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Abstract

Can language models read biomedical texts001
and explain the biomedical mechanisms dis-002
cussed? In this work we introduce a biomed-003
ical mechanism summarization task. Biomed-004
ical studies often investigate the mechanisms005
behind how one entity (e.g., a protein or a006
chemical) affects another in a biological con-007
text. The abstracts of these publications of-008
ten include a focused set of sentences that009
present relevant supporting statements regard-010
ing such relationships, associated experimen-011
tal evidence, and a concluding sentence that012
summarizes the mechanism underlying the re-013
lationship. We leverage this structure and cre-014
ate a summarization task, where the input is015
a collection of sentences in an abstract and016
the output includes the main relationships and017
a natural language sentence that summarizes018
the mechanism. Using a small amount of019
manually labeled mechanism sentences, we020
train a mechanism sentence classifier to fil-021
ter a large biomedical abstract collection and022
create a summarization dataset with 22k in-023
stances 1. We also introduce a pretraining024
conclusion generation task with 611k samples.025
Our benchmarking experiments with large lan-026
guage models show that the pretraining is help-027
ful for the original task, but the model per-028
formance isn’t still satisfactory and this task029
presents significant challenges in biomedical030
language understanding and summarization.031

1 Introduction032

Understanding biochemical mechanisms such as033

protein signaling pathways is one of the central pur-034

suits of biomedical research (Arighi et al., 2011;035

Krallinger et al., 2017; Demner-Fushman et al.,036

2020). Biomedical research has advanced tremen-037

dously in the past few decades, to the point where038

we now suffer from "an embarrassment of riches:"039

publications are generated at such a rapid pace040

1dataset will be published upon acceptance of the paper

Biomedical Abstract
This study re-examined the hyperactivity and disruption of prepulse inhibition
induced by N-methyl-D-aspartate stimulation ... of the rat ventral hippocampus
and compared how both effects were affected by pretreatment with either
haloperidol or clozapine. While the hyperactivity is thought to depend on
dopamine receptor activation in the nucleus accumbens, the dopamine D2-class
receptor blocker   haloperidol failed to antagonize the disruption of prepulse
inhibition  in previous studies. However, an ameliorative effect of the atypical
neuroleptic clozapine on disruption of prepulse inhibition was suggested by ...
In the present study, bilateral infusion of   N-methyl-D-aspartate  ... into the
ventral hippocampus of Wistar rats increased ...  disrupted prepulse inhibition.
Both effects were observed immediately after infusion but disappeared 24h later.
Injection of .., 45min prior to  N-methyl-D-aspartate  infusion, totally
antagonized the hyperactivity but did not affect the disruption of prepulse
inhibition.  We conclude that dopaminergic mechanisms are differentially
involved in the hyperactivity and disruption of prepulse inhibition  induced by
 N-methyl-D-aspartate stimulation of the ventral hippocampus.

Outputs

2. Relation: negative-activation 

Inputs

2. Regulated Entity: prepulse inhibition
1. Supporting Sentences

3. Regulator Entity:N-methyl-D-aspartate

1. Mechanism Sentence

Figure 1: Example of an entry in the SuMe dataset.
Some supporting text was removed to save space. The
input is the supporting sentences with the main two en-
tities. The output is the relation type and a sentence
concluding the mechanism underlying the relationship.

(PubMed2 has indexed more than 1 million pub- 041

lications per year in the past 8 years!) that these 042

mechanisms must be summarized, if humans are 043

to keep up with the big picture behind this mas- 044

sive body of work. In this paper we introduce a 045

novel dataset and task that couples elements of bio- 046

chemical mechanisms with their textual summaries. 047

In this initial effort, we focus on individual ele- 048

ments of these mechanisms, i.e., single interactions 049

(positive or negative activations) between pairs of 050

biochemical entities such as proteins. In partic- 051

ular, we introduce an instance of an explainable 052

relation extraction problem, where interactions be- 053

tween two biochemical entities are mechanistically 054

summarized in plain text. The proposed task is 055

coupled with a novel dataset called SuMe, which 056

should facilitate the development of methods that 057

can extract and explain biomedical mechanisms. 058

The contributions of this paper are the following: 059

2https://pubmed.ncbi.nlm.nih.gov

1

https://pubmed.ncbi.nlm.nih.gov


(1) We introduce the SuMe dataset, which is con-060

structed semi-automatically from publication ab-061

stracts. The dataset contains tuples of support sen-062

tences, mechanistic information such as the two063

biochemical entities in focus and the relation that064

holds between them, and a textual summary of this065

interaction (see Figure 1). The entities and relations066

are extracted using an existing biomedical informa-067

tion extraction system (Valenzuela-Escárcega et al.,068

2018). The mechanism summaries are extracted us-069

ing a semi-automatic bootstrapping process. First,070

with the help of biomedical experts, we gathered a071

small set of mechanism sentences. We then train a072

mechanism sentence classifier by fine-tuning Bio-073

ELECTRA (Kanakarajan et al., 2021), a biomedi-074

cal domain language model (LM). We use this LM075

to collect a large set of approximately 22k mecha-076

nism summarization instances. The entire dataset077

construction is summarized in Figure 2. Five do-078

main experts manually evaluated the quality of a079

dataset sample of 125 instances, and concluded that080

the generated dataset has reasonable quality.081

(2) Using the above manually-curated sample, we082

evaluated the capacity of multiple neural LMs to083

generate the underlying biochemical relations, and084

the corresponding mechanism sentences. In partic-085

ular, we analyzed GPT2 (Radford et al., 2019), sci-086

entific GPT2 (Papanikolaou and Pierleoni, 2020),087

T5 (Raffel et al., 2020a), SciFive (Phan et al., 2021),088

and BART (Lewis et al., 2019). The results indicate089

that the proposed task is quite challenging. We also090

defined a pretraining task with 611K instances to091

improve these LMs. In summary, this first empir-092

ical benchmark and analyses indicate that this is093

a meaningful and complex research problem that094

deserves further investigation.095

2 Related Work096

We address mechanism generation, which can be097

seen as a combination of explainable relation ex-098

traction and summarization. There is a huge body099

of work that addresses explainable methods (e.g.,100

for relation extraction (Shahbazi et al., 2020) or101

explainable QA (Thayaparan et al., 2020)). Many102

prior works in relation and event extraction treat103

explanations as the task of selecting or ranking104

sentences that support a relation (e.g., (Shahbazi105

et al., 2020; Ghaeini et al., 2019; Lev et al., 2019;106

Çano and Bojar, 2020; Yasunaga et al., 2019)). Our107

work differs from these in that it focuses on gener-108

ating mechanisms underlying a relation from sup-109

porting sentences, rather than identifying existing 110

sentences. 111

Our work can also be viewed in the context of 112

reading and generating information from scientific 113

texts. Most work in this area focus on generating 114

summaries using scientific publication and some 115

times in combination with external information (Ya- 116

sunaga et al., 2019; DeYoung et al., 2020; Collins 117

et al., 2017; Wang et al., 2018a, 2019) 118

Some works even seek to generate part of the sci- 119

entific papers. For example, TLDR (Cachola et al., 120

2020) introduces a task and a dataset to gener- 121

ate TLDRs for papers. They exploit titles and an 122

auxiliary training signal in their model. Scisumm- 123

Net (Yasunaga et al., 2019) introduces a large man- 124

ually annotated dataset for generating paper sum- 125

maries by utilizing their abstracts and citations. 126

TalkSumm (Lev et al., 2019) generates summaries 127

for scientific papers by utilizing videos of talks at 128

scientific conferences. PaperRobot (Wang et al., 129

2019) generates a paper’s abstract, title, and con- 130

clusion using a knowledge graph. FacetSum (Co- 131

han et al., 2018) used Emerald journal articles to 132

generate 4 different abstractive summaries, each 133

targeted at specific sections of scientific documents. 134

Nikolov et al. (2018) introduce two novel multi- 135

sentence summarization datasets from scientific 136

articles, and test the suitability of a wide range of 137

existing extractive and abstractive neural network- 138

based summarization approaches, e.g., generate ab- 139

stracts from paper content, and generate titles from 140

abstracts. Wang et al. (2018b) generate abstracts 141

as a conditioned, iterative text generation problem, 142

and design a new writing-editing network with an 143

attentive revision gate to iteratively examine, im- 144

prove, and edit the abstract. More recently, Meng 145

et al. (2021) introduce a new dataset to generate 4 146

different summaries for long scientific documents. 147

In addition to the specifics of the output that we 148

target, our work is different from all these other 149

works because our proposed summarization task 150

is grounded with the underlying biomedical event 151

discussed, rather than focusing on generic summa- 152

rization, which may lose the connection to the un- 153

derlying biology that is the core material discussed 154

in these papers. 155

3 Mechanism Summarization 156

Our goal is to develop a task and a dataset that 157

pushes models towards understanding the mecha- 158

nisms that underlie the relationships between enti- 159
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Figure 2: The overall bootstrapping pipeline for SuMe dataset collection and human evaluation. The main idea
behind the pipeline is to collect relatively easy to acquire judgments from domain experts to then bootstrap and
generate a weakly-labeled large training corpus. We further assess the quality of the resulting dataset through
another round of human evaluation, which also yields a smaller curated evaluation dataset.

ties from biomedical literature. From a language160

processing perspective, we can view mechanisms161

as a form of explanation that justifies the rela-162

tionship or connection between entities. From a163

biomedical science perspective, a mechanism pro-164

vides two types of explanatory information, which165

we use to characterize mechanism sentences:166

Why is the relation true? A sentence can be a167

mechanism, if it explains why the relation exists168

between the two main entities. For example, one169

protein (say A) might be up-regulate another (say170

B), which in turn inhibits yet another protein (say171

C). This provides the causal reasoning to conclude172

the relation that protein A inhibits protein C.173

How does the relation come about? Another174

kind of explanatory information is the one that de-175

scribes the process or manner in which the relation176

exists between the pair of entities. For example,177

one protein (say A) may activate another protein178

(say B) via a specific process.179

These provide a way to specify what constitutes180

a mechanism sentence and help us to locate mech-181

anism sentences in the literature. In particular,182

we consider abstracts which discuss studies that183

lead to conclusions about such mechanisms. Typi-184

cally, these abstracts provide a short collection of185

sentences that describe the goals of the study, the186

methods used, the experimental observations, the187

findings, which can be used to substantiate the con-188

clusions that establish the relation of interest, and189

the mechanism underlying the relation. This sug- 190

gests a language processing task that tests for abil- 191

ity to understand biomedical mechanisms: given 192

the preceding sentences in the abstract can a model 193

accurately generate the underlying mechanism? 194

In this section, we first formally define this task, 195

and then describe the auxiliary tasks we devised to 196

help generating such explanations. 197

3.1 Task Definition 198

Given a set of sentences from a scientific abstract 199

(referred to as supporting sentences) and a pair 200

of entities (ei, ej) that are the focus of the ab- 201

stract, generate the conclusion sentence that ex- 202

plains the mechanism behind the pair entities and 203

output a relation that connects these entities (e.g., 204

positive_activation(ei, ej)). Figure 1 shows an ex- 205

ample of such a tuple of supporting sentences, fo- 206

cus entities, relation, and mechanism sentence. As 207

the example illustrates, mechanism sentences de- 208

scribe some pathway often involving another entity 209

or a process (e.g., dopaminergic mechanism), re- 210

quire identifying and combining information from 211

multiple relevant sentences, and non-trivial infer- 212

ences regarding the relationship between the enti- 213

ties (e.g., recognizing that the different effects on 214

prepulse inhibition imply differential involvement). 215

Given an abstract of a scientific literature we 216

need four pieces of information: 1. The two focus 217

entities of the abstract. 2. The relation between en- 218
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tities. 3. Sentences from the abstract in support of219

this relation. 4. The conclusion sentence where the220

mechanism underlying the relation is summarized.221

4 SuMe Dataset222

We aim to create a large scale dataset for the mech-223

anism summarization task defined above. However,224

identifying instances for this task requires domain225

expertise and cannot be easily done at scale. In-226

stead, here we employ a bootstrapping process,227

where we first annotate a small amount of data to228

build a mechanism sentence classifier that can then229

helps us collect a large scale dataset for mechanism230

summarization. The key observation here is that231

identifying sentences that express a mechanism is232

a simpler task than targeted mechanism summa-233

rization task, and, thus, should be learnable from234

smaller amounts of data. We outline the process235

we use for creating our mechanism summarization236

dataset, SuMe, and an expert evaluation of its qual-237

ity next.238

4.1 SuMe Construction Process239

We construct SuMe using biomedical abstracts240

from the PubMed open access subset3. Starting241

from 1.1M scientific papers, we followed the fol-242

lowing sequence of bootstrapping steps to prepare243

the SuMe dataset. The following steps are also244

elaborated in Figure 2.245

1. Finding Conclusion Sentences: First, we use246

simple lexical patterns to find abstracts with clearly247

specified conclusion sentence. All abstracts which248

has any form of conclude word (conclusion, con-249

cluded, concluding, concludes, etc.) at the very end250

of the text are extracted here. We use this matching251

process to also split the abstracts into the set of252

supporting sentences (the ones that lead up to the253

conclusion) and the conclusion sentence.254

2. Extracting Main Entities & Relation Start-255

ing with the abstracts which are now in the256

form of (supporting sentences, conclusion sen-257

tence), we then run a biomedical relation extractor,258

REACH (Valenzuela-Escárcega et al., 2018), which259

can identify protein-protein and chemical-protein260

relations between entities. In this work, we focus261

on the relations where one entity is the controller262

and another entity is the controlled entity and the263

relation between them is either positive/negative264

activation or positive/negative regulation. If an265

abstract doesn’t return any such relation, we keep266

3https://pubmed.ncbi.nlm.nih.gov

that for the pretraining step (as described in Sec- 267

tion 5.3), otherwise we use it for the main task. 268

3. Filtering for Mechanism Sentences: We then 269

filter out the instances to only retain those whose 270

conclusion sentences are indeed a mechanism sen- 271

tence. To this end, we devised a bootstrapping pro- 272

cess where we first collect supervised data to train 273

a classifier. To collect likely mechanism sentences 274

we made use of the ChemProt (Peng et al., 2019) re- 275

lation extraction dataset which contains sentences 276

annotated with positive and negative regulation re- 277

lations between entities. However, not all of these 278

sentences necessarily explain the mechanism be- 279

hind these relations. We asked 21 experts (grad stu- 280

dents in a biomedical department) to inspect each 281

sentence and rate whether it explains the mecha- 282

nism behind the ChemProt annotated relation on 283

a four-point Likert scale. For each sentence, an 284

annotator can select between Clearly a Mechanism, 285

Plausibly a Mechanism, Clearly not a Mechanism, 286

and Not Sure. Each sentence is annotated by three 287

experts and we find the inter-annotator agreement 288

between users to be κ = 73% (Fleiss Kappa (Lan- 289

dis and Koch, 1977)). The final label for a sen- 290

tence is selected based on the majority voting after 291

combining Clearly a Mechanism and Plausible a 292

Mechanism labels. Finally, each sentence is labeled 293

as a Mechanism, or Non-Mechanism. The resulting 294

dataset contained 439 Mechanism sentences and 295

447 Non-Mechanism sentences. 296

Using this small scale mechanism sentence 297

dataset, we train classifiers to identify mecha- 298

nism sentences, where the positive label indicates 299

that the underlying sentence is a mechanism sen- 300

tence. We compared the performance of finetuning 301

BioBERT (Lee et al., 2020), SciBERT (Beltagy 302

et al., 2019), BiomedNLP (Gu et al., 2020), and 303

BioELECTRA (Kanakarajan et al., 2021) models. 304

BioELECTRA performed the best with 74% macro 305

F1 for mechanism sentence classification. We use 306

the trained mechanism sentence classifier to label 307

all conclusion sentences from the previous step and 308

instances with the predicted mechanism sentences 309

are used to create SuMe dataset. 310

We separate out the abstracts for which the 311

conclusion sentences are predicted to have non- 312

mechanism related conclusions as additional re- 313

lated data that can be use for pretraining the genera- 314

tion models we eventually train for the mechanism 315

summarization task (as we describe in Section 5.3). 316

The above procedure results in a dataset that al- 317
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Dataset Train Dev Test
Abstracts 20765 1000 1000

Avg. #words in conc. 33.7 34.9 33.5
Avg. #words in supp. 187.5 187.9 186.7
Avg. #sent. in supp. 12.15 12.44 12.33
#Unique controller 8094 759 777
#Unique controlled 6684 717 687

#Unique pair entities 19229 988 989
#Unique entities 12685 1357 1364

Table 1: Dataset Statistics: Each dataset contains a
number of unique abstracts, a supporting set (supp.),
a mechanism sentence (conc.) a pair of entities. The
first entity is called the regulator entity (regulator) and
the second one is called the regulated entity (regulated)

lows us to define the following mechanism summa-318

rization task: Given a set of supporting sentences319

from an abstract and a pair of entities (ei, ej), gen-320

erate a relation that connects these entities and a321

sentence that explains the mechanism that was the322

focus of the study. The statistics of the dataset are323

shown in Table 1.324

4.2 SuMe Quality325

Our goal was to create a large scale albeit boot-326

strapped dataset that can be used to train large lan-327

guage generation models. A key question to answer328

here is what is the quality of the resulting dataset.329

To assess this we asked three biomedical experts330

to evaluate a random sample from the dataset. The331

experts were given the set of input supporting sen-332

tences, the potential mechanism sentence, and the333

relation between main entities. They were asked334

the following three questions335

1. Is the expected output relation associated with336

the instance valid?337

2. Is the output sentence expected for this sen-338

tence an actual mechanism sentence?339

3. Can the mechanism and relation be concluded340

given the input supporting sentences?341

The first question checks for the quality of the auto-342

matically extracted relations. The second assesses343

the impact of the mechanism sentence classifier.344

Answers to these first two can help estimate the345

noise in the dataset. The final question helps quan-346

tify what fraction of times the information to gen-347

erate the mechanism sentence is not entirely part348

of the input supporting sentences, which can make349

for harder instances requiring external knowledge.350

We asked 5 biomedical experts to evaluate 125351

randomly selected samples. The purpose of having352

this set is two fold, first to evaluate the quality of the353

Quality Correct
Entities & Relation Extraction 90%
Mechanism Sentence Classifier 85%

Concludable 86%
All Acceptable 81%

Table 2: Dataset Quality: We asked three main ques-
tions. This table shows what percentage of each cate-
gory is acceptable. The last question shows what per-
centage of the sentences are approved in all questions.

data collection process, second to collect a clean 354

human evaluated dataset which can be used as an 355

extra test set. The results of the dataset evaluation 356

are shown in Table 2. This evaluation shows that 357

the generated dataset is of reasonable quality, and 358

can serve as a meaningful resource for training 359

models for biomedical summarization. 360

5 Evaluation 361

Our evaluation focuses on the following questions: 362

1. Benchmarking: What is the performance of 363

generic and domain-adapted large scale lan- 364

guage generation models on SuMe? 365

2. Effect of pretraining: What is the impact of 366

using the additional data via pretraining? 367

3. Effect of modeling supporting sentences: 368

What is the impact of selecting a subset of 369

supporting sentences? 370

4. Error analysis: What are the main failure 371

modes of language generation models? 372

5.1 Experimental Setup 373

We use SuMe to benchmark language generation 374

models and measure their ability to correctly iden- 375

tify the relation between the focus entities and 376

to summarize the mechanism behind the relation 377

based on the input sentences from the abstract. 378

Models: We compare pretrained GPT-2 (Rad- 379

ford et al., 2019), T5 (Raffel et al., 2020b), 380

BART (Lewis et al., 2019) models and two domain- 381

adapted models, GPT2-Pubmed (Papanikolaou and 382

Pierleoni, 2020), and SciFive (Phan et al., 2021), 383

which were trained on scientific literature. 384

Evaluation Metrics: We conduct both automatic 385

and manual evaluation of the model outputs. 386

Relation Generation (RG): The models are sup- 387

posed to generate the relation type with a marker 388

in and then generate the mechanism that underlies 389

this relation. There are two types of relations in 390

the dataset: positive and negative. We evaluate the 391

model’s output as we would for a corresponding 392
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Model RG (F1) BLEURT Rouge-1 Rouge-2 Rouge-L
BART 76 42.49 46.54 25.92 35.34
GPT2 74 44.19 46.54 28.32 38.78

T5 72 44.41 48.26 27.63 38.77
GPT2-Pubmed 78 46.33 48.37 29.55 40.19

SciFive 79 47.81 52.10 32.62 43.31

Table 3: Benchmarking performance of strong language generation models and some domain-adapted models. We
present standard automatic evaluations measures for the mechanism sentence generation task along with F1 for the
generated relations. The science domain versions of both GPT2 and T5 work better than the original versions.

classification task, i.e., the generated relation is393

deemed correct if it exactly matches the correct re-394

lation name. We report F1 numbers for this binary395

classification task.396

Mechanism Generation: We evaluate the quality397

of the generated explanations using two language398

generation metrics: the widely-used ROUGE (Lin,399

2004) scores, and to address the recent concerns on400

the usage of these scores in capturing conceptual401

information (Novikova et al., 2017) we additionally402

report BLEURT score (Sellam et al., 2020) which403

is able to better account for more complicated se-404

mantic mismatches between the generated sentence405

and the gold reference. We use a recent version,406

the BLEURT-20 model (Pu et al., 2021) that has407

been shown to be more effective. We compare the408

generated text as the hypothesis with the actual text409

as the reference.410

Fine-tuning and Training Details: All models411

were fine-tuned on the training portion of SuMe412

for 20 epochs. For each model, we evaluate the413

average of BLEURT and Rouge-L score on the414

validation set and the one with the highest score415

is chosen for prediction. The learning rate is set416

to 6e-5, we use AdamW (Loshchilov and Hutter,417

2017) optimizer with ε = 1e− 8. The input token418

is limited to 512 tokens, and the generated token is419

maxed out at 128 tokens. We select batch size of 8420

with gradient accumulation steps of two.421

5.2 Automatic Evaluation Results422

Table 3 compares the performance of the five lan-423

guage generation models on both the relation gen-424

eration (RG) and mechanism generation tasks.425

Fine-tuning the domain-adapted models, GPT2-426

Pubmed and SciFive, is better than fine-tuning the427

standard pre-trained models for both relation and428

mechanism generation tasks. SciFive achieves the429

best performance with more than a 7.5% increase430

in BLEURT score and more than 9.7% increase in431

RG F1 over the standard T5 model, highlighting432

the importance of domain adaptation for the SuMe 433

tasks defined over scientific literature. 434

The overall numbers (coupled with the human 435

evaluation in Section 5.5) suggest that mechanism 436

generation is a difficult and challenging task. 437

The models achieve better performance on the 438

relation generation task but there is still a substan- 439

tial room for improvement here with the best model 440

achieving an F1 of 79. If the model is unable to 441

generate the relation correctly, then the mechanism 442

it generates is not useful. Ideally we want mod- 443

els to correctly generate both the relation and the 444

mechanism that underlies it. We also evaluated the 445

correlation between BLEURT score and relation 446

generation classification score. Our analysis shows 447

that when the model generates an accurate relation, 448

it get’s higher BLEURT score while when it gen- 449

erates an incorrect relation, the BLEURT score is 450

lower by 10%. (50.02 vs 45.08) 451

5.3 Pretraining with Conclusion Generation 452

Next we analyze the impact of pre-training the 453

models on a related task of generating conclusion 454

(instead of mechanism) sentences, for which we 455

can obtain data at scale without any labeling effort. 456

SuMe includes 611K instances of this kind which 457

is an order of magnitude larger than the mechanism 458

summarization instances. 459

We study the effect of this pretraining task by 460

varying the amount of pretraining data. We analyze 461

the impact in terms of the overall effectiveness 462

and the amount of fine-tuning (number of epochs) 463

needed to converge when finetuning. 464

Pretraining Data Size: We pretrain the SciFive 465

model on the conclusion generation task with in- 466

creasing amount of data (100K increments), and 467

measure the performance of finetuning the pre- 468

trained models on the mechanism summarization 469

task. Figure 3 shows that there is a trend of im- 470

proved performance suggesting that pretraining is 471

beneficial for learning to generate mechanisms. 472

6



Model Performance Vs Size of Pretraining Data
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Figure 3: Comparison of relation generation F1
(left y-axis/blue bars) and the mechanism generation
measures (right y-axis/teal+Blue curves) against the
amount of pretraining. As we increase the size of the
pretraining data, the model performance improves in
both aspects.

Number of Epochs: We also compare the impact473

of the amount of pretraining on the number of474

epochs needed for convergence in fine-tuning. Fig-475

ure 4 compares pretrained models with different476

number of pretraining epochs (x-axis) in terms of477

their overall effectiveness (BLEURT score bars)478

and the number of epochs to convergence (Fine-479

tuning epochs curve). The figure shows that when480

we continue pretraining, not only does the result-481

ing model performs better, but it also converges482

sooner taking fewer number of epochs to reach483

higher effectiveness. Together these results sug-484

gest potential for the auxiliary data available in the485

SuMe dataset.486
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Figure 4: Number of pretraining epochs vs. number
of fine-tuning epochs for each pretrained model until
convergence.

5.4 Modeling Supporting Sentences487

Will it help to model the subset of sentences within488

the inputs sentences that provide the best support489

Supporting Set BLEURT Rouge-L
SciFive 47.81 43.31
+Oracle 49 43.07

+Pretraining 49.05 43.72
+Pretraining+Oracle 49.64 43.81

Table 4: The effect of selecting supporting sentences
with highest BLEURT score.

for generating the mechanism sentence? This kind 490

of an extractive step has been used previously in 491

summarization tasks to reduce the amount of ir- 492

relevant information in the input (Narayan et al., 493

2018; Liu and Lapata, 2019). To understand the 494

utility of this, we built a pseudo-oracle that finds 495

the sentences that have the best overlap (measured 496

via BLEURT score (Sellam et al., 2020)) with the 497

output mechanism sentence. Then, we trained the 498

SciFive model and pretrained version to only use 499

the top few sentences according to BLEURT score 500

such that input size is now half of the original input 501

size. We find that this only provides improvements 502

in BLEURT score over using the entire set of input 503

sentences for the basic SciFive model and the gains 504

reduce with the pretrained model. Unlike standard 505

summarization tasks there are fewer completely 506

unrelated sentences in the abstracts and generat- 507

ing the mechanism sentences remains challenging 508

even when we are able to identify the most rele- 509

vant sentences within this set suggesting that the 510

task remains hard even when the most important 511

sentences are somehow known to the model. 512

5.5 Manual Evaluation 513

We also conduct a manual evaluation of the outputs 514

from the best model — the SciFive model that was 515

pretrained with the conclusion generation task. We 516

asked 3 biomedical experts to evaluate output sen- 517

tences for 100 instances and answer the following 518

three questions: 519

1. Does the generated sentence contain a mech- 520

anism that explains the relation between the two 521

main entities? 522

2. Is the information in the generated mechanism 523

supported by the information contained in the sup- 524

porting set of sentences? 525

3. Is the generated mechanism factually correct? 526

The results show that the model learns to gener- 527

ate mechanism sentences that connect the main 528

entities for most of the instances (79%). It also 529

produces output for which there is support in the 530

input sentences in a majority of the cases (53%). 531
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Gold Mechanism Generated Mechanism
On the basis of these observations, we conclude that IL-18 in-
duces MCP-1 production through the PI3K/Akt and MEK/ERK1/2
pathways in macrophages.

In conclusion, IL-18 induces MCP-1 production in
macrophages through the PI3K/Akt and MEK/ERK1/2
pathways.

Taken together, we conclude that DeltaNp73 negatively regulates
NGF-mediated neuronal differentiation by transrepressing TrkA.

In conclusion, our results indicate that DeltaNp73 nega-
tively regulates NGF-mediated neuronal differentiation
by transcriptionally repressing the expression of TrkA.

We conclude that, without modulatory factors which play a role
in vivo, NGF can enhance the synthesis of tyrosine hydroxylase
n sympathetic ganglia in vitro, provided organ culture conditions
which permit optimal survival of adrenergic neurons are selected.

This conclusion was further supported by pulse-labeling
of tyrosine hydroxylase with [3H]leucine, which
showed that NGF increased synthesis of tyrosine in
sympathetic ganglia by approximately 50%.

We conclude that 20 mm alcohol/submaximal CCK as well supra-
maximal CCK stimulation can trigger pathologic basolateral exocy-
tosis in pancreatic acinar cells via PKC alpha-mediated activation
of Munc18c , which enables Syntaxin-4 to become receptive in
forming a SNARE complex in the BPM

We conclude that alcohol can induce a clinically rele-
vant form of pancreatitis by blocking apical exocytosis
and redirecting exocytosis to less efficient BPM, mim-
icking supramaximal CCK stimulation.

Table 5: Examples of the generated outputs by the model. The first two are good outputs where the mechanism is
a simple paraphrase of the expected gold mechanism, while the next two illustrate the types of semantic errors we
observe. The main entities are makred in Italics. The phrase explaining the mechanism in gold data is in blue, in
good generation is in green, and in bad generation is in red.

The experts found that the output statements to532

be scientifically correct in many cases(58%). In533

summary, however, only 32% of the outputs were534

acceptable in all questions and were deemed to be535

good mechanism sentences. This again highlights536

the significant challenge posed by this task.537

5.6 Error Analysis538

To understand the frequent failure modes of the539

model, we manually categorized the errors in a540

hundred outputs that had the worst BLEURT scores541

with the reference mechanism sentences. We find542

the following main categories of errors:543

Missing Entities (35%) – The most prevalent is-544

sue is the absence of one of the main entities in545

the generated sentence. Despite this being a neces-546

sary feature in all of the mechanism sentences in547

the training data, the prevalence of this error shows548

that models find it difficult to track the main entities549

during generation.550

Incorrect Mechanism (24%) – The model is un-551

able to generate the correct mechanism even though552

it is able to identify the correct relation and fills553

in some information that is either unrelated to or554

unsupported by the input sentences.555

Flipped Relation (19%) – The model predicts the556

incorrect relation and generates a mechanism that557

is faithful to this incorrect relation. Improving re-558

lation generation is thus an important step for im-559

proving mechanism generation.560

Non Mechanisms (11%) – While the model learns561

to generate mechanism like sentences for the most562

part, it sometimes still fails to produce sentences563

that contain any mechanism at all.564

Multiple pieces of information (11%) – Some565

mechanisms are complex in that they require com- 566

bining multiple bits of information from different 567

input sentences and manages to only generate part 568

of this complex mechanism. 569

Table 5 shows example generated mechanisms. 570

The first example shows a generated mechanism 571

that is almost the same as the gold mechanism with 572

only a slight syntactic change. The second example 573

shows a generated mechanism which also conveys 574

the gold mechanism accurately with a paraphrasing 575

that expands the technical term TRANSPRESSING. 576

The third shows a bad output which contains a 577

mechanism but not of the relation connecting the 578

main entities. The fourth example presents a case 579

where the information is correct but it does not 580

even mention the main entities. 581

6 Conclusions 582

We introduced SuMe, a dataset for biomedical 583

mechanism summarization. This dataset is coupled 584

with a challenging summarization task, which re- 585

quires the generation of mechanism participants as 586

well as a textual summary of the mechanism, using 587

as input multiple sentences from actual publication 588

abstracts. We evaluated the complexity of the task 589

using multiple neural language models. Our evalu- 590

ation suggests that the proposed task is learnable, 591

but we are far from solving it. We also introduce 592

a pretraining task which is generally easier, and 593

broadly scalable to improve the baselines. 594

All in all, we believe that the proposed dataset 595

and associated task are an useful step towards build- 596

ing true information-access applications for the 597

biomedical literature. 598
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7 Ethical Considerations599

The dataset is constructed from publicly available600

scientific literature. The domain experts were com-601

pensated for their time at the rate of $20/hour which602

is above the minimum hourly wage in the state of603

New York. The task and dataset are aimed at de-604

veloping models that are able to better understand605

and reason about mechanisms underlying biomed-606

ical relations. Our results suggest current models607

are far from producing consistently reliable outputs608

and are not ready for practical use at this stage.609
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