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ABSTRACT

Element-wise activation functions play a critical role in deep neural networks
via affecting the expressivity power and the learning dynamics. Learning-based
activation functions have recently gained increasing attention and success. We
propose a new perspective of learnable activation function through formulating
them with element-wise attention mechanism. In each network layer, we devise
an attention module which learns an element-wise, sign-based attention map for
the pre-activation feature map. The attention map scales an element based on its
sign. Adding the attention module with a rectified linear unit (ReLU) results in
an amplification of positive elements and a suppression of negative ones, both
with learned, data-adaptive parameters. We coin the resulting activation function
Attention-based Rectified Linear Unit (AReLU). The attention module essentially
learns an element-wise residue of the activated part of the input, as ReLU can be
viewed as an identity transformation. This makes the network training more resis-
tant to gradient vanishing. The learned attentive activation leads to well-focused
activation of relevant regions of a feature map. Through extensive evaluations,
we show that AReLU significantly boosts the performance of most mainstream
network architectures with only two extra learnable parameters per layer introduced.
Notably, AReLU facilitates fast network training under small learning rates, which
makes it especially suited in the case of transfer learning and meta learning.

1 INTRODUCTION

Activation functions, introducing nonlinearities to artificial neural networks, is essential to networks’
expressivity power and learning dynamics. Designing activation functions that facilitate fast training
of accurate deep neural networks is an active area of research (Maas et al., 2013; Goodfellow et al.,
2013; Xu et al., 2015a; Clevert et al., 2015; Hendrycks & Gimpel, 2016; Klambauer et al., 2017;
Barron, 2017; Ramachandran et al., 2017). Aside from the large body of hand-designed functions,
learning-based approaches recently gain more attention and success (Agostinelli et al., 2014; He
et al., 2015; Manessi & Rozza, 2018; Molina et al., 2019; Goyal et al., 2019). The existing learnable
activation functions are motivated either by relaxing/parameterizing a non-learnable activation
function (e.g. Rectified Linear Units (ReLU) (Nair & Hinton, 2010)) with learnable parameters (He
et al., 2015), or by seeking for a data-driven combination of a pool of pre-defined activation functions
(Manessi & Rozza, 2018). Existing learning-based methods make activation functions data-adaptive
through introducing degrees of freedom and/or enlarging the hypothesis space explored.

In this work, we propose a new perspective of learnable activation functions through formulating them
with element-wise attention mechanism. A straightforward motivation of this is a straightforward ob-
servation that both activation functions and element-wise attention functions are applied as a network
module of element-wise multiplication. More intriguingly, learning element-wise activation functions
in a neural network can intuitively be viewed as task-oriented attention mechanism (Chorowski et al.,
2015; Xu et al., 2015b), i.e., learning where (which element in the input feature map) to attend
(activate) given an end task to fulfill. This motivates an arguably more interpretable formulation of
attentive activation functions.

Attention mechanism has been a cornerstone in deep learning. It directs the network to learn which
part of the input is more relevant or contributes more to the output. There have been many variants of
attention modules with plentiful successful applications. In natural language processing, vector-wise
attention is developed to model the long-range dependencies in a sequence of word vectors (Luong
et al., 2015; Vaswani et al., 2017). Many computer vision tasks utilize pixel-wise or channel-wise
attention modules for more expressive and invariant representation learning (Xu et al., 2015b; Chen
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et al., 2017). Element-wise attention (Bochkovskiy et al., 2020) is the most fine-grained where each
element of a feature volume can receive different amount of attention. Consequently, it attains high
expressivity with neuron-level degrees of freedom.

Inspired by that, we devise for each layer of a network an element-wise attention module which learns
a sign-based attention map for the pre-activation feature map. The attention map scales an element
based on its sign. Through adding the attention and a ReLU module, we obtain Attention-based
Rectified Linear Unit (AReLU) which amplifies positive elements and suppresses negative ones, both
with learned, data-adaptive parameters. The attention module essentially learns an element-wise
residue for the activated elements with respect to the ReLU since the latter can be viewed as an
identity transformation. This helps ameliorate the gradient vanishing issue effectively. Through
extensive experiments on several public benchmarks, we show that AReLU significantly boosts the
performance of most mainstream network architectures with only two extra learnable parameters
per layer introduced. Moreover, AReLU enables fast learning under small learning rates, making it
especially suited for transfer learning. We also demonstrate with feature map visualization that the
learned attentive activation achieves well-focused, task-oriented activation of relevant regions.

2 RELATED WORK

Non-learnable activation functions Sigmoid is a non-linear, saturated activation function used
mostly in the output layers of a deep learning model. However, it suffers from the exploding/vanishing
gradient problem. As a remedy, the rectified linear unit (ReLU) (Nair & Hinton, 2010) has been the
most widely used activation function for deep learning models with the state-of-the-art performance
in many applications. Many variants of ReLU have been proposed to further improve its performance
on different tasks LReLU (Maas et al., 2013), ReLU6 (Krizhevsky & Hinton, 2010), RReLU (Xu
et al., 2015a). Besides that, some specified activation functions also have been designed for different
usages, such as CELU (Barron, 2017), ELU (Clevert et al., 2015), GELU (Hendrycks & Gimpel,
2016), Maxout (Goodfellow et al., 2013), SELU (Klambauer et al., 2017), (Softplus) (Glorot et al.,
2011), Swish (Ramachandran et al., 2017).

Learnable activation functions Recently, learnable activation functions have drawn more atten-
tions. PReLU (He et al., 2015), as a variants of ReLU, improves model fitting with little extra
computational cost and overfitting risk. Recently, PAU (Molina et al., 2019) is proposed to not
only approximate common activation functions but also learn new ones while providing compact
representations with few learnable parameters. Several other learnable activation functions such as
APL (Agostinelli et al., 2014), Comb (Manessi & Rozza, 2018), SLAF (Goyal et al., 2019) also
achieve promising performance under different tasks.

Attention Mechanism Vector-Wise Attention Mechanism (VWAM) has been widely applied in
Natural Language Processing (NLP) tasks (Xu et al., 2015c; Luong et al., 2015; Bahdanau et al.,
2014; Vaswani et al., 2017; Ahmed et al., 2017). VWAM learns which vector among a sequence of
word vectors is the most relevant to the task in hand. Channel-Wise Attention Mechanism (CWAM)
can be regarded as an extension of VWAM from NLP to Vision tasks (Tang et al., 2019b; 2020; Kim
et al., 2019). It learns to assign each channel an attentional value. Pixel-Wise Attention Mechanism
(PWAM) is also widely used in vision (Tang et al., 2019c;a). Element-Wise Attention Mechanism
(EWAM) assigns different values to each element without any spatial/channel constraint. The recently
proposed YOLOv4 (Bochkovskiy et al., 2020) is the first work that introduces EWAM implemented
by a convolutional layer and sigmoid function. It achieves the state-of-the-art performance on object
detection. We introduce a new kind of EWAM for learnable activation function.

3 METHOD

We start by describing attention mechanism and then introduce element-wise sign-based attention
mechanism based on which AReLU is defined. The optimization of AReLU then follows.

3.1 ATTENTION MECHANISM

Let us denote V = {vi} ∈ RD1
v×D

2
v×··· a tensor representing input data or feature volume. Function

Φ, parameterized by Θ = {θi}, is used to compute an attention map S = {si} ∈ RDθ(1)v ×Dθ(2)v ×···
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Figure 1: Left: An illustration of attention mechanisms with attention map at different granularities.
Right: Visualization of pre-activation and post-activation feature maps obtained with ReLU and
AReLU on a testing image of the handwritten digit dataset MNIST LeCun et al. (1998).

over a subspace of V (let θ(·) denote a correspondence function for the indices of dimension):

si = Φ(vi,Θ). (1)

Φ can be implemented by a neural network with Θ being its learnable parameters.

We can modulate the input V with the attention map S using a function Ψ, obtaining the output
U = {ui} ∈ RD1

v×D
2
v×···:

ui = Ψ(vi, si). (2)
Ψ is an element-wise multiplication. In order to perform element-wise multiplication, one needs to
first extend S to the full dimension of V . We next review various attention mechanisms with attention
map at different granularities. Figure 1(left) gives an illustration of various attention mechanisms.

Vector-wise Attention Mechanism In NLP, attention maps are usually computed over different word
vectors. In this case, V = {vi} ∈ RN×D represents a sequence of N feature vectors with dimension
D. S = {si} ∈ RN is a sequence of attention values for the corresponding vectors.

Channel-wise Attention Mechanism In computer vision, a feature volume V = {vi} ∈ RW×H×C
has a spatial dimension of W ×H and a channel dimension of C. S = {si} ∈ RC is an attention
map over the C channels. All elements in each channel share the same attention value.

Spatial-wise Attention Mechanism Considering again V = {vi} ∈ RW×H×C with a spatial
dimension of W × H . S = {si} ∈ RW×H is an attention map over the spatial dimension. All
channels of a given spatial location share the same attention value.

Element-wise Attention Mechanism Given a feature volume V = {vi} ∈ RW×H×C containing
W × H × C elements, we compute an attention map over the whole volume (all elements), i.e.,
S = {si} ∈ RW×H×C , so that each element has an independent attention value.

3.2 ELEMENT-WISE SIGN-BASED ATTENTION (ELSA)

We propose, ELSA, a new kind of element-wise attention mechanism which is used to define our
attention-based activation. Considering a feature volume V = {vi} ∈ RW×H×C , we compute an
element-wise attention map S = {si} ∈ RW×H×C :

si = Φ(vi,Θ) =

{
C(α), vi < 0
σ(β), vi ≥ 0

(3)

where Θ = {α, β} ∈ R2 is learnable parameters. C(·) clamps the input variable into [0.01, 0.99]. σ
is the sigmoid function. The modulation function Ψ is defined as:

ui = Ψ(vi, si) = sivi. (4)
In ELSA, positive and negative elements receive different amount of attention determined by the two
parameters α and β, respectively. Therefore, it can also be regarded as sign-wise attention mechanism.
With only two learnable parameters, ELSA is light-weight and easy to learn.
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3.3 ARELU: ATTENTION-BASED RECTIFIED LINEAR UNITS

We represent the function Φ in ELSA with a network layer with learnable parameters α and β:

L(xi, α, β) =

{
C(α)xi, xi < 0
σ(β)xi, xi ≥ 0

(5)

where X = {xi} is the input of the current layer. In constructing an activation function with ELSA,
we combine it with the standard Rectified Linear Units

R(xi) =

{
0, xi < 0
xi, xi ≥ 0

(6)

Adding them together leads to a learnable activation function:

F(xi, α, β) = R(xi) + L(xi, α, β) =

{
C(α)xi, xi < 0

(1 + σ(β))xi, xi ≥ 0
(7)

This combination amplifies positive elements and suppresses negative ones based on the learned
scaling parameters β and α, respectively. Thus, ELSA learns an element-wise residue for the activated
elements w.r.t. ReLU which is an identity transformation, which helps ameliorate gradient vanishing.

3.4 THE OPTIMIZATION OF ARELU

AReLU can be trained using back-propagation jointly with all other network layers. The update
formulation of α and β can be derived with the chain rule. Specifically, the gradient of α is:

∂E
∂α

=
∂E

∂F(xi, α, β)

∂F(xi, α, β))

∂α
(8)

where E is the error function to be minimized. The term ∂E
∂F(xi,α,β)

is the gradient propagated from
the deeper layer. The gradient of the activation of X with respect to α is given by:

∂F(X,α, β)

∂α
=
∑
xi<0

xi (9)

Here, the derivative of the clamp function C(·) is handled simply by detaching the gradient back-
propagation when α < 0.01 or α > 0.99.

The gradient of the activation of X with respect to β is:
∂F(X,α, β)

∂β
=
∑
xi≥0

σ(β)(1− σ(β))xi (10)

The gradient of the activation with respect to input xi by:
∂F(xi, α, β)

∂xi
=

{
α, xi < 0

1 + σ(β), xi ≥ 0
(11)

It can be found that AReLU amplifies the gradients propagated from the downstream when the input
is activated since 1 + σ(β) > 1; it suppresses the gradients otherwise. On the contrary, there is
no such amplification effect in the standard ReLU and its variants (e.g., PReLu (He et al., 2015))
— only suppression is available. The ability to amplify the gradients over the activated input helps
avoiding gradient vanishing, and thus speeds up the training convergence of the model (see Figure 3).
Moreover, the amplification factor is learned to dynamically adapt to the input and is confined with
the sigmoid function. This makes the activation more data-adaptive and stable (see Figure 1(right)
for a visual comparison of post-activation feature maps by AReLU and ReLU). The suppression part
is similar to PReLu which learns the suppression factor for ameliorating zero gradients.

AReLU introduces a very small number of extra parameters which is 2L for an L-layer network. The
computational complexity due to AReLU is negligible for both forward and backward propagation.

Note that the gradients of α and β depend on the entire feature volume X . This means that ELSA
can be regarded as a global attention mechanism: Although the attention map is computed in an
element-wise manner, the parameters are learned globally accounting for the impact of the full feature
volume. This makes our AReLU more data-adaptive and hence the whole network more expressive.
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Figure 2: (a): Plot of accuracy over epochs for networks trained with different initialization of α
and β. A larger initial β leads to faster convergence and higher accuracy is obtained when α is
initialized to 0.25 or 0.75. (b): The learning procedure of α and β which are initialized to 0.25
and 1.0, respectively. (c): The learned final AReLU’s for the three convolutional layers of the
MNIST-Conv network. The shaded region gives the range of AReLU curves.

4 EXPERIMENTS

We first study the robustness of AReLU in terms of parameter initialization. We then evaluate
convergence of network training with different activation functions on two standard classification
benchmarks (MNIST (LeCun et al., 1998)) and CIFAR100 (Krizhevsky et al., 2009). We compare
AReLU with 18 different activation functions including 13 non-learnable ones and 5 learnable ones;
see the list in Table 1. The number of learnable parameters for each learnable activation function are
also given in the table. In the end, we also demonstrate the advantages of AReLU in transfer learning.
Please refer to supplemental material for more results and experiments details.

4.1 INITIALIZATION OF LEARNABLE PARAMETER α AND β

For evaluation purpose, we design a neural network (MNIST-Conv) with three convolutional layers
each followed by a max-pooling layer and an AReLU, and finally a fully connected layer followed by
a softmax layer. Details of this network can be found in the supplemental material. The experiment
on parameter initialization is conducted with MNIST-Conv over the MNIST dataset. As shown in
Figure 2(a), AReLU is insensitive to the initialization of α and β. Different initial values result in
close convergence rate and classification accuracy. Generally, a large initial value of β can speed up
the convergence. Figure 2(b) shows the learning procedure of the two parameters and (c) plots the
learned final AReLU’s for the three convolutional layers. In the following experiments, we initialize
α = 0.9 and β = 2.0 by default.

4.2 CONVERGENCE ON MNIST

On the MNIST dataset, we evaluate MNIST-Conv implemented with different activation functions
and trained with the ADAM or SGD optimizer. The activation function is placed after each max-
pooling layers. We compare AReLU with both learnable and non-learnable activation functions under
different learning rates of 1× 10−2, 1× 10−3, 1× 10−4, and 1× 10−5. To compare the convergence
speed of different activation functions, we report the accuracy after the first epoch, again taking the
mean over five times training; see Table 1. In the table, we report the improvement of AReLU over
the best among other non-learnable and learnable methods. In Figure 3, we plot the mean accuracy
over increasing number of training epochs.

As shown in Table 1, AReLU outperforms most existing non-learnable and learnable activation
functions in terms of convergence speed and final classification accuracy on MNIST. A note-worthy
phenomenon is that AReLU can achieve a more effective training with a small learning rate (see the
significant improvement when the learning rate is 1× 10−4 or 1× 10−5) than the alternatives. This
can also be observed from Figure 3. Generally, smaller learning rates would cause lower learning
efficiency since the vanishing gradient issue is intensified in such case. AReLU can overcome this
difficulty thanks to its gradient amplification effect. Efficient learning with a small learning rate is very
useful in transfer learning where a pre-trained model is usually fine-tuned on a new domain/dataset

5



Under review as a conference paper at ICLR 2021

Table 1: Mean testing accuracy (%) on MNIST for five trainings of MNIST-Conv after the first
epoch with different optimizers and learning rates. We compare AReLU with 13 non-learnable and
5 learnable activation functions. The number of parameters per activation unit are listed beside
the name of the learnable activation functions. The best numbers are shown in bold text with blue
color for non-learnable methods (the upper part of the table) and red for learnable ones (the lower
part). At the bottom of the table, we report the improvement of AReLU over the best among other
non-learnable and learnable methods, in blue and red color respectively.

Learning Rate 1× 10−2 1× 10−3 1× 10−4 1× 10−5

Optimizer Adam SGD Adam SGD Adam SGD Adam SGD
CELU (2017) 97.76 96.12 96.21 62.81 84.01 13.07 24.84 9.60
ELU (2015) 97.82 96.17 96.22 58.10 85.67 14.07 19.77 10.13
GELU (2016) 98.49 94.90 95.79 12.55 83.72 11.49 15.20 10.92
LReLU (2013) 97.80 95.59 95.86 35.90 84.08 10.28 15.41 10.73
Maxout (2013) 97.04 95.81 96.14 71.75 84.81 10.79 18.83 9.06
ReLU (2010) 97.75 95.02 95.40 36.01 84.02 10.68 15.25 8.73
ReLU6 (2010) 97.77 95.32 96.09 43.42 81.39 10.23 14.33 9.56
RReLU (2015a) 98.09 95.88 95.65 53.33 84.51 9.57 16.53 10.28
SELU (2017) 97.25 96.52 96.61 82.36 85.36 16.49 30.04 9.59
Sigmoid 47.16 11.04 83.59 11.35 11.37 9.92 10.52 10.10
Softplus (2011) 96.38 90.90 93.83 11.14 51.83 9.19 10.21 9.89
Swish (2017) 98.10 94.02 95.91 11.44 83.91 10.69 11.39 9.47
Tanh 96.93 94.22 96.45 57.70 79.25 11.73 27.05 10.31
APL (2014) (2) 97.00 95.71 94.67 17.81 76.73 9.39 13.28 11.83
Comb (2018) (1) 98.28 95.97 95.79 35.95 83.91 10.59 20.22 10.18
PAU (2019) (10) 98.17 97.67 96.73 40.11 87.08 10.54 14.49 11.11
PReLU (2015) (1) 98.22 95.72 95.87 45.73 85.81 12.08 14.51 9.88
SLAF (2019) (2) 96.30 97.07 95.32 83.35 72.67 14.12 10.04 11.32
AReLU (2) 98.00 97.30 97.13 93.13 90.44 47.78 38.39 14.25
Improvement −0.49 +0.78 +0.52 +10.77 +4.77 +31.29 +8.35 +3.33
Improvement −0.28 −0.37 +0.40 +9.78 +3.36 +33.66 +18.17 +2.42
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Figure 3: Plots of mean testing accuracy (%) on MNIST for five-time trainings of MNIST-Conv
over increasing training epochs. The training is conducted using SGD with small learning rates (left:
1× 10−4, right: 1× 10−5).

with a small learning rate which is difficult for most existing deep networks. Section 4.4 will
demonstrate this application of AReLU.

4.3 CONVERGENCE ON CIFAR100

In order to better demonstrate the effect of ELSA, we regard the ReLU, without ELSA, as our baseline.
For plot clarity, we choose to compare only with those most representative competitive activation
functions including PAU, SELU, ReLU, LReLU (LReLU), and PReLU. More results can be found in
the supplemental material. We evaluate the performance of AReLU with five different mainstream
network architectures on CIFAR100. We use the SGD optimizer and follow the training configuration
in (Pereyra et al., 2017): The learning rate is 0.1, the batch size is 64, the weight decay is 5× 10−4,
and the momentum is 0.9.
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different network architectures. The training is conducted using SGD with a learning rate of 0.1.
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Figure 5: Grad-CAM visualization of feature maps extracted by ResNet-18 with AReLU and ReLU.
The first row is the testing images of CIFAR100.

The results are plotted in Figure 4. Learnable activation functions generally have a faster convergence
compared to non-learnable ones. AReLU achieves a faster convergence speed for all the five network
architectures. It is worth to note that though PAU can achieve a faster convergence at the beginning
in some networks such as SeResNet-18, it tends to overfit later with a fast saturation of accuracy.
AReLU avoids such overfitting with smaller number of parameters than PAU (2 vs 10).

We also conduct a qualitative analysis of AReLU by visualizing the learned feature maps using
Grad-CAM Selvaraju et al. (2017) using testing images of CIFAR100. Grad-CAM is a recently
proposed network visualization method which utilizes gradients to depict the importance of the
spatial locations in a feature map. Since gradients are computed with respect to a specific image
class, Grad-CAM visualization can be regarded as a task-oriented attention map. In Figure 5, we
visualize the first-layer feature map of ResNet-18. As shown in the figure, the feature maps learned
with AReLU leads to semantically more meaningful activation of regions with respect to the target
class. This is due to the data-adaptive, attentive ability of AReLU.

4.4 PERFORMANCE IN TRANSFER LEARNING

We evaluate transfer learning of MNIST-Conv with different activation functions between two datasets:
MNIST and SVHN1. The data preprocessing for adapting the two datasets follows (Shin et al., 2017).
We train three models and test them on SVHN: 1) one is trained directly on SVHN without any
pretraining, 2) one trained on MNIST but not finetuned on SVHN, and 3) one pretrained on MNIST
and finetuned on SVHN. In pretraining, we train MNIST-Conv using SGD with a learning rate of
0.01 for 20 epochs which is sufficient for all model variants to converge. In finetuning, we train the
model on SVHN with a learning rate of 1× 10−5, using SGD optimizer for 100 epochs.

The testing results on SVHN are reported in Table 2 where we compare AReLU with several
competitive alternatives. Without pretraining, it is hard to obtain a good accuracy on the difficult task
of SVHN. Nevertheless, MNIST-Conv with AReLU performs the best among all alternatives; some
activation functions even failed in learning. In the setting of transfer learning (pretrain + finetune),
AReLU outperforms all other activation functions for different amount of pretraining, thanks to it
high learning efficiency with small learning rates.

1http://ufldl.stanford.edu/housenumbers/
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Table 2: Test accuracy (%) on SVHN by MNIST-Conv models (implemented with different activation
functions) trained directly on SVHN (no pretrain), trained on MNIST but not finetuned (no finetune),
as well as pretrained on MNIST and finetuned on SVHN for 5, 10 and 20 epoches. The left part of
the table is non-learnable activation functions and the right learnable ones.

Setting ELU GELU Maxout ReLU SELU Softplus APL Comb PAU PReLU SLAF AReLU
no pretrain 19.59 19.59 23.01 19.58 19.58 19.58 19.58 19.58 19.58 19.58 19.58 24.95
no finetune 31.95 37.38 36.52 36.87 32.57 14.39 36.20 35.89 24.67 33.45 35.74 31.91
f.t. 5 epochs 70.08 69.19 70.18 69.76 72.81 65.81 71.73 69.63 75.24 66.13 75.91 76.68
f.t. 10 epochs 70.83 71.69 71.31 71.38 72.11 69.14 73.51 70.31 76.26 67.63 76.21 78.12
f.t. 20 epochs 71.48 70.34 73.29 72.06 71.55 71.01 72.41 72.55 74.46 71.99 74.38 78.48

Table 3: Test accuracy (%) on MNIST by MAML with MNIST-Conv models implemented with
different activation functions. The performance is compared on a 5-ways-1-shots task and a 5-ways-
5-shots task, respectively.

(ways, shots) ELU GELU Maxout ReLU SELU Softplus APL Comb PAU PReLU SLAF AReLU
(5, 1) 82.50 81.88 83.13 70.00 83.75 25.63 71.25 75.63 43.13 88.13 84.38 92.50
(5, 5) 94.30 69.37 93.12 78.00 93.50 22.12 63.00 88.25 40.12 91.75 77.00 94.30

4.5 PERFORMANCE IN META LEARNING

We evaluate the meta learning performance of MNIST-Conv with the various activation functions
based on the MAML framework Finn et al. (2017). MAML is a fairly general optimization-based
algorithm compatible with any model that learns through gradient descent. It aims to obtain meta-
learning parameters from similar tasks and adapt the parameters to novel tasks with the same
distribution using a few gradient updates. In MAML, model parameters are explicitly trained such
that a small number of gradient updates over a small amount of training data from the novel task
could lead to good generalization performance on that task. We expect that the fast convergence
of AReLU would help MAML to adapt a model to a novel task more efficiently and with better
generalization. We set the fast adaption steps as 5 and use 32 tasks for each steps. We train the
model for 100 iterations with a learning rate of 0.005. We report in Table 3 the final test accuracy
for different activation functions on a 5-ways-1-shots task and a 5-ways-5-shots task, respectively.
The results show that AReLU shows clear advantage compared to the alternative activation functions.
One noteworthy phenomenon is the performance of PAU (Molina et al., 2019): It performs well in
other evaluations but not on meta learning which is probably due to its overfitting-prone nature.

4.6 THE GENERALIZED EFFECT OF ELSA

In this experiemnt, we show that ELSA (Element-wise Sign-based Attention) can serve as a general
module which can be plugged in to any existing activation function and obtain a performance boost
for most cases.

We define a new activation F ′ the same as Eq. (7), but replace the ReLU functionR with specified
activation function. We keep the same experiment settings as Sec. 4.2. As shown in Tab: 4, after
plugging with a ELSA module, we can obtain a performance boost for most cases compared with
Table 1, indicating the well generalized effect of ELSA.

5 CONCLUSION

We have presented AReLU, a new learnable activation function formulated with element-wise sign-
based attention mechanism. Networks implemented with AReLU can better mitigate the gradient
vanishing issue and converge faster with small learning rates. This makes it especially useful
in transfer learning where a pretrained model needs to be finetuned in the target domain with a
small learning rate. AReLU can significantly boost the performance of most mainstream network
architectures with only two extra learnable parameters per layer introduced. In the future, we would
like to investigate the application/extension of AReLU to more diverse tasks such as object detection,
language translation and even structural feature learning with graph neural networks.
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Table 4: Mean testing accuracy (%) on MNIST for five trainings of MNIST-Conv after the first epoch
with different optimizers and learning rates. For each activation function and each learning rate, we
show results training with ELSA module. The numbers showing ELSA module improves over the
original activation function (shown in Table 1) are highlighted with underline.

Learning Rate 1× 10−2 1× 10−3 1× 10−4 1× 10−5

Optimizer Adam SGD Adam SGD Adam SGD Adam SGD
CELU (2017) 97.81 97.40 97.06 93.43 89.90 65.53 45.99 13.86
ELU (2015) 97.72 97.51 96.88 93.38 89.73 57.85 40.77 12.96
GELU (2016) 97.99 97.49 96.93 92.93 89.83 42.01 37.40 10.22
LReLU (2013) 97.95 97.38 96.88 93.02 89.86 51.62 39.17 12.90
Maxout (2013) 97.33 97.47 96.98 93.50 90.16 66.74 48.22 16.37
ReLU (2010) 98.13 97.43 97.00 92.54 89.99 50.00 46.18 11.87
ReLU6 (2010) 97.89 97.60 97.05 92.83 89.89 45.15 39.17 13.40
RReLU (2015a) 97.77 97.37 97.29 92.75 89.72 56.28 37.64 12.61
SELU (2017) 97.37 97.32 96.81 93.90 89.91 68.84 46.14 11.79
Sigmoid 96.87 96.06 95.69 81.99 81.90 24.03 22.77 9.81
Softplus (2011) 96.80 97.11 96.25 91.11 85.68 39.44 23.92 12.55
Swish (2017) 97.72 97.45 96.62 92.47 89.74 61.69 38.90 13.18
Tanh 97.62 97.24 96.97 91.03 88.89 56.39 44.05 11.86
APL (2014) 98.10 97.48 96.81 93.12 89.68 46.81 28.68 11.37
Comb (2018) 97.95 97.46 97.08 93.07 89.43 51.74 38.97 13.48
PReLU (2015) 97.82 97.45 96.91 93.06 90.41 55.41 43.42 11.96
SLAF (2019) 95.36 96.74 96.28 93.80 85.31 64.03 22.26 21.06
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