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Abstract

Panoptic segmentation is the task of uniquely assigning
every pixel in an image to either a semantic label or an indi-
vidual object instance, generating a coherent and complete
scene description. Many current panoptic segmentation
methods, however, predict masks of semantic classes and
object instances in separate branches, yielding inconsis-
tent predictions. Moreover, because state-of-the-art panop-
tic segmentation models rely on box proposals, the instance
masks predicted are often of low-resolution. To overcome
these limitations, we propose the Panoptic Refinement Net-
work (PRN), which takes masks from base panoptic seg-
mentation models and refines them jointly to produce co-
herent results. PRN extends the offset map-based architec-
ture of Panoptic-Deeplab with several novel ideas including
a foreground mask and instance bounding box offsets, as
well as coordinate convolutions for improved spatial pre-
diction. Experimental results on COCO and Cityscapes
show that PRN can significantly improve already accurate
results from a variety of panoptic segmentation networks.

1. Introduction

Panoptic segmentation addresses semantic and instance
segmentation in a unified way, aiming to assign each pixel
to one of the background classes (i.e. stuff) or one of the ob-
ject instances (i.e. things) [22]. Facilitated by the introduc-
tion of several open-source datasets (e.g. Cityscapes [11],
COCO [33]], Mapillary Vistas [37]), panoptic segmentation
has quickly become a popular research topic leading to sig-
nificant progress [8} 9} [17, 21, 24, 26| 27, 34, 45| 147, 149, [51]]
since its introduction.

Despite this progress, panoptic segmentation results still
suffer from a variety of artifacts. Some of these artifacts
are due to the difficulty of the problem and are caused by
occlusion, visual similarity between instances, etc. Other
artifacts, however, are caused by limitations of the panoptic
segmentation models used. We distinguish limitations that
cause inaccurate boundaries between instances and stuff,
or between different instances, mainly due to components
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Figure 1. Top row: input panoptic segmentation by MS-
PanopticFPN. Second row: PRN makes large corrections to the
sky and ground, and smaller corrections to all instances. Bottom
row: PRN is able to recover the tennis player (right) who was
missing in the input (left). Note that the color of an instance masks
represents the index of the instance, and not its class label.

of panoptic segmentation networks operating at low reso-
lution, and limitations that cause inconsistencies due to im-
perfect merging of semantic and instance predictions, which
are typically made by different branches of the network.
For example, the above issues manifest themselves in
the results of Panoptic FPN [21]], a groundbreaking panop-
tic segmentation method. Panoptic FPN is a two-stage ap-
proach that relies on Mask R-CNN [13] to extract region
of interest (Rol) features and generate low-resolution (e.g.,
14 x 14 or 28 x 28) instance mask proposals. Many subse-



quent panoptic segmentation methods [8} 127, 126 (34} 138|140,
51] also rely on low-resolution Rol-based mask prediction.
Such low-resolution masks cannot capture the fine details of
object boundaries precisely and fail to achieve high-quality
segmentation results. Furthermore, it is common for ex-
isting methods to train independent instance segmentation
and semantic segmentation branches to predict instance and
stuff masks separately. This typically calls for heuristic-
driven postprocessing [21] to resolve the conflicts among
instance and stuff masks in the panoptic segmentation map,
potentially producing unsatisfactory outcomes.

To tackle the above weaknesses of current panoptic
segmentation methods, we propose to refine their low-
resolution mask predictions by developing a new dedicated
mask refinement network for panoptic segmentation. Our
design is inspired by the observation that single-shot panop-
tic segmentation networks, such as Panoptic-DeepLab [9]],
are able to predict high-resolution masks for instances and
stuff, but suffer from low recognition accuracy compared to
two-stage methods that leverage object proposals. We pro-
pose to achieve the best of both worlds by re-purposing an
architecture similar to Panoptic-DeepLab to refine an ini-
tial panoptic segmentation of an image, instead of using it
to segment the image from scratch. This allows us to benefit
from the correctly recognized, but imprecisely segmented,
outputs from a two-stage panoptic segmentation network in
a framework that can obtain precise segmentation bound-
aries, as well as learn to correct systematic errors of the
base panoptic segmentation network, as shown in Fig. [I]
As discussed in Section [2] semantic segmentation refine-
ment methods fall short in panoptic segmentation refine-
ment. SegFix [55], which is arguably the state of the art,
still cannot generate missing masks, and is outperformed
by PRN in our experiments.

To achieve these goals, we extended the Panoptic-
DeepLab architecture with mechanisms to predict a fore-
ground mask and bounding box offsets at each pixel. The
foreground mask is class-agnostic, which allows the net-
work to predict it at high-resolution thus enabling more pre-
cise interaction between thing and stuff masks. The bound-
ing box offsets, meanwhile, play an important role in group-
ing pixels into instances. They are aided by the use of Co-
ordConv [33]] in the encoder and decoder.

In summary, we present the Panoptic Refinement Net-
work (PRN) which is a general, effective, and efficient re-
finement method that can be trained to improve the results
of any base panoptic segmentation network. It is the first
approach to tackle the segmentation quality limitations of
existing two-stage panoptic segmentation methods, while
preserving, or improving, their strong classification perfor-
mance. The contributions of this paper are as follows:

* A panoptic refinement network that improves bound-
ary consistency across instances and stuff, reduces arti-

facts due to low-resolution instance masks, and is able
to insert and delete instance masks.

¢ Novelties in the architecture of PRN, such as fore-
ground mask estimation, coordinate convolution and
per-pixel instance bounding box prediction that enable
the above corrections and are generally applicable.

» Extensive experiments and ablation studies assessing
PRN’s effectiveness on improving the output of three
diverse based panoptic segmentation algorithms.

2. Related Work

In this section, we focus on methods employing deep
networks, acknowledging that earlier, conventional ap-
proaches have also been published [43] 44} |53]]. There are
several approaches [8, 121} 127, 126,139} 140, |51]] adopting two-
stage, or top-down, architectures inspired by Mask R-CNN
[15]. Kirillov et al. [21] endow Mask R-CNN with a se-
mantic segmentation branch using a shared Feature Pyramid
Network backbone. Li et al. [27] present a unified frame-
work for instance and stuff segmentation with object-level
and pixel-level attention. Porzi et al. [39] employ a crop-
aware bounding box regression loss to handle objects at a
wide range of scales in high-resolutions images, extending
their previous work [38]]. The Adaptive Instance Selection
(AdaptIS) network [40] performs class-agnostic instance
segmentation based on point proposals, while the exemplar-
based open-set panoptic segmentation network (EOPSN)
[L8] can segment known and unknown objects. BANet [8]]
is based on a bidirectional learning pipeline that enables
feature-level interaction between instance and semantic seg-
mentation. Similarly, the Bidirectional Graph Reasoning
Network [49] is a graph convolutional network for bidirec-
tional feature fusion at the proposal and class level.

A limitation of the above methods is that they do not
optimize a panoptic loss function, but intermediate outputs
that are fused heuristically. Panoptic losses were introduced
to address this. Liu et al. [34] propose an end-to-end oc-
clusion aware network for panoptic segmentation, which
also predicts the ordering of instances. UPSNet [51] re-
lies on deformable convolution for semantic segmentation
and Mask R-CNN-style instance segmentation to solve both
sub-problems simultaneously. SOGNet [52] models overlap
relations among instances by introducing the scene overlap
graph. Li et al. [26] present an end-to-end network that
does not rely on heuristic post-processing and thus unifies
the training and inference pipelines. To address occlusion in
instance segmentation, Lazarow et al. [24] model the binary
relationship between overlapping instance masks.

We now turn our attention to single-shot, or bottom-up,
methods that do not require object proposals. PRN can be
applied on the outputs of these methods as well, as shown
in Sectiond] Cheng et al. [9] introduce Panoptic-DeepLab
that employs a class-agnostic instance segmentation branch



with instance center regression coupled with DeepLab [3]]
semantic segmentation outputs. SSAP [12] is a single-
shot instance segmentation approach based on a pixel-pair
affinity pyramid, which computes the probability that two
pixels belong to the same instance in a hierarchical man-
ner. Category- and instance-aware pixel embedding (CIAE)
[[13]] learns an embedding of pixelwise features that encodes
both semantic classification and instance distinction infor-
mation. Pixel Consensus Voting [45] uses a generalized
Hough transform for instance segmentation and a unified
architecture that jointly models things and stuff. Similarly,
Li et al. [28] represent and predict things and stuff in a fully
convolutional manner, while Kerola et al. [[19] propose Hi-
erarchical Lovédsz Embeddings for the same purpose.

Axial-DeepLab [47] is a fully attentional network with
novel position-sensitive axial-attention layers that combine
self-attention for non-local interactions with positional sen-
sitivity. The subsequent MAX-DeepLab [46] integrates a
transformer and a CNN in a dual-path architecture, and di-
rectly predicts a set of object and stuff masks with a mask
transformer. DEtection TRansformer (DETR) [4] intro-
duces a set-based global loss that forces unique predictions
via bipartite matching, and a transformer encoder-decoder
architecture. DETR is one of the base networks in our ex-
periments. It has been extended [29, [54] as transformer
technology rapidly evolves.

Other aspects of panoptic segmentation have also been
investigated. Real-time panoptic segmentation [17, 48] is
valuable for robotics and autonomous driving. Hou et al.
[[L7] present a new single-shot panoptic segmentation net-
work that leverages dense detections and a global self-
attention mechanism to achieve high frame rates with a
small loss in accuracy. The Auto-Panoptic method [50] ap-
plies Network Architecture Search (NAS) on the compo-
nents of panoptic segmentation.

Also related to our work are semantic [14! 5, 30] and
instance segmentation [56| [10] refinement methods. The
former, however, cannot handle boundaries between in-
stances of the same type, while the latter refine one in-
stance at a time. SegFix [S3] is a recent, model-agnostic
post-processing scheme that improves segmentation bound-
aries generated by existing methods. The key idea is that,
since the label predictions for interior pixels are more re-
liable, they can be used to correct errors near boundaries.
Unlike PRN, SegFix does not need to be trained for each
baseline method, but PRN can recover masks that have been
entirely missed, and delete large erroneous segments. Seg-
Fix is included in our experiments. The Panoptic, Instance,
and Semantic Relations (PISR) model [2] captures the rela-
tions among semantic classes and instances, and is able to
enhance the performance of existing panoptic segmentation
systems. PISR was published too recently to allow detailed
comparisons, but it seems to achieve similar improvements

to PRN on common inputs.

3. The Panoptic Refinement Network (PRN)

We propose the Panoptic Refinement Network (PRN),
an encoder-decoder which jointly refines the instance and
semantic segmentation masks generated by a base panop-
tic segmentation network. We base the design of PRN
on Panoptic-DeepLab [9] because it can predict high-
resolution masks for instances and stuff jointly. This is due
to its single-shot approach and center-based instance predic-
tion mechanism. Panoptic-DeepLab, however, suffers from
poor classification accuracy, according to the Recognition
Quality (RQ) metric introduced by Kirillov et al. [22]. This
is due to the severe class imbalance in the pixel-wise se-
mantic segmentation training samples. Training tends to
be dominated by stuff categories which have larger pixel
counts in the images compared to the instance categories.
In contrast, two-stage panoptic segmentation methods use a
separate head to detect and classify instances, and as a result
are less affected by class imbalance.

This observation motivated us to change the role of
Panoptic-DeepLab from a conventional approach that tack-
les panoptic segmentation from scratch, to a panoptic refine-
ment module that takes the well-categorized but coarsely-
segmented outputs from a trained two-stage panoptic
segmentation network and focuses on refining its low-
resolution masks to achieve high-quality segmentation.

However, directly applying the architecture of Panoptic-
DeepLab as a refinement module suffers from several limi-
tations. First, to prevent excessive memory consumption,
the semantic segmentation branch’s multi-class output is
lower-resolution and thus produces masks with limited seg-
mentation fidelity. Second, detecting instances with in-
stance center prediction and center offset regression is not
sufficiently robust and may incorrectly split an instance
into multiple instances. We incorporate several new ideas
in PRN to addresses these limitations. In addition to the
original prediction branches in Panoptic-DeepLab, we pro-
pose a class-agnostic foreground mask prediction branch
that operates at the same high resolution as the input.
To make instance prediction more robust, PRN’s instance
branch predicts bounding box offset values at each fore-
ground/instance pixel, which are then used to group in-
stance pixels in postprocessing. Additionally, we improve
PRN’s capability to regress instance offsets by making the
network more coordinate-aware with CoordConv [35]).

3.1. Overall Architecture

As shown in Fig. [2| PRN takes the RGB image, instance
and semantic segmentation masks from the base network
as input. PRN consists of four components: (1) an input
module which extracts and concatenates the features from
the RGB image, instance and semantic segmentation masks,
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Figure 2. Overview of the architecture of Panoptic Refinement Network (PRN). PPGBF stands for Post-Processing Guided by Bounding

Box and Foreground Mask.

Figure 3. An illustration of the 4D bounding box offsets in red for
the green pixel of an instance of Bus

(2) an encoder-decoder network for joint refinement of in-
stance and semantic segmentation, (3) task-specific predic-
tion branches for instance, semantic and foreground seg-
mentation, (4) a postprocessing module guided by the pre-
dicted foreground mask and bounding box at each pixel.

3.2. Input Processing

The input to PRN has three parts: the RGB image, in-
stance maps, and semantic segmentation maps, all from the
base panoptic segmentation network. The semantic seg-
mentation maps are often downsampled, typically by a fac-
tor of 4 in each dimension. In general, the input branch is
adapted according to the output format of the base network.
Instance Maps. The input instance maps have seven chan-
nels. Following Panoptic-Deeplab [9], the first three chan-
nels represent a 1D center map and a 2D center offset map
derived from the output of a base panoptic segmentation
network. The center map is a heat map that indicates the
probability of each pixel being an instance center. In the
center offset map, each pixel contains the 2D offset values
that map its location to the center of the instance it belongs
to. See Fig. []for an example.

Motivated by the intuition that pixels of the same in-
stance should be associated with the same bounding box, we
design a novel 4D bounding box offset map which comple-
ments the center and center offset maps to further constraint
how PRN detects instances. As shown in Fig. 3] the four
channels (dy, dz,ds,ds) correspond to the distances from
the pixel to the top, bottom, left and right of the instance’s
bounding box. The bounding box offset maps make up the
last four channels of the input instance maps.

Input Branches. The input image is fed to an RGB-specific
input branch consisting of two 5 x 5, stride-2 convolutional
layers to obtain RGB-specific features Vg, € RNenx G X %,
where N, is the number of input channels to the en-
coder. The input instance segmentation mask is fed to an
instance-specific input branch consisting of 5 x 5, stride-
2 convolutional la%ers to produce instance-specific features
Vins € RNen 250,

The input semantic segmentation maps has N chan-
nels, where N, is the number of semantic (things and stuff)
classes. The label probabilities of the classes across all pixel
locations are represented by the input semantic segmenta-
tion maps. It is fed to a semantic-specific input branch
consisting of a 5 x 5 convolutional layer to generate the
semantic-specific features Vi, € RNenx x4

We concatenate the features from all input branches
along with a 2D normalized coordinate map C to obtain
the feature maps X € ROBNent2XExF  with X =
Concat(Vigp, Vins, Vieg, C'). In order to predict the center and
bounding box offset values effectively in the instance pre-
diction output branch, PRN must be strongly aware of pixel
coordinates. To this end, we leverage CoordConv [33] in
panoptic segmentation by adding a 2D normalized coordi-
nate map to X. In addition, CoordConv is applied to subse-
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Figure 4. An example of the inputs, intermediate results and outputs of PRN

quent parts of PRN, including its encoder-decoder network
and instance prediction branch, to further boost PRN’s co-
ordinate awareness.

3.3. Encoder-Decoder

After processing the input, the encoder-decoder gener-
ates multi-scale deep features for the output branches. Com-
pared to Panoptic-Deeplab that learns separate decoders for
the instance prediction and semantic segmentation output
branches, we design an encoder-decoder network with an
efficient shared decoder for both branches. We modify
ResNet [16] by adding decoder layers to build the encoder-
decoder network. First, we remove the first convolutional
layer and plug in our input module, which has been de-
scribed in Section [3.2] Second, we apply CoordConv to
each bottleneck block of the encoder and to each layer of
the decoder. Third, we feed the encoder’s features at i, é,
1—16 and é scales to the decoder layers through skip con-
nections. Other than the above, our encoder-decoder fol-
lows the architectural details of standard encoder-decoder
networks [[1l [6]. The encoder-decoder architecture is sim-
ilar to the Feature Pyramid Network (FPN) [31]], albeit
with larger network capacity. We denote its output with
Y € Rcdexixi, where C,. is number of the decoder’s
output channels.

3.4. Prediction Branches

The encoder-decoder’s features, Y, are used in PRN’s
semantic segmentation branch and multiple instance predic-
tion branches: instance center points, center offsets, bound-
ing box offsets, and class-agnostic foreground mask. Due to
the smaller output size of the instance prediction branch (%)
of the encoder-decoder compared to the image size, a bilin-
ear upsampling layer is first applied to the incoming features
Y, before applying multiple parallel branches of two con-
secutive 5 X 5 and 1 x 1 convolutional layers to predict all
instance outputs at the image resolution.

Semantic Segmentation. The semantic segmentation
branch uses the same resolution (i) as the decoder’s out-
put and no upsampling is required. We train the semantic
segmentation branch using cross entropy as the loss.

Center Points. In PRN, the ground-truth instances are rep-

resented by their centers of mass via 2D Gaussians as in
Panoptic-Deeplab. The Mean Squared Error (MSE) loss
is used to penalize the errors between predictions and the
ground-truth in the 2D Gaussian-encoded center heat map.
During inference, non-maximum suppression (NMS) is ap-
plied to obtain the instance centers.

Center & Bounding Box Offsets. In Panoptic-Deeplab,
center offsets are predicted to associate each pixel with its
corresponding instance’s center point, such that pixels be-
longing to the same instance can be grouped together. How-
ever, such an approach is far from robust and often incor-
rectly splits an instance into multiple smaller instances, due
to the use of a simple centerness-based criterion. To robus-
tify the pixel grouping process in PRN, we propose to apply
the representation we have adopted for the input, and addi-
tionally predict bounding box offset maps. The predicted
offset values are the distances from the current pixel to the
four sides of the box bounding the instance it belongs to,
similar to FCOS [42] (see Fig.[3). We incorporate bounding
box offset prediction in PRN by predicting four additional
output channels on top of the two-channel center offset in
the offset prediction branch. The offset branch is trained
with the L1 loss.

Foreground Mask. In Panoptic-Deeplab, the semantic seg-
mentation map acts as a background filter during infer-
ence. However, the segmentation map has relatively low
resolution due to the computational and memory cost of
predicting a dense pixel-wise segmentation map with nu-
merous semantic categories. To this end, we propose a
foreground mask prediction branch for PRN that outputs
a class-agnostic (objectness) foreground mask to replace
the semantic segmentation map as a more effective back-
ground filter. Given K binary ground-truth instance masks
B = {B;|i = {1,2,..., K}}, we compute the target 1D
foreground mask using bitwise OR as, B; V By V ... V Bg.
Since the foreground mask is single-channel, memory con-
sumption becomes less of an issue allowing the network to
predict the foreground mask at the same high resolution as
the input image. This provides higher segmentation fidelity
especially to the instance categories, as the boundaries of
instances which are in contact with the stuff masks are pri-
marily decided by the foreground mask. Cross entropy loss



is used to train the foreground mask branch.
3.5. Postprocessing

During inference, there are two postprocessing steps

leading to the final panoptic segmentation map: (1) merg-
ing the center and offset maps to form the instance mask,
(2) merging the semantic and instance segmentation masks
to form the final panoptic segmentation map.
Post-Processing Guided by Bounding Box and Fore-
ground Mask. (PPGBF). We design a novel postprocess-
ing algorithm guided by both the predicted foreground mask
and bounding box offset map. First, we perform keypoint-
based non-maximum suppression on the instance center
heat map to obtain the center point prediction keeping the
top-k highest scores that are also above a threshold 6. We
set @ = 0.2 and k£ = 200. Second, we assign the pixels on
the center offset map to the nearest centers which should
have an IoU greater than 0.5 with the instance’s bound-
ing box determined by its center point from the center heat
map. We remove pixels that cannot be assigned to any cen-
ter points’ bounding boxes with IoU greater than 0.5. Last,
we use the predicted foreground mask to filter out bounding
boxes with background pixels.
Majority Voting & Final Merging. Given the predicted
semantic segmentation and class-agnostic instance segmen-
tation results, we adopt a majority voting technique to ob-
tain the category label of each instance mask. In particular,
the semantic label of a predicted instance mask is inferred
by the majority of its pixels’ predicted labels in the semantic
segmentation map. Then, we merge the semantic segmen-
tation and instance segmentation results to obtain the final
panoptic segmentation map.

4. Experimental Results

In this section, we describe the base panoptic segmen-
tation models and experimental settings, followed by our
results and ablation studies. (See the supplement for details
on the licenses of the external software and datasets used.)

4.1. Base Panoptic Segmentation Networks

PRN is trained to refine the results of a base panoptic
segmentation network trained on the same dataset. Here,
we use DETR [4]], Real-time Panoptic [[17]], and a variant of
PanopticFPN [21], dubbed MS-PanopticFPN, as base net-
works. DETR [4] is a state-of-the-art detection method
which performs very well in panoptic segmentation. Real-
time Panoptic [17] is a single-shot panoptic segmentation
network that leverages dense detections and a global self-
attention mechanism to achieve real-time performance and
near-SOTA accuracy.

Multi-source Panoptic Feature Pyramid Network (MS-
PanopticFPN). We use a panoptic feature pyramid net-

work as an additional base panoptic segmentation network,
pretrained on multiple source datasets for better generaliza-
tion. MS-PanopticFPN comprises detection, instance seg-
mentation and semantic segmentation modules. The detec-
tion module is based on ATSS [57], modified to include a
hierarchical classification head, with decoupled objectness
and classification prediction heads. The detection loss con-
sists of three parts: centerness loss, bounding box regres-
sion loss and focal loss [32]] for classification. The instance
and semantic segmentation modules share parameters with
the detection module. The semantic segmentation branch
follows Hou et al.’s [17] design, but we rely on dice [41]
and focal [32] losses for semantic segmentation. We also
employ the instance segmentation branch from CenterMask
[25] and use focal loss to train it. (More details on MS-
PanopticFPN are presented in the supplement.)

4.2. Datasets, Experimental Setup and Evaluation
Metrics.

We evaluate PRN on two datasets:

(1) The COCO dataset [33] is a widely used benchmark
which was developed for instance segmentation, but stuff
annotations were recently added [3]]. It contains 118K, 5K,
and 20K images for training, validation, and testing, respec-
tively, with 80 thing and 53 stuff classes.

(2) Cityscapes [[L1] is a street-scene dataset containing
high-resolution images (1, 024 x 2, 048) with pixel-accurate
annotations for 8 thing and 11 stuff classes. There are 2975,
500, and 1525 images for training, validation, and testing,
respectively.

MS-PanopticFPN  Training. We pretrained MS-
PanopticFPN on two different datasets: instance seg-
mentation is pretrained on 105 object categories from
Openlmages [23] and semantic segmentation on 80 stuff
categories from COCO stuff [3]. For the COCO Panoptic
dataset [33], we resize the training images so that their
shorter side is 640 pixels, their longer side is no more than
1,066 pixels, and also apply random horizontal flipping and
GridMask data augmentation [7]]. The network is trained
for 150K iterations with a batch size of 16 using Stochastic
Gradient Descent (SGD) with 0.9 momentum and 0.00001
weight decay. We set the initial learning rate to 0.01 and
use the cosine annealing learning rate scheduler [36].

PRN Training. For both datasets, we resize the training
images to keep their shorter side at 640 and their longer side
at or below 800 pixels, and apply random horizontal flipping
and GridMask data augmentation. PRN is trained using
the Adam optimizer [20] with 0.9 momentum and 0.0001
weight decay. We set the initial learning rate to 0.001 and
use the cosine annealing learning rate scheduler. On COCO,
PRN is trained for 150K iterations with a batch size of 16.



On Cityscapes, it is trained for 60K iterations with a batch
size of 32. The loss has the five components presented in

Section[3.4}

EPRN = )\O‘Csem + )\1 Accemer,heatmap + /\2 ‘Ccemer,offset
+)\3 Ebox,offset + )\4£foreground- (1)

For all experiments, we set A\g = 1, A\ = 200, Ay = 0.02,
A3 = 0.02, \y = 5.

Method Backbone PQ [ PQT" | PQY?

Panoptic FPN [21] Res50-FPN 39.0 | 459 28.7

Panoptic FPN [21] Res101-FPN | 40.3 | 47.5 | 29.5

UPSNet [51] Res50-FPN 425 | 48.6 | 334
AUNet [27] Res50-FPN 39.6 | 49.1 252
CIAE [13] Res50-FPN 40.2 | 453 | 323
OCFusion [24] Res50 413 | 494 | 29.0
BANet [8] Res50-FPN 41.1 | 49.1 | 29.1
PCV [45] Res50 37.5 | 40.0 | 337
RealTimePan [17] Res50-FPN 37.1 | 41.0 31.3
BGRNet [49] Res50-FPN 432 | 498 | 334
Unifying [26] Res50-FPN 434 | 48.6 | 355
Panoptic-Deeplab [9] Res50 35.1 - -

AdaptIS [40] Res50 359 | 403 | 293
AdaptIS [40] Res101 37.0 | 418 | 299

AdaptIS [40] ResNext101 423 | 492 | 31.8

Axial-DeepLab-L [47] Axial-Res50-L | 439 | 48.6 | 36.8

Auto-Panoptic [50] Auto 448 | 514 | 35.0
HLE [19] Res50 37.1 | 41.1 | 309
HLE [19] Res101 38.1 | 428 | 31.0

MS-PanopticFPN Res50-FPN 40.6 | 46.6 | 31.6

MS-PanopticFPN & PRN Res50% 444 | 509 | 344

DETR [4] Res50 434 | 482 | 36.3

DETR [4] & PRN Res50%* 45.1 | 512 | 36.5

Table 1. Panoptic segmentation results on the COCO validation
set. * indicates the backbone used for PRN, not the base network.
Evaluation Metrics. We report results on the validation
sets of both datasets using panoptic quality (PQ) [22] as
the metric. PQ captures both recognition and segmenta-
tion quality (RQ and SQ), and treats both stuff and thing
categories in a unified manner. Additionally, we use PQ?
and PQ”" to report the performance on stuff and thing cat-
egories separately.

4.3. Results on COCO

Table [1| shows quantitative results on the COCO valida-
tion set. MS-PanopticFPN achieves comparable results to
the top-performing methods. RPN, trained on its results,
improves the PQ of MS-PanopticFPN by 3.8%. It also im-
proves its RQ from 51.8% to 54.9%, and its SQ from 78.0%
to 79.6%. We then train RPN on the panoptic segmentation
results of DETR [4]] and improve its PQ by 1.7%. It also im-
proves its RQ from 53.8% to 55.7%, and its SQ from 79.3%
to 79.8%.

Backbone PQ [ PQT" | PQS?
Res50-FPN 577 | 51.6 62.2
Res101-FPN | 58.1 52.0 62.5

Method
Panoptic FPN [21]
Panoptic FPN [21]

UPSNet [51] Res50-FPN | 593 | 54.6 | 62.7
AUNet [27] Res50-FPN | 56.4 | 52.7 | 59.0
OCFusion [24] Res50 593 | 53,5 | 63.6
PCV [45] Res50 542 | 478 | 589
Unifying [26] ResS0-FPN | 61.4 | 54.7 | 66.3
Panoptic-Deeplab [9] Res50 59.7 - -

AdaptIS [40] Res50 59.0 | 55.8 | 61.3

Res101 60.6 | 57.5 | 629
ResNext101 | 62.0 | 58.7 | 64.4
Res50-FPN | 60.2 | 55.6 | 63.6

AdaptIS [40]
AdaptIS [40]
Seamless [38]

SSAP [12] Res50-FPN | 61.4 | 54.7 | 66.3
HLE [19] Res50 59.8 | 51.1 66.1
HLE [19] Res101 60.6 | 514 | 67.2

Res50-FPN | 58.8 | 52.1 63.7
HRNet-W48* | 60.5 | 54.0 | 64.6
Res50* 619 | 558 | 64.3

RealTimePan [17]
RealTimePan [17] & SegFix
RealTimePan [17] & PRN

Table 2. Panoptic segmentation results on the Cityscapes valida-
tion set. * indicates the backbone used for PRN or SegFix. PRN
refines the results of the Real-time Panoptic network [[17] and sur-
passes the performance of SegFix.

Notably, the PQ of PRN with MS-PanopticFPN as the
base model is 9.3% better than that of Panoptic-Deeplab
[9]], even though we use part of Panoptic-Deeplab’s instance
mask representation (offset/center map). Figure [ shows an
example of PRN input, intermediate results and output. Fig-
ure [5] shows qualitative results on COCO dataset. PRN not
only refines the boundary of the instance mask, but also sup-
presses incorrectly detected instances and discovers miss-
ing instance masks.

4.4. Results on Cityscapes

Quantitative results on the Cityscapes dataset are shown
in Table 2] We train PRN on the panoptic segmentation
results of Real-time Panoptic [17] and improve its PQ by
3.1%. As on the COCO dataset, PRN’s PQ is 2.2% better
than that of Panoptic-Deeplab [9], despite the similarities.
Refining the results of Real-time Panoptic with PRN ranks a
close second in the table, behind AdaptIS [40] with a much
larger backbone. (Both PRN-refined results are better than
all variants of AdaptIS on COCO.)

We also apply SegFix [55] on the same outputs of Real-
time Panoptic and obtain lower overall PQ, lower PQ on
things, and similar PQ on stuff compared to PRN. This is
not surprising since SegFix cannot add or delete masks, but
is effective on the refinement of existing boundaries. Figure
[6] shows qualitative results of Real-time Panoptic [17], Seg-
Fix [55] and PRN on Cityscapes. The limitations of SegFix
compared to PRN, being unable to create or delete masks,
are visible in these examples.
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Figure 6. Qualitative results on Cityscapes validation set. Top:
Real-Time Panoptic. Middle: SegFix. Bottom: PRN. (The color
of an instance mask represents the index of the instance, and not its
class label. Black pixels are unlabeled.) PRN recovers the missing
car on the left, while SegFix cannot make such a correction. On
the right, PRN not only finds the missing cars and person, but also
obtains better segmentation masks for the sign and traffic lights.

4.5. Ablation Studies

We conduct ablation studies on the COCO validation set
to evaluate the effectiveness of each component of PRN. We
summarize them here and provide more details in the sup-
plement. We first compare two ways of obtaining the fore-
ground mask: (1) from the semantic segmentation branch,
or (2) the foreground mask branch. The latter is more effec-
tive justifying our design choice. We then assess the con-
tribution of CoordConv by applying it: (1) only in encoder
layers, (2) only in decoder layers, (3) in both encoder and
decoder layers. PQ is improved by an additional 1.4% when

(d) (e)

Figure 5. Qualitative results of MS-PanopticFPN (top) and PRN (bottom) on the COCO validation set. (The color of an instance mask
represents the index of the instance, not its class label.) Notice: the suppressed instance mask in (a); the detection of the truck in (b), the
sky under the bridge and plane boundaries in (c); mask insertion, deletion and refinement in (d); and boundary refinement and instance

CoordConv is used in the encoder, 1.6% when it is used in
the decoder, and 1.9% when it is used in both.

We can further improve PQ by 2.5% when we use pre-
dicted bounding boxes at each pixel when merging the cen-
ter and offset maps. PQ is improved by 3.8% when we ap-
ply CoordConv in both encoder and decoder layers and use
predicted bounding boxes in postprocessing.

4.6. Limitations

The main limitation of PRN at this point is that it must be
trained on the results of a specific base panoptic segmenta-
tion network. Achieving more general applicability would
make it much more useful and convenient.

5. Conclusion

We have presented a novel architecture for refining
panoptic segmentation that is able to alleviate the common
shortcomings of state-of-the-art panoptic segmentation al-
gorithms. PRN reduces errors caused by inconsistency be-
tween instance and stuff segmentation, occlusion among
instances of the same type, and low-resolution instances,
while being able to recover missing instances, and fix in-
correctly merged and split instances. This is accomplished
via the introduction of novel elements including a fore-
ground mask, coordinate convolution, and prediction of the
bounding box offsets at each pixel. We experimentally val-
idate PRN on challenging panoptic segmentation datasets
demonstrating that the results of highly accurate panoptic
segmentation networks can be significantly improved. As
mentioned above, an interesting future direction is explor-
ing if and how PRN can generalize well on the results of
panoptic models different than the one it is trained on, po-
tentially by training it on a variety of base networks.
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