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Abstract

3D Visual Grounding (3DVG) aims to localize target objects within a 3D scene
based on natural language queries. To alleviate the reliance on costly 3D training
data, recent studies have explored zero-shot 3DVG by leveraging the extensive
knowledge and powerful reasoning capabilities of pre-trained LLMs and VLMs.
However, existing paradigms tend to emphasize either spatial (3D-based) or seman-
tic (2D-based) understanding, limiting their effectiveness in complex real-world
applications. In this work, we introduce SPAZER — a VLM-driven agent that
combines both modalities in a progressive reasoning framework. It first holistically
analyzes the scene and produces a 3D rendering from the optimal viewpoint. Based
on this, anchor-guided candidate screening is conducted to perform a coarse-level
localization of potential objects. Furthermore, leveraging retrieved relevant 2D cam-
era images, 3D-2D joint decision-making is efficiently performed to determine the
best-matching object. By bridging spatial and semantic reasoning neural streams,
SPAZER achieves robust zero-shot grounding without training on 3D-labeled
data. Extensive experiments on ScanRefer and Nr3D benchmarks demonstrate that
SPAZER significantly outperforms previous state-of-the-art zero-shot methods,
achieving notable gains of 9.0% and 10.9% in accuracy. Our codes are available
at https://github.com/JZ-9962/SPAZER.

1 Introduction

3D Visual Grounding (3DVG) focuses on accurately localizing the referred object in the 3D scene
based on a user-provided query text. This task demands a comprehensive understanding of both
natural language and spatial structure of the 3D scene, serving a pivotal role in various real-world
applications, such as embodied robotics [23, 24] and augmented reality [6, 22]. In the early phase,
3DVG approaches [6, 57, 53, 25, 16, 1] typically follow a fully supervised learning paradigm,
training models using manually annotated textual descriptions and 3D bounding boxes. Despite their
effectiveness, the reliance on large-scale labeled 3D data, which is expensive and labor-intensive to
obtain, significantly limits their scalability and practical adoption.

To reduce the dependence on costly 3D training data, zero-shot 3D visual grounding has been
actively explored, largely facilitated by recent advances in Large Language Models (LLMs) and
Vision-Language Models (VLMs). By leveraging the general world knowledge and reasoning
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Figure 1: Schematic comparison between our proposed SPAZER and existing zero-shot 3DVG
approaches. Compared to (a) 3D-based methods [49, 54, 22] that focus on spatial localization
but tend to ignore fine-grained object attributes, and (b) 2D-based methods [48] that match visual
appearance yet lack precise spatial awareness, (c) our approach progressively performs 3D spatial
localization and 2D semantic verification, enabling more reliable grounding results.

abilities of pre-trained LLMs or VLMs, these methods achieve zero-shot 3DVG without 3D-specific
training. Since native 3D data (e.g., point clouds) cannot be directly interpreted by LLMs or VLMs,
a key challenge in this setting is bridging the modality gap—i.e., transforming 3D data into proper
representations that language or image models can understand. To address this, existing methods
mainly follow two design paradigms: 3D-based and 2D-based. 3D-based methods [49, 54, 22]
generally operate on point clouds by extracting object-level textual descriptions with categories and
3D positions, which are then processed by LLMs for reasoning. In contrast, 2D-based methods [48]
leverage 2D video sequences (which are inherently part of the scanned 3D dataset) to understand 3D
scenes, using pretrained VLMs to match visual frames with the language query.

Although these two categories of zero-shot methods have shown promising results, they generally
specialize in either spatial reasoning or semantic understanding, limiting their effectiveness in
complex 3D scenes that require both. As illustrated in Fig. 1, the query text not only indicates the
spatial location of the target chair — “under the first dark brown table” — but also highlights its
visual attribute as “brown leather”. Since 3D-based methods (a) typically utilize 3D coordinate-
based textual description, they focus more on spatial reasoning yet struggle to distinguish objects
with similar location but differing appearance. Conversely, 2D-based methods (b) tend to match
visually relevant objects frame-by-frame, but lack explicit awareness of object positions within the
3D scene. However, accurate 3D visual grounding requires the effective coordination of both spatial
and semantic reasoning, especially in dynamic real-world environments.

To address the above issue, we propose SPAZER, a Spatial-Semantic Progressive reasoning Agent
for ZEro-shot 3D visual gRounding. Inspired by cognitive neuroscience findings [4, 50] that spatial
reasoning and object recognition follow distinct neural streams in the human brain, our agent SPAZER
decouples spatial and semantic reasoning based on distinct modalities. In the spatial reasoning stage,
we propose a holistic multi-view rendering-based 3D representation. This enables our agent to directly
observe and understand the 3D scene itself instead of processed textual descriptions. Leveraging this
representation, SPAZER first identifies the optimal viewpoint for observing the target object, then
determines potential candidate objects that match the query description from the selected perspective.
Meanwhile, our agent incorporates a retrieval-augmented anchor filtering and annotation strategy
to provide reliable guidance for spatial reasoning. After coarsely identifying possible candidates in
the scene, relevant 2D close-up images will be retrieved from raw scanning data for fine-grained
semantic reasoning. Following 3D spatial reasoning to identify candidate object locations and 2D
semantic reasoning for detail verification, SPAZER realizes 3D-2D joint decision-making to produce
the final grounding result. In summary, our contributions are as follows:

• We introduce SPAZER, a training-free 3D visual grounding agent that integrates 3D spatial
localization and 2D semantic verification through a coarse-to-fine progressive reasoning process,
enabling efficient 3D-2D joint decision-making.
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• We propose to represent 3D point clouds in holistic rendered views instead of traditional object-level
descriptions to enable VLMs direct observe and understand 3D scenes.

• We propose a retrieval-augmented candidate object screening strategy to improve the spatial
reasoning ability of our agent, which exhibits enhanced robustness in object localization.

• Extensive experiments demonstrate the superior performance of our method, largely surpassing
previous state-of-the-art (SOTA) by 9% on ScanRefer and 10.9% on Nr3D. SPAZER is even
comparable to SOTA supervised methods on Nr3D, with a marginal gap (∼ 1%) in overall accuracy.

2 Related work

Supervised 3D visual grounding. As a fundamental 3D vision-language task, 3D Visual Grounding
(3DVG) has gained continuous research attention in recent years [6, 1, 57, 53, 3, 16, 47, 8, 56, 15,
30, 11, 44, 51, 14, 55, 39]. The core problem in 3DVG lies in accurately localizing target object
in the 3D scene based on the given referring description. Traditional methods typically tackle this
task under a supervised learning paradigm, mainly following two-stage or single-stage network
architectural designs. Two-stage methods [6, 57, 53, 7, 8] adopt a detect-and-match strategy: they
first extract object-level features from the scene using pre-trained 3D detection or segmentation
models [32, 20, 34], and then fuse these with language features to compute the best-matching object.
In contrast, single-stage methods [25, 16, 47, 43] directly fuse point cloud and textual features to
predict the target object’s 3D bounding box in an end-to-end manner. In recent years, with the
development of vision-language pre-training (VLP) technologies, an increasing number of methods
[21, 59, 13, 33, 58, 41] have adopted cross-modal joint pre-training for the 3DVG task. As the
pre-training data continues scale up, these models demonstrate increasingly stronger generalization
capabilities across datasets.

LLM-based agent for zero-shot 3DVG. Although supervised 3DVG methods exhibit encouraging
performance, their success remains highly dependent on the availability of large-scale high-quality
annotations, which remain relatively limited in current 3D datasets. Inspired by the success of LLM
agents in various multimodal reasoning and generation tasks [26, 46, 35, 37, 38, 36], zero-shot 3DVG
has emerged as a promising alternative to alleviate the reliance on 3D training data. Early approaches
build agent workflows based on LLMs (e.g., ChatGPT [29]), decomposing the 3DVG task into a series
of sub-tasks that can be handled by the LLM. For instance, LLM-Grounder [49] formulates zero-shot
3DVG as a tool-augmented reasoning task. It leverages an LLM to decompose complex queries,
interact with 3D perception tools (e.g., OpenScene [31]), and perform spatial reasoning to identify the
referred object. Building on the concept of visual programming [12], ZSVG3D [54] prompts LLMs
to generate interpretable visual programs composed of modular spatial functions, enabling enhanced
structured reasoning. EaSe [27] employs LLMs to generate symbolic spatial relation encoders in the
form of executable Python code. While LLM-based 3DVG agents are effective at modeling spatial
relations, their performance is constrained by limited visual understanding capabilities, which are
also crucial for accurately grounding objects in complex 3D scenes.

VLM-based agent for zero-shot 3DVG. To complement the limitations of LLM-based agents in
visual perception, recent studies have turned to VLM-based agents to enhance semantic understanding
in 3D scenes. SeeGround [22] proposes a hybrid 3D representation composed of spatially localized
object descriptions and query-aligned local renderings, which provides additional visual contexts
for the VLM, thereby enhancing grounding performance in complex 3D environments. Different
from aforementioned methods that are build upon 3D point clouds, VLM-Grounder [48] proposes to
realize 3DVG using only 2D video sequences, which are readily available in 3D scanned datasets.
It stitches multiple frames to reduce input token length and combines various off-the-shelf tool
models to obtain 3D bounding boxes of VLM-selected objects. While 2D camera images offer
finer-grained semantic cues compared to rendered views, the limited 3D spatial layout and relation
awareness makes VLM-Grounder prone to spatial reasoning errors. In summary, although promising
zero-shot 3DVG results have been achieved, existing methods typically rely solely on either 3D
geometry representation or 2D camera images, and the potential of their joint exploitation for more
comprehensive spatial-semantic reasoning remains underexplored.
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Figure 2: Overview of the SPAZER framework. Given input 3D scene and a query text of the target
object, SPAZER performs zero-shot 3D visual grounding through a spatial-semantic progressive
reasoning process. It first conducts 3D Holistic View Selection (Sec. 3.2) and Candidate Object
Screening (Sec. 3.3) to identify spatially plausible candidates by globally analyzing the 3D scene.
Then, 2D-3D Joint Decision-Making (Sec. 3.4) is performed by leveraging 2D camera views for
fine-grained semantic verification of the candidates, ultimately grounding the target object without
any 3DVG-specific training.

3 Method

3.1 Overview

In the 3D visual grounding task, given a query textual description, the objective is to localize
the referring target object within the 3D scene. Our proposed agent SPAZER solve this task in
a zero-shot paradigm, i.e., directly performing inference and requiring no training on 3D visual
grounding datasets. It integrates a VLM as the core for reasoning and decision-making, equipped
with a suite of 3D and 2D perception tools that facilitate scene understanding at multiple levels of
granularity. The complete architecture of SPAZER is illustrated in Fig. 2. It begins with a holistic
analysis of the scene’s global 3D geometry to determine potential candidates that align with the query
text. This process is achieved through two components: 3D Holistic View Selection (Sec. 3.2) and
Candidate Object Screening (Sec. 3.3). Subsequently, SPAZER further verifies the semantic details
of candidate objects using 2D camera views, and derives the refined grounding result through 2D-3D
Joint Decision-Making in Sec. 3.4.

3.2 3D holistic view selection

Since VLMs are not capable of directly interpreting 3D data, existing methods either convert 3D
scenes into textual narratives [49, 54], or combine textual descriptions with locally rendered perspec-
tive views [22]. Although such text-centric 3D representations provide explicit object coordinates,
their reliability is highly sensitive to the accuracy of predicted bounding boxes. Inaccuracies in object
category or location predictions can severely compromise the spatial reasoning process. To overcome
these limitations, we propose to directly empower the agent with multi-view observation capabilities,
enabling it to understand the 3D scene itself without relying on intermediate textual representations.

Multi-view observation. In this step, SPAZER leverages 3D rendering tools to generate holistic
views of the input point cloud from multiple perspectives. Firstly, the viewpoint is set directly above
the center of the scene to obtain the Bird’s-Eye View (BEV). To ensure that the BEV image fully
captures the entire scene, the distance between the viewpoint and the scene center is calculated as

d =
1

2
× max(lx, ly)

tan (θ/2)
, (1)
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where lx and ly denote the scene extents along the x-axis and y-axis, respectively, and θ represents
the rendering camera’s Field of View (FoV). Furthermore, we introduce n additional viewpoints
from different perspectives to observe the scene. The n viewpoints are distributed uniformly along a
circular path above the scene, each separated by 360◦/n, all sharing a fixed oblique viewing angle
α = 45◦ and the distance to the scene center equals to d. For example, when n = 4, the viewpoints
are placed at the front, back, left, and right of the scene, providing four angled top-down renderings.

View selection. After obtaining the all (n + 1) rendered global views I3d = {I03d, I13d, . . . , In3d},
we feed them along with the query text q into the VLM, which is prompted to select the optimal
viewpoint that best captures the query-described object:

I∗3d = VLM(I3d, q), (2)
where I∗3d denotes the selected 3D rendering view. After this step, our agent has holistically observed
the scene and rendered an optimal view, which serves as the global 3D representation for the
subsequent progressive localization of the target object.

3.3 Candidate object screening

Leveraging the selected optimal viewpoint, SPAZER proceeds to infer the position of the target object
that satisfies the query language. To facilitate this procedure, we follow the previous setting [54, 22]
to utilize an off-the-shelf 3D network to extract object layout information, which can be represented
as: O = {(bi, ci) | i = 1, 2, . . . , N}, where bi represents the 3D bounding box of the i-th object, and
ci denotes its associated class label.

Retrieval-augmented anchor filtering. Since VLMs struggle to directly output precise spatial
coordinates, we provide visual anchors as cues by leveraging object layout information. Firstly, the
agent filters out irrelevant objects by analyzing the query text to identify the target object class c∗.
Subsequently, a text-based matching algorithm is employed on c∗ and each detected object category
ci to compute the similarity score s(c∗, ci). And the object class with the highest similarity score will
be used to filter out irrelevant objects whose predicted class not equaling to it. However, due to the
free-form nature of the query text, object categories may be semantically ambiguous (e.g., a “cabinet”
might be referred to as a “shelf” or “board” in the query). As a result, relying solely on text-based
matching can lead to unreliable results. To address this issue, we propose a visual retrieval-augmented
matching mechanism. We first set a threshold τ to filter out low-confidence matching results:

ĉ =

{
ci∗ , if s(c∗, ci∗) ≥ τ

∅, otherwise
where i∗ = argmax

i=1,...,N
s(c∗, ci). (3)

If a valid ĉ is obtained, only the detected objects with predicted class label equaling to ĉ will be
retained, forming the subset Ocat = {(bi, ci) ∈ O | ci = ĉ}. When s(c∗, ci∗) < τ , our agent will
switch from text-based matching to vision-based matching to improve the reliability. It first constructs
a visual object table, which stitches the cropped object images based on the position of each 3D
bounding box. This step shares a similar process as camera view mapping in Sec. 3.4, which will
be elaborated later. Then the VLM is prompted to automatically filter out objects that do not match
the target category based on the visual object table. In this way, when unreliable object category
predictions occur, our agent can still re-evaluate based on visual cues, thereby enhancing robustness.

Candidate screening. After filtering out irrelevant objects, the remaining object IDs will be annotated
on the previously selected view images as visual anchors. For each ID, the 3D-to-2D coordinate
transformation is computed based on the rendering parameters of the current view, and the annotation
is placed at the center of the box. The VLM is then prompted to identify potential anchors from the
annotated IDs. At this stage, although it is feasible to directly select the target object based on the
query text, 3D renderings often lack fine-grained details and struggle to tell view-dependent spatial
relationships. So we relax this process to a coarse selection of the Top-k most likely objects:

OTop-k = Top-k (VLM(I∗3d,O, q)) . (4)
In subsequent experiments, we adjust the value of k to ensure a balance between increasing the
likelihood of covering the target object and avoiding excessive image inputs and token overhead.

3.4 3D-2D joint decision-making

In the preceding phase, SPAZER has conducted a initial reasoning and identified the coarse candidate
pools. Next, we incorporate informative 2D camera views to enrich semantic context, thereby
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facilitating 3D-2D joint decision-making. The 2D camera images are commonly available in original
RGB-D scans, capturing detailed visual appearance of the scene. However, due to the large number
of images (e.g., up to thousands of images per scene in ScanNet [9]), how to efficiently sample
keyframes remains a challenge in existing studies [48, 58, 33]. Benefiting from the global 3D spatial
reasoning process, our agent has obtained k candidate anchors. Accordingly, we efficiently sample k
corresponding keyframes based on the 3D-to-2D mapping of the anchor positions.

Camera view mapping. Our agent utilizes the camera intrinsics along with the extrinsics to compute
the mapping from 3D points to 2D camera views. To determine the most informative view for each
candidate anchor, we project its associated 3D bounding box P3D ∈ R3×9 onto camera view images
and evaluate per-view visibility. Specifically, we extract nine key points from each anchor’s bounding
box, including its eight vertices and the center. These 3D points, defined in world coordinates, are first
converted to homogeneous coordinates P̃3D ∈ R4×9 (i.e., add 1-padding for affine transformation).
Then we perform a transformation analogous to point cloud registration [45, 18, 19] to convert
them into the camera coordinate system using the extrinsic matrix Tcw ∈ R4×4, resulting in
Pcam = Tcw · P̃3D. Next, we project the 3D points in camera coordinates onto the 2D image plane
using the intrinsic matrix K ∈ R3×3. For each point, let pcam = [xc, yc, zc]

T be its 3D position in
the camera frame. The corresponding 2D pixel coordinate p2D = [u, v]T is computed by:[

u
v
1

]
= K ·

[
xc/zc
yc/zc
1

]
, (5)

where u and v represent the horizontal and vertical coordinates of the projected point in the image
plane. To handle occlusions, we compare the projected depth with the depth map. A point is
considered visible if its projected coordinate (u, v) lies within the image bounds and the depth
difference is negligible. By computing the camera view mapping across multiple images, anchor-
relevant views can be determined. Since an anchor object may appear in multiple views, we compare
the number of visible projected points across all camera images to select the one that observes the
most complete object bounding box as its corresponding 2D view. Finally, the selected 2D camera
images for all candidate anchors are obtained as the set I2d = {I12d, I22d, . . . , Ik2d}, where each Ij2d
corresponds to the most informative view associated with the j-th candidate anchor.

Joint decision-making. After obtaining corresponding camera view images of the selected Top-k
candidate anchors, our agent performs joint decision-making by leveraging both 3D global rendering
and 2D camera images. To enable the VLM to seamlessly integrate different perceptual modalities
during reasoning, the same candidate object is annotated with a consistent ID across rendered image
and different video frames. In this process, SPAZER leverages the global 3D rendering for spatial
reasoning, focusing mainly on re-evaluating the view-independent relations (e.g., in the middle/corner
of the room). Meanwhile, utilizing 2D camera views, it further verifies semantic details of candidate
objects (e.g., color, shape, material) and infers view-dependent relations (e.g., left, right). After jointly
considering both modalities for decision-making, the agent identifies the best-matching target and
outputs its 3D bounding box:

b∗ = VLM(I∗3d, I2d,O, q). (6)

4 Experiment

4.1 Experimental setup

Datasets. We evaluate our method on two widely-used 3D visual grounding benchmarks: ScanRe-
fer [6] and Nr3D [1], which are built upon the ScanNet [9] dataset. ScanRefer comprises 51,583
human-written natural language descriptions across 800 indoor scenes from ScanNet, each referring
to a specific object in 3D space. Queries are classified into “Unique”, where only a single object
of the target class exists, or “Multiple”, where other same-class distractors are present, requiring
more precise discrimination. Nr3D contains 41,503 descriptions collected via a two-player reference
game aimed at improving linguistic precision. Each query refers to a target object that is always
accompanied by at least one distractor, and queries are labeled as either “Easy” (one distractor) or
“Hard” (multiple distractors). Moreover, queries are also categorized as “View-Dependent” (Dep.)
or “View-Independent” (Indep.) depending on whether understanding spatial relations like “left” or
“right” requires specific camera viewpoints. To enable fair comparison and reduce expenditure, our
main experiments are conducted on the same ScanRefer and Nr3D subsets as [48].
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Table 1: Quantitative comparison with supervised and zero-shot 3DVG methods on ScanRefer [6].

Method Zero-shot LLM/VLM
Unique Multiple Overall

Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

ScanRefer [6] ✗ - 67.6 46.2 32.1 21.3 39.0 26.1
3DVG-Transformer [57] ✗ - 81.9 60.6 39.3 28.4 47.6 34.7
BUTD-DETR [16] ✗ - 84.2 66.3 46.6 35.1 52.2 39.8
ChatScene [13] ✗ Vicuna-7B 89.6 82.5 47.8 42.9 55.5 50.2
Video-3D LLM [58] ✗ LLaVA-Video 7B 88.0 78.3 50.9 45.3 58.1 51.7
GPT4Scene [33] ✗ Qwen2-VL-7B 90.3 83.7 56.4 50.9 62.6 57.0

OpenScene [31] ✓ CLIP 20.1 13.1 11.1 4.4 13.2 6.5
LLM-Grounder [49] ✓ GPT-4 turbo - - - - 17.1 5.3
ZSVG3D [54] ✓ GPT-4 turbo 63.8 58.4 27.7 24.6 36.4 32.7
VLM-Grounder [48] ✓ GPT-4o 66.0 29.8 48.3 33.5 51.6 32.8
SeeGround [22] ✓ Qwen2-VL-72B 75.7 68.9 34.0 30.0 44.1 39.4
CSVG [52] ✓ Mistral-Large-2407 68.8 61.2 38.4 27.3 49.6 39.8
SPAZER (Ours) ✓ GPT-4o 80.9 72.3 51.7 43.4 57.2 48.8

Evaluation metrics. The ScanRefer dataset directly evaluates the accuracy of localizing the 3D
bounding box of the object described in the query. The measuring metrics are annotated as Acc@0.25
and Acc@0.5, which represent the proportion of output bounding boxes whose IoU with the ground
truth exceeds 0.25 or 0.5, respectively. In comparison, the Nr3D benchmark offers ground truth 3D
bounding boxes for all objects, and the evaluation focuses on the selection accuracy.

Implementation details. Our agent adopts GPT-4o as the default VLM. The number of views n is set
to 4, and the Top-k parameter is set to k = 4. For ScanRefer dataset, we follow prior works [54, 22]
and use a pre-trained model [34] to obtain the 3D bounding boxes. All ablation studies are conducted
on the same subset of Nr3D as [48]. Additional implementation details are included in the Appendix.

4.2 Quantitative comparison

ScanRefer. Tab. 1 shows the performance comparison on the ScanRefer dataset. Our SPAZER
significantly outperforms all existing zero-shot methods, achieving the highest overall accuracy.
Compared to previous state-of-the-art 2D-based method VLM-Grounder [48] and 3D-based method
CSVG [52], SPAZER achieves gains of +24.4% / +16.0% and +7.6% / +8.9% in Acc@0.25 /
Acc@0.5, respectively. In addition, our Acc@0.25 already matches or exceeds many fully-supervised
3DVG methods, such as ScanRefer [6], 3DVG-Transformer [57], and BUTD-DETR [16], without
training on 3D datasets. This demonstrates strong zero-shot generalization. Although methods
like Video-3D LLM [58] and GPT4Scene [33] show stronger performance, they require large-scale
3D-language data for extensive pre-training. In contrast, our method exhibits ease of deployment,
and already achieves comparable Acc@0.25, showcasing its potential for practical application.

Nr3D. As shown in Tab. 2, our SPAZER surpasses all existing zero-shot methods in overall accuracy
and even approaches the performance of fully-supervised methods, demonstrating the effectiveness
of our spatial-semantic progressive reasoning framework. It is important to note that the default
setting of the Nr3D dataset provides ground-truth 3D bounding boxes (without class label), meaning
that the evaluation focuses primarily on the model’s ability to reason over language to identify
the correct object, rather than assessing the 3D localization precision. Under this setting, SPAZER
achieves an overall accuracy of 63.8%, significantly outperforming prior zero-shot approaches such as
VLM-Grounder [48] and EaSe [27]. Moreover, recent methods like CSVG [52] and Transcrib3D [10]
use additional ground-truth object classes of 3D bounding boxes during inference. In this case, our
method also achieves superior overall accuracy, especially with significant gains in the Hard category.

4.3 Qualitative comparison

Fig.3 illustrates qualitative grounding results of SPAZER in comparison with the representative 2D-
based method VLM-Grounder[48] and 3D-based method SeeGround [22]. In (a), multiple identical
objects (tables) appear in the scene, and spatial cues in the query (e.g., “in the middle”) are required
to correctly localize the target. VLM-Grounder fails to resolve the spatial ambiguity due to its limited
3D understanding. In (b), the query includes fine-grained semantics (e.g., “a white lamp on top
of it”), which are hard to capture from 3D point cloud data alone, leading SeeGround to mispredict
the target. In contrast, our SPAZER combines 3D spatial reasoning with 2D semantic verification,
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Table 2: Quantitative comparison with supervised and zero-shot 3DVG methods on Nr3D [1].
Method Zero-shot LLM/VLM GT object class Easy Hard Dep. Indep. Overall
ReferIt3DNet [1] ✗ - ✗ 43.6 27.9 32.5 37.1 35.6
3DVG-Transformer [57] ✗ - ✗ 48.5 34.8 34.8 43.7 40.8
ViL3DRel [8] ✗ - ✗ 70.2 57.4 62.0 64.5 64.4
3D-VisTA [59] ✗ - ✗ 72.1 56.7 61.5 65.1 64.2
MiKASA [5] ✗ - ✗ 69.7 59.4 65.4 64.0 64.4
SceneVerse [17] ✗ - ✗ 72.5 57.8 56.9 67.9 64.9

ZSVG3D [54] ✓ GPT-4 turbo ✗ 46.5 31.7 36.8 40.0 39.0
SeeGround [22] ✓ Qwen2-VL-72B ✗ 54.5 38.3 42.3 48.2 46.1
VLM-Grounder [48] ✓ GPT-4o ✗ 55.2 39.5 45.8 49.4 48.0
EaSe [27] ✓ GPT-4o ✗ - - - - 52.9
SPAZER (Ours) ✓ GPT-4o ✗ 68.0 58.8 59.9 66.2 63.8
CSVG [52] ✓ Mistral-Large-2407 ✓ 67.1 51.3 53.0 62.5 59.2
Transcrib3D [10] ✓ GPT-4 ✓ 79.7 60.3 60.1 75.4 70.2
EaSe [27] ✓ GPT-4o ✓ - - - - 67.8
SPAZER (Ours) ✓ GPT-4o ✓ 76.5 69.3 65.6 77.9 73.2
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Figure 3: Qualitative comparison of 3DVG results. Incorrectly predicted 3D bounding boxes are
highlighted in red, while correct ones are in green. Key spatial and semantic cues are underlined.

allowing accurate object identification in both cases. Further, in more complex cases like (c) and (d),
where both spatial and semantic cues must be jointly reasoned over (e.g., “small white bin beside
it”, “leaning back”, “black chair to the right of it”), SPAZER clearly outperforms both baselines by
effectively leveraging the complementary strengths of both 3D geometry and 2D semantics.

4.4 Ablation study

Effect of 3D holistic view selection (HVS). As mentioned in Sec. 3.2, our SPAZER first holistically
renders multiple perspective views and identifies the optimal one for the query text. To analyze the
effectiveness of such design, we compare the following two variants: (1) BEV: Skip view selection
and use the BEV by default, which is also consistent with prior work [33]. (2) Random: Use a
random view instead of agent-selected one. In Tab. 3, BEV performs poorly as it may fail to reliably
capture the target object. Random performs slightly better than BEV. In contrast, our agent leverages
spatial understanding to select more informative views for subsequent steps, leading to improved
overall accuracy (+3.6% vs. Random and +6.3% vs. BEV in average).

Effect of candidate object screening. At the candidate screening stage (Sec. 3.3), irrelevant object
anchors are filtered out. As shown in Tab. 3, incorporating our proposed Retrieval-augmented anchor
filtering (RAF) on top of the text-based baseline consistently improves accuracy by 2% to 7%. This
is because text-based matching is vulnerable to inaccurate object class prediction, whereas our RAF
introduces the visual object table as a complementary cue, leading to improved robustness.
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Table 3: Ablation study on the component design of our agent. The default setting is highlighted .
View Selection Anchor Filtering w/o JDM (3D only) w/ JDM (3D+2D)

BEV Random HVS Text-based RAF # Hard Dep. Overall # Hard Dep. Overall
✓ ✗ ✗ ✓ ✗ (a) 36.8 37.5 41.2 (g) 48.3 49.0 53.2
✗ ✓ ✗ ✓ ✗ (b) 36.0 39.6 44.4 (h) 51.8 49.0 54.8
✗ ✗ ✓ ✓ ✗ (c) 38.6 42.7 46.8 (i) 52.6 53.1 56.4

✓ ✗ ✗ ✓ ✓ (d) 34.2 36.5 43.2 (j) 47.4 51.0 56.8
✗ ✓ ✗ ✓ ✓ (e) 31.6 41.7 46.8 (k) 50.9 55.2 59.2
✗ ✗ ✓ ✓ ✓ (f) 43.9 49.0 52.4 (l) 58.8 59.9 63.8

Effect of 3D-2D joint decision-making (JDM). The JDM module in Sec. 3.4 serves as the core
of our approach, as it enables the integration of 3D spatial reasoning and 2D semantic verification
within our agent. To enable a comprehensive analysis, in Tab. 3, we further include comparisons
between w/o JDM and w/ JDM under each of the previously defined ablation settings. Here, w/o
JDM refers to our agent making decisions using 3D-only input, which is same as previous 3D-based
methods [54, 22]. In this setting, our method achieves an overall accuracy of 52.4%, outperforming
ZSVG3D [54] and SeeGround [22] by 13.4% and 6.3%, respectively. With the introduction of
informative camera views as complementary 2D semantic context through camera view mapping, our
agent achieves a substantial improvement—an average accuracy gain of 11.6%. This result strongly
supports the effectiveness of our spatial-semantic joint reasoning.
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Figure 4: Ablation studies on parameter k and n.

Effect of k in Top-k. In the can-
didate screening stage, our agent
gives the Top-k most possible tar-
get object IDs. We evaluate the
Top-k accuracy (i.e., whether the
ground-truth object is in the k can-
didates) and the overall grounding
accuracy under different values of
k. As shown in Fig. 4 (a) As k in-
creases, the Top-k accuracy steadily
improves, indicating a higher likeli-
hood of including the ground-truth object into candidates. This also contributes to the improvement
of overall accuracy. However, increasing k from 4 to 5 leads to a performance drop, suggesting that
an excessively large k may introduce distracting candidates for subsequent decision-making.

Number of rendered views n. In Fig. 4 (b), we show how varying the number of rendered views n
affects the accuracy. When n = 0, we only use the BEV by default. As n increases from 0 to 4, the
accuracy gradually improves. This is because more global views are provided for the agent to select
from, allowing better observation of the target object. However, as n further increases from 4 to 8,
the accuracy starts to decline due to increasing overlap between views, which introduces redundant
information and adds unnecessary noise, ultimately impairing the agent’s decision-making. The
Top-k accuracy follows a similar trend to the overall accuracy, albeit with smoother variations. This
suggests that even when the target object is included in the candidates, suboptimal 3D global view
can still hinder the subsequent 3D-2D joint reasoning, highlighting the importance of view selection.

Table 4: Ablation study of
the VLM used in our agent.

VLM Overall
Qwen2-VL-72B 53.6

Qwen2.5-VL-72B 56.0
GPT-4o-mini 46.4

GPT-4o 63.8
GPT-4.1 64.3

Influence of VLMs. The VLM serves as the “brain” of our agent,
enabling effective query text interpretation and spatial-semantic rea-
soning. To investigate the impact of the adopted VLM on overall
agent performance, we conduct a comparative analysis of several mod-
els, including proprietary ones (GPT-4o-mini, GPT-4o, GPT-4.1) and
open-source alternatives (Qwen2-VL-72B [42], Qwen2.5-VL-72B [2]).
Tab. 4 leads to the following conclusions: (1) The GPT series mod-
els exhibit stronger reasoning capabilities on the 3DVG task than
open-source models; and (2) stronger VLMs contribute to improved
performance of our agent, suggesting that continued advancements in
VLMs may further unlock its potential. Note that although GPT-4.1 can further boost the performance
of our agent, we still adopt GPT-4o as the default VLM to ensure a fair comparison with previous
methods.
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Table 5: Performance comparison on the complete set and subset of the Nr3D [1] dataset.
Dataset Method VLM Easy Hard Dep. Indep. Overall

Complete
SeeGround [22] Qwen2-VL-72B 54.5 38.3 42.3 48.2 46.1
Ours Qwen2-VL-72B 59.3 44.8 46.3 54.9 51.8
Ours Qwen2.5-VL-72B 62.4 46.9 49.9 56.8 54.3

Subset
SeeGround [22] Qwen2-VL-72B 51.5 37.7 44.8 45.5 45.2
Ours Qwen2-VL-72B 62.5 43.0 51.0 55.2 53.6
Ours Qwen2.5-VL-72B 60.3 50.9 54.2 57.1 56.0

Table 6: Inference time of each step in our SPAZER. Ours significantly outperforms VLM-Grounder
in efficiency. Both methods adopt GPT-4o as the VLM.

Method Step Time (s) Total (s)

Ours (SPAZER)
3D Holistic View Selection 5.2

23.5Candidate Object Screening 8.5
3D-2D Joint Decision-Making 9.8

VLM-Grounder [48] - - 50.3

Performance on subset vs. complete dataset. In consideration of budget and evaluation efficiency,
we follow previous work VLM-Grounder [48] to evaluate our agent on the subset (250 selected
samples) of each dataset. To further verify whether the results on the subset are comparable to those
on the full dataset, we conduct additional experiments using open-source VLMs, as shown in Tab. 5.
We observe that both our method and prior work SeeGround [22] exhibit consistent performance
across the two dataset partitions, with overall accuracy variations under 2.0, which is negligible
compared to the improvement achieved by our method.

Inference time. In Tab. 6, we break down the inference time of each step in SPAZER. The time
consumption across different steps is relatively balanced, with the view selection step being faster
since it requires no additional computation. Moreover, compared to VLM-Grounder [48], which
also leverages 2D camera images for reasoning, our method achieves significantly higher inference
efficiency. This is because we rely on VLM-selected anchors and require only a small number of
images, avoiding the need to sample and filter all video frames.

5 Conclusion and limitations

In this work, we propose SPAZER, a novel spatial-semantic progressive reasoning agent for zero-shot
3D visual grounding. Instead of traditional object-level descriptions, SPAZER leverages holistic 3D
rendered views to provide global spatial context, allowing VLMs to directly observe and interpret the
3D scene. It further employs a retrieval-augmented candidate screening strategy to enhance spatial
reasoning and improve robustness against object category ambiguity. Extensive experiments verified
the effectiveness of SPAZER, showcasing the potential of the 3D-2D joint reasoning paradigm in
zero-shot 3DVG and its promise as a scalable alternative to supervised approaches.

Limitations. As we follow prior works and adopt pre-trained models to obtain 3D bounding boxes,
the grounding accuracy will be related to their localization accuracy. In addition, the calculation of
3D-to-camera mapping can be affected by inaccurate camera parameters and depth information. For
more detailed discussions of limitations, failure cases, and error types, please refer to the Appendix.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the core contributions of our work,
including the design of a spatial-semantic reasoning agent for zero-shot 3D visual grounding,
the design of 3D holistic view selection and candidate screening. These claims are directly
supported by the experimental results in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper includes a dedicated "Limitations" at Sec. 5. Specifically, it notes
that grounding accuracy depends on the quality of 3D bounding boxes from pre-trained
models and may be affected by inaccuracies in camera parameters and depth estimates.
Additional failure cases and error types are further analyzed in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not present theoretical results or formal proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the model architecture, imple-
mentation details, and evaluation protocols. We also include necessary hyperparameters
and dataset settings for reproduction. Additional implementation details (such as the input
prompts for VLM) are provided in the Appendix due to space constraints. Code will be
made publicly available upon publication to facilitate reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the full codebase with data preprocessing, model implementa-
tion, and evaluation scripts upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our method is training-free and does not require model optimization. Never-
theless, we clearly describe all necessary experimental settings, including adopted evaluation
datasets, hyper-parameters and justification of the choices of them, etc.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]
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Justification: The paper does not report error bars or statistical significance tests, as the core
results are obtained using a deterministic setup. In particular, we configure the VLM with a
low temperature setting to minimize sampling variance and ensure consistent outputs across
runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Most experiments rely on closed-source VLMs and only a small portion of
our pipeline (mainly the 3D rendering step) requires GPU computation, which imposes no
specific requirement on GPU model. For experiments involving open-source models, we
provide the relevant compute settings and resource information in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed the NeurIPS Code of Ethics and affirm that our
submission adheres to its principles.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss potential broader impacts of our work, including both its positive
applications and possible risks, in the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve the release of generative models, scraped datasets,
or other components with high misuse potential.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: All external assets used in our work—including datasets, codebases, and
models—are properly cited with their corresponding licenses and sources.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets introduced in this work are released under the CC-BY 4.0
license and are accompanied by a README file provided in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve any crowdsourcing tasks or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve human subjects and therefore does not require IRB
or equivalent ethical approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Large language models (LLMs) are a core component of our method. Specifi-
cally, we use them for progressive spatial-semantic reasoning in the 3D visual grounding
process. The paper details each step in which the LLM is involved, and we provide the exact
prompts used at each stage in the Appendix to ensure transparency and reproducibility.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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SPAZER: Spatial-Semantic Progressive Reasoning Agent for
Zero-shot 3D Visual Grounding

Appendix

A. Implementation details

B. Additional experimental results and analysis:

• B.1: Error type analysis

• B.2: Additional evaluation on cross-dataset generalization

• B.3: Stage-wise ablation on the effect of VLM capacity

• B.4: Case study on implied object grounding

C. Limitations and border impact:

• C.1: Analysis of failure cases

• C.2: Broader impact

A Implementation details

Computational resources. Note that most of our experiments adopt GPT-4o as the VLM and it
requires no GPU-based computation. The experiments involving Qwen2-VL-72B and Qwen2.5-VL-
72B are conducted on multiple NVIDIA H100 GPUs.

Model details. The default VLM of our agent is GPT-4o (gpt-4o-2024-08-06). And the temperature is
set to 0.2 to improve the reproducibility of the results. On ScanRefer dataset [6], we use Mask3D [34]
to obtain 3D bounding box predictions, which is consistent with prior works [54, 22].

Prompt design. Our agent adopts several different prompts for the VLM. We first conduct target
class prediction using the prompt in Tab. 7, which is similar with VLM-Grounder [48]. For view
selection (Sec. 3.2), we simply tell the VLM to select the view that can observe the query-described
object most clearly using the prompt in Tab. 8. In candidate object screening (Sec. 3.3), we prompt
the VLM to select Top-k candidate objects based on the annotated object IDs, as shown in Tab. 9.
Eventually, 3D-2D joint decision-making (Sec. 3.4) is achieved using the detailed prompt in Tab. 10.

Table 7: Prompt for reasoning the object category from the query description. "{text}" represents
the input query.

Prompt Template for Target Class Prediction

You are working on a 3D visual grounding task, which involves receiving a query that specifies
a particular object by describing its attributes and grounding conditions to uniquely identify
the object.
Now, I need you to first parse this query and return the category of the object to be found.
Sometimes the object’s category is not explicitly specified, and you need to deduce it through
reasoning. If you cannot deduce after reasoning, you can use "unknown" for the category.
Your response should be formatted in JSON.

Here are some examples:
Input: Query: this is a brown cabinet. it is to the right of a picture.
Output:

{
"target_class": "cabinet"

}
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Input: Query: it is a wooden computer desk. the desk is in the sleeping area, across from the
living room. the desk is in the corner of the room, between the nightstand and where the shelf
and window are.
Output:

{
"target_class": "desk"

}

...

Now start your task:
Input: "{text}"

Table 8: View selection prompt for identifying the best 3D view to locate the target object.
{target_class} is the predicted object class and "{text}" denotes the query text.

Prompt Template for View Selection

You are good at finding the object in a 3D scene based on a given query description. These
images show different views of a room. You need to find the {target_class} in this
query description: "{text}"

Please review all view images to find the target object and select the view that you can see
the target object most clearly.

Output your answer in JSON format with these keys:
{

"reasoning": "Explain how you identified the target object,
and why you choose this view.",
"view": "2" // The number of the view is in the top left
corner of the corresponding image.

}

Table 9: Candidate screening prompt for identifying the Top-k object IDs based on a given query.
{target_class} is the predicted object class and "{text}" denotes the query text. {n_topk}
is set to 4. {object_id_list} contains the valid object IDs after anchor filtering.

Prompt Template for Candidate Screening

Here is the annotated image of the selected view. All objects belonging to the
{target_class} class are labeled by a unique number (ID) in red color on them.
Please select the object ID that best matches the given query description: "{text}"
Carefully analyze the specified conditions (such as shape, color, relative position with
surrounding objects) in the given query, then select top-{n_topk} best-matched object IDs.
The selected top-{n_topk} object IDs should be sorted in descending order of confidence.
The object ID should be chosen from this list: {object_id_list}

Output your answer in JSON format with these keys:
{

"reasoning": "Explain how you identified and ranked the
top-{n_topk} target object IDs.",
"object_id": [1, 2, 3, 4, 5] // A list of {n_topk}
selected target object IDs.

}

23



Table 10: Input prompt for 3D-2D joint decision-making. {target_class} is the predicted object
class and "{text}" denotes the query text. {object_id_list} contains the valid object IDs
after anchor filtering.

Prompt Template for 3D-2D Joint Decision-Making

You are provided with a set of images depicting an indoor scene:
• A global view image showing the room’s 3D layout from a fixed perspective.
• Several camera images captured from different viewpoints around the room.

All objects of interest in the scene are labeled with unique object IDs (in red), which are
consistent across both the global and camera images.

Your task is to identify the object ID that best matches the given query description. Follow
the steps below:

1. Start with the global view image:
• Analyze the overall spatial layout and object distribution in the room.
• Use the global view to evaluate view-independent spatial relationships, which do not

rely on a specific viewpoint:
Examples include: near, close to, next to, far, above, below,
under, on, top of, middle, opposite

2. Then examine the camera images:
• Validate candidate objects identified from the global view.
• Evaluate visual features: color, shape, size, texture, and material.
• Use camera views to judge view-dependent spatial relationships, which depend on the

camera perspective:
Examples include: left, right, in front of, behind, back,
facing, looking, between, across from, leftmost,
rightmost

• Tip: Annotations may not always be at the center of the object. Focus on the full spatial
extent and choose the ID that best represents the main body of the described object
across both views.

3. Iterate if needed:
• If no candidate fully matches the query, return to the global view and reassess alterna-

tives.
• Repeat verification with camera images until you confidently identify the best match.

Task:
Select the object ID of the target class: {target_class}
Query description: "{text}"
Object IDs to choose from: {object_id_list}

Output format (JSON):
{

"reasoning": "Explain how you analyzed spatial relation-
ships (view-dependent vs view-independent), cross-verified
the object across views, and selected the best-matched
ID.",
"object_id": ID // e.g., 10

}

24



B Additional experimental results and analysis
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Figure 5: Error type distribution on ScanRefer dataset. Ours (3D only) indicates that our agent selects
the target object directly at the candidate screening stage, without performing the subsequent 3D-2D
joint decision-making. Ours (3D+2D) represents the full pipeline of our SPAZER method.

B.1 Error type analysis
In Fig. 5, we present the distribution of different error types in SPAZER’s predictions to provide
insights into potential directions for further improvement. The main error types include: 1) Semantic:
Errors caused by the model overlooking critical semantic cues, such as color, shape, etc.; 2) Spatial:
Errors where the model fails to correctly interpret spatial relationships, including relative positions
between objects or absolute directions (e.g., northwestern-most); 3) Detection: Cases where the 3D
detector fails to detect the target object or predicts the wrong category; 4) Other: Mainly due to
referring ambiguities in the query text, where multiple objects in the scene could reasonably match
the description based on human judgment.
Uni-modal and multi-modal. Compared to the 3D-only paradigm, incorporating 3D+2D sig-
nificantly reduces errors in the Semantic category, indicating that 2D images provide important
supplementary semantic cues for the agent. Additionally, the reliable view-dependent relational
information from 2D images also helps reduce the occurrence of Spatial errors.
Analysis and future work. Based on the error type distribution of our SPAZER (right side of Fig. 5),
Spatial errors account for the largest proportion, indicating that the primary challenge in 3DVG lies
in understanding complex spatial relationships. To address this, we plan to further explore more
effective 3D representations in future work. In addition, a considerable portion of errors is caused by
the detector, suggesting that reducing the agent’s reliance on the detector is one of the key issues to
be addressed in future work.

Table 11: Cross-dataset evaluation on RIORefer. Both methods use the same detector trained on
ScanRefer. SPAZER achieves superior zero-shot performance without any 3DVG-specific training.

Method Training Data Setting Acc@25 (%) Acc@50 (%)
Cross3DVG [28] ScanRefer Supervised 29.2 14.4
SPAZER (Ours) – Zero-shot 34.0 16.4

B.2 Additional evaluation on cross-dataset generalization
To further verify the generalization ability of our SPAZER framework, we conducted additional ex-
periments on the RIORefer benchmark [28], which is built upon 3RScan [40] and differs considerably
from ScanNet [9] in terms of scene layout, object category distribution, and scanning conditions.
This benchmark is therefore suitable for evaluating cross-dataset robustness and zero-shot transfer
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Table 12: Stage-wise ablation on VLM capacity. We replace GPT-4o with GPT-4o-mini at one
reasoning stage at a time to measure sensitivity.

Experiment Stage 1: View Selection Stage 2: Anchor Filtering Stage 3: Final Reasoning Overall Acc (%)
A (SPAZER) GPT-4o GPT-4o GPT-4o 63.8
B GPT-4o-mini GPT-4o GPT-4o 60.4 ( ↓ 3.4)
C GPT-4o GPT-4o-mini GPT-4o 57.2 ( ↓ 6.6)
D GPT-4o GPT-4o GPT-4o-mini 50.4 ( ↓ 13.4)

capability. In this experiment, both SPAZER and the supervised baseline (Cross3DVG) adopt the
same 3D detector trained on ScanRefer to ensure a fair comparison. Notably, Cross3DVG is trained
in a supervised manner with language–object annotations from ScanRefer, whereas SPAZER operates
in a zero-shot setting without any 3DVG-specific training.
As shown in Tab. 11, SPAZER surpasses the supervised baseline even when evaluated across domains,
demonstrating strong cross-dataset generalization and robustness to distribution shifts. This result
highlights the adaptability of our framework, which effectively transfers knowledge from open-world
vision–language models (VLMs) to unseen datasets without fine-tuning. We attribute SPAZER’s
superior cross-dataset performance to its reliance on the VLM’s broad vision–language prior, instead
of dataset-specific supervision. This design enables SPAZER to understand diverse object appearances
and handle natural-language queries robustly, even under unfamiliar scene conditions.

B.3 Stage-wise ablation on the effect of VLM capacity
To further analyze how SPAZER’s performance depends on the reasoning capability of the Vision-
Language Model (VLM) at different reasoning stages, we conducted stage-wise ablation experi-
ments. Specifically, we replaced GPT-4o with a smaller model (GPT-4o-mini) at one stage at a time,
while keeping the others unchanged. The results are summarized in Table 12. As shown in Table 12,
the final reasoning stage (Stage 3: 3D–2D joint decision-making) is the most sensitive to the
VLM’s capacity, showing a notable 13.4% drop when GPT-4o is replaced with GPT-4o-mini. This is
expected, as this stage requires fine-grained spatial-semantic reasoning and cross-view understanding
to accurately identify the target. The anchor filtering stage (Stage 2) experiences a moderate
degradation (↓ 6.6%), since its objective is to shortlist a set of likely candidates. Even with a weaker
VLM, the correct anchor may still appear in the top-k shortlist. In contrast, the view selection stage
(Stage 1) is relatively robust (↓ 3.4%). Because the same object can often be captured from multiple
valid viewpoints, this stage places lower demands on fine-grained reasoning accuracy, making it less
sensitive to VLM degradation. Overall, these results confirm that SPAZER follows a coarse-to-fine
progressive reasoning paradigm. Early stages (view selection and anchor filtering) involve simpler
reasoning steps and show higher tolerance to variations in VLM capability. In contrast, the final
grounding stage requires precise spatial-semantic alignment and thus exhibits stronger dependency
on the VLM’s reasoning power.

B.4 Case study on implied object grounding
Our proposed SPAZER is capable of handling implied object grounding, where the referred tar-
get is not explicitly mentioned but can be inferred from contextual cues. Unlike traditional text-
matching–based approaches that rely solely on literal word overlap between query text and object
class labels, our method integrates visual–semantic reasoning within the VLM and an anchor filtering
mechanism guided by the VLM-inferred target class. This design allows the model to interpret
implied intents (e.g., “something to drink”) and associate them with relevant visual entities (e.g.,
bottles, cups, or glasses) even when such categories are not directly stated in the text.
As illustrated in Fig. 6, given the query “I am thirsty. Please bring me something from my desk,”
the model first identifies the most informative view of the desk and then filters objects related to
drinking, such as bottles or cups. Among them, object 37 (a bottle) is consistently observed across
multiple views and best matches the query semantics, while others (e.g., 66, 77, 1) are filtered out.
This case study demonstrates that our reasoning-guided filtering effectively bridges explicit textual
grounding and implicit semantic inference. By combining lightweight text-matching for efficient
anchor pruning with VLM-based reasoning for category understanding, the model can infer the
intended target even when the query describes an implied object. Consequently, it achieves robust
performance on complex queries where conventional matching strategies fail to capture the latent
semantics of user intent.
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Query Text: "I am thirsty. Please bring me something from my desk."

:"The query asks for something to drink from the desk. In view 4, the desk is clearly 
visible, and there is a bottle on it which could be a drink. This view provides the clearest view 

of the desk and the items on it, making it the best choice to identify the target object."

:"The query suggests looking for objects related to drinking, such as bottles, cups, or glasses, that are 
located on the desk. In the images, object 37 is a water bottle, which is the most direct match for quenching 
thirst. Object 66 appears to be a mug, which is also suitable for drinking. Object 60 and 77 seem to be cups 

or glasses. Object 1 is on the desk and could potentially be a container, although less clear."

:"The query suggests looking for a bottle or cup. In the global view image, object 37 is on 
the desk and appears to be a bottle, matching the query. Camera views confirm that object 37 
is consistently shown on the desk near object 1 (a laptop). Other objects like 66 (printer) and 1 

(laptop) do not match the description. Therefore, object 37 is the best match."

View Selection

Candidate Screening 

Joint Decision-Making 

43210

37
1 66

77

3D Global Views

Selected View Visual Object Table
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1
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37
1
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Figure 6: Case study on implied object grounding by SPAZER.

C Limitations and border impact

(b) Semantic detail

(a) Spatial relation

this is a black chair. 
the back of the chair is 

against the wall.

the gray padded chair 
is on rollers. 

it is the only rolling 
chair at the table.

the chair is south of the 
northwestern-most 

bookshelf. the chair is 
gray and has four legs.

it is a white table. the 
white table is sitting 
behind the two brown 
desks in the far left 
corner of the room.

the chair is in one of 
the sides of the room. 
the color of the chair 

is brown.

this is a brown door. 
it is across from an 

armchair.

(c) Other (referring ambiguity)

Figure 7: Typical types of failure cases. The prediction and ground-truth are highlighted in red and
green, respectively. (a) Relation error includes relative relation (e.g., against the wall) and absolute
relation (e.g., northwestern-most). (b) Semantic error mainly involves detailed object attributes, such
as shape (on rollers), color (white), material, etc. (c) Other errors are primarily caused by the referring
ambiguity, i.e., multiple objects in the scene satisfy the query.

C.1 Analysis of failure cases
Based on Fig. 5, there are mainly four types of failure cases. Since we adopt a detect-and-match
paradigm similar to previous works [54, 22], detection-related errors are currently unavoidable. In
future work, we plan to explore how to enable the agent to directly produce localization results. The
remaining three types of errors are illustrated through case studies in Fig. 7.
Regarding spatial relations, failures mainly occur in: 1) complex positional relationships, which often
involve both the orientation of the target object and its relation to surrounding objects; 2) directional
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terms (e.g., south, northwest). In future research, we plan to incorporate visual prompts indicating
orientation into the 3D representation.
For semantic details, when the scene contains multiple visually similar objects, the candidate screening
stage may fail to include the correct target into the Top-k list, preventing effective semantic verification
in subsequent steps. This reflects a limitation of our current method.
Lastly, we observed that some samples in the dataset exhibit referring ambiguity. As shown in
Fig. 7(c), both the predicted result and the ground truth can satisfy the query description based on
human interpretation. Therefore, the construction of higher-quality 3DVG datasets stands out as a
critical challenge that needs to be addressed in future research.

C.2 Broader impact
Our VLM-driven agent SPAZER for 3D visual grounding offers potential benefits in areas such as
human-robot interaction, augmented reality, and assistive technologies by enabling more intuitive
object localization from language. However, it may also carry risks, such as biases inherited from
pre-trained models, which could affect performance in diverse environments. Future work should
address these concerns through fairness-aware training, improved interpretability, and responsible
deployment.
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