of code generation, we execute the generated program to obtain environment
feedback and execution errors from the code interpreter, which are incorporated into GPT-4’s prompt
for the next round of code refinement. This iterative process repeats until self-verification validates
the task’s completion, at which point we add this new skill to the skill library and ask the automatic
curriculum for a new objective (Fig. 2). If the agent gets stuck after 4 rounds of code generation, then
we query the curriculum for another task. This iterative prompting approach significantly improves
program synthesis for embodied control, enabling VOYAGER to continuously acquire diverse skills
without human intervention.

A.4 VOYAGER Algorithm

Pseudocode 1: VOYAGER algorithm.
def voyager(

environment , # environment that uses code as action space
curriculum_agent , # curriculum agent for proposing the next task
action_agent , # action agent for code generation
critic_agent , # critic agent for self -verification
skill_manager , # skill manager for adding new skills and skill
retrieval

):
agent_state = environment.reset()
while True:
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Inventory (8/36): {'oak_planks': 5, 'cobblestone': 2, 
'porkchop': 2, 'wooden_sword': 1, 'coal': 5, 'wooden_pickaxe': 
1, 'oak_log': 3, 'dirt': 9}

Task: Mine 5 coal ores

Inventory (10/36): {'raw_copper': 9, 'copper_ingot': 3, 
'acacia_planks': 1, 'raw_iron': 1, 'stick': 1, 'iron_sword': 1, 
'iron_pickaxe': 1, 'iron_ingot': 3, 'crafting_table': 1, 'furnace': 1}

Task: Craft a spyglass

Inventory (7/36): {'oak_log': 5, 'oak_planks': 1, 
'wooden_pickaxe': 1, 'wooden_sword': 1, 'porkchop': 2, 
'white_wool': 2, 'mutton': 6}

Task: Kill 3 sheep

Inventory (9/36): {'string': 4, 'coal': 1, 'rotten_flesh': 1, 
'iron_sword': 1, 'furnace': 1, 'dirt': 6, 'stone_shovel': 1, 
'wooden_pickaxe': 1, 'granite': 5}

Task: Kill 1 zombie

Reasoning: Mining coal_ore in Minecraft will get coal. You have 5 coal in your 
inventory.

Success: True

Reasoning: To craft a spyglass, you need 2 copper ingots and 1 amethyst shard. 
You have 3 copper ingots, but you don't have any amethyst shards.

Success: False

Critique: Find and mine an amethyst shard underground.

Reasoning: You have 2 white_wool and 6 mutton in your inventory, which indicates 
that you killed 2 sheep. You needed to kill 3 sheep.

Success: False

Critique: Find and kill one more sheep to complete the task.

Reasoning: You have 1 rotten_flesh in your inventory, which means you have killed 
at least 1 zombie.

Success: True

GPT-4

GPT-4

GPT-4

GPT-4

Figure A.2: Self-verification examples. We only display the partial prompt for brevity. See Appendix,
Sec. A.8 for the full prompt structure.

exploration_progress = (
curriculum_agent.get_exploration_progress(

curriculum_agent.get_completed_tasks (),
curriculum_agent.get_failed_tasks (),

)
)
task = curriculum_agent.propose_next_task(

agent_state , exploration_progress
)
code = None
environment_feedback = None
execution_errors = None
critique = None
success = False
# try at most 4 rounds before moving on to the next task
for i in range (4):

skills = skill_manager.retrieve_skills(
task , environment_feedback

)
code = action_agent.generate_code(

task ,
code ,
environment_feedback ,
execution_errors ,
critique ,
skills ,

)
(

agent_state ,
environment_feedback ,
execution_errors ,

) = environment.step(code)
success , critique = critic_agent.check_task_success(

task , agent_state
)
if success:

break
if success:

skill_manager.add_skill(code)
curriculum_agent.add_completed_task(task)

else:
curriculum_agent.add_failed_task(task)
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A.5 Prompting

GPT-4 and GPT-3.5 offer users the ability to designate the role of each prompt message among three
options:

• System: A high-level instruction that guides the model behavior throughout the conversation.
It sets the overall tone and objective for the interaction.

• User: A detailed instruction that guides the assistant for the next immediate response.

• Assistant: A response message generated the model.

See https://platform.openai.com/docs/guides/chat/introduction for more details.

To save token usage, instead of engaging in multi-round conversations, we concatenate a system
prompt and a user prompt to obtain each assistant’s response.

A.6 Automatic Curriculum Details

A.6.1 Components in the Prompt

The input prompt to GPT-4 consists of several components:

(1) Directives encouraging diverse behaviors and imposing constraints (so that the proposed
task is achievable and verifiable): See Sec. A.6.4 for the full prompt;

(2) The agent’s current state:

• Inventory: A dictionary of items with counts, for example, {‘cobblestone’: 4, ‘furnace’:
1, ‘stone_pickaxe’: 1, ‘oak_planks’: 7, ‘dirt’: 6, ‘wooden_pickaxe’: 1, ‘crafting_table’:
1, ‘raw_iron’: 4, ‘coal’: 1};

• Equipment: Armors or weapons equipped by the agents;
• Nearby blocks: A set of block names within a 32-block distance to the agent, for

example, ‘dirt’, ‘water’, ‘spruce_planks’, ‘grass_block’, ‘dirt_path’, ‘sugar_cane’,
‘fern’;

• Other blocks that are recently seen: Blocks that are not nearby or in the inventory;
• Nearby entities: A set of entity names within a 32-block distance to the agent, for

example, ‘pig’, ‘cat’, ‘villager’, ‘zombie’;
• A list of chests that are seen by the agent: Chests are external containers where the

agent can deposit items. If a chest is not opened before, its content is “Unknown”.
Otherwise, the items inside each chest are shown to the agent.

• Biome: For example, ‘plains’, ‘flower_forest’, ‘meadow’, ‘river’, ‘beach’, ‘for-
est’, ‘snowy_slopes’, ‘frozen_peaks’, ‘old_growth_birch_forest’, ‘ocean’, ‘sun-
flower_plains’, ‘stony_shore’;

• Time: One of ‘sunrise’, ‘day’, ‘noon’, ‘sunset’, ‘night’, ‘midnight’;
• Health and hunger bars: The max value is 20;
• Position: 3D coordinate (x, y, z) of the agent’s position in the Minecraft world;

(3) Previously completed and failed tasks;

(4) Additional context: See Sec. A.6.2;

(5) Chain-of-thought prompting [46] in response: We request GPT-4 to first reason about the
current progress and then suggest the next task.

A.6.2 Additional Context

We leverage GPT-3.5 to self-ask questions to provide additional context. Each question is paired with
a concept that is used for retrieving the most relevant document from the wiki knowledge base [23].
We feed the document content to GPT-3.5 for self-answering questions. In practice, using a wiki
knowledge base is optional since GPT-3.5 already possesses a good understanding of Minecraft
game mechanics. However, the external knowledge base becomes advantageous if GPT-3.5 is not
pre-trained in that specific domain. See Sec. A.6.4 for the full prompt.
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A.6.3 Warm-up Schedule

In practice, we adopt a warm-up schedule to gradually incorporate the agent’s state and the additional
context into the prompt based on how many tasks the agent has completed. This ensures that the
prompt is exposed to increasing amounts of information over the exploration progress and therefore
begins with basic skills and progressively advances towards more intricate and diverse ones. The
warm-up setting that we use across all the experiments is shown in Table. A.1.

Table A.1: Warm-up schedule for automatic curriculum.
Information in the prompt After how many tasks are completed

core inventory (only including log, planks, stick,
crafting table, furnace, dirt, coal, pickaxe, sword,
and axe)

0

equipment 0
nearby blocks 0
position 0
nearby entities 5
full inventory 7
other blocks that are recently seen 10
biome 10
health bar 15
hunger bar 15
time 15
additional context 15

A.6.4 Full Prompt

Prompt 1: Full system prompt for automatic curriculum. The list of question-answer pairs represents
the additional context.
You are a helpful assistant that tells me the next immediate task to

do in Minecraft. My ultimate goal is to discover as many diverse
things as possible , accomplish as many diverse tasks as possible
and become the best Minecraft player in the world.

I will give you the following information:
Question 1: ...
Answer: ...
Question 2: ...
Answer: ...
Question 3: ...
Answer: ...
...
Biome: ...
Time: ...
Nearby blocks: ...
Other blocks that are recently seen: ...
Nearby entities (nearest to farthest): ...
Health: Higher than 15 means I’m healthy.
Hunger: Higher than 15 means I’m not hungry.
Position: ...
Equipment: If I have better armor in my inventory , you should ask me

to equip it.
Inventory (xx/36): ...
Chests: You can ask me to deposit or take items from these chests.

There also might be some unknown chest , you should ask me to open
and check items inside the unknown chest.

Completed tasks so far: ...
Failed tasks that are too hard: ...

18



You must follow the following criteria:
1) You should act as a mentor and guide me to the next task based on

my current learning progress.
2) Please be very specific about what resources I need to collect ,

what I need to craft , or what mobs I need to kill.
3) The next task should follow a concise format , such as "Mine [

quantity] [block]", "Craft [quantity] [item]", "Smelt [quantity] [
item]", "Kill [quantity] [mob]", "Cook [quantity] [food]", "Equip
[item]" etc. It should be a single phrase. Do not propose multiple
tasks at the same time. Do not mention anything else.

4) The next task should not be too hard since I may not have the
necessary resources or have learned enough skills to complete it
yet.

5) The next task should be novel and interesting. I should look for
rare resources , upgrade my equipment and tools using better
materials , and discover new things. I should not be doing the same
thing over and over again.

6) I may sometimes need to repeat some tasks if I need to collect more
resources to complete more difficult tasks. Only repeat tasks if

necessary.
7) Do not ask me to build or dig shelter even if it ’s at night. I want

to explore the world and discover new things. I don ’t want to
stay in one place.

8) Tasks that require information beyond the player ’s status to verify
should be avoided. For instance , "Placing 4 torches" and "Dig a 2

x1x2 hole" are not ideal since they require visual confirmation
from the screen. All the placing , building , planting , and trading
tasks should be avoided. Do not propose task starting with these
keywords.

You should only respond in the format as described below:
RESPONSE FORMAT:
Reasoning: Based on the information I listed above , do reasoning about

what the next task should be.
Task: The next task.

Here ’s an example response:
Reasoning: The inventory is empty now , chop down a tree to get some

wood.
Task: Obtain a wood log.

Prompt 2: Full system prompt for asking questions. We provide both good and bad examples as
few-shot exemplars.
You are a helpful assistant that asks questions to help me decide the

next immediate task to do in Minecraft. My ultimate goal is to
discover as many things as possible , accomplish as many tasks as
possible and become the best Minecraft player in the world.

I will give you the following information:
Biome: ...
Time: ...
Nearby blocks: ...
Other blocks that are recently seen: ...
Nearby entities (nearest to farthest): ...
Health: ...
Hunger: ...
Position: ...
Equipment: ...
Inventory (xx/36): ...
Chests: ...
Completed tasks so far: ...
Failed tasks that are too hard: ...
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You must follow the following criteria:
1) You should ask at least 5 questions (but no more than 10 questions)

to help me decide the next immediate task to do. Each question
should be followed by the concept that the question is about.

2) Your question should be specific to a concept in Minecraft.
Bad example (the question is too general):

Question: What is the best way to play Minecraft?
Concept: unknown

Bad example (axe is still general , you should specify the type of
axe such as wooden axe):
What are the benefits of using an axe to gather resources?
Concept: axe

Good example:
Question: How to make a wooden pickaxe?
Concept: wooden pickaxe

3) Your questions should be self -contained and not require any context
.

Bad example (the question requires the context of my current biome):
Question: What are the blocks that I can find in my current biome?
Concept: unknown

Bad example (the question requires the context of my current
inventory):
Question: What are the resources you need the most currently?
Concept: unknown

Bad example (the question requires the context of my current
inventory):
Question: Do you have any gold or emerald resources?
Concept: gold

Bad example (the question requires the context of my nearby entities
):
Question: Can you see any animals nearby that you can kill for
food?
Concept: food

Bad example (the question requires the context of my nearby blocks):
Question: Is there any water source nearby?
Concept: water

Good example:
Question: What are the blocks that I can find in the sparse jungle
?
Concept: sparse jungle

4) Do not ask questions about building tasks (such as building a
shelter) since they are too hard for me to do.

Let ’s say your current biome is sparse jungle. You can ask questions
like:

Question: What are the items that I can find in the sparse jungle?
Concept: sparse jungle
Question: What are the mobs that I can find in the sparse jungle?
Concept: sparse jungle

Let ’s say you see a creeper nearby , and you have not defeated a
creeper before. You can ask a question like:

Question: How to defeat the creeper?
Concept: creeper

Let ’s say you last completed task is "Craft a wooden pickaxe ". You can
ask a question like:

Question: What are the suggested tasks that I can do after crafting a
wooden pickaxe?

Concept: wooden pickaxe

Here are some more question and concept examples:
Question: What are the ores that I can find in the sparse jungle?
Concept: sparse jungle
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(the above concept should not be "ore" because I need to look up the
page of "sparse jungle" to find out what ores I can find in the
sparse jungle)

Question: How can you obtain food in the sparse jungle?
Concept: sparse jungle
(the above concept should not be "food" because I need to look up the

page of "sparse jungle" to find out what food I can obtain in the
sparse jungle)

Question: How can you use the furnace to upgrade your equipment and
make useful items?

Concept: furnace
Question: How to obtain a diamond ore?
Concept: diamond ore
Question: What are the benefits of using a stone pickaxe over a wooden

pickaxe?
Concept: stone pickaxe
Question: What are the tools that you can craft using wood planks and

sticks?
Concept: wood planks

You should only respond in the format as described below:
RESPONSE FORMAT:
Reasoning: ...
Question 1: ...
Concept 1: ...
Question 2: ...
Concept 2: ...
Question 3: ...
Concept 3: ...
Question 4: ...
Concept 4: ...
Question 5: ...
Concept 5: ...
...

Prompt 3: Full system prompt for answering questions. Context represents the optional content from
a wiki knowledge base.
You are a helpful assistant that answer my question about Minecraft.

I will give you the following information:
Question: ...

You will answer the question based on the context (only if available
and helpful) and your own knowledge of Minecraft.

1) Start your answer with "Answer: ".
2) Answer "Answer: Unknown" if you don ’t know the answer.

A.7 Skill Library Details

A.7.1 Components in the Prompt

The input prompt to GPT-4 consists of the following components:

(1) Guidelines for code generation: See Sec A.7.2 for the full prompt;
(2) Control primitive APIs implemented by us: These APIs serve a dual purpose: they demon-

strate the usage of Mineflayer APIs, and they can be directly called by GPT-4.
• exploreUntil(bot, direction, maxTime = 60, callback): Allow the agent

to explore in a fixed direction for maxTime. The callback is the stopping condition
implemented by the agent to determine when to stop exploring;

• mineBlock(bot, name, count = 1): Mine and collect the specified number of
blocks within a 32-block distance;

21



• craftItem(bot, name, count = 1): Craft the item with a crafting table nearby;
• placeItem(bot, name, position): Place the block at the specified position;
• smeltItem(bot, itemName, fuelName, count = 1): Smelt the item with the

specified fuel. There must be a furnace nearby;
• killMob(bot, mobName, timeout = 300): Attack the mob and collect its

dropped item;
• getItemFromChest(bot, chestPosition, itemsToGet): Move to the chest at

the specified position and get items from the chest;
• depositItemIntoChest(bot, chestPosition, itemsToDeposit): Move to

the chest at the specified position and deposit items into the chest;
(3) Control primitive APIs provided by Mineflayer:

• await bot.pathfinder.goto(goal): Go to a specific position. See below for how
to set the goal;

• new GoalNear(x, y, z, range): Move the bot to a block within the specified
range of the specified block;

• new GoalXZ(x, z): For long-range goals that don’t have a specific Y level;
• new GoalGetToBlock(x, y, z): Not get into the block, but get directly adjacent

to it. Useful for fishing, farming, filling a bucket, and using a bed.;
• new GoalFollow(entity, range): Follow the specified entity within the specified

range;
• new GoalPlaceBlock(position, bot.world, {}): Position the bot in order to

place a block;
• new GoalLookAtBlock(position, bot.world, {}): Path towards a position

where a face of the block at position is visible;
• bot.isABed(bedBlock): Return true if bedBlock is a bed;
• bot.blockAt(position): Return the block at position;
• await bot.equip(item, destination): Equip the item in the specified destina-

tion. destination must be one of “hand”, “head”, “torso”, “legs”, “feet”, “off-hand”;
• await bot.consume(): Consume the item in the bot’s hand. You must equip the

item to consume first. Useful for eating food, drinking potions, etc.;
• await bot.fish(): Let bot fish. Before calling this function, you must first get to a

water block and then equip a fishing rod. The bot will automatically stop fishing when
it catches a fish;

• await bot.sleep(bedBlock): Sleep until sunrise. You must get to a bed block
first;

• await bot.activateBlock(block): This is the same as right-clicking a block in
the game. Useful for buttons, doors, etc. You must get to the block first;

• await bot.lookAt(position): Look at the specified position. You must go near
the position before you look at it. To fill a bucket with water, you must look at it first;

• await bot.activateItem(): This is the same as right-clicking to use the item in
the bot’s hand. Useful for using a bucket, etc. You must equip the item to activate first;

• await bot.useOn(entity): This is the same as right-clicking an entity in the game.
Useful for shearing a sheep. You must get to the entity first;

(4) Retrieved skills from the skill library;
(5) Generated code from the last round;
(6) Environment feedback: The chat log in the prompt;
(7) Execution errors;
(8) Critique from the self-verification module;
(9) The agent’s current state: See Sec. A.6.1 for each element of the agent’s state;

(10) Task proposed by the automatic curriculum;
(11) Task context: We prompt GPT-3.5 to ask for general suggestions about how to solve the

task. In practice, this part is handled by the automatic curriculum since it has a systematic
mechanism for question-answering (Sec. A.6.2);
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(12) Chain-of-thought prompting [46] in response: We ask GPT-4 to first explain the reason why
the code from the last round fails, then give step-by-step plans to finish the task, and finally
generate code. See Sec. A.7.2 for the full prompt.

A.7.2 Full Prompt

Prompt 4: Full system prompt for code generation.
You are a helpful assistant that writes Mineflayer javascript code to

complete any Minecraft task specified by me.

Here are some useful programs written with Mineflayer APIs.

/*
Explore until find an iron_ore , use Vec3(0, -1, 0) because iron ores

are usually underground
await exploreUntil(bot , new Vec3(0, -1, 0), 60, () => {

const iron_ore = bot.findBlock ({
matching: mcData.blocksByName [" iron_ore "].id ,
maxDistance: 32,

});
return iron_ore;

});

Explore until find a pig , use Vec3(1, 0, 1) because pigs are usually
on the surface

let pig = await exploreUntil(bot , new Vec3(1, 0, 1), 60, () => {
const pig = bot.nearestEntity (( entity) => {

return (
entity.name === "pig" &&
entity.position.distanceTo(bot.entity.position) < 32

);
});
return pig;

});
*/
async function exploreUntil(bot , direction , maxTime = 60, callback) {

/*
Implementation of this function is omitted.
direction: Vec3 , can only contain value of -1, 0 or 1
maxTime: number , the max time for exploration
callback: function , early stop condition , will be called each
second , exploration will stop if return value is not null

Return: null if explore timeout , otherwise return the return value
of callback
*/

}

// Mine 3 cobblestone: mineBlock(bot , "stone", 3);
async function mineBlock(bot , name , count = 1) {

const blocks = bot.findBlocks ({
matching: (block) => {

return block.name === name;
},
maxDistance: 32,
count: count ,

});
const targets = [];
for (let i = 0; i < Math.min(blocks.length , count); i++) {

targets.push(bot.blockAt(blocks[i]));
}
await bot.collectBlock.collect(targets , { ignoreNoPath: true });

}
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// Craft 8 oak_planks from 2 oak_log (do the recipe 2 times):
craftItem(bot , "oak_planks", 2);

// You must place a crafting table before calling this function
async function craftItem(bot , name , count = 1) {

const item = mcData.itemsByName[name];
const craftingTable = bot.findBlock ({

matching: mcData.blocksByName.crafting_table.id ,
maxDistance: 32,

});
await bot.pathfinder.goto(

new GoalLookAtBlock(craftingTable.position , bot.world)
);
const recipe = bot.recipesFor(item.id, null , 1, craftingTable)[0];
await bot.craft(recipe , count , craftingTable);

}

// Place a crafting_table near the player , Vec3(1, 0, 0) is just an
example , you shouldn ’t always use that: placeItem(bot , "
crafting_table", bot.entity.position.offset(1, 0, 0));

async function placeItem(bot , name , position) {
const item = bot.inventory.findInventoryItem(mcData.itemsByName[
name].id);
// find a reference block
const faceVectors = [

new Vec3(0, 1, 0),
new Vec3(0, -1, 0),
new Vec3(1, 0, 0),
new Vec3(-1, 0, 0),
new Vec3(0, 0, 1),
new Vec3(0, 0, -1),

];
let referenceBlock = null;
let faceVector = null;
for (const vector of faceVectors) {

const block = bot.blockAt(position.minus(vector));
if (block ?.name !== "air") {

referenceBlock = block;
faceVector = vector;
break;

}
}
// You must first go to the block position you want to place
await bot.pathfinder.goto(new GoalPlaceBlock(position , bot.world ,
{}));
// You must equip the item right before calling placeBlock
await bot.equip(item , "hand");
await bot.placeBlock(referenceBlock , faceVector);

}

// Smelt 1 raw_iron into 1 iron_ingot using 1 oak_planks as fuel:
smeltItem(bot , "raw_iron", "oak_planks ");

// You must place a furnace before calling this function
async function smeltItem(bot , itemName , fuelName , count = 1) {

const item = mcData.itemsByName[itemName ];
const fuel = mcData.itemsByName[fuelName ];
const furnaceBlock = bot.findBlock ({

matching: mcData.blocksByName.furnace.id,
maxDistance: 32,

});
await bot.pathfinder.goto(

new GoalLookAtBlock(furnaceBlock.position , bot.world)
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);
const furnace = await bot.openFurnace(furnaceBlock);
for (let i = 0; i < count; i++) {

await furnace.putFuel(fuel.id , null , 1);
await furnace.putInput(item.id, null , 1);
// Wait 12 seconds for the furnace to smelt the item
await bot.waitForTicks (12 * 20);
await furnace.takeOutput ();

}
await furnace.close ();

}

// Kill a pig and collect the dropped item: killMob(bot , "pig", 300);
async function killMob(bot , mobName , timeout = 300) {

const entity = bot.nearestEntity(
(entity) =>

entity.name === mobName &&
entity.position.distanceTo(bot.entity.position) < 32

);
await bot.pvp.attack(entity);
await bot.pathfinder.goto(

new GoalBlock(entity.position.x, entity.position.y, entity.
position.z)
);

}

// Get a torch from chest at (30, 65, 100): getItemFromChest(bot , new
Vec3(30, 65, 100), {"torch": 1});

// This function will work no matter how far the bot is from the chest
.

async function getItemFromChest(bot , chestPosition , itemsToGet) {
await moveToChest(bot , chestPosition);
const chestBlock = bot.blockAt(chestPosition);
const chest = await bot.openContainer(chestBlock);
for (const name in itemsToGet) {

const itemByName = mcData.itemsByName[name];
const item = chest.findContainerItem(itemByName.id);
await chest.withdraw(item.type , null , itemsToGet[name]);

}
await closeChest(bot , chestBlock);

}
// Deposit a torch into chest at (30, 65, 100): depositItemIntoChest(

bot , new Vec3(30, 65, 100), {" torch ": 1});
// This function will work no matter how far the bot is from the chest

.
async function depositItemIntoChest(bot , chestPosition , itemsToDeposit

) {
await moveToChest(bot , chestPosition);
const chestBlock = bot.blockAt(chestPosition);
const chest = await bot.openContainer(chestBlock);
for (const name in itemsToDeposit) {

const itemByName = mcData.itemsByName[name];
const item = bot.inventory.findInventoryItem(itemByName.id);
await chest.deposit(item.type , null , itemsToDeposit[name]);

}
await closeChest(bot , chestBlock);

}
// Check the items inside the chest at (30, 65, 100):

checkItemInsideChest(bot , new Vec3(30, 65, 100));
// You only need to call this function once without any action to

finish task of checking items inside the chest.
async function checkItemInsideChest(bot , chestPosition) {

await moveToChest(bot , chestPosition);
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const chestBlock = bot.blockAt(chestPosition);
await bot.openContainer(chestBlock);
// You must close the chest after opening it if you are asked to
open a chest
await closeChest(bot , chestBlock);

}

await bot.pathfinder.goto(goal); // A very useful function. This
function may change your main -hand equipment.

// Following are some Goals you can use:
new GoalNear(x, y, z, range); // Move the bot to a block within the

specified range of the specified block. ‘x‘, ‘y‘, ‘z‘, and ‘range ‘
are ‘number ‘

new GoalXZ(x, z); // Useful for long -range goals that don ’t have a
specific Y level. ‘x‘ and ‘z‘ are ‘number ‘

new GoalGetToBlock(x, y, z); // Not get into the block , but get
directly adjacent to it. Useful for fishing , farming , filling
bucket , and beds. ‘x‘, ‘y‘, and ‘z‘ are ‘number ‘

new GoalFollow(entity , range); // Follow the specified entity within
the specified range. ‘entity ‘ is ‘Entity ‘, ‘range ‘ is ‘number ‘

new GoalPlaceBlock(position , bot.world , {}); // Position the bot in
order to place a block. ‘position ‘ is ‘Vec3 ‘

new GoalLookAtBlock(position , bot.world , {}); // Path into a position
where a blockface of the block at position is visible. ‘position ‘
is ‘Vec3 ‘

// These are other Mineflayer functions you can use:
bot.isABed(bedBlock); // Return true if ‘bedBlock ‘ is a bed
bot.blockAt(position); // Return the block at ‘position ‘. ‘position ‘

is ‘Vec3 ‘

// These are other Mineflayer async functions you can use:
await bot.equip(item , destination); // Equip the item in the specified

destination. ‘item ‘ is ‘Item ‘, ‘destination ‘ can only be "hand",
"head", "torso", "legs", "feet", "off -hand"

await bot.consume (); // Consume the item in the bot ’s hand. You must
equip the item to consume first. Useful for eating food , drinking
potions , etc.

await bot.fish(); // Let bot fish. Before calling this function , you
must first get to a water block and then equip a fishing rod. The
bot will automatically stop fishing when it catches a fish

await bot.sleep(bedBlock); // Sleep until sunrise. You must get to a
bed block first

await bot.activateBlock(block); // This is the same as right -clicking
a block in the game. Useful for buttons , doors , using hoes , etc.
You must get to the block first

await bot.lookAt(position); // Look at the specified position. You
must go near the position before you look at it. To fill bucket
with water , you must lookAt first. ‘position ‘ is ‘Vec3 ‘

await bot.activateItem (); // This is the same as right -clicking to use
the item in the bot ’s hand. Useful for using buckets , etc. You

must equip the item to activate first
await bot.useOn(entity); // This is the same as right -clicking an

entity in the game. Useful for shearing sheep , equipping harnesses
, etc. You must get to the entity first

{retrieved_skills}

At each round of conversation , I will give you
Code from the last round: ...
Execution error: ...
Chat log: ...
Biome: ...
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Time: ...
Nearby blocks: ...
Nearby entities (nearest to farthest):
Health: ...
Hunger: ...
Position: ...
Equipment: ...
Inventory (xx/36): ...
Chests: ...
Task: ...
Context: ...
Critique: ...

You should then respond to me with
Explain (if applicable): Are there any steps missing in your plan? Why

does the code not complete the task? What does the chat log and
execution error imply?

Plan: How to complete the task step by step. You should pay attention
to Inventory since it tells what you have. The task completeness
check is also based on your final inventory.

Code:
1) Write an async function taking the bot as the only argument.
2) Reuse the above useful programs as much as possible.

- Use ‘mineBlock(bot , name , count)‘ to collect blocks. Do not
use ‘bot.dig ‘ directly.

- Use ‘craftItem(bot , name , count)‘ to craft items. Do not use
‘bot.craft ‘ directly.

- Use ‘smeltItem(bot , name count)‘ to smelt items. Do not use
‘bot.openFurnace ‘ directly.

- Use ‘placeItem(bot , name , position)‘ to place blocks. Do not
use ‘bot.placeBlock ‘ directly.

- Use ‘killMob(bot , name , timeout)‘ to kill mobs. Do not use ‘
bot.attack ‘ directly.
3) Your function will be reused for building more complex
functions. Therefore , you should make it generic and reusable. You
should not make strong assumption about the inventory (as it may

be changed at a later time), and therefore you should always check
whether you have the required items before using them. If not ,

you should first collect the required items and reuse the above
useful programs.
4) Functions in the "Code from the last round" section will not be
saved or executed. Do not reuse functions listed there.
5) Anything defined outside a function will be ignored , define all
your variables inside your functions.
6) Call ‘bot.chat ‘ to show the intermediate progress.
7) Use ‘exploreUntil(bot , direction , maxDistance , callback)‘ when
you cannot find something. You should frequently call this before
mining blocks or killing mobs. You should select a direction at
random every time instead of constantly using (1, 0, 1).
8) ‘maxDistance ‘ should always be 32 for ‘bot.findBlocks ‘ and ‘bot
.findBlock ‘. Do not cheat.
9) Do not write infinite loops or recursive functions.
10) Do not use ‘bot.on‘ or ‘bot.once ‘ to register event listeners.
You definitely do not need them.
11) Name your function in a meaningful way (can infer the task
from the name).

You should only respond in the format as described below:
RESPONSE FORMAT:
Explain: ...
Plan:
1) ...
2) ...
3) ...
...
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Code:
‘‘‘javascript
// helper functions (only if needed , try to avoid them)
...
// main function after the helper functions
async function yourMainFunctionName(bot) {

// ...
}
‘‘‘

Prompt 5: Full system prompt for generating function descriptions. This is used when adding a new
skill to the skill library. We give a one-shot example in the prompt.
You are a helpful assistant that writes a description of the given

function written in Mineflayer javascript code.

1) Do not mention the function name.
2) Do not mention anything about ‘bot.chat ‘ or helper functions.
3) There might be some helper functions before the main function , but

you only need to describe the main function.
4) Try to summarize the function in no more than 6 sentences.
5) Your response should be a single line of text.

For example , if the function is:

async function mineCobblestone(bot) {
// Check if the wooden pickaxe is in the inventory , if not , craft
one

let woodenPickaxe = bot.inventory.findInventoryItem(mcData.
itemsByName [" wooden_pickaxe "].id);

if (! woodenPickaxe) {
bot.chat(" Crafting a wooden pickaxe .");
await craftWoodenPickaxe(bot);
woodenPickaxe = bot.inventory.findInventoryItem(mcData.itemsByName
[" wooden_pickaxe "].id);

}

// Equip the wooden pickaxe if it exists
if (woodenPickaxe) {

await bot.equip(woodenPickaxe , "hand");

// Explore until we find a stone block
await exploreUntil(bot , new Vec3(1, -1, 1), 60, () => {

const stone = bot.findBlock ({
matching: mcData.blocksByName [" stone "].id,
maxDistance: 32

});
if (stone) {

return true;
}

});

// Mine 8 cobblestone blocks using the wooden pickaxe
bot.chat("Found a stone block. Mining 8 cobblestone blocks .");
await mineBlock(bot , "stone", 8);
bot.chat(" Successfully mined 8 cobblestone blocks .");

// Save the event of mining 8 cobblestone
bot.save(" cobblestone_mined ");

} else {
bot.chat(" Failed to craft a wooden pickaxe. Cannot mine
cobblestone .");

}
}
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The main function is ‘mineCobblestone ‘.

Then you would write:

The function is about mining 8 cobblestones using a wooden pickaxe.
First check if a wooden pickaxe is in the inventory. If not , craft
one. If the wooden pickaxe is available , equip the wooden pickaxe
in the hand. Next , explore the environment until finding a stone

block. Once a stone block is found , mine a total of 8 cobblestone
blocks using the wooden pickaxe.

A.7.3 Examples

Skill library example 1: craftWoodenPlanks.
async function craftWoodenPlanks(bot) {

const logNames = ["oak_log", "birch_log", "spruce_log", "jungle_log"
, "acacia_log", "dark_oak_log", "mangrove_log"];

const plankNames = ["oak_planks", "birch_planks", "spruce_planks", "
jungle_planks", "acacia_planks", "dark_oak_planks", "
mangrove_planks"];

const logInInventory = logNames.find(logName => bot.inventory.count(
mcData.itemsByName[logName ].id) > 0);

if (! logInInventory) {
bot.chat("No wooden log in inventory. Mining a wooden log...");
await mineWoodLog(bot);

}
const logIndex = logNames.indexOf(logInInventory);
const plankName = plankNames[logIndex ];
bot.chat(‘Crafting 4 ${plankName }... ‘);
await craftItem(bot , plankName , 1);
bot.chat(‘4 ${plankName} crafted.‘);

}

Skill library example 2: mineTenCobbledDeepslateBelowY0.
async function mineTenCobbledDeepslateBelowY0(bot) {

// Equip the iron pickaxe
const ironPickaxe = bot.inventory.findInventoryItem(mcData.
itemsByName["iron_pickaxe"].id);

await bot.equip(ironPickaxe , "hand");

// Find cobbled_deepslate blocks below Y=0
const cobbledDeepslateBlocks = await exploreUntil(bot , new Vec3(1,
-1, 1), 60, () => {
const cobbledDeepslate = bot.findBlock ({

matching: mcData.blocksByName["cobbled_deepslate"].id,
maxDistance: 32,
position: pos => pos.y < 0

});
return cobbledDeepslate;

});

// Mine 10 cobbled_deepslate blocks
await mineBlock(bot , "cobbled_deepslate", 10);
bot.chat("10 cobbled_deepslate mined below Y=0.");

}

Skill library example 3: smeltFiveRawIronV2.
async function findSuitablePosition(bot) {

const offsets = [new Vec3(1, 0, 0), new Vec3(-1, 0, 0), new Vec3(0,
0, 1), new Vec3(0, 0, -1)];

29



for (const offset of offsets) {
const position = bot.entity.position.offset(offset.x, offset.y,
offset.z);
const block = bot.blockAt(position);
if (block.name === "air") {

return position;
}

}
return null;

}

async function smeltFiveRawIron(bot) {
// Check if there is a furnace in the inventory
const furnaceItem = bot.inventory.findInventoryItem(mcData.
itemsByName.furnace.id);

// If not , craft a furnace using the available cobblestone
if (! furnaceItem) {

await craftFurnace(bot);
}

// Find a suitable position to place the furnace
const furnacePosition = await findSuitablePosition(bot);
if (! furnacePosition) {

bot.chat("Could not find a suitable position to place the furnace.
");
return;

}

// Place the furnace at the suitable position
await placeItem(bot , "furnace", furnacePosition);

// Smelt 5 raw iron using the available coal as fuel
await smeltItem(bot , "raw_iron", "coal", 5);
bot.chat("5 raw iron smelted.");

}

Skill library example 4: fillBucketWithWater.
async function fillBucketWithWater(bot) {
// Find a water block nearby

const waterBlock = await exploreUntil(bot , new Vec3(1, 0, 1), 60, ()
=> {
const water = bot.findBlock ({

matching: mcData.blocksByName.water.id,
maxDistance: 32

});
return water;

});
if (! waterBlock) {

bot.chat("Could not find water.");
return;

}

// Go to the water block
const adjacentBlock= waterBlock.position.offset(0, 1, 0);
await bot.pathfinder.goto(

new GoalGetToBlock(adjacentBlock.x, adjacentBlock.y,
adjacentBlock.z)

);

// Look at the water block
await bot.lookAt(waterBlock.position , true);

// Equip the bucket
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const bucket = bot.inventory.findInventoryItem(mcData.itemsByName.
bucket.id);

await bot.equip(bucket , "hand");

// Activate the bucket to collect water
await bot.activateItem ();
bot.chat("Filled the bucket with water.");

}

Skill library example 5: catchFiveFishSafely.
async function catchFiveFishSafely(bot) {

// Check if the bot has a fishing rod in its inventory
let fishingRod = bot.inventory.findInventoryItem(mcData.itemsByName.
fishing_rod.id);

if (! fishingRod) {
await craftFishingRod(bot);
fishingRod = bot.inventory.findInventoryItem(mcData.itemsByName.
fishing_rod.id);

}

// Find a nearby water block
let waterBlock;
while (! waterBlock) {

waterBlock = await exploreUntil(bot , new Vec3(1, 0, 1), 60, () =>
{

const foundWaterBlock = bot.findBlock ({
matching: mcData.blocksByName.water.id,
maxDistance: 32

});
return foundWaterBlock;

});
if (! waterBlock) {

bot.chat("No path to the water block. Trying to find another
water block ...");
}

}

// Move to a block adjacent to the water block
const adjacentBlock = waterBlock.position.offset(0, 1, 0);
await bot.pathfinder.goto(new GoalBlock(adjacentBlock.x,
adjacentBlock.y, adjacentBlock.z));

// Look at the water block
await bot.lookAt(waterBlock.position);

// Equip the fishing rod
await bot.equip(fishingRod , "hand");

// Fish in the water 5 times
for (let i = 0; i < 5; i++) {

try {
await bot.fish();
bot.chat(‘Fish ${i + 1} caught.‘);

} catch (error) {
if (error.message === "Fishing cancelled") {

bot.chat("Fishing was cancelled. Trying again ...");
i--; // Retry the same iteration

} else {
throw error;

}
}

}
}
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A.8 Self-Verification Details

A.8.1 Components in the Prompt

The input prompt to GPT-4 consists of the following components:

(1) The agent’s state: We exclude other blocks that are recently seen and nearby entities from the
agent’s state since they are not useful for assessing the task’s completeness. See Sec. A.6.1
for each element of the agent’s state;

(2) Task proposed by the automatic curriculum;

(3) Task context: We prompt GPT-3.5 to ask for general suggestions about how to solve the
task. In practice, this part is handled by the automatic curriculum since it has a systematic
mechanism for question-answering (Sec. A.6.2);

(4) Chain-of-thought prompting [46] in response: We request GPT-4 to initially reason about
the task’s success or failure, then output a boolean variable indicating the task’s outcome,
and finally provide a critique to the agent if the task fails.

(5) Few-shot examples for in-context learning [36–38].

A.8.2 Full Prompt

Prompt 6: Full system prompt for self-verification.
You are an assistant that assesses my progress of playing Minecraft

and provides useful guidance.

You are required to evaluate if I have met the task requirements.
Exceeding the task requirements is also considered a success while
failing to meet them requires you to provide critique to help me

improve.

I will give you the following information:

Biome: The biome after the task execution.
Time: The current time.
Nearby blocks: The surrounding blocks. These blocks are not collected

yet. However , this is useful for some placing or planting tasks.
Health: My current health.
Hunger: My current hunger level. For eating task , if my hunger level

is 20.0, then I successfully ate the food.
Position: My current position.
Equipment: My final equipment. For crafting tasks , I sometimes equip

the crafted item.
Inventory (xx/36): My final inventory. For mining and smelting tasks ,

you only need to check inventory.
Chests: If the task requires me to place items in a chest , you can

find chest information here.
Task: The objective I need to accomplish.
Context: The context of the task.

You should only respond in JSON format as described below:
{

"reasoning ": "reasoning",
"success ": boolean ,
"critique ": "critique",

}
Ensure the response can be parsed by Python ‘json.loads ‘, e.g.: no

trailing commas , no single quotes , etc.

Here are some examples:
INPUT:
Inventory (2/36): {’oak_log ’:2, ’spruce_log ’:2}
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Task: Mine 3 wood logs

RESPONSE:
{

"reasoning ": "You need to mine 3 wood logs. You have 2 oak logs
and 2 spruce logs , which add up to 4 wood logs.",
"success ": true ,
"critique ": ""

}

INPUT:
Inventory (3/36): {’crafting_table ’: 1, ’spruce_planks ’: 6, ’stick ’:

4}

Task: Craft a wooden pickaxe

RESPONSE:
{

"reasoning ": "You have enough materials to craft a wooden pickaxe ,
but you didn ’t craft it.",
"success ": false ,
"critique ": "Craft a wooden pickaxe with a crafting table using 3
spruce planks and 2 sticks ."

}

INPUT:
Inventory (2/36): {’raw_iron ’: 5, ’stone_pickaxe ’: 1}

Task: Mine 5 iron_ore

RESPONSE:
{

"reasoning ": "Mining iron_ore in Minecraft will get raw_iron. You
have 5 raw_iron in your inventory.",
"success ": true ,
"critique ": ""

}

INPUT:
Biome: plains

Nearby blocks: stone , dirt , grass_block , grass , farmland , wheat

Inventory (26/36): ...

Task: Plant 1 wheat seed.

RESPONSE:
{

"reasoning ": "For planting tasks , inventory information is useless
. In nearby blocks , there is farmland and wheat , which means you
succeed to plant the wheat seed.",
"success ": true ,
"critique ": ""

}

INPUT:
Inventory (11/36): {... ,’rotten_flesh ’: 1}

Task: Kill 1 zombie

Context: ...

RESPONSE
{

33



"reasoning ": "You have rotten flesh in your inventory , which means
you successfully killed one zombie.",
"success ": true ,
"critique ": ""

}

INPUT:
Hunger: 20.0/20.0

Inventory (11/36): ...

Task: Eat 1 ...

Context: ...

RESPONSE
{

"reasoning ": "For all eating task , if the player ’s hunger is 20.0,
then the player successfully ate the food.",
"success ": true ,
"critique ": ""

}

INPUT:
Nearby blocks: chest

Inventory (28/36): {’rail ’: 1, ’coal ’: 2, ’oak_planks ’: 13, ’
copper_block ’: 1, ’diorite ’: 7, ’cooked_beef ’: 4, ’granite ’: 22, ’
cobbled_deepslate ’: 23, ’feather ’: 4, ’leather ’: 2, ’
cooked_chicken ’: 3, ’white_wool ’: 2, ’stick ’: 3, ’black_wool ’: 1,
’stone_sword ’: 2, ’stone_hoe ’: 1, ’stone_axe ’: 2, ’stone_shovel ’:
2, ’cooked_mutton ’: 4, ’cobblestone_wall ’: 18, ’crafting_table ’:
1, ’furnace ’: 1, ’iron_pickaxe ’: 1, ’stone_pickaxe ’: 1, ’
raw_copper ’: 12}

Chests:
(81, 131, 16): {’andesite ’: 2, ’dirt ’: 2, ’cobblestone ’: 75, ’

wooden_pickaxe ’: 1, ’wooden_sword ’: 1}

Task: Deposit useless items into the chest at (81, 131, 16)

Context: ...

RESPONSE
{

"reasoning ": "You have 28 items in your inventory after depositing
, which is more than 20. You need to deposit more items from your
inventory to the chest.",
"success ": false ,
"critique ": "Deposit more useless items such as copper_block ,
diorite , granite , cobbled_deepslate , feather , and leather to meet
the requirement of having only 20 occupied slots in your inventory
."

}

A.9 System-level Comparison between VOYAGER and Prior Works

We make a system-level comparison in Table. A.2. Voyager stands out as the only method featuring a
combination of automatic curriculum, iterative planning, and a skill library. Moreover, it learns to
play Minecraft without the need for any gradient update.
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Table A.2: System-level comparison between VOYAGER and prior works.
VPT [8] DreamerV3 [50] DECKARD [51] DEPS [52] Plan4MC [53] VOYAGER

Demos Videos None Videos None None None

Rewards Sparse Dense Sparse None Dense None

Observations Pixels Only Pixels &
Meta

Pixels &
Inventory

Feedback &
Inventory

Pixels &
Meta

Feedback &
Meta &
Inventory

Actions Keyboard &
Mouse

Discrete Keyboard &
Mouse

Keyboard &
Mouse

Discrete Code

Automatic
Curriculum

✓ ✓
(in-context
GPT-4 pro-
posal)

Iterative Plan-
ning

✓ ✓
(3 types of
feedback)

Skill Library ✓
(pre-defined)

✓
(self-
generated)

Gradient-Free ✓

B Experiments

B.1 Experimental Setup

We leverage OpenAI’s gpt-4-0314 [35] and gpt-3.5-turbo-0301 [54] APIs for text completion,
along with text-embedding-ada-002 [55] API for text embedding. We set all temperatures to 0
except for the automatic curriculum, which uses temperature = 0.1 to encourage task diversity. Our
simulation environment is built upon MineDojo [23] and utilizes Mineflayer [56] JavaScript APIs
for motor controls (Sec. A.7.2). Additionally, we incorporate many bot.chat() into Mineflayer
functions to provide abundant environment feedback and implement various condition checks along
with try-catch exceptions for continuous execution. If the bot dies, it is resurrected near the closest
ground, and its inventory is preserved for uninterrupted exploration. The bot recycles its crafting
table and furnace after program execution.

B.2 Baselines

Because there is no LLM-based agents that work out of the box for Minecraft, we make our best effort
to select a number of representative algorithms as baselines. These methods are originally designed
only for NLP tasks without embodiment, therefore we have to re-interpret them to be executable in
MineDojo and compatible with our experimental setting:

ReAct [29] uses chain-of-thought prompting [46] by generating both reasoning traces and action
plans with LLMs. We provide it with our environment feedback and the agent states as observations.
ReAct undergoes one round of code generation from scratch, followed by three rounds of code
refinement. This process is then repeated until the maximum prompting iteration is reached.

Reflexion [30] is built on top of ReAct [29] with self-reflection to infer more intuitive future actions.
We provide it with environment feedback, the agent states, execution errors, and our self-verification
module. Similar to ReAct, Reflexion undergoes one round of code generation from scratch, followed
by three rounds of code refinement. This process is then repeated until the maximum prompting
iteration is reached.

AutoGPT [28] is a popular software tool that automates NLP tasks by decomposing a high-level goal
into multiple subgoals and executing them in a ReAct-style loop. We re-implement AutoGPT by
using GPT-4 to do task decomposition and provide it with the agent states, environment feedback,
and execution errors as observations for subgoal execution. Compared with VOYAGER, AutoGPT
lacks the skill library for accumulating knowledge, self-verification for assessing task success, and
automatic curriculum for open-ended exploration. During each subgoal execution, if no execution
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error occurs, we consider the subgoal completed and proceed to the next one. Otherwise, we refine
the program until three rounds of code refinement (equivalent to four rounds of code generation)
are completed, and then move on to the next subgoal. If three consecutive subgoals do not result in
acquiring a new item, we replan by rerunning the task decomposition.

The task is “explore the world and get as many items as possible” for all baselines. We also compare
VOYAGER with baselines in Table. A.3.

Table A.3: Comparison between VOYAGER and baselines.

ReAct [29] Reflexion [30] AutoGPT [28] VOYAGER

Chain-of-Thought [46] ✓ ✓ ✓ ✓
Self Verification ✓ ✓
Environment Feedback ✓ ✓ ✓ ✓
Execution Errors ✓ ✓ ✓
Agent State ✓ ✓ ✓ ✓
Skill Library ✓
Automatic Curriculum ✓

Note that we do not directly compare with prior methods that take Minecraft screen pixels as input
and output low-level controls [51, 57, 52]. It would not be an apple-to-apple comparison, because
we rely on the high-level Mineflayer [56] API to control the agent. Our work’s focus is on pushing
the limits of GPT-4 for lifelong embodied agent learning, rather than solving the 3D perception or
sensorimotor control problems. VOYAGER is orthogonal and can be combined with gradient-based
approaches like VPT [8] as long as the controller provides a code API. We make a system-level
comparison between VOYAGER and prior Minecraft agents in Table. A.2.

B.3 Ablations

We ablate 6 design choices (automatic curriculum, skill library, environment feedback, execution
errors, self-verification, and GPT-4 for code generation) in VOYAGER and study their impact on
exploration performance.

• Manual Curriculum: We substitute the automatic curriculum with a manually designed
curriculum for mining a diamond: “Mine 3 wood log”, “Craft 1 crafting table”, “Craft
1 wooden pickaxe”, “Mine 11 cobblestone”, “Craft 1 stone pickaxe”, “Craft 1 furnace”,
“Mine 3 iron ore”, “Smelt 3 iron ore”, “Craft 1 iron pickaxe”, “Mine 1 diamond”. A manual
curriculum requires human effort to design and is not scalable for open-ended exploration.

• Random Curriculum: We curate 101 items obtained by VOYAGER and create a random
curriculum by randomly selecting one item as the next task.

• w/o Skill Library: We remove the skill library, eliminating skill retrieval for code genera-
tion.

• w/o Environment Feedback: We exclude environment feedback (chat log) from the prompt
for code generation.

• w/o Execution Errors: We exclude execution errors from the prompt for code generation.
• w/o Self-Verification: For each task, we generate code without self-verification and it-

eratively refine the program for 3 rounds (equivalent to 4 rounds of code generation in
total).

• GPT-3.5: We replace GPT-4 with GPT-3.5 for code generation. We retain GPT-4 for the
automatic curriculum and the self-verification module.

B.4 Evaluation Results

B.4.1 Significantly Better Exploration

The meaning of each icon in Fig. 1 is shown in Fig. A.3.
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Figure A.3: Minecraft item icons with corresponding names.

We run three trials for each method. The items collected by VOYAGER in each trial is

• Trial 1: ‘iron_ingot’, ‘stone_shovel’, ‘iron_leggings’, ‘fishing_rod’, ‘pufferfish’,
‘oak_log’, ‘cooked_mutton’, ‘green_dye’, ‘flint’, ‘chest’, ‘iron_sword’, ‘string’, ‘en-
der_pearl’, ‘raw_copper’, ‘crafting_table’, ‘cactus’, ‘lapis_lazuli’, ‘iron_pickaxe’, ‘cop-
per_ingot’, ‘stone_pickaxe’, ‘wooden_hoe’, ‘scaffolding’, ‘stick’, ‘porkchop’, ‘cop-
per_block’, ‘gravel’, ‘grass_block’, ‘white_bed’, ‘bone’, ‘dirt’, ‘mutton’, ‘white_wool’,
‘oak_sapling’, ‘coal’, ‘bamboo’, ‘wooden_pickaxe’, ‘rotten_flesh’, ‘cooked_porkchop’,
‘cod’, ‘iron_boots’, ‘lightning_rod’, ‘diorite’, ‘water_bucket’, ‘shears’, ‘furnace’, ‘andesite’,
‘granite’, ‘bucket’, ‘wooden_sword’, ‘sandstone’, ‘iron_helmet’, ‘raw_iron’, ‘sand’, ‘aca-
cia_log’, ‘cooked_cod’, ‘oak_planks’, ‘azure_bluet’, ‘iron_shovel’, ‘acacia_planks’, ‘shield’,
‘iron_axe’, ‘iron_chestplate’, ‘cobblestone’;

• Trial 2: ‘iron_ingot’, ‘tuff’, ‘stone_shovel’, ‘iron_leggings’, ‘fishing_rod’, ‘cooked_mutton’,
‘spruce_planks’, ‘gunpowder’, ‘amethyst_shard’, ‘chest’, ‘string’, ‘cooked_salmon’,
‘iron_sword’, ‘raw_copper’, ‘crafting_table’, ‘torch’, ‘lapis_lazuli’, ‘iron_pickaxe’, ‘cop-
per_ingot’, ‘stone_pickaxe’, ‘wooden_hoe’, ‘stick’, ‘amethyst_block’, ‘salmon’, ‘cal-
cite’, ‘gravel’, ‘white_bed’, ‘bone’, ‘dirt’, ‘mutton’, ‘white_wool’, ‘spyglass’, ‘coal’,
‘wooden_pickaxe’, ‘cod’, ‘iron_boots’, ‘lily_pad’, ‘cobbled_deepslate’, ‘lightning_rod’,
‘snowball’, ‘stone_axe’, ‘smooth_basalt’, ‘diorite’, ‘water_bucket’, ‘furnace’, ‘andesite’,
‘bucket’, ‘granite’, ‘shield’, ‘iron_helmet’, ‘raw_iron’, ‘cobblestone’, ‘spruce_log’,
‘cooked_cod’, ‘tripwire_hook’, ‘stone_hoe’, ‘iron_chestplate’, ‘stone_sword’;

• Trial 3: ‘spruce_planks’, ‘dirt’, ‘shield’, ‘redstone’, ‘clock’, ‘diamond_sword’,
‘iron_chestplate’, ‘stone_pickaxe’, ‘leather’, ‘string’, ‘chicken’, ‘chest’, ‘diorite’,
‘iron_leggings’, ‘black_wool’, ‘cobblestone_wall’, ‘cobblestone’, ‘cooked_chicken’,
‘feather’, ‘stone_sword’, ‘raw_gold’, ‘gravel’, ‘birch_planks’, ‘coal’, ‘cobbled_deepslate’,
‘oak_planks’, ‘iron_pickaxe’, ‘granite’, ‘tuff’, ‘crafting_table’, ‘iron_helmet’, ‘stone_hoe’,
‘iron_ingot’, ‘stone_axe’, ‘birch_boat’, ‘stick’, ‘sand’, ‘bone’, ‘raw_iron’, ‘beef’, ‘rail’,
‘oak_sapling’, ‘kelp’, ‘gold_ingot’, ‘birch_log’, ‘wheat_seeds’, ‘cooked_mutton’, ‘furnace’,
‘arrow’, ‘stone_shovel’, ‘white_wool’, ‘andesite’, ‘jungle_slab’, ‘mutton’, ‘iron_sword’,
‘copper_ingot’, ‘diamond’, ‘torch’, ‘oak_log’, ‘cooked_beef’, ‘copper_block’, ‘flint’,
‘bone_meal’, ‘raw_copper’, ‘wooden_pickaxe’, ‘iron_boots’, ‘wooden_sword’.

The items collected by ReAct [29] in each trial is

• Trial 1: ‘bamboo’, ‘dirt’, ‘sand’, ‘wheat_seeds’;
• Trial 2: ‘dirt’, ‘rabbit’, ‘spruce_log’, ‘spruce_sapling’;
• Trial 3: ‘dirt’, ‘pointed_dripstone’;

The items collected by Reflexion [30] in each trial is

• Trial 1: ‘crafting_table’, ‘orange_tulip’, ‘oak_planks’, ‘oak_log’, ‘dirt’;
• Trial 2: ‘spruce_log’, ‘dirt’, ‘clay_ball’, ‘sand’, ‘gravel’;
• Trial 3: ‘wheat_seeds’, ‘oak_log’, ‘dirt’, ‘birch_log’, ‘sand’.
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Figure A.4: Map coverage: Two bird’s eye views of Minecraft maps. VOYAGER is able to traverse
2.3× longer distances compared to baselines while crossing diverse terrains. Trajectories are plotted
based on the positions where each agent interacts with GPT-4.

The items collected by AutoGPT [28] in each trial is

• Trial 1: ‘feather’, ‘oak_log’, ‘leather’, ‘stick’, ‘porkchop’, ‘chicken’, ‘crafting_table’,
‘wheat_seeds’, ‘oak_planks’, ‘dirt’, ‘mutton’;

• Trial 2: ‘wooden_pickaxe’, ‘iron_ingot’, ‘stone’, ‘coal’, ‘spruce_planks’, ‘string’,
‘raw_copper’, ‘crafting_table’, ‘diorite’, ‘andesite’, ‘furnace’, ‘torch’, ‘spruce_sapling’,
‘granite’, ‘iron_pickaxe’, ‘stone_pickaxe’, ‘wooden_axe’, ‘raw_iron’, ‘stick’, ‘spruce_log’,
‘dirt’, ‘cobblestone’;

• Trial 3: ‘wooden_shovel’, ‘wooden_pickaxe’, ‘iron_ingot’, ‘stone’, ‘cod’, ‘coal’, ‘oak_log’,
‘flint’, ‘raw_copper’, ‘crafting_table’, ‘diorite’, ‘furnace’, ‘andesite’, ‘torch’, ‘granite’,
‘lapis_lazuli’, ‘iron_pickaxe’, ‘stone_pickaxe’, ‘raw_iron’, ‘stick’, ‘gravel’, ‘oak_planks’,
‘dirt’, ‘iron_axe’, ‘cobblestone’.

B.4.2 Extensive Map Traversal

Agent trajectories for map coverage are displayed in Fig. A.4. Fig. 5 is plotted based on Fig. A.4 by
drawing the smallest circle enclosing each trajectory. The terrains traversed by VOYAGER in each
trial is

• Trial 1: ‘meadow’, ‘desert’, ‘river’, ‘savanna’, ‘forest’, ‘plains’, ‘bamboo_jungle’, ‘drip-
stone_caves’;

• Trial 2: ‘snowy_plains’, ‘frozen_river’, ‘dripstone_caves’, ‘snowy_taiga’, ‘beach’;
• Trial 3: ‘flower_forest’, ‘meadow’, ‘old_growth_birch_forest’, ‘snowy_slopes’,

‘frozen_peaks’, ‘forest’, ‘river’, ‘beach’, ‘ocean’, ‘sunflower_plains’, ‘plains’, ‘stony_shore’.

The terrains traversed by ReAct [29] in each trial is

• Trial 1: ‘plains’, ‘desert’, ‘jungle’;
• Trial 2: ‘snowy_plains’, ‘snowy_taiga’, ‘snowy_slopes’;
• Trial 3: ‘dark_forest’, ‘dripstone_caves’, ‘grove’, ‘jagged_peaks’.

The terrains traversed by Reflexion [30] in each trial is

• Trial 1: ‘plains’, ‘flower_forest’;
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Table A.4: Zero-shot generalization to unseen tasks. Fractions indicate the number of successful
trials out of three total attempts. 0/3 means the method fails to solve the task within the maximal
prompting iterations (50). Numbers are prompting iterations averaged over three trials. The fewer
the iterations, the more efficient the method.

Method Diamond Pickaxe Golden Sword Lava Bucket Compass

ReAct [29] N/A (0/3) N/A (0/3) N/A (0/3) N/A (0/3)
Reflexion [30] N/A (0/3) N/A (0/3) N/A (0/3) N/A (0/3)
AutoGPT [28] N/A (0/3) N/A (0/3) N/A (0/3) N/A (0/3)
AutoGPT [28] w/ Our Skill Library 39 (1/3) 30 (1/3) N/A (0/3) 30 (2/3)
VOYAGER w/o Skill Library 36 (2/3) 30± 9 (3/3) 27± 9 (3/3) 26± 3 (3/3)
VOYAGER (Ours) 19± 3 (3/3) 18± 7 (3/3) 21± 5 (3/3) 18± 2 (3/3)

Figure A.5: Zero-shot generalization to unseen tasks. We visualize the intermediate progress of each
method on the other two tasks. We do not plot ReAct and Reflexion since they do not make any
meaningful progress.

• Trial 2: ‘snowy_taiga’;
• Trial 3: ‘old_growth_birch_forest’, ‘river’, ‘ocean’, ‘beach’, ‘plains’.

The terrains traversed by AutoGPT [28] in each trial is

• Trial 1: ‘plains’, ‘dripstone_caves’, ‘savanna’, ‘meadow’;
• Trial 2: ‘snowy_taiga’;
• Trial 3: ‘plains’, ‘stony_shore’, ‘forest’, ‘ocean’.

B.4.3 Efficient Zero-Shot Generalization to Unseen Tasks

The results of zero-shot generalization to unseen tasks for the other two tasks are presented in Fig. A.5.
Similar to Fig. 6, VOYAGER consistently solves all tasks, while the baselines are unable to solve any
task within 50 prompting iterations. Our skill library, constructed from lifelong learning, not only
enhances VOYAGER’s performance but also provides a boost to AutoGPT [28].

B.5 Ablation Studies

We ablate 6 design choices (automatic curriculum, skill library, environment feedback, execution
errors, self-verification, and GPT-4 for code generation) in VOYAGER and study their impact on
exploration performance (see Appendix, Sec. B.3 for details of each ablated variant). Results are
shown in Fig. A.6. We highlight the key findings below:

• Automatic curriculum is crucial for the agent’s consistent progress. The discovered item
count drops by 93% if the curriculum is replaced with a random one, because certain tasks
may be too challenging if attempted out of order. On the other hand, a manually designed
curriculum requires significant Minecraft-specific expertise, and does not take into account
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Figure A.6: Left: Ablation studies for the automatic curriculum, skill library, and GPT-4.
GPT-3.5 means replacing GPT-4 with GPT-3.5 for code generation. VOYAGER outperforms all the
alternatives, demonstrating the critical role of each component. Right: Ablation studies for the
iterative prompting mechanism. VOYAGER surpasses all the other options, thereby highlighting the
essential significance of each type of feedback in the iterative prompting mechanism.

Figure A.7: VOYAGER builds 3D structures with human feedback. The progress of building designs
that integrate human input is demonstrated from left to right.

the agent’s live situation. It falls short in the experimental results compared to our automatic
curriculum.

• VOYAGER w/o skill library exhibits a tendency to plateau in the later stages. This
underscores the pivotal role that the skill library plays in VOYAGER. It helps create more
complex actions and steadily pushes the agent’s boundaries by encouraging new skills to be
built upon older ones.

• Self-verification is the most important among all the feedback types. Removing the
module leads to a significant drop (−73%) in the discovered item count. Self-verification
serves as a critical mechanism to decide when to move on to a new task or reattempt a
previously unsuccessful task.

• GPT-4 significantly outperforms GPT-3.5 in code generation and obtains 5.7× more
unique items, as GPT-4 exhibits a quantum leap in coding abilities. This finding corroborates
recent studies in the literature [58, 59].

B.5.1 Multimodal Feedback from Humans

VOYAGER does not currently support visual perception, because the available version of GPT-4 is
text-only at the time of this writing. However, VOYAGER has the potential to be augmented by
multimodal perception models [60, 61] to achieve more impressive tasks. We demonstrate that given
human feedback, VOYAGER is able to construct complex 3D structures in Minecraft, such as a Nether
Portal and a house (Fig. A.7). There are two ways to integrate human feedback:

(1) Human as a critic (equivalent to VOYAGER’s self-verification module): humans provide
visual critique to VOYAGER, allowing it to modify the code from the previous round. This
feedback is essential for correcting certain errors in the spatial details of a 3D structure that
VOYAGER cannot perceive directly.
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(2) Human as a curriculum (equivalent to VOYAGER’s automatic curriculum module): humans
break down a complex building task into smaller steps, guiding VOYAGER to complete them
incrementally. This approach improves VOYAGER’s ability to handle more sophisticated 3D
construction tasks.

B.5.2 Accurate Skill Retrieval

We conduct an evaluation of our skill retrieval (309 samples in total) and the results are in Table. A.5.
The top-5 accuracy standing at 96.5% suggests our retrieval process is reliable (note that we include
the top-5 relevant skills in the prompt for synthesizing a new skill).

Table A.5: Skill retrieval accuracy.
Top-1 Acc Top-2 Acc Top-3 Acc Top-4 Acc Top-5 Acc

80.2± 3.0 89.3± 1.8 93.2± 0.7 95.2± 1.8 96.5± 0.3

B.5.3 Robust to Model Variations

In the main paper, all of Voyager’s experiments are conducted with gpt-4-0314. We additionally
run new experiments with gpt-4-0613 and find that the performance is roughly the same (Fig. A.8).
It demonstrates that Voyager is robust to model variations.

Figure A.8: VOYAGER’s performance with GPT-4-0314 and GPT-4-0613.

C Related work

Decision-making Agents in Minecraft. Minecraft is an open-ended 3D world with incredibly
flexible game mechanics supporting a broad spectrum of activities. Built upon notable Minecraft
benchmarks [23, 62–66], Minecraft learning algorithms can be divided into two categories: 1)
Low-level controller: Many prior efforts leverage hierarchical reinforcement learning to learn from
human demonstrations [67–69]. Kanitscheider et al. [14] design a curriculum based on success rates,
but its objectives are limited to curated items. MineDojo [23] and VPT [8] utilize YouTube videos
for large-scale pre-training. DreamerV3 [50], on the other hand, learns a world model to explore
the environment and collect diamonds. 2) High-level planner: Volum et al. [70] leverage few-shot
prompting with Codex [45] to generate executable policies, but they require additional human
interaction. Recent works leverage LLMs as a high-level planner in Minecraft by decomposing
a high-level task into several subgoals following Minecraft recipes [52, 51, 53], thus lacking full
exploration flexibility. Like these latter works, VOYAGER also uses LLMs as a high-level planner by
prompting GPT-4 and utilizes Mineflayer [56] as a low-level controller following Volum et al. [70].
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Unlike prior works, VOYAGER employs an automatic curriculum that unfolds in a bottom-up manner,
driven by curiosity, and therefore enables open-ended exploration.

Large Language Models for Agent Planning. Inspired by the strong emergent capabilities of
LLMs, such as zero-shot prompting and complex reasoning [71, 37, 38, 36, 72, 73], embodied agent
research [74–77] has witnessed a significant increase in the utilization of LLMs for planning purposes.
Recent efforts can be roughly classified into two groups. 1) Large language models for robot
learning: Many prior works apply LLMs to generate subgoals for robot planning [27, 27, 25, 78, 79].
Inner Monologue [26] incorporates environment feedback for robot planning with LLMs. Code as
Policies [16] and ProgPrompt [22] directly leverage LLMs to generate executable robot policies.
VIMA [19] and PaLM-E [61] fine-tune pre-trained LLMs to support multimodal prompts. 2)
Large language models for text agents: ReAct [29] leverages chain-of-thought prompting [46] and
generates both reasoning traces and task-specific actions with LLMs. Reflexion [30] is built upon
ReAct [29] with self-reflection to enhance reasoning. AutoGPT [28] is a popular tool that automates
NLP tasks by crafting a curriculum of multiple subgoals for completing a high-level goal while
incorporating ReAct [29]’s reasoning and acting loops. DERA [80] frames a task as a dialogue
between two GPT-4 [35] agents. Generative Agents [81] leverages ChatGPT [54] to simulate human
behaviors by storing agents’ experiences as memories and retrieving those for planning, but its agent
actions are not executable. SPRING [82] is a concurrent work that uses GPT-4 to extract game
mechanics from game manuals, based on which it answers questions arranged in a directed acyclic
graph and predicts the next action. All these works lack a skill library for developing more complex
behaviors, which are crucial components for the success of VOYAGER in lifelong learning.

Code Generation with Execution. Code generation has been a longstanding challenge in
NLP [45, 83, 84, 72, 37], with various works leveraging execution results to improve program
synthesis. Execution-guided approaches leverage intermediate execution outcomes to guide program
search [85–87]. Another line of research utilizes majority voting to choose candidates based on their
execution performance [88, 89]. Additionally, LEVER [90] trains a verifier to distinguish and reject
incorrect programs based on execution results. CLAIRIFY [91], on the other hand, generates code
for planning chemistry experiments and makes use of a rule-based verifier to iteratively provide
error feedback to LLMs. VOYAGER distinguishes itself from these works by integrating environment
feedback, execution errors, and self-verification (to assess task success) into an iterative prompting
mechanism for embodied control.

D Limitations and Future Work

Cost. The GPT-4 API incurs significant costs. It is 15× more expensive than GPT-3.5. Nevertheless,
VOYAGER requires the quantum leap in code generation quality from GPT-4 (Fig. A.6), which
GPT-3.5 and open-source LLMs cannot provide [92].

Inaccuracies. Despite the iterative prompting mechanism, there are still cases where the agent gets
stuck and fails to generate the correct skill. The automatic curriculum has the flexibility to reattempt
this task at a later time. Occasionally, self-verification module may also fail, such as not recognizing
spider string as a success signal of beating a spider.

Hallucinations. The automatic curriculum occasionally proposes unachievable tasks. For example, it
may ask the agent to craft a “copper sword" or “copper chestplate", which are items that do not exist
within the game. Hallucinations also occur during the code generation process. For instance, GPT-4
tends to use cobblestone as a fuel input, despite being an invalid fuel source in the game. Additionally,
it may call functions absent in the provided control primitive APIs, leading to code execution errors.

We are confident that improvements in the GPT API models as well as novel techniques for finetuning
open-source LLMs will overcome these limitations in the future.

E Broader Impacts

Our research is conducted within Minecraft, a safe and harmless 3D video game environment. While
VOYAGER is designed to be generally applicable to other domains, such as robotics, its application to
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physical robots would require additional attention and the implementation of safety constraints by
humans to ensure responsible and secure deployment.
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