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Abstract

Can language models read biomedical texts
and explain the biomedical mechanisms dis-
cussed? In this work we introduce a biomed-
ical mechanism summarization task. Biomed-
ical studies often investigate the mechanisms
behind how one entity (e.g., a protein or a
chemical) affects another in a biological con-
text. The abstracts of these publications of-
ten include a focused set of sentences that
present relevant supporting statements regard-
ing such relationships, associated experimen-
tal evidence, and a concluding sentence that
summarizes the mechanism underlying the re-
lationship. We leverage this structure and cre-
ate a summarization task, where the input is
a collection of sentences in an abstract and
the output includes the main relationships and
a natural language sentence that summarizes
the mechanism. Using a small amount of
manually labeled mechanism sentences, we
train a mechanism sentence classifier to fil-
ter a large biomedical abstract collection and
create a summarization dataset with 22k in-
stances !. We also introduce a pretraining
conclusion generation task with 611k samples.
Our benchmarking experiments with large lan-
guage models show that the pretraining is help-
ful for the original task, but the model per-
formance isn’t still satisfactory and this task
presents significant challenges in biomedical
language understanding and summarization.

1 Introduction

Understanding biochemical mechanisms such as
protein signaling pathways is one of the central pur-
suits of biomedical research (Arighi et al., 2011;
Krallinger et al., 2017; Demner-Fushman et al.,
2020). Biomedical research has advanced tremen-
dously in the past few decades, to the point where
we now suffer from "an embarrassment of riches:"
publications are generated at such a rapid pace
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Biomedical Abstract B
This study re-examined the hyperactivity and disruption of prepulse inhibition
induced by N-methyl-D-aspartate stimulation ... of the rat ventral hippocampus
and compared how both effects were affected by pretreatment with either
haloperidol or clozapine. While the hyperactivity is thought to depend on
dopamine receptor activation in the nucleus accumbens, the dopamine D2-class
receptor blocker haloperidol failed to antagonize the disruption of prepulse
inhibition in previous studies. However, an ameliorative effect of the atypical
neuroleptic clozapine on disruption of prepulse inhibition was suggested by ...
In the present study, bilateral infusion of N-methyl-D-aspartate ... into the
ventral hippocampus of Wistar rats increased ... disrupted prepulse inhibition.
Both effects were observed immediately after infusion but disappeared 24h later.
Injection of .., 45min prior to N-methyl-D-aspartate infusion, totally
antagonized the hyperactivity but did not affect the disruption of prepulse
inhibition. We conclude that dopaminergic mechanisms are differentially
involved in the hyperactivity and disruption of prepulse inhibition induced by
N-methyl-D-aspartate stimulation of the ventral hippocampus.

( Inputs w (

1. Supporting Sentences

Outputs )

1. Mechanism Sentence

2. Regulated Entity: prepulse inhibition 2. Relation: negative-activation
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Figure 1: Example of an entry in the SuMe dataset.
Some supporting text was removed to save space. The
input is the supporting sentences with the main two en-
tities. The output is the relation type and a sentence
concluding the mechanism underlying the relationship.

(PubMed? has indexed more than 1 million pub-
lications per year in the past 8 years!) that these
mechanisms must be summarized, if humans are
to keep up with the big picture behind this mas-
sive body of work. In this paper we introduce a
novel dataset and task that couples elements of bio-
chemical mechanisms with their textual summaries.
In this initial effort, we focus on individual ele-
ments of these mechanisms, i.e., single interactions
(positive or negative activations) between pairs of
biochemical entities such as proteins. In partic-
ular, we introduce an instance of an explainable
relation extraction problem, where interactions be-
tween two biochemical entities are mechanistically
summarized in plain text. The proposed task is
coupled with a novel dataset called SuMe, which
should facilitate the development of methods that
can extract and explain biomedical mechanisms.
The contributions of this paper are the following:
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(1) We introduce the SuMe dataset, which is con-
structed semi-automatically from publication ab-
stracts. The dataset contains tuples of support sen-
tences, mechanistic information such as the two
biochemical entities in focus and the relation that
holds between them, and a textual summary of this
interaction (see Figure 1). The entities and relations
are extracted using an existing biomedical informa-
tion extraction system (Valenzuela-Escdrcega et al.,
2018). The mechanism summaries are extracted us-
ing a semi-automatic bootstrapping process. First,
with the help of biomedical experts, we gathered a
small set of mechanism sentences. We then train a
mechanism sentence classifier by fine-tuning Bio-
ELECTRA (Kanakarajan et al., 2021), a biomedi-
cal domain language model (LM). We use this LM
to collect a large set of approximately 22k mecha-
nism summarization instances. The entire dataset
construction is summarized in Figure 2. Five do-
main experts manually evaluated the quality of a
dataset sample of 125 instances, and concluded that
the generated dataset has reasonable quality.

(2) Using the above manually-curated sample, we
evaluated the capacity of multiple neural LMs to
generate the underlying biochemical relations, and
the corresponding mechanism sentences. In partic-
ular, we analyzed GPT2 (Radford et al., 2019), sci-
entific GPT2 (Papanikolaou and Pierleoni, 2020),
T5 (Raffel et al., 2020a), SciFive (Phan et al., 2021),
and BART (Lewis et al., 2019). The results indicate
that the proposed task is quite challenging. We also
defined a pretraining task with 611K instances to
improve these LMs. In summary, this first empir-
ical benchmark and analyses indicate that this is
a meaningful and complex research problem that
deserves further investigation.

2 Related Work

We address mechanism generation, which can be
seen as a combination of explainable relation ex-
traction and summarization. There is a huge body
of work that addresses explainable methods (e.g.,
for relation extraction (Shahbazi et al., 2020) or
explainable QA (Thayaparan et al., 2020)). Many
prior works in relation and event extraction treat
explanations as the task of selecting or ranking
sentences that support a relation (e.g., (Shahbazi
et al., 2020; Ghaeini et al., 2019; Lev et al., 2019;
Cano and Bojar, 2020; Yasunaga et al., 2019)). Our
work differs from these in that it focuses on gener-
ating mechanisms underlying a relation from sup-

porting sentences, rather than identifying existing
sentences.

Our work can also be viewed in the context of
reading and generating information from scientific
texts. Most work in this area focus on generating
summaries using scientific publication and some
times in combination with external information (Ya-
sunaga et al., 2019; DeYoung et al., 2020; Collins
etal., 2017; Wang et al., 2018a, 2019)

Some works even seek to generate part of the sci-
entific papers. For example, TLDR (Cachola et al.,
2020) introduces a task and a dataset to gener-
ate TLDRs for papers. They exploit titles and an
auxiliary training signal in their model. Scisumm-
Net (Yasunaga et al., 2019) introduces a large man-
ually annotated dataset for generating paper sum-
maries by utilizing their abstracts and citations.
TalkSumm (Lev et al., 2019) generates summaries
for scientific papers by utilizing videos of talks at
scientific conferences. PaperRobot (Wang et al.,
2019) generates a paper’s abstract, title, and con-
clusion using a knowledge graph. FacetSum (Co-
han et al., 2018) used Emerald journal articles to
generate 4 different abstractive summaries, each
targeted at specific sections of scientific documents.
Nikolov et al. (2018) introduce two novel multi-
sentence summarization datasets from scientific
articles, and test the suitability of a wide range of
existing extractive and abstractive neural network-
based summarization approaches, e.g., generate ab-
stracts from paper content, and generate titles from
abstracts. Wang et al. (2018b) generate abstracts
as a conditioned, iterative text generation problem,
and design a new writing-editing network with an
attentive revision gate to iteratively examine, im-
prove, and edit the abstract. More recently, Meng
et al. (2021) introduce a new dataset to generate 4
different summaries for long scientific documents.

In addition to the specifics of the output that we
target, our work is different from all these other
works because our proposed summarization task
is grounded with the underlying biomedical event
discussed, rather than focusing on generic summa-
rization, which may lose the connection to the un-
derlying biology that is the core material discussed
in these papers.

3 Mechanism Summarization

Our goal is to develop a task and a dataset that
pushes models towards understanding the mecha-
nisms that underlie the relationships between enti-
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Figure 2: The overall bootstrapping pipeline for SuMe dataset collection and human evaluation. The main idea
behind the pipeline is to collect relatively easy to acquire judgments from domain experts to then bootstrap and
generate a weakly-labeled large training corpus. We further assess the quality of the resulting dataset through
another round of human evaluation, which also yields a smaller curated evaluation dataset.

ties from biomedical literature. From a language
processing perspective, we can view mechanisms
as a form of explanation that justifies the rela-
tionship or connection between entities. From a
biomedical science perspective, a mechanism pro-
vides two types of explanatory information, which
we use to characterize mechanism sentences:

Why is the relation true? A sentence can be a
mechanism, if it explains why the relation exists
between the two main entities. For example, one
protein (say A) might be up-regulate another (say
B), which in turn inhibits yet another protein (say
C). This provides the causal reasoning to conclude
the relation that protein A inhibits protein C.

How does the relation come about? Another
kind of explanatory information is the one that de-
scribes the process or manner in which the relation
exists between the pair of entities. For example,
one protein (say A) may activate another protein
(say B) via a specific process.

These provide a way to specify what constitutes
a mechanism sentence and help us to locate mech-
anism sentences in the literature. In particular,
we consider abstracts which discuss studies that
lead to conclusions about such mechanisms. Typi-
cally, these abstracts provide a short collection of
sentences that describe the goals of the study, the
methods used, the experimental observations, the
findings, which can be used to substantiate the con-
clusions that establish the relation of interest, and

the mechanism underlying the relation. This sug-
gests a language processing task that tests for abil-
ity to understand biomedical mechanisms: given
the preceding sentences in the abstract can a model
accurately generate the underlying mechanism?

In this section, we first formally define this task,
and then describe the auxiliary tasks we devised to
help generating such explanations.

3.1 Task Definition

Given a set of sentences from a scientific abstract
(referred to as supporting sentences) and a pair
of entities (e;,e;) that are the focus of the ab-
stract, generate the conclusion sentence that ex-
plains the mechanism behind the pair entities and
output a relation that connects these entities (e.g.,
positive_activation(e;, e;)). Figure 1 shows an ex-
ample of such a tuple of supporting sentences, fo-
cus entities, relation, and mechanism sentence. As
the example illustrates, mechanism sentences de-
scribe some pathway often involving another entity
or a process (e.g., dopaminergic mechanism), re-
quire identifying and combining information from
multiple relevant sentences, and non-trivial infer-
ences regarding the relationship between the enti-
ties (e.g., recognizing that the different effects on
prepulse inhibition imply differential involvement).

Given an abstract of a scientific literature we
need four pieces of information: 1. The two focus
entities of the abstract. 2. The relation between en-



tities. 3. Sentences from the abstract in support of
this relation. 4. The conclusion sentence where the
mechanism underlying the relation is summarized.

4 SuMe Dataset

We aim to create a large scale dataset for the mech-
anism summarization task defined above. However,
identifying instances for this task requires domain
expertise and cannot be easily done at scale. In-
stead, here we employ a bootstrapping process,
where we first annotate a small amount of data to
build a mechanism sentence classifier that can then
helps us collect a large scale dataset for mechanism
summarization. The key observation here is that
identifying sentences that express a mechanism is
a simpler task than targeted mechanism summa-
rization task, and, thus, should be learnable from
smaller amounts of data. We outline the process
we use for creating our mechanism summarization
dataset, SuMe, and an expert evaluation of its qual-
ity next.

4.1 SuMe Construction Process

We construct SuMe using biomedical abstracts
from the PubMed open access subset®. Starting
from 1.1M scientific papers, we followed the fol-
lowing sequence of bootstrapping steps to prepare
the SuMe dataset. The following steps are also
elaborated in Figure 2.

1. Finding Conclusion Sentences: First, we use
simple lexical patterns to find abstracts with clearly
specified conclusion sentence. All abstracts which
has any form of conclude word (conclusion, con-
cluded, concluding, concludes, etc.) at the very end
of the text are extracted here. We use this matching
process to also split the abstracts into the set of
supporting sentences (the ones that lead up to the
conclusion) and the conclusion sentence.

2. Extracting Main Entities & Relation Start-
ing with the abstracts which are now in the
form of (supporting sentences, conclusion sen-
tence), we then run a biomedical relation extractor,
REACH (Valenzuela-Escdrcega et al., 2018), which
can identify protein-protein and chemical-protein
relations between entities. In this work, we focus
on the relations where one entity is the controller
and another entity is the controlled entity and the
relation between them is either positive/negative
activation or positive/negative regulation. If an
abstract doesn’t return any such relation, we keep
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that for the pretraining step (as described in Sec-
tion 5.3), otherwise we use it for the main task.

3. Filtering for Mechanism Sentences: We then
filter out the instances to only retain those whose
conclusion sentences are indeed a mechanism sen-
tence. To this end, we devised a bootstrapping pro-
cess where we first collect supervised data to train
a classifier. To collect likely mechanism sentences
we made use of the ChemProt (Peng et al., 2019) re-
lation extraction dataset which contains sentences
annotated with positive and negative regulation re-
lations between entities. However, not all of these
sentences necessarily explain the mechanism be-
hind these relations. We asked 21 experts (grad stu-
dents in a biomedical department) to inspect each
sentence and rate whether it explains the mecha-
nism behind the ChemProt annotated relation on
a four-point Likert scale. For each sentence, an
annotator can select between Clearly a Mechanism,
Plausibly a Mechanism, Clearly not a Mechanism,
and Not Sure. Each sentence is annotated by three
experts and we find the inter-annotator agreement
between users to be k = 73% (Fleiss Kappa (Lan-
dis and Koch, 1977)). The final label for a sen-
tence is selected based on the majority voting after
combining Clearly a Mechanism and Plausible a
Mechanism labels. Finally, each sentence is labeled
as a Mechanism, or Non-Mechanism. The resulting
dataset contained 439 Mechanism sentences and
447 Non-Mechanism sentences.

Using this small scale mechanism sentence
dataset, we train classifiers to identify mecha-
nism sentences, where the positive label indicates
that the underlying sentence is a mechanism sen-
tence. We compared the performance of finetuning
BioBERT (Lee et al., 2020), SciBERT (Beltagy
et al., 2019), BiomedNLP (Gu et al., 2020), and
BioELECTRA (Kanakarajan et al., 2021) models.
BioELECTRA performed the best with 74% macro
F1 for mechanism sentence classification. We use
the trained mechanism sentence classifier to label
all conclusion sentences from the previous step and
instances with the predicted mechanism sentences
are used to create SuMe dataset.

We separate out the abstracts for which the
conclusion sentences are predicted to have non-
mechanism related conclusions as additional re-
lated data that can be use for pretraining the genera-
tion models we eventually train for the mechanism
summarization task (as we describe in Section 5.3).

The above procedure results in a dataset that al-
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Dataset ‘ Train ‘ Dev ‘ Test
Abstracts 20765 | 1000 | 1000

Avg. #words inconc. | 33.7 | 349 | 335
Avg. #words in supp. | 187.5 | 187.9 | 186.7
Avg. #sent. in supp. | 12.15 | 12.44 | 12.33
#Unique controller 8094 | 759 777
#Unique controlled | 6684 | 717 687
#Unique pair entities | 19229 | 988 989
#Unique entities 12685 | 1357 | 1364

Table 1: Dataset Statistics: Each dataset contains a
number of unique abstracts, a supporting set (supp.),
a mechanism sentence (conc.) a pair of entities. The
first entity is called the regulator entity (regulator) and
the second one is called the regulated entity (regulated)

lows us to define the following mechanism summa-
rization task: Given a set of supporting sentences
from an abstract and a pair of entities (e;, €;), gen-
erate a relation that connects these entities and a
sentence that explains the mechanism that was the
focus of the study. The statistics of the dataset are
shown in Table 1.

4.2 SuMe Quality

Our goal was to create a large scale albeit boot-
strapped dataset that can be used to train large lan-
guage generation models. A key question to answer
here is what is the quality of the resulting dataset.
To assess this we asked three biomedical experts
to evaluate a random sample from the dataset. The
experts were given the set of input supporting sen-
tences, the potential mechanism sentence, and the
relation between main entities. They were asked
the following three questions
1. Is the expected output relation associated with
the instance valid?
2. Is the output sentence expected for this sen-
tence an actual mechanism sentence?
3. Can the mechanism and relation be concluded
given the input supporting sentences?
The first question checks for the quality of the auto-
matically extracted relations. The second assesses
the impact of the mechanism sentence classifier.
Answers to these first two can help estimate the
noise in the dataset. The final question helps quan-
tify what fraction of times the information to gen-
erate the mechanism sentence is not entirely part
of the input supporting sentences, which can make
for harder instances requiring external knowledge.
We asked 5 biomedical experts to evaluate 125
randomly selected samples. The purpose of having
this set is two fold, first to evaluate the quality of the

Quality Correct
Entities & Relation Extraction 90%
Mechanism Sentence Classifier 85%
Concludable 86%
All Acceptable 81%

Table 2: Dataset Quality: We asked three main ques-
tions. This table shows what percentage of each cate-
gory is acceptable. The last question shows what per-
centage of the sentences are approved in all questions.

data collection process, second to collect a clean
human evaluated dataset which can be used as an
extra test set. The results of the dataset evaluation
are shown in Table 2. This evaluation shows that
the generated dataset is of reasonable quality, and
can serve as a meaningful resource for training
models for biomedical summarization.

5 [Evaluation

Our evaluation focuses on the following questions:

1. Benchmarking: What is the performance of

generic and domain-adapted large scale lan-
guage generation models on SuMe?

2. Effect of pretraining: What is the impact of
using the additional data via pretraining?

3. Effect of modeling supporting sentences:
What is the impact of selecting a subset of
supporting sentences?

4. Error analysis: What are the main failure
modes of language generation models?

5.1 Experimental Setup

We use SuMe to benchmark language generation
models and measure their ability to correctly iden-
tify the relation between the focus entities and
to summarize the mechanism behind the relation
based on the input sentences from the abstract.
Models: We compare pretrained GPT-2 (Rad-
ford et al., 2019), T5 (Raffel et al.,, 2020b),
BART (Lewis et al., 2019) models and two domain-
adapted models, GPT2-Pubmed (Papanikolaou and
Pierleoni, 2020), and SciFive (Phan et al., 2021),
which were trained on scientific literature.
Evaluation Metrics: We conduct both automatic
and manual evaluation of the model outputs.
Relation Generation (RG): The models are sup-
posed to generate the relation type with a marker
in and then generate the mechanism that underlies
this relation. There are two types of relations in
the dataset: positive and negative. We evaluate the
model’s output as we would for a corresponding



Model

H RG (F1) ‘ BLEURT | Rouge-1 | Rouge-2 | Rouge-L.

BART 76 42.49 46.54 25.92 35.34
GPT2 74 44.19 46.54 28.32 38.78

TS 72 44.41 48.26 27.63 38.77
GPT2-Pubmed 78 46.33 48.37 29.55 40.19
SciFive 79 47.81 52.10 32.62 43.31

Table 3: Benchmarking performance of strong language generation models and some domain-adapted models. We
present standard automatic evaluations measures for the mechanism sentence generation task along with F1 for the
generated relations. The science domain versions of both GPT2 and T5 work better than the original versions.

classification task, i.e., the generated relation is
deemed correct if it exactly matches the correct re-
lation name. We report F1 numbers for this binary
classification task.

Mechanism Generation: We evaluate the quality
of the generated explanations using two language
generation metrics: the widely-used ROUGE (Lin,
2004) scores, and to address the recent concerns on
the usage of these scores in capturing conceptual
information (Novikova et al., 2017) we additionally
report BLEURT score (Sellam et al., 2020) which
is able to better account for more complicated se-
mantic mismatches between the generated sentence
and the gold reference. We use a recent version,
the BLEURT-20 model (Pu et al., 2021) that has
been shown to be more effective. We compare the
generated text as the hypothesis with the actual text
as the reference.

Fine-tuning and Training Details: All models
were fine-tuned on the training portion of SuMe
for 20 epochs. For each model, we evaluate the
average of BLEURT and Rouge-L score on the
validation set and the one with the highest score
is chosen for prediction. The learning rate is set
to 6e-5, we use AdamW (Loshchilov and Hutter,
2017) optimizer with e = 1le — 8. The input token
is limited to 512 tokens, and the generated token is
maxed out at 128 tokens. We select batch size of 8
with gradient accumulation steps of two.

5.2 Automatic Evaluation Results

Table 3 compares the performance of the five lan-
guage generation models on both the relation gen-
eration (RG) and mechanism generation tasks.
Fine-tuning the domain-adapted models, GPT2-
Pubmed and SciFive, is better than fine-tuning the
standard pre-trained models for both relation and
mechanism generation tasks. SciFive achieves the
best performance with more than a 7.5% increase
in BLEURT score and more than 9.7% increase in
RG F1 over the standard TS5 model, highlighting

the importance of domain adaptation for the SuMe
tasks defined over scientific literature.

The overall numbers (coupled with the human
evaluation in Section 5.5) suggest that mechanism
generation is a difficult and challenging task.

The models achieve better performance on the
relation generation task but there is still a substan-
tial room for improvement here with the best model
achieving an F1 of 79. If the model is unable to
generate the relation correctly, then the mechanism
it generates is not useful. Ideally we want mod-
els to correctly generate both the relation and the
mechanism that underlies it. We also evaluated the
correlation between BLEURT score and relation
generation classification score. Our analysis shows
that when the model generates an accurate relation,
it get’s higher BLEURT score while when it gen-
erates an incorrect relation, the BLEURT score is
lower by 10%. (50.02 vs 45.08)

5.3 Pretraining with Conclusion Generation

Next we analyze the impact of pre-training the
models on a related task of generating conclusion
(instead of mechanism) sentences, for which we
can obtain data at scale without any labeling effort.
SuMe includes 611K instances of this kind which
is an order of magnitude larger than the mechanism
summarization instances.

We study the effect of this pretraining task by

varying the amount of pretraining data. We analyze
the impact in terms of the overall effectiveness
and the amount of fine-tuning (number of epochs)
needed to converge when finetuning.
Pretraining Data Size: We pretrain the SciFive
model on the conclusion generation task with in-
creasing amount of data (100K increments), and
measure the performance of finetuning the pre-
trained models on the mechanism summarization
task. Figure 3 shows that there is a trend of im-
proved performance suggesting that pretraining is
beneficial for learning to generate mechanisms.
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Figure 3: Comparison of relation generation F1

(left y-axis/blue bars) and the mechanism generation
measures (right y-axis/teal+Blue curves) against the
amount of pretraining. As we increase the size of the
pretraining data, the model performance improves in
both aspects.

Number of Epochs: We also compare the impact
of the amount of pretraining on the number of
epochs needed for convergence in fine-tuning. Fig-
ure 4 compares pretrained models with different
number of pretraining epochs (x-axis) in terms of
their overall effectiveness (BLEURT score bars)
and the number of epochs to convergence (Fine-
tuning epochs curve). The figure shows that when
we continue pretraining, not only does the result-
ing model performs better, but it also converges
sooner taking fewer number of epochs to reach
higher effectiveness. Together these results sug-
gest potential for the auxiliary data available in the
SuMe dataset.

Convergence vs # Pretraining Epochs
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Figure 4: Number of pretraining epochs vs. number
of fine-tuning epochs for each pretrained model until
convergence.

5.4 Modeling Supporting Sentences

Will it help to model the subset of sentences within
the inputs sentences that provide the best support

Supporting Set H BLEURT | Rouge-L

SciFive 47.81 43.31
+Oracle 49 43.07
+Pretraining 49.05 43.72
+Pretraining+Oracle 49.64 43.81

Table 4: The effect of selecting supporting sentences
with highest BLEURT score.

for generating the mechanism sentence? This kind
of an extractive step has been used previously in
summarization tasks to reduce the amount of ir-
relevant information in the input (Narayan et al.,
2018; Liu and Lapata, 2019). To understand the
utility of this, we built a pseudo-oracle that finds
the sentences that have the best overlap (measured
via BLEURT score (Sellam et al., 2020)) with the
output mechanism sentence. Then, we trained the
SciFive model and pretrained version to only use
the top few sentences according to BLEURT score
such that input size is now half of the original input
size. We find that this only provides improvements
in BLEURT score over using the entire set of input
sentences for the basic SciFive model and the gains
reduce with the pretrained model. Unlike standard
summarization tasks there are fewer completely
unrelated sentences in the abstracts and generat-
ing the mechanism sentences remains challenging
even when we are able to identify the most rele-
vant sentences within this set suggesting that the
task remains hard even when the most important
sentences are somehow known to the model.

5.5 Manual Evaluation

We also conduct a manual evaluation of the outputs
from the best model — the SciFive model that was
pretrained with the conclusion generation task. We
asked 3 biomedical experts to evaluate output sen-
tences for 100 instances and answer the following
three questions:

1. Does the generated sentence contain a mech-
anism that explains the relation between the two
main entities?

2. Is the information in the generated mechanism
supported by the information contained in the sup-
porting set of sentences?

3. Is the generated mechanism factually correct?
The results show that the model learns to gener-
ate mechanism sentences that connect the main
entities for most of the instances (79%). It also
produces output for which there is support in the
input sentences in a majority of the cases (53%).
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On the basis of these observations, we conclude that IL-18 in-
duces MCP-1 production through the PI3K/Akt and MEK/ERK1/2
pathways in macrophages.

In conclusion, IL-18 induces MCP-I production in
macrophages through the PI3K/Akt and MEK/ERK1/2
pathways.

Taken together, we conclude that DeltaNp73 negatively regulates
NGF-mediated neuronal differentiation by transrepressing TrkA.

In conclusion, our results indicate that DeltaNp73 nega-
tively regulates NGF-mediated neuronal differentiation
by transcriptionally repressing the expression of TrkA.

We conclude that, without modulatory factors which play a role
in vivo, NGF can enhance the synthesis of zyrosine hydroxylase
n sympathetic ganglia in vitro, provided organ culture conditions
which permit optimal survival of adrenergic neurons are selected.

This conclusion was further supported by pulse-labeling
of tyrosine hydroxylase with [3H]leucine, which
showed that NGF' increased synthesis of tyrosine in
sympathetic ganglia by approximately 50%.

We conclude that 20 mm alcohol/submaximal CCK as well supra-
maximal CCK stimulation can trigger pathologic basolateral exocy-
tosis in pancreatic acinar cells via PKC alpha-mediated activation
of Muncl8c , which enables Syntaxin-4 to become receptive in

We conclude that alcohol can induce a clinically rele-
vant form of pancreatitis by blocking apical exocytosis
and redirecting exocytosis to less efficient BPM, mim-
icking supramaximal CCK stimulation.

forming a SNARE complex in the BPM

Table 5: Examples of the generated outputs by the model. The first two are good outputs where the mechanism is
a simple paraphrase of the expected gold mechanism, while the next two illustrate the types of semantic errors we
observe. The main entities are makred in Izalics. The phrase explaining the mechanism in gold data is in blue, in
good generation is in green, and in bad generation is in red.

The experts found that the output statements to
be scientifically correct in many cases(58%). In
summary, however, only 32% of the outputs were
acceptable in all questions and were deemed to be
good mechanism sentences. This again highlights
the significant challenge posed by this task.

5.6 Error Analysis

To understand the frequent failure modes of the
model, we manually categorized the errors in a
hundred outputs that had the worst BLEURT scores
with the reference mechanism sentences. We find
the following main categories of errors:

Missing Entities (35%) — The most prevalent is-
sue is the absence of one of the main entities in
the generated sentence. Despite this being a neces-
sary feature in all of the mechanism sentences in
the training data, the prevalence of this error shows
that models find it difficult to track the main entities
during generation.

Incorrect Mechanism (24 %) — The model is un-
able to generate the correct mechanism even though
it is able to identify the correct relation and fills
in some information that is either unrelated to or
unsupported by the input sentences.

Flipped Relation (19%) — The model predicts the
incorrect relation and generates a mechanism that
is faithful to this incorrect relation. Improving re-
lation generation is thus an important step for im-
proving mechanism generation.

Non Mechanisms (11% ) — While the model learns
to generate mechanism like sentences for the most
part, it sometimes still fails to produce sentences
that contain any mechanism at all.

Multiple pieces of information (11%) — Some

mechanisms are complex in that they require com-
bining multiple bits of information from different
input sentences and manages to only generate part
of this complex mechanism.

Table 5 shows example generated mechanisms.
The first example shows a generated mechanism
that is almost the same as the gold mechanism with
only a slight syntactic change. The second example
shows a generated mechanism which also conveys
the gold mechanism accurately with a paraphrasing
that expands the technical term TRANSPRESSING.
The third shows a bad output which contains a
mechanism but not of the relation connecting the
main entities. The fourth example presents a case
where the information is correct but it does not
even mention the main entities.

6 Conclusions

We introduced SuMe, a dataset for biomedical
mechanism summarization. This dataset is coupled
with a challenging summarization task, which re-
quires the generation of mechanism participants as
well as a textual summary of the mechanism, using
as input multiple sentences from actual publication
abstracts. We evaluated the complexity of the task
using multiple neural language models. Our evalu-
ation suggests that the proposed task is learnable,
but we are far from solving it. We also introduce
a pretraining task which is generally easier, and
broadly scalable to improve the baselines.

All in all, we believe that the proposed dataset
and associated task are an useful step towards build-
ing true information-access applications for the
biomedical literature.



7 Ethical Considerations

The dataset is constructed from publicly available
scientific literature. The domain experts were com-
pensated for their time at the rate of $20/hour which
is above the minimum hourly wage in the state of
New York. The task and dataset are aimed at de-
veloping models that are able to better understand
and reason about mechanisms underlying biomed-
ical relations. Our results suggest current models
are far from producing consistently reliable outputs
and are not ready for practical use at this stage.
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