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ABSTRACT

We introduce BIGO(BENCH), a novel coding benchmark designed to evaluate the
capabilities of generative language models in understanding and generating code
with specified time and space complexities. This benchmark addresses the gap in
current evaluations that often overlook the ability of models to comprehend and
produce code constrained by computational complexity. BIGO(BENCH) includes
tooling to infer the algorithmic complexity of any Python function from profiling
measurements, including human- or LLM-generated solutions. BIGO(BENCH)
also includes of set of 3,105 coding problems and 1,190,250 solutions from
CODE CONTESTS annotated with inferred (synthetic) time and space complex-
ity labels from the complexity framework, as well as corresponding runtime and
memory footprint values for a large set of input sizes. We present results from
evaluating multiple state-of-the-art language models on this benchmark, highlight-
ing their strengths and weaknesses in handling complexity requirements. In par-
ticular, token-space reasoning models are unrivaled in code generation but not in
complexity understanding, hinting that they may not generalize well to tasks for
which no reward was given at training time.

1 INTRODUCTION
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Figure 1: BIGO(BENCH) framework overview: Given a coding problem and human solutions, the
framework evaluates LLMs on three key tasks: (1) predicting time-space complexities of existing
solutions, (2) generating new code that meets specified complexity requirements, and (3) ranking
solutions against human-written code with similar complexity profiles. The complexity framework
automatically validates model outputs by computing runtime distributions and curve coefficients.

A junior developer writes an elegant solution to a coding challenge that passes all test cases, yet fails
catastrophically in production. The issue isn’t a bug — it’s an O(n?) algorithm processing millions
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of records, when an O(n - log(n)) solution could have handled the load effortlessly. As large lan-
guage models (LLMs) increasingly assist in code generation, their ability to understand and control
computational complexity becomes critical. While modern LLMs can generate syntactically correct
and functional code with impressive accuracy, our new benchmark BIGO(BENCH) shows that they
often struggle with the higher-level reasoning required to optimize time and space complexity — a
skill that separates novice programmers from experienced engineers.

Our comprehensive evaluation of state-of-the-art code generation models reveals a concerning gap:
while reasoning models like DeepSeek R1 (DeepSeek-Al et al.| [2025)) achieve above 70% accuracy
(pass@1) on programming contests (CODEFORCE, they show significantly weaker performance
(4.8%) when tasked with generating solutions under specific complexity constraints (a detailed fail-
ure example is in Appendix [K). They fare barely better than non-reasoning models at analyzing a
function for its complexity, e.g. 6.8% better in complexity prediction vs. Llama 4 Maverick (Meta,
2025)). This limitation becomes particularly acute in real-world applications, where scalability and
controllable, understandable, performance constraints are often as critical as functional correctness.

Our main contributions are threefold:

* Firstly, to address the challenge mentioned above, we introduce BIGO(BENCH), a novel
benchmark for code generation that evaluates a model’s understanding of time and space
complexities, including runtime and memory profiling measurements for a set of 3,105
coding problems and 1,190,250 solutions from CODE CONTESTS (Li et al., 2022). As
shown in Fig.[I] for a given coding challenge and human solution, the model can be queried
to a. predict time-space complexities, b. generate code that solves the challenge while
adhering to a specified feasible complexity, and c. on top of it ranks better than human
solutions of the same challenge and complexity.

* Secondly, we release the code for our complexity inference framework, that takes a
Python function and returns time and space complexities. It’s a rule-based algorithm
based on fuzzing, profiling, and regressing of major complexity classes (including multi-
dimensional). This is what we used to produce ground truth labels for BIGO(BENCH),
which are statistically significant ground truth performance profiles and not theoretical
complexities. This complexity evaluation framework achieves 84% and 82% match (with
human annotated theoretical complexity) respectively on time/space complexity test sets.

* Thirdly, we evaluate 14 popular models on our benchmark along fine-tuned ones and
compare performance in detail: using our All@1 metric, DEEPSEEK-R1 LLAMA70B
(DeepSeek-Al et al., 2025 scores best on time complexity prediction (41.4%), while
QWEN3 32B(Team, [2025) leads on time complexity generation (6.5%) and LLAMA 3.1
NEMOTRON-ULTRA(Bercovich et al.,|2025) on space complexity generation (5.6%).

2 RELATED WORK

Benchmarks for Code Generation As the coding skills of LLMs were still limited, benchmarks
for code generation originally focused on simple functions and coding challenges, as illustrated by
HumanEval (Chen et al.}[2021a) and MBPP (Austin et al., 2021) , probably the most famous coding
benchmarks. Today, these benchmarks are considered saturated, as top reported pass@1 scores lean
towards 90-95% success rate. A first area of work has focused on extending, improving quality and
correcting these benchmarks, be it with HumanEval+ (Liu et al.| (2023]) added more tests to pass) or
HumanEvalPack (Muennighoff et al.| (2024) added more tasks and programming languages).

A different area of research pursues scale and reasoning around code as a way to formulate bench-
marks that can challenge LLMs over a longer term. SWE-Bench (Jimenez et al., 2024) and As-
sistantBench (Yoran et al.| |2024) leverage Github as a source of large software development tasks,
that do not resemble nor include obvious patterns of reproduction, therefore not solvable with simple
fine-tuning on similar data. Nevertheless, the evaluation cost in time and compute is a non-negligible
limitation that restrains certain teams from using these benchmarks.

BIGO(BENCH) is a tentative benchmark to integrate challenging notions of reasoning around code
into a simple formulation, providing a practical evaluation metric for code LLMs that can easily be
used to discriminate and iterate improvements of their coding capabilities.

'https://codeforces.com/
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Time-Space Complexity Task Coding interviews for software engineers are centered around
small coding challenges to be solved and explained, typically by discussing the time-space complex-
ity of the proposed solutions. Only a few previous works attempted to frame the task of time-space
complexity explanation for LLMs. Nevertheless, they all fall short of providing sufficient elements
to build a solid benchmark: CoRCoD (Sikka et al., |2019) contains 932 Java code pieces labeled
for five time complexity classes without using any LLMs; TASTY (Moudgalya et al., |2023) uses
3000 C++/Python problems across five complexity classes, limited to classification only and just
benchmarking small BERT models (Devlin et al., 2019); CodeComplex (Baik et al., 2024) contains
10k Python/Java programs annotated for five time complexity classes as classification only; finally
RACE (Zheng et al.|[20244a) contains limited test cases (~100) and only measure runtime similarity
between proposed and human solutions.

Most of the work around code efficiency focuses on absolute runtime/memory measurement, scoring
code measured as faster/lighter (Qiu et al., 2025} Peng et al., |2025; Huang et al., 2024} [Liu et al.,
2024} Peng et al., 2024} Du et al.,|2024). Whereas absolute runtime remains context-dependent and
conditioned on hardware and specific test cases being executed, code complexity reveals the intrinsic
comprehension the model has of the underlying algorithmic structure of the code, measuring its
efficiency at scale and its asymptotic performance.

In order to improve on the previous attempts, BIGO(BENCH) explores not only time but also space
complexity, out of an unconstrained set of classes to capture more various solutions and problems.
The benchmark not only studies the classification task but also the more challenging open-framed
generation task, so to mimic the real-world thought process of designing a solution for a target
complexity. Altogether, this turns out to create a challenging task that wide-used LLMs are bench-
marked upon, and hopefully it provides a new perspective on the limitations of current models and
their reasoning capabilities around code.

3 DyNAMIC COMPLEXITY INFERENCE FRAMEWORK

Throughout this study, complexity refers to worst-case complexity, finding how input growth maxi-
mally affects runtime and memory. Python is considered as the only language studied, and therefore
complexity can account for python-specific optimizations (e.g. CPython (cpyl, 2024) or the com-
piler) that get reflected in the empirical time and space measures. In the quest of finding the worst
case scenario of a snippet of code, natural language constraints on the inputs as detailed in the prob-
lem description can be ignored, as long as the program runs and does not fail. Any basic operator
like number addition or initialization of an empty list are considered as constant time and space.

Implementation The time-space complexity framework is a rule-based algorithm that processes
Python functions to infer time and space complexities dynamically. It takes a Python function with
example inputs and corresponding dataclass (Section .2), processes them, then measures runtime
and memory during several executions. From a high-level perspective, the framework increases in-
put sizes using various strategies to assess size impact on execution metrics (runtime, memory). For
multi-argument functions, arguments can be expanded independently or together to determine over-
all complexity, considering interdependencies. Prepared code and expanded inputs run in indepen-
dent Bubblewrap sandboxes (bub, 2024) to prevent harmful side effects. While running, Cprofiler is
used for runtime measures and tracemalloc for memory footprint. Using non-negative least squares
curve fitting (Lawson & Hanson, [1976) on each set of measures, the coefficients and residuals of
each complexity class are computed. The gold complexity class output for a given set of measures
is chosen as the minimizer of the residuals, taking into account a simplicity bias (the more simple
the complexity class is, the smaller the simplicity bias). This curve fitting is applied on each set
of measures, each corresponding to a different subset of arguments being expanded with a differ-
ent expansion method. Using ensemble methods, the global complexity of the Python function is
computed by aggregating the individual complexity outputs along the different set of measures. Fi-
nally, the complexity framework also returns the coefficients of the curve of each elected complexity.
These coefficients can be leveraged to rank and classify different optimized Python solutions within
the same complexity class. More details are shared on our Github and in Section [G]

Parametrization The framework involves three main parametrized steps. The first step, Process
Allocation, handles the multiple (Code, Expanded inputs) pairs to be run and measured for time
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and space, trying to maximize the execution throughput while minimizing its variability and insta-
bility. Second, Execution Measures consists in leveraging various measuring tools for various ranges
of input size values with more or less granularity. Third, Complexity Fitting relies on the measures
obtained to apply various curve fitting methods, aggregation methods and ensemble methods to form

the global complexity formula across all inputs.

Parameters from each of these three groups were optimized towards
three metrics of interest: pure accuracy of detecting the correct
complexity class, coverage by handling as many code snippets and
problems as possible, and self-consistency of outputting stable re-
sults over multiple runs and across different compute instances.

4 BENCHMARK DATA RELEASE

4.1 COMPOSITION

CODEFORCES is an online competitive coding platform that gath-
ers challenging problems to be solved in various programming lan-
guages. Humans can submit candidate solutions that are rewarded
more the faster and more memory-efficient they are. Using coding
problems and solutions from CODEFORCES mostly (and in minority
from a few other coding platforms), CODE CONTESTS is a dataset
that provides the problem descriptions along with correct and incor-
rect human solutions.

We annotated data from CODE CONTESTS for time and space com-
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Figure 2: Distribution
of time-space com-
plexity classes across
BIGO(BENCH) dataset

of 3,105 coding problems.
Each problem is included
when at least one solution
exists with that specific
time-space complexity pair.
The chart orders classes by

plexity to create BIGO(BENCH) using the complexity framework
described in Section Bl CODE CONTESTS data was limited to
correct solutions (according to public and private tests) written in
Python code only, which sum up to 8,139 problems and 1,485,888
solutions in total. In addition, problems that have no working data-
class (see Section @]) too few solutions (fewer than 50) or unusual data types are also filtered out.
This leads to our general dataset, annotated and released as part of BIGO(BENCH), consisting of
3,105 coding problems and 1,190,250 solutions. Problems are characterized by their difficulty level
(A: 942; B: 682; C: 427; D+: 321; Unknown: 733), their algorithmic notions (37 different notions
in total) and their inputs (1 to 11 distinct arguments across 32 different data types).

computational efficiency,
with less common classes
grouped under “other”.

Each solution is annotated by the complexity framework and associated with time and space com-
plexity classes, the corresponding coefficients of the complexity curves and the runtime/memory-
footprint measures that were used to infer these attributes. Therefore, each problem gets associated
with one or several time-space complexity classes consisting of solutions that have various complex-
ity coefficients, corresponding to different optimization tricks within the same class of complexity.
Dataclasses generated for each problem are also released (see Section 4.2)).

Time/space complexity test sets are selected among this global pool of problems/solutions by ex-
ecuting a range of post-processing and filtering steps, to provide meaningful metrics by enforcing
diversity of classes as well as performance and stability of the framework on the problems. For in-
stance, only problems with several complexity classes are kept; absolute and relative thresholds (to
the most popular class of the problem) filter out outliers; complexities with unlikely variable counts
or high failure rates are removed; finally solutions with unlikely abstract trees (relative to their com-
plexity) or unstable predictions are withdrawn. The resulting test sets have distinct supports of prob-
lems (though there is an overlap of 63 problems), since few problems have diverse classes in both
time and space. Moreover they ignore official CODE CONTESTS splits, as the CODE CONTESTS
test set lacks sufficient discriminative power, and lacks problems with multiple complexity classes.

The time complexity test set is made out of 311 problems and 640 corresponding solutions covering
11 different classes (the most represented ones being O(n), O(n -log(n)), O(n?), O(1), O(n x m)
and the least represented O((n + m)log(n + m))). The space complexity test set consists in 308
problems and 636 solutions covering 5 different classes (by order of popularity O(n), O(1), O(n?),
O(n +m), O(n x m)). A training split for fine-tuning purposes is also released. Fig. [2| shares
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more details about the distribution of complexity classes in the data being released. It is imbalanced
and heavily tailed: linear time complexity represents 38% of all solutions, constant time complexity
20%; for space complexity, distribution is even more skewed with respectively 47% and 25%.

4.2 DATACLASS GENERATION

To infer labels with the complexity framework on
CODE CONTESTS code snippets, code inputs must be
parsable into a dataclass matching Algorithm We
define the task of dataclass generation as querying a
LLM for such dataclass given the problem description
and an example solution. For each generated dataclass
Input, we introduce two metrics that measure the qual-
ity of the dataclass methods Input.from_str (con-
verting string stream inputs to argument dictionaries) and
Input.__repr__ (the reverse conversion).

Performance is measured by CORR, that accounts
for the correction (executability) of the methods
Input.from.str and Input._repr_, and
BCKTR, which measures accuracy of the backtranslation
(Edunov et al., 2018):

input. == Input.from.str (input.).__repr__()

CORR@K and BCKTR@K are unbiased estimators of
performance of CORR and BCKTR among k samples,
following the definition of |Chen et al.| (2021a). Mathe-
matical definitions of these metrics are provided in Sec-
tion [A.T] Table [I] sums up the benchmark results of the
dataclass generation task. LLAMA 3.1 405B INSTRUCT
(Dubey et al.,2024) reaches best performance, capable of
58.1% correct backtranslation for one dataclass out of ten
attempts per problem. To further boost performance, sev-
eral passes corresponding to different solutions per prob-
lem are performed, thus generating a correct dataclass for
82% of CODE CONTESTS problems.

4.3 COMPLEXITY FRAMEWORK PERFORMANCE

Accuracy A human review measured the accuracy of the
labels as output by the complexity framework (after post-
processing and filtering) compared to the labels assigned
by a human. The framework achieves 84% and 82% ac-
curacy on time and space complexity test sets respectively
(125 sample split each).

Coverage Fig. [3| measures the ratio of solutions per
problem for which the framework fails to predict a la-
bel. Whatever the type of complexity, approximately 84%
of problems have a fail rate below 30%, and only 4.5%
of problems have a fail rate above 0.9, for reasons rang-
ing from incorrect generated dataclass to an edge case not

Table 1: Comparison of models for
generating problem-specific dataclasses
that can parse the incoming input
streams into each problem’s variables,
on CODE CONTESTS. All models but
CodeLlama 70B Instruct (16k only)
(Roziere et al.,|2024) use a context win-
dow of 32k tokens.

MODEL CORR@10 BCKTRQ@10
CODESTRAL 22B 63.6 54.0
CODELLAMA 34B INSTRUCT 22.1 17.8
CODELLAMA 70B INSTRUCT 10.3 7.9
LLAMA 3.1 8B INSTRUCT 31.9 21.4
LLAMA 3.1 405B INSTRUCT 70.2 58.1

Algorithm 1 Dataclass Template

@dataclass

Input:
var_1l: type_1
var_2: type_2

@classmethod

def from_str(cls, input_: str)

return cls(var_1, var_2, ...)
def __repr_ (self):

return input_

roul-2667 2 547 |1 11514‘»& m nn.\ms

10% 100%
Fail Rate

Number of Inputs

Figure 3: Failure rate analysis of the
complexity inference framework. The
top plot shows the overall distribution of
framework failures across all problems.
The bottom heatmap breaks down fail-
ure rates by input type and number of
distinct inputs.

covered by the range of tests the framework performs. Most input types are correctly covered by the
framework. Exceptions (e.g. tuple and triple-nested lists) are infrequent.

Self-consistency Relying on empirical runtime and memory measures exposes the framework to
stochastic noise affecting prediction reliability. Running the framework 20 times on 10 solutions of
every problem and complexity class of the candidate test set, before any filtering based precisely on
stability, 91.9% (resp. 89.1%) self-consistency is achieved for time (resp. space) complexity, for a

total of 10,130 (resp. 10,520) different code solutions.
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Table 2: BIGO(BENCH) benchmark results for popular LLMs. Program Synthesis checks the
correctness of model-generated solutions to given programming problems, not taking into account
any complexity requirement. Complexity Prediction measures whether a model can find the time-
space complexity of an existing code snippet. Complexity Generation evaluates whether a model
can output a working code snippet to a given problem that meets a time-space complexity require-
ment. Pass@QFk considers each complexity class of all problems independently and calculates a
macro-average between them. Best@QF is a refinement of Pass@k, focusing only on the most opti-
mized complexity class for each problem. AllQFk checks if all complexity classes for each problem
are correctly predicted or generated simultaneously, then macro-averages across all problems.

PROG. SYNTHESIS COMPLEXITY PRED. COMPLEXITY GEN.
MODEL PAss Pass PAss BEST ALL Pass PAss BEST ALL
@1l @10 Q1 Q@1 @1 @1 @10 @1 @1l
TIME
BASELINES 30.3 55.4 395 68.5 0.0 12.1 297 19.0 0.9
LLAMA 3.3 70B 43.4 66.0 58.2 72,6 33.7 17.7 40.0 257 3.3
LLAMA 4 ScouT 17BX16E 61.7 80.1 48.7 663  23.0 22.8 48.0 31.8 3.5
LLAMA 4 MAVERICK 17BX128E 59.3 78.9 57.4 70.8 32.8 19.9 446 27.0 53
GEMMA 3 27B 37.7 45.6 60.8 69.2 37.6 15,1 209 17.8 1.8
CODESTRAL 22B 23.7 47.5 56.0 67.8 335 10.6 26.6 149 1.3
QWEN2.5-CODER 32B 30.5 50.8 58.5 68.2 349 122 265 152 3.1
GPT-40 51.0 78.3 57.7  69.7 33.1 20.6 447 30.2 4.3
O1-MINI 62.5 76.8 58.3 652 356 19.8 65.2 27.6 4.5
DEEPSEEKCODERV?2 236B 44.1 65.5 549 689 29.6 19.5 38.0 27.6 3.3
DEEPSEEKV3 671B 41.4 63.6 544 724  27.1 17.7 377 230 34
DEEPSEEKR1 QWEN 32B 70.1 83.7 62.2 727 41.1 29.0 499 46.1 4.8
DEEPSEEKR1 LLAMA 70B 70.1 83.8 642 754 414 29.2 51.6 465 4.8
LLAMA 3.1 NEMOTRON-ULTRA 253B 80.0 89.4 63.1 745 41.1 33.5 549 518 6.1
QWEN3 32B 70.0 81.3 61.3 70.5 39.0 29.1 53.8 435 6.5
SPACE
BASELINES 30.1 52.6 454 503 0.0 122 324 178 1.3
LLAMA 3.3 70B 42.6 62.5 41.1 552 10.9 15.0 377 219 1.8
LLAMA 4 ScouT 17BX16E 56.7 73.5 37.4 58.8 52 20.0 40.1 31.1 2.2
LLAMA 4 MAVERICK 17BX128E 58.4 75.7 446 545 8.9 16.8 28.2 304 0.8
GEMMA 3 27B 40.3 49.0 448 629 132 16.2 243 225 14
CODESTRAL 22B 25.7 47.6 443 625 10.6 11.0 294 16.7 1.3
QWEN2.5-CODER 32B 31.1 49.2 45.6 634 126 10.1 233 153 1.2
GPT-40 51.6 74.4 434 614 11.0 18.1 399 280 1.4
O1-MINIT 58.0 72.9 42.7 456 8.1 16.6 61.3 25.7 2.5
DEEPSEEKCODERV?2 236B 43.1 63.8 44.1 59.6 8.2 16.7 345 256 1.0
DEEPSEEKV3 671B 41.8 62.5 43.5 62.6 11.2 15.0 354 226 1.6
DEEPSEEKR1 QWEN 32B 68.0 80.6 432 550 8.1 24.8 48.6 38.6 3.1
DEEPSEEKR1 LLAMA 70B 68.8 81.2 444  56.1 10.4 25.6  50.0 38.7 3.4
LLAMA 3.1 NEMOTRON-ULTRA 253B 71.7 86.4 45.2 547 10.3 304 555 453 5.6
QWEN3 32B 65.9 71.7 47.7 583 15.1 25.5 478 39.6 5.1

5 EVALUATION

We use BIGO(BENCH) to evaluate several LLMs commonly used for coding and reasoning tasks:
LLAMA 3.3 70B (Dubey et al.| 2024), LLAMA 4 models (Metal 2025), GEMMA 3 27B (Team
et al.}2025), CODESTRAL 22B (MistralAlL [2024), GPT-40 (OpenAl et al., |2024b), 01-MINT (Ope-
nAl et al., [2024a), QWEN 2.5-CODER 32B (Hu et al., [2024), DEEPSEEK-CODER-V2 236B
(DeepSeek-Al et al.l 2024b), DEEPSEEK-V3 671B (DeepSeek-Al et al., 2024a), DEEPSEEK-
R1 QWEN and LLAMA distilled (DeepSeek-Al et al.| [2025), LLAMA 3.1 NEMOTRON-ULTRA
(Bercovich et al., 2025) and QWEN3 32B (Team, 2025). All models are evaluated using their
INSTRUCT variant, when available, in a zero-shot fashion (unless otherwise stated). GPT4-0 and
01-MINI do not share any estimate on inference compute. Also, O1-MINI returned many empty an-
swers, potentially due to reasoning collapse: we discarded these answers and used only non-empty
answers to compute metrics. As a result, its performance can be regarded as an upper-bound opti-
mistic estimate. DEEPSEEK-R1 distilled models used substantially more compute than LLAMA 4
(X2 compute nodes, x5 compute time and X 16 generation tokens).

Pure program synthesis performance is also displayed on the same test splits as the rest of the
metrics. It is evaluated for pass@k using all public, private and generated tests. For each metric,
best values or any values not significantly lower than the best are displayed in boldface. Metrics are
macro-averaged first by complexity classes within each problem and then across problems. More
details and metric definitions are provided in Section @i

2One-tailed paired t-tests on 1000 bootstraps samples of the model results evaluate the significance of the
superiority of the best model. Any @k metric uses an unbiased estimator based on 20 samples.
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5.1 TIME-SPACE COMPLEXITY PREDICTION

The first evaluation task of BIGO(BENCH), Com-
plexity Prediction, consists in predicting the time
and space complexity given a problem description
and a human solution. Our baseline for this task
is the naive model that always returns O(n), the
most frequent class. Pass@Qk measures the accu-
racy of finding the correct complexity, using a pars-
ing script that compares the output of the LLM with
the ground-truth complexity inferred by the frame-
work; Best@k measures accuracy only across the
most optimized complexity class of each problem;

Table 3: Using the complexity framework,
the best measured coefficient of the com-
plexity curve, out of 20 attempts, is used
to rank LL.M-generated code among human
solutions from the same problem and time-
space complexity class. Ranking is per-
centile based, n% ranking score amounts for
n% human solutions having worse complex-
ity coefficient. If no LLM solution passes
correctness tests, ranking score is set to 0.
INTERSEC is the subset where all starred (*)
models have at least one successful solution.

. . COEFFICIENT

AllQF requires correct complexity output across all ~ mover RANKING AL
. Fu I @1
complexity classes at once per problem: the LLM —— UL NTERSEC ©
has to correctly output a working solution that meets LLAMA 3.3 70B 338 650 238
. . LLAMA 4 ScouT 17BX16E 39.0 69.9 3.4

the complexity requirement for all classes of com- LLAMA 4 MAVERICK 17BX128E B2 721 36
plexity of the problem. For each metric, @k is S 3278 w4 708
the unbiased estimator among k samples, follow- 8‘;&%}““” 32B ;2; ;gg 22
ing the definition of |Chen et al| (2021a). Met- OLMINE e 203 7883l
. 0 EEPSEEKCODER . . .
rics are macro-averaged across complexity classes DEEPSEEKV3 671B 287 586 34
(PassQk), and then across problems (Pass@k, — pidiiq 2 os- B3 190 40
Best@k and All@k) LLAMA 3.1 NEMOTRON-ULTRA 253B*  41.6 75.8 5.1
QWEN3 32B* 44.0 79.6 6.1

. . S )

Results are displayed in Table 2] A query exam-  [iavass7os 28 130 16
3 LLAMA 4 ScouT 17BX16E 34.5 78.8 2.1

ple, along w1th.an output e)fample.of DEEPSEEK-RI L 128 r e o
LLAMA 70B, is provided in Sectlonm More metric GemMA 3 27B 175 49.3 1.4
.. . . . CODESTRAL 22B 25.2 64.6 1.2
definitions are detailed in Section[A.2] QWEN2.5-CODER 32B 05 687 06
GPT-40%* 31.6 86.3 1.3

O1-MINT* 21.1 82.8 1.5

DEEPSEEKCODERV?2 236B 26.8 68.5 1.2

5.2 TIME-SPACE DEEPSEEKV3 671B 272 72.3 13
DEEPSEEKR1 QWEN 32B* 40.1 88.5 3.0

COMPLEXITY CODE GENERATION DEEPSEEKR1 LLAMA 70B* 41.6 89.5 3.3
LLAMA 3.1 NEMOTRON-ULTRA 253B*  45.4 87.7 4.6

QWEN3 32B* 40.5 88.2 4.3

The second task Complexity Generation requires
the LLM to generate a correct solution to a given problem description that has to respect a feasible
time or space complexity requirement. Our baseline for this task is a LLAMA 3.1 70B model that is
queried for the same prompts without the complexity requirement. Pass@k measures the accuracy
of finding a correct solution, according to public, private and generated tests, that has the correct
complexity, as measured by the complexity framework; Best@Qk and AllQk are similarly defined as
their counterparts of Section[5.1] Results are displayed in Table[2] An example with DEEPSEEK-R1
LLAMA 70B is provided in Section [K]

5.3 TIME-SPACE COMPLEXITY COEFFICIENT PERCENTILE RANKING

The third task, Complexity Coefficient Percentile Ranking, measures how a generated solution to
a given problem, respecting a complexity requirement, ranks among human solutions of the same
complexity class and problem. The ranking is performed based on the coefficient of the complexity
curve, as measured by the framework: the lower the coefficient, the more flat the complexity curve
and the more optimized the solution. Ranking results are given in percentile of the distribution,
where a solution of the nth percentile is more optimized than n% of human solutions. The querying
is similar to Section with the addition of the requirement “Try to optimize the runtime of your
code as much as you can, while respecting the time complexity requirement”. See Table

5.4 PREDICTION AND GENERATION FINE-TUNING

Using training sets of 2000 problems and 20k code solutions, LLAMA 3.1 70B is being fine-tuned
for the first and second task. Time and space generation training sets sums up to 22M tokens,
prediction training sets to 18-19M. Each complexity class of each problem includes 10 human
examples, filtered following the same steps as the test set creation (see Section [4.I). Models are
fine-tuned for 10 epochs in instruct format. See Table ]
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Table 4: BIGO(BENCH) benchmark results for
fine-tuned LLAMA 3.1 70B on time-space pre-

6 QUANTITATIVE ANALYSIS
diction and generation tasks. Same metrics as in

Understanding time-space complexity Per
Table all LLMs show performance drops

Table E}

. PROG. PREDICTION GENERATION
on the combined task Complexity Generation = METHOD ~ SYNTH. TIME SPACE TIME SPACE
L. . Q ) ) Q
versus individual tasks Program Synthesis and PAZS;?’I ALLGL ALLGL A;L@l ALL;”
. . ZERO-SHOT . 33.8 119 1 1
Complex1ty.Pred1ct10n. Acrpss all tasks, 'the FEW-SHOT 289 336 121 24 14
top performing models remain the reasoning  prrpicTION FINE-TUNING
models DEEPSEEK-R1 LLAMA 70B, QWEN3 TIME 27.4 365 6.6 29 1.3
32B and LLAMA NEMOTRON-ULTRA, achiev- SPACE 26.6 9.0 140 2414
. : : GENERATION FINE-TUNING
ing 64.2 and 33..5 Pass@l for time prth- TIVE 232 347 127 12 13
tion and generation, except space prediction, SPACE 23.4 34.6  13.0 1.5 1.4

where performance patterns are less clear with
smaller differences, as these models tend to
overthink extra space complexity despite ex-
plicit prompts. Models tend to be even more
misled when asked to ”Optimize the solution
while respecting the complexity requirement”,
causing 12% average loss in time generation
AllQ1 (Table , reaching 30% for GPT-40

Llama 3.3 70B

== Llama 4 Scout 17Bx16E
------ Llama 4 Maverick 17Bx128E
=== Gemma 3 27B

Codestral 22B
Qwen2.5-Coder 32B

GPT-40

ol-mini

DeepSeekCoderV2 2368
DeepSeekV3 671B
DeepSeekR1 Qwen 32B
DeepSeekR1 Llama 70B
Llama 3.1 Nemotron-Ultra 2538

and O1-MINL. e
At a more granular level, models tend to under-
perform on non-optimal complexity classes,
compared to the most optimized class of every
problem, as underlined in Fig. ] This contra-
dicts human programming patterns, where non-
optimized solutions are typically easier than 10%
optimal ones, especially for competition prob- o
lems. In addition, LLMs do not understand that
adding dummy pieces of code (e.g., list sort-
ing) could transform a, working linear solution
into a less-optimized linearithmic one. In the
end, All@1 metrics better capture true under-
standing by uniformly evaluating across opti-
mized and non-optimized solutions, verifying
that LL.Ms do not just stumble upon a solution
of the right complexity because they learned by
heart the widespread optimized code snippets.
Top model QWEN3 32B achieves only 6.5 All@Q1 on time generation. These complexity metrics
can also be used as a proxy of the understanding of other notions, such as combinatorics, where
models explicitly optimized for math reach score higher (Fig. ). When analyzing these results, one
has to keep in mind that the splits were done on the training data of CODE CONTESTS that includes
all solutions of the different complexity classes to all problems, already seen by models.

Pass@1

V4
[ D

dsu
probabilities 1= ®% -

geometry
math
greedy

bitmasks
strings

sortings
#special
hashing

brute force

graph matchings
combinatorics
implementation
data structures
divide and conquer

constructive alg

Figure 4: LLM results aggregated by time com-
plexity and algorithmic notions.  Scores are
Pass@1 on Time Complexity Generation.

Token-space reasoning models Though they largely outperform other LLMs on pure program
synthesis, reasoning models such as 01-MINI, DEEPSEEK-R1 and LLAMA NEMOTRON-ULTRA
are much closer in terms of performance on complexity-related tasks, and these are even outper-
formed by QWEN2.5-CODER on space complexity prediction specifically: while the latter obtains
12.6 AllQ@1, the former respectively only reach 8.1, 10.4 and 10.3. For this specific case, reasoning
models seem to exhibit patterns of overthinking, misunderstanding the notion of extra space com-
plexity, even if clearly described in the prompt. When explicitly prompted in order to understand
their failure modes, it turns out that such models are able to recognize all classes of complexity of a
problem from a prediction point of view, but when asked to generate them, they fail to return the less
optimized classes of complexity, favoring the optimal solution. Not to mention that these models
could just easily ‘cheat’ by tweaking the optimal solution with a dummy sort or nested for-loop, so
to transform it, as any programmer could figure it out, as a less-than-optimal solution.

In general, these models struggle with the ambiguity of higher-level reasoning tasks, especially when
there is no explicit verifier that they may have been confronted with during their reinforcement, such
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as programming tests to pass. This triggers the question of whether they really understand how to
‘think’ about notions they ‘know’, or if they only learn by heart patterns of ‘thoughts’ exhibited by
human annotation efforts and training rewards. As all these complexity solutions were, in fact, in
their training data, it demonstrates that these highly efficient search models can still fail to recover
the correct data points when they were not reinforced for the specific search criteria.

Developing challenging reasoning benchmarks As newly released benchmarks usually quickly
saturate, BIGO(BENCH) aims at evaluating high-level reasoning skills that stay out-of-scope of
current LLMs, bringing their performance down as displayed by Fig. 5] Table [d] measures that
the benchmark remains robust to fine-tuning. In particular, complexity prediction fine-tuning barely
improves performance on the same task, and complexity generation fine-tuning even slightly hurt the
performance of LLMs. This suggests that learning such high-level reasoning tasks is not effectively
captured by standard fine-tuning to learn logical deduction and more convoluted patterns of thoughts.
With reasoning models topping benchmarks, new challenging benchmarks are perhaps more about
finding out-of-distribution patterns of thinking rather than new data points of existing reasoning
scenarios. It was especially difficult to design BIGO(BENCH) without any human labels available,
as the qualification level required from annotators was not reachable. But this is also probably why
the models had been underexposed to this reasoning task, therefore making it challenging for them.

Limitations The complexity framework itself T Mamada7on

== Llama 4 Scout 17Bx16E

is prone to errors, as for specific problems it

can potentially fall upon worst-complexity edge SR
cases. In addition, the measures on which the 3 R
complexity prediction is based remain noisy, “ TR o
still relying on real CPU runtimes and using sta- > e G 320
tistical measuring tools; they could potentially & S @ L el 538
become more reliable with the help of virtual '

o <3 & === Qwen3 32B
CPU cores.

BigO(Bench)

Although we fine-tune LLAMA models, we Figure 5: Model scores per coding benchmark:
did not use advanced multiturn prompting HyuMANEvVAL, MBPP and BIGCODEBENCH

(Zheng et al., [2024b) nor further reinforcement  main metrics are all Pass@1; for BIGO(BENCH),
(Gehring et al.| 2025). Proximal Policy Opti- we display All/@1 results.

mization (Schulman et al.,|2017) could help re-

fine LLMs for these tasks. Human annotations

could also help models reason better for these tasks. Finally, the coding problems and the frame-
work remain limited to Python. Mixing other languages such as C++ and Java could measure cross-
languages optimization strategies.

7 CONCLUSION

In this work, we introduced BIGO(BENCH), a novel benchmark of LLMs on code generation, fo-
cusing on their understanding of time and space complexities when producing code. It consists in
three tasks: first, given a coding challenge, predicting the time-space complexity of a given corre-
sponding solution; second, for a given challenge and time or space complexity, generating a solution
that solves the challenge while fulfilling the complexity requirements; third, optimizing the coeffi-
cient of the complexity cure compared to the human distribution. This benchmark is supported by
the release of time-space complexity labels corresponding to 3,105 coding problems and 1,190,250
corresponding solutions from CODE CONTESTS. In addition, we developed and release the code
of a complexity framework, capable of dynamically inferring the time-space complexity of a given
snippet of code, used to automatically evaluate any synthetic snippet of code and therefore the gen-
eration of LLMs conditioned on a given complexity trade-off. Finally, we benchmark 14 LLMs
considered as the top coding assistants and analyse their performance.

BIGO(BENCH) is a challenging benchmark with current top scores belonging to the reasoning mod-
els DEEPSEEK-R1 LLAMA 70B, QWEN3 32B and LLAMA NEMOTRON-ULTRA, achieving up to
6.5% and 5.6% AllQ1 on the time-space complexity generation tasks. Even when fine-tuning a
LLAMA 3.1 70B model, performance increases only marginally, only on prediction tasks. We hope
this benchmark can keep challenging upcoming models and help guide the development of new
models towards better understanding of coding abstract notions beyond pure code generation.
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8 ETHICS STATEMENT

BIGO(BENCH) does not include any model release, and therefore there is no risk for model misuse.
The data used for BIGO(BENCH) comes from an already existing public dataset (Li et al., [2022).
Any code execution is to be done within sandboxes, as documented and provided in our associated
Github repository, using the Bubblewrap library (bubl [2024), to avoid any harmful side effects of
the code being run.

Furthermore, we establish guidelines for users to follow when utilizing the benchmark, including
the requirement to report any potential misuse or harmful applications, and to provide transparency
in their use of the benchmark data and results. More details are provided in the Code of Conduct
that we publish alongside our Github repository. We also establish a mechanism for users to report
any concerns or issues related to the benchmark, and to provide feedback on how to improve the
benchmark’s safety and responsibility, on top of any potential security issues: this is detailed further
in the security policy attached to our code repository as well.

9 REPRODUCIBILITY STATEMENT

To ensure reproducibility of the work presented in this paper, we provide comprehensive details
on the different steps of our study. The complexity framework implementation is detailed in Sec-
tion [3| with technical specifics in Section[G] Our dataset construction and pre-processing procedures
are documented in Section Benchmark design methodologies and theoretical foundations for
our evaluation metrics are described in Section [A] while time-space complexity definitions are for-
malized in Section [B] Ablation studies validating our benchmark design choices are presented in
Section[d

The computational infrastructure and experimental setup used for our evaluations are documented in
Section [H] Main experimental results are presented in Section [5] with extended multi-sample anal-
ysis in Section [D] Representative examples of benchmark prompts for both complexity prediction
and generation tasks are provided in Sections [Jjand [K] All open-source models and their reposito-
ries are listed in Section[I] while we also evaluate several closed-source models accessible through
vendor platforms. Upon acceptance, we will release our complete codebase, dataset, and interactive
leaderboard to facilitate future research.

10
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A FORMAL METRIC DEFINITIONS

A.1 DATACLASS GENERATION METRICS

In order to measure the quality of the dataclasses as generated by a LLM, we introduce two metrics
CORR and BCKTR, used over a test set of code problems and solutions to compare performance of
LLMs on the dataclass generation task.

We introduce the following variables, and the structure of a problem dataclass:

* P =Problem description
* S = Example solution

* D = LLM-generated dataclass (from P and 5), that has the following class template (see
Algorithm [T)):
D— {D.fromstr(~) : str — dict
D._repr_() : dict — str

* input = Input string, that corresponds to the input of an Input/Output test case pair of the
code problem

* D .from_str(input) = Dictionary of parsed arguments

* D._repr__() = String representation of parsed arguments

* P: Distribution over problems P

* S(P): Distribution over human solutions S for problem P

* Drry (P, S): LLM’s output distribution for dataclass D given P and S.
* Z(P): Set of test case inputs for problem P.

Based on these definitions, we define the following two metrics:

1. Correction (Corr): Executability of both methods
Cort = Epp, 5~s(P), DDy ar (P,5)1( D from_str(-) and D._repr() are executable)

2. Backtranslation Accuracy (BckTr): Round-trip consistency

BekTr = Epp, s~s(P), D~Dpra (P,5)] ﬂ (input == D .from_str(input).__repr())
inputeZ(P)

In practice, we will want an approximation of these metrics, especially as we are operating under a
fixed sampling budged for the LLM. We define a sampling budget parametrized by n, the number of
times we will be sampling a dataclass D from Dy (P, S). Each problem is sampled with equal
probability, and for the sake of limiting the compute budget only the first human solution of the
attached set of solutions S(P) will be used to compute the metrics. Then, for each (P, S), we use
the model to generate n samples D1, ..., D,, ~ Drpa (P, S).

We generalize the above metrics to the case of k-success, where we want to record the probablity
that at least one of k generated dataclasses {D;}*_, satisfies the metric, leveraging our compute
budget of n possible samples (in practice we take n = 2 x k) to have the best unbiased estimator
(we use Codex (Chen et al.| [2021b)) pass@k estimator).

This leads us to the following definitions of the estimators Corr@k and BckTr@k:

1. Corr@f estimator that at least one of k LLM attempts satisfies dataclass correction
1- (") where {c = >"" , I(Corr is satisfied for D;),
(v) Di ~ D (P, 5)).

2. BekTr@QFk estimator that at least one of k LLM attempts satisfies backtranslation of the
dataclass methods

Corr=E pop
5,€8(P)

Corr = E P~P
SleS(P)

n—c _ n . . )
1— ( k ) . where {c =" I(BckTr is satisfied for D;),
() Di ~ Drru(P,S1).
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A.2 COMPLEXITY METRICS

A.2.1 COMPLEXITY PREDICTION METRICS

The first evaluation task, Complexity Prediction, involves predicting the time and space complexity
of a problem given its description and a human solution. The metrics for this task are defined as
follows:

* Pass@k: Measures the accuracy of correctly predicting the complexity class for each
problem, macro-averaged across complexity classes and then across problems. The
unbiased estimator among k samples is used.

* Best@k: Measures accuracy only for the most optimized complexity class of each
problem, using the unbiased estimator among &k samples.

* All@Kk: Requires correct complexity output across all complexity classes simultaneously
for each problem, using the unbiased estimator among &k samples.

We share below more formal definitions of these metrics. First, we define the following setup for the
task, on top of the general set up of coding problems involving problems P ~ P and corresponding
human solutions S ~ S(P) as introduced in Section[A.1}

* C: Set of complexity classes (e.g., time, space).

* For each problem P, C(P) C C: Subset of complexity classes relevant to P. This set
is determined in our case using the complexity framework on the ground truth human
solutions, and post-processing the distribution of complexity classes (typically to remove
any obvious outlier).

* H(P, c): Set of human solutions for problem P and complexity class ¢ € C(P).

* S’: LLM-generated solution containing the predicted complexity for the given human
code S and problem P. This solution is generated by the LLM S’ ~ Dy 1 (P, S).

* (G the function that extracts the ground-truth label assigned to the human code, the very
same complexity that we are trying to predict using the LLM.

* parse(S’): Parsing function that extracts the predicted complexity of class ¢’ from S’.
* Leomect (S, S, P): Indicator function equal to 1 if parse(S’) = G(.9), else 0.

That said, we define the above introduced metrics as the following:

1. Pass@k: Measures correctness for each complexity class of each problem independently,
averaged over all classes and problems. Correctness of having at least one correct solution
out of k attempts, using a sampling budget of n > k (usually using n = 2 x k):

<n—cc>
1 k
Pass@k = Ep.. 1l—-—— ,
ass P~P |C(P)| CGCZ(P) <Tl)

k

where c.. is the count of times the LLM found the correct solution, that is to say labeled the
complexity class of the human solution correctly:

Ce = Z]Icorrect(sl{; Slv P)v

i=1
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and S is a human solution from the same problem and complexity class S1 € H(P, ¢).

2. Best@k: Evaluates correctness only for the best (e.g., most efficient) complexity class per
problem, in particular the probability of getting one correct answer among k answers:

n-— ccbesl
k
Best@k =Ep.p |1 — —F+—% |,
n
(-
where c.,,., 1s the count of times the LLM found the correct solution, that is to say labeled

the complexity class of the human solution correctly, only for the best class of complexity
Cpest for each problem:

Chest — Z]Icorrect(sl{; Sla P)a

i=1

with cpeq(P) is the most optimized complexity class for P, and S7 € H(P, cpest(P))

3. Al@k: Joint accuracy across all complexity classes. It requires correctness for all
complexity classes simultaneously:

(n - Cal])
k
All@k = Epop |1 - =1,
(3

Call = i]l n ]Icorrect(Sz{a Sca P)
=1

ceC(P)

where
with S, € H(P,c).

n—c )
These metrics all use the unbiased estimator 1 — <7]2 from|Chen et al. (2021b)), where n is the

k
total number of samples, and c, is the count of valid samples, usually parametrized by a complexity
class for instance.

A.2.2 COMPLEXITY GENERATION METRICS

The second task, Complexity Generation, involves generating solutions that meet specific complex-
ity requirements. The metrics are defined as follows:

* Pass@k: Measures performance of generating a correct solution that meets each complex-
ity class requirement independently, averaged over all classes and problems.

* Best@k: Measures generation correctness for the most optimized complexity class per
problem.

* All@k Requires the solution to meet all complexity classes simultaneously for each
problem.

For each problem P ~ P:
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C(P): Set of complexity classes (e.g., time and/or space) that exist for a particular problem.

 S’: Generated solution by the LLM. We can write S’(P, ¢) or S’ ~ Dp (P, ¢) to precise
that the generation of the LLM is conditioned on a particular problem P and a requested
complexity class c for the solution.

* Leomect(S’, P): 1 if S passes all tests associated with problem P which means it is
evaluated as a correct solution to the coding challenge, 0 otherwise (therefore this does not
take into account the complexity of the generated solution).

o Lopass(S', ¢, P): 1 if S” meets complexity class ¢ € C(P), 0 otherwise. This does not
depend on the correctness of the solution with respect to the coding challenge P alone.
So a solution that compiles, runs and produces wrong results can potentially meet the
complexity requirement.

In this context, we can define the following metrics associated with the task of complexity
generation:

¢ Pass@Kk:

(")
1 k
Pass@k = Ep_p ezl Sooli-~—+4 1],

et (n)
C
k

where ¢ = 1| Laass (51, ¢, P) X Leoprect (S2, P).
¢ Best@k:

TV — Cpest
k
Best@k = Epp |1 -~ " /|
n
(+)
where chest = iy Lotass(S7, Coest(P)s P) X Leomeet (St P), and cpest(P) is the most

1
optimized class in C(P).

* All@k:

N — Can
k
All@k=FEp_p |1 -~ "7

() |

where ¢ = >, HCEC(P) Leorrect (S ¢ P) X letass (S} ., ¢, P) with S} . ~ Dppa (P, c).

A.2.3 COMPLEXITY RANKING METRICS

Concerning the Complexity Ranking Task, as explained in the main manuscript, the prompt is mod-
ified so to query the model for the complexity generation task, with an optimization addition - the
model needs to generate correct code, with correct complexity, as optimized as possible while ad-
hering to this complexity requirement.

To formalize the metrics of this task, we add the following elements to the formalism defined in the
previous subsections:

* H(P,c): Set of human solutions for problem P and complexity class ¢ € C(P).

22



Under review as a conference paper at ICLR 2026

* coeff(S, P, c): Complexity coefficient of solution .S for problem P and class ¢ (lower is
better).

* best_coeffr (P, c): Best coefficient from n = 20 LLM-generated solutions for
P and c¢. This is obtained by sampling S7,55,...S5., ~ Drru(P,c¢) and ranking
coeff(S1, P, ¢), coeff(S%, P, c), . ..coeff(S!, P, c).

n?

* Leomect(S’, P) has the exact same definition as for the complexity generation task. It
measures whether the generated solution is correct for a given problem given its I/O test
cases.

* Lopass(S’, ¢, P) has the exact same definition as for the complexity generation task. It
measures whether a generated solution respects the complexity class it was conditioned
upon.

We now introduce the following metrics. Pass@k, Best@k and All@k have the same definitions as
in the complexity generation task:
n—ce
k

1
Pass@k = Ep_p | —— IR
- o |C(P)|ce%<:z>) (n)
i k

¢ Pass@Kk:

where c. = >0 Tejass (S%, ¢, P) X Leorreet (S2, P).
¢ Best@k:

TV — Cpest
k
Best@k =Ep.p [l — —% |,
n
(+)
where Chest = D iq Letass (S, Coest(P), P) X ILeomect(S%, P), and cpest(P) is the most
optimized class in C(P).

* All@k:

N — Call
k
All@ek =Ep.p |1 - —%

n )
k
where ¢, = Z:L:l HcEC(P) ]Icmect(S{ P) X ]IClaSS(SZf’C, c, P) with Sz{,c ~ DLLM(P, C).

7,¢)

* COEFF: Percentile ranking against human solutions of the same problem and complexity
class. It compares the LLM’s best coefficient to human solutions in the same class. This
metric uses a fixed sampling budget of size n (in our experiments we take n = 20):

COEFF = Epp, ccc(p) [rankrrar (P, c)],

where:

[{h€H (P,c)]|coeff(h, P,c) >best_coeffr, 1 v (P,c) }| 100 if 35" valid
rankLLM(P, C) = {0 |H(P,c)| X 1 valid,

otherwise.

In addition, we also introduce COEFF,,,s¢rscct (and distinguish it from COEFF by denoting
the latter one as COEFF,,;) as the expectation used in the definition of COEFF restricted

23



Under review as a conference paper at ICLR 2026

to a subset of problems and complexity classes. For the set M* of stared models of the
complexity ranking table, we define the set of problems P’ as the collection of problems
P from P where there exists at least one complexity class c associated with P, to that for
every model M in the set M*, sampling n solutions from M on P and c yields at least
one valid solution. Formally:

P — {P € P |3ceC(P),YM € M*, Leorreee( S5, P) % Letass (S} ¢, P) > 1
=1

where S, ~ Dy, (P, c)}

Similarly, we define the set of corresponding complexity classes C’(P) where all models
are indeed producing at least one correct sample code. For any P € P’, we define C'(P):

C/(P) - {C G C(P) | VM E M*,Zﬂconect(séyp) X HclaSS(Sz{7cv P) Z 1

i=1

where S ~ Dy (P, c)}
Based on that, COEFF;,,;c, e can formalized as:

COEFF;tersect = ]EPNP/, ceC’(P) [rankLLM(P7 C)]

where we are using the above definition of ranky ;s (P, ¢).

Note that the COEFF metric uses the best coefficient from n (20 in practice) LLM attempts and
ranks it against human solutions in the same complexity class. A higher percentile means the LLM’s
solution is more optimized than most human solutions. The Intersec subset ensures comparisons are
only made when all models have at least one valid solution, avoiding skewed rankings from partial
failures. We are selecting models that are good enough in the first place so to make the subset viable
and interesting (it has to contain enough samples in the first place). Finally, the unbiased estimator

o remains consistent with prior work (Chen et al.,|[2021b).
:
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B TIME AND SPACE COMPLEXITY DEFINITIONS

B.1 INTRODUCTION ON THE NOTION OF COMPLEXITY

When writing software, it is crucial to understand how our algorithms perform with different input
sizes. Complexity analysis helps us:

1. Predict performance on large inputs, so to understand how the code would behave in run-
time and memory footprint on large untested inputs.

2. Compare different algorithms objectively, not on a few example cases but in a generalized
case.

3. Identify optimization opportunities.

Big O notation describes how an algorithm’s requirements (time or space) grow as input size in-
creases. It focuses on:

* Worst-case scenario: Maximum required resources
* Growth rate: How needs scale with input size n

» Upper bound: Simplified representation of complexity

When analyzing time complexity, we simplify our analysis by focusing on the fundamental growth
pattern rather than exact measurements. Constant factors are disregarded because they do not affect
the overall growth rate - an algorithm that takes 2n operations and one that takes 100n operations
are both considered O(n) since their linear scaling behavior is identical. Similarly, lower-order
terms become insignificant as input sizes grow large; for example, O(n? + n) simplifies to O(n?)
because the quadratic term dominates the growth pattern. Ultimately, we focus on identifying the
dominant term - the component of the complexity expression that grows fastest with input size - as
this determines the algorithm’s scalability characteristics in the worst-case scenario.

B.2 ALGORITHMIC EXAMPLES

Time complexity measures how the number of operations grows with input size. Below are listed a
few examples of Python codes that belong to various time complexity classes:

Constant Time (O(1))
Algorithms with constant time complexity execute in the same time regardless of input size. This is
achieved through direct access operations, like retrieving the first element of an array:

def get_first_element(arr):
return arr[0] # Execution time remains constant

Logarithmic Time (O(log n))
Logarithmic algorithms reduce the problem size exponentially with each step. Binary search demon-
strates this by halving the search space each iteration:

def binary_search (arr, target):
low, high = 0, len(arr)-1
while low <= high:
mid = (low + high) // 2
if arr[mid] == target:
return mid
low = mid + 1 if arr[mid] < target else high = mid - 1
return -1

Linear Time (O(n))
Linear algorithms scale directly with input size, requiring a single pass through all elements:
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def sum_elements(arr):
total = 0
for num in arr: # Processes each element exactly once
total += num
return total

Linearithmic Time (O(n log n))
This complexity combines linear and logarithmic growth, seen in efficient sorting algorithms like
merge sort:

def merge_sort(arr):
if len(arr) > 1:
mid = len(arr) // 2
left = merge_sort(arr[:mid]) # Divide phase
right = merge_sort(arr[mid:]) # O(log n) divisions
return merge(left, right) # O(n) merging
return arr

Quadratic Time (O(n?))
Nested iterations over input data characterize quadratic complexity, as seen in bubble sort:

def bubble_sort(arr):

n = len(arr)
for i in range(n): # Outer loop (O(n))
for j in range(n-i-1): # Inner loop (O(n))
if arr[j] > arr[j+1]: # Comparison operation
arr[j], arr[j+1] = arr[j+1], arr[j]

return arr

Exponential Time (O(2))
Algorithms with exponential complexity double their runtime with each new element, exemplified
by naive Fibonacci calculation:

def fib(n):
if n <= 1: # Base case
return n

return fib(n-1) + fib(n-2) # Recursive branching

Factorial Time (O(n!))
The most resource-intensive complexity class grows factorially, demonstrated by permutation gen-
eration:

from itertools import permutations

def all_permutations (arr):
return list(permutations(arr)) # Generates n! combinations

Space complexity examines the growth of memory usage with input size. Key considerations
include auxiliary space, input storage, and recursion stack usage. Below are a few examples in
Python code of various space complexity classes:

Constant Space (O(1))
Algorithms using fixed memory regardless of input size:

def swap(a, b):
a, b=>b, a # Temporary variables only
return a, b
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Linear Space (O(n))
Memory usage scales directly with input size, as in array copying:

def create_copy (arr):
copy = [x for x in arr] # New array of same size
return copy

Quadratic Space (O(n?))
Memory grows with input squared, typical for 2D arrays:

def create_matrix(n):
return [[0 for _ in range(n)] for _ in range(n)] # n x n grid

Logarithmic Space (O(log n))
Efficient divide-and-conquer algorithms use logarithmic space:

def binary_tree_depth (node):
if not node:
return 0
return 1 + max( # Single recursive branch at a time
binary_tree_depth (node. left),
binary_tree_depth (node.right)

Recursive Space Considerations
Recursive implementations have hidden stack costs. The Fibonacci example shows O(n) space de-
spite O(2™) time:
def recursive_fib(n):
if n <= 1:
return n
return recursive_fib(n-1) + recursive_fib(n-2)

Each recursive call adds a stack frame, creating O(n) space complexity from the maximum recursion
depth.

B.3 BIG-O VERSUS BIG-THETA

It is important to notice that not only does big-O notation exist but also big-Theta and big-Omega. In
mathematical analysis, these notions are clearly defined over a single-variable function (or at least a
function on an input space with a well-defined ordering) as respectively an upper bound, a tight both
upper and lower bound, and a lower bound. The problem is that these notions do not clearly translate
to the domain of programming given that in many cases programs take a variety of inputs that are
not clearly ordered (this is the case for example for a function that takes an integer and a dictionary,
or a function that takes an integer and a list where it is not clear whether a list gets “bigger” when
elements of the list grow in size versus when the list itself grows, not to mention how the content of
the list input may intertwine with the integer input). For this reason, programming refers to “running
cases”, where a running case can be seen as a generator of inputs parametrized by a single variable
(the size), and can be denoted as “best-running case” when running the program on this case across
many sizes leads to the best time execution (or memory footprint) curve. For a well-defined running
case g of the code program f, this enables to close the gap with the well-defined mathematical
analysis definition as f o g is now a single-variable function of a correctly ordered input space.

In this context, programming does have to take into account best, average and worst running cases
when talking about big-O, big-Theta and big-Omega notations. Talking about general big-Theta
behavior of a program is not defined in many programming cases, as this would require the program
to have the same big-Theta behavior across all running cases, if we were to generalize the definition.
For example, Quick Sort has a best running case complexity in O(1) and worst running case com-
plexity in O(n?), which means no clear big-Theta behavior is generally defined for this program: in
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this case, the query “predict the big-Theta complexity of this program” is not clearly defined. For
this reason, we chose to adhere to the commonly accepted definition in programming of assuming
that:

* BigO is used to describe the worst running case complexity of a piece of code, that is to
say the tightest possible lower bound of this running case.

* BigTheta is used to describe a tight bound, that exists only when the algorithm does behave
the same on any type of input.

* BigOmega is used to describe the best running case complexity, that is to say the tightest
possible upper bound of this running case.

On top of that, we underline that the goal of the BIGO(BENCH) benchmark is also to reflect the
usability of LLMs in practice, and provide an accurate measure of the performance of LLMs when
being queried by daily users. Choosing a prompt that does not involve too many definitions, though
it may leave some unclarities and ill-defined terms, ensures we better capture how the LLM perfor-
mance will be perceived by users.

More ablations on the task prompts, including how we refer to the notion of complexity, are pre-
sented in Section[Cl
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C ABLATIONS ON TASK PROMPTS

We ran ablations on the prompts, for each task, comparing the performance on a reasoning (tak-
ing QWEN QWQ 32B) and a non-reasoning model (LLAMA 3.3 70B). The following subsections
provide the types of prompts that were used (every time the example corresponds to the time com-
plexity variant, given that the space complexity variant can easily be derived from it; similarly, given
the complexity prediction variant, the complexity generation variant can also be derived in a simple
manner).

C.1 ORIGINAL BIGOBENCH PROMPT - TIME COMPLEXITY PREDICTION

Provide the time complexity for the following competitive programming question and corresponding
solution.

When analyzing the complexity of an algorithm, consider the worst-case scenario where all possi-
ble input combinations are tried, given the following conditions: 1. the inputs must adhere to the
specified data types of the problem; 2. the inputs should not cause the code to crash or exit on an
exception; 3. the inputs do not necessarily need to satisfy additional constraints that are potentially
mentioned in the problem statement; 4. calling input() does not consume runtime nor memory, but
of course any operations on top of it or afterwards will be counted towards runtime and memory
footprint; 5. Anything printed gets added to the memory. You can take advantage of Python-specific
optimizations provided by the underlying CPython interpreter or compiler to achieve the desired
complexity, and you must account for them when analyzing the complexity.

Here is the programming question: context.
Here is the corresponding Python solution: code_content.

Please ignore any constraints on the input sizes that may have been previously mentioned in the
problem description. Compute the big-O complexity as if inputs can be as large as possible.

Output the big-O time complexity only, no explanation needed, no other words needed.

C.2 BIG-THETA VARIANT - TIME COMPLEXITY PREDICTION

Provide the time complexity for the following competitive programming question and corresponding
solution.

When analyzing the complexity of an algorithm, consider the worst-case scenario where all possi-
ble input combinations are tried, given the following conditions: 1. the inputs must adhere to the
specified data types of the problem; 2. the inputs should not cause the code to crash or exit on an
exception; 3. the inputs do not necessarily need to satisfy additional constraints that are potentially
mentioned in the problem statement; 4. calling input() does not consume runtime nor memory, but
of course any operations on top of it or afterwards will be counted towards runtime and memory
footprint; 5. Anything printed gets added to the memory. You can take advantage of Python-specific
optimizations provided by the underlying CPython interpreter or compiler to achieve the desired
complexity, and you must account for them when analyzing the complexity.

Here is the programming question: context.
Here is the corresponding Python solution: code_content.

Please ignore any constraints on the input sizes that may have been previously mentioned in the
problem description. Compute the big-Theta complexity as if inputs can be as large as possible.

Output the big-Theta time complexity only, no explanation needed, no other words needed.

C.3 DETAILED Bi1G-O VARIANT - TIME COMPLEXITY PREDICTION

Provide the time complexity for the following competitive programming question and corresponding
solution.
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When analyzing the complexity of an algorithm, consider the worst-case scenario where all possi-
ble input combinations are tried, given the following conditions: 1. the inputs must adhere to the
specified data types of the problem; 2. the inputs should not cause the code to crash or exit on an
exception; 3. the inputs do not necessarily need to satisfy additional constraints that are potentially
mentioned in the problem statement; 4. calling input() does not consume runtime nor memory, but
of course any operations on top of it or afterwards will be counted towards runtime and memory
footprint; 5. Anything printed gets added to the memory. You can take advantage of Python-specific
optimizations provided by the underlying CPython interpreter or compiler to achieve the desired
complexity, and you must account for them when analyzing the complexity.

Here is the programming question: context.
Here is the corresponding Python solution: code_content.

Please ignore any constraints on the input sizes that may have been previously mentioned in the
problem description. Compute the big-O complexity as if inputs can be as large as possible.

The big-O complexity is the time complexity of the program when running on the worst case, which
means you may want to find the worst running case first, and then find its corresponding time com-
plexity, that you need to output in big-O format. For example, if the worst case is in the order of
nlogn, do output precisely O(nlogn), as O(n**2) will be considered too high of an upper bound
(though mathematically speaking one could say that what is O(nlogn) is also O(n**2)). Find the
tightest possible upper bound in big-O notation.

Output the big-O time complexity only, no explanation needed, no other words needed.

C.4 COT BIG-O VARIANT - TIME COMPLEXITY PREDICTION

Provide the time complexity for the following competitive programming question and corresponding
solution.

When analyzing the complexity of an algorithm, consider the worst-case scenario where all possi-
ble input combinations are tried, given the following conditions: 1. the inputs must adhere to the
specified data types of the problem; 2. the inputs should not cause the code to crash or exit on an
exception; 3. the inputs do not necessarily need to satisfy additional constraints that are potentially
mentioned in the problem statement; 4. calling input() does not consume runtime nor memory, but
of course any operations on top of it or afterwards will be counted towards runtime and memory
footprint; 5. Anything printed gets added to the memory. You can take advantage of Python-specific
optimizations provided by the underlying CPython interpreter or compiler to achieve the desired
complexity, and you must account for them when analyzing the complexity.

Here is the programming question: context.
Here is the corresponding Python solution: code_content.

Please ignore any constraints on the input sizes that may have been previously mentioned in the
problem description. Compute the big-O complexity as if inputs can be as large as possible.

Break down the analysis into these steps: 1. Identify all loops, recursive calls, and operations depen-
dent on input size; 2. Explicitly state the time complexity of each Python-specific operation (e.g.,
list appends, dictionary lookups, sorting); 3. Assume all inputs are adversarially chosen to maxi-
mize runtime (e.g., hash collisions, worst-case comparisons); 4. Account for memory allocations
(e.g., dynamic array resizes, string concatenation costs); 5. If recursion is used, include the cost
of stack frames and potential tail-call optimizations; 6. Treat all arithmetic operations as O(1), but
flag if arbitrary-precision integers could introduce hidden costs; 7. For nested operations, multiply
complexities conservatively (e.g., O(n) loops inside O(n) loops = O(n?)); 8. Ignore Python’s global
interpreter lock (GIL) and concurrency effects; 9. Explicitly confirm whether built-in functions like
sorted() or re.search() are treated as black-box with known complexities; 10. Final answer must be
the tightest possible upper bound in big-O notation, even if the problem’s original constraints imply
smaller inputs.

Output the big-O time complexity at the end.
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C.5 ORIGINAL BIGOBENCH PROMPT - TIME COMPLEXITY RANKING

Provide a Python solution for the following competitive programming question: context.

Output the code only. Generate code that has an algorithmic time complexity of time_complexity.
Try to optimize the runtime of your code as much as you can, while respecting the time complexity
requirement.

When analyzing the complexity of an algorithm, consider the worst-case scenario where all possi-
ble input combinations are tried, given the following conditions: 1. the inputs must adhere to the
specified data types of the problem; 2. the inputs should not cause the code to crash or exit on an
exception; 3. the inputs do not necessarily need to satisfy additional constraints that are potentially
mentioned in the problem statement; 4. calling input() does not consume runtime nor memory, but
of course any operations on top of it or afterwards will be counted towards runtime and memory
footprint; 5. Anything printed gets added to the memory. You can take advantage of Python-specific
optimizations provided by the underlying CPython interpreter or compiler to achieve the desired
complexity, and you must account for them when analyzing the complexity.

Your code should be enclosed in triple backticks like so: “‘python YOUR CODE HERE “*. Use the
backticks for your code only.

C.6 PYTHON SPECIFICATIONS BIG-O VARIANT - TIME COMPLEXITY RANKING

Provide a Python solution for the following competitive programming question: context.

Output the code only. Generate code that has an algorithmic time complexity of time_complexity.
Try to optimize the runtime of your code as much as you can, while respecting the time complexity
requirement.

When analyzing the complexity of an algorithm, consider the worst-case scenario where all possi-
ble input combinations are tried, given the following conditions: 1. the inputs must adhere to the
specified data types of the problem; 2. the inputs should not cause the code to crash or exit on an
exception; 3. the inputs do not necessarily need to satisfy additional constraints that are potentially
mentioned in the problem statement; 4. calling input() does not consume runtime nor memory, but
of course any operations on top of it or afterwards will be counted towards runtime and memory
footprint; 5. Anything printed gets added to the memory. You can take advantage of Python-specific
optimizations provided by the underlying CPython interpreter or compiler to achieve the desired
complexity, and you must account for them when analyzing the complexity.

As additional specifications: 1. Python Version - The code must be compatible with Python 3.10.0,
avoid using features deprecated in this version or introduced in later versions, you can leverage
the optimization that are proper to this version; 2. Libraries Allowed - You may use standard
libraries (e.g., itertools, collections, math) and third-party libraries (e.g., NumPy, pandas) to op-
timize performance (For example, use numpy for vectorized operations on numerical data (e.g.,
np.where, np.concatenate), use collections.defaultdict for faster dictionary-like structures with de-
fault values. . .); 3. Memory Constraints - Avoid unnecessary copies of large data structures, Prefer
in-place operations where possible (e.g., list.sort() instead of sorted() for large lists); 4. Edge Cases -
Assume inputs adhere to the problem’s data types and constraints (e.g., non-negative integers, valid
strings) but do not need to handle invalid cases (e.g., non-integer inputs where integers are expected);
5. Output Handling - Minimize printing intermediate results to reduce memory overhead. Use gen-
erators or lazy evaluation (e.g., yield) for large datasets. Your code must still adhere strictly to the
specified time complexity and avoid unnecessary operations.

Your code should be enclosed in triple backticks like so: “‘python YOUR CODE HERE ““*. Use the
backticks for your code only.

C.7 ABLATION RESULTS

Taking all these variations of the tasks’ formulations in account, BIGO(BENCH) scores can be re-
evaluated for each model. Table [5]compares prompt results across complexity prediction and gen-
eration, while Table [6] look at the complexity ranking task. For all tasks, only the time complexity
version was tried out.
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As seen on these figures, the reasoning model’s performance on Time Complexity Prediction de-
creased slightly with the big-Theta and detailed big-O variants, and significantly with the COT-
prompted variant, reaching an All@1 score of 31.8 (compared to the official BigOBench score of
40.4). The non-reasoning model’s performance also decreased slightly with the big-Theta variant,
but improved with the detailed big-O and COT variants, reaching 36.1 All@1. We believe that shar-
ing more details with the reasoning model leads to overthinking, while the non-reasoning model
benefits from the added context. The non-reasoning model’s performance, even with COT, remains
significantly lower than the reasoning model’s.

In the case of Time Complexity Generation, the non-reasoning model falls short of seeing any im-
provements with the different prompt variants. We believe the performance is so low (3.3 All@1
for Llama 3.3 70B) that even sharing slightly more details can not help a model that simply does
not grasp the objective of the task. In the case of the reasoning model, we do see an improvement
using the variants, up to scores of 11.7 All@1 with the big-Theta variant. The base reported score
of Qwen QwQ on this task is 9.6 All@ 1, which in our intuition means the model starts to grasp the
task, though it lacks guidance compared to the Complexity Prediction equivalent (40.4 All@1). In
this case, we believe the added details to the prompt helps the model perform better while staying
far from overthinking. It also helps put more focus on the complexity requirement compared to code
correctness, given that a manual error analysis underlined the models often lose focus from the first
objective during the reasoning process.

Finally, adding python specifications to the prompt resulted in a marginal improvement in perfor-
mance (up to +2 coeffFULL for Qwen QwQ).

Table 5: BIGO(BENCH) benchmark results for variation of the task prompts on a reasoning model
(QWEN QwQ 32B) and a non-reasoning model (LLAMA 3.3 70B). Program Synthesis checks
the correctness of model-generated solutions to given programming problems, not taking into ac-
count any complexity requirement. Complexity Prediction measures whether a model can find the
time-space complexity of an existing code snippet. Complexity Generation evaluates whether a
model can output a working code snippet to a given problem that meets a time-space complexity re-
quirement. Pass@Fk considers each complexity class of all problems independently and calculates a
macro-average between them. Best@QF is a refinement of Pass@k, focusing only on the most opti-
mized complexity class for each problem. AllQFk checks if all complexity classes for each problem
are correctly predicted or generated simultaneously, then macro-averages across all problems.

PROG. SYNTHESIS COMPLEXITY PRED. COMPLEXITY GEN.
MODEL PAss PAss PAss BEST ALL PAss PASs BEST ALL
@l @10 @l @l @l @l @10 @l @l
QWEN QWQ
BIGOBENCH PROMPT 60.7 75.8 62.7 72.2 40.3 26.9 509 37.8 8.3
BIG THETA 58.4 74.8 62.0 714 399 28.8 52.1 373 11.7
BIGO WITH MORE DETAILS 58.4 74.7 61.9 70.8 39.5 26.7 51.3  36.7 8.8
B1GO wiTH COT 57.9 74.1 57.1 629 31.8 27.0 51.6 363 9.7
LrAMA 3.3
BIGOBENCH PROMPT 34.0 54.9 58.0 723 33.7 13.1 31.3 19.1 2.1
BIG THETA 33.5 54.8 57.2 727 32.1 12.3  30.8 185 1.8
BIGO WITH MORE DETAILS 33.5 54.5 59.9 73.6 355 12,5  31.1 18.3 1.9
B1GO wiTH COT 37.0 62.4 59.3  68.1 36.1 14.1  37.5 203 2.2
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Table 6: BIGO(BENCH) benchmark results for variation of the task prompts on a reasoning model
(QWEN QwWQ 32B) and a non-reasoning model (LLAMA 3.3 70B). Program Synthesis checks the
correctness of model-generated solutions to given programming problems, not taking into account
any complexity requirement. Complexity Ranking evaluates whether a model can output a work-
ing code snippet to a given problem that meets a time-space complexity requirement, while being
as optimized as possible within this complexity class of solutions. Pass@k considers each com-
plexity class of all problems independently and calculates a macro-average between them. BestQFk
is a refinement of Pass@Qk, focusing only on the most optimized complexity class for each prob-
lem. AllQFk checks if all complexity classes for each problem are correctly predicted or generated
simultaneously, then macro-averages across all problems. Finally for C'oef f Full, using the com-
plexity framework, the best measured coefficient of the complexity curve, out of 20 attempts, is
used to rank LLM-generated code among human solutions from the same problem and time-space
complexity class. Ranking is percentile based, n% ranking score amounts for n% human solutions
having worse complexity coefficient. If no LLM solution passes correctness tests, ranking score is
setto 0.

PROGRAM SYNTHESIS COMPLEXITY RANKING
MODEL PAss PASS PAss Pass BEST ALL COEFFFULL
@1 @10 @1 @10 Q1 Q1
QWEN QWQ
BIGOBENCH PROMPT 68.8 82.8 27.7 548 40.6 6.9 48.1
BIGO WITH PYTHON DETAILS 68.9 82.5 26.6 553 37.7 6.6 49.8
Lrama 3.3
BIGOBENCH PROMPT 36.3 58.8 13.6 33.4 20.1 2.1 29.5
B1GO WITH PYTHON DETAILS 33.8 57.0 109 328 164 1.4 30.2
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D MULTI-SAMPLE RESULTS SCORES

For any of the metrics defined for the tasks of Complexity Prediction, Complexity Generation and
Complexity Ranking, the models are queried multiple times in order to provide accurate unbiased
estimators for each of those metrics. In the specific case of Complexity Prediction, we do only
report @1 scores: this is because this task remains a classification and not a generative task, having an
output space small and fixed, in which case repeated sampling would conflate model uncertainty with
true performance, instead of reflecting some true exploration capabilities such as in code generation.

As defined in Section[5|and in Section[A] we define Pass@k for Complexity Generation for example
following the definition of |(Chen et al.|(2021a):

(")

1 k

Pass@k = Epp | ——— 1-~"_Z ||,
k

where c. = >0 Tejass(S%, ¢, P) X Leorreet (S7, P).

Table 7: BIGO(BENCH) benchmark results for popular LLMs on the tasks of Program Synthesis
and Complexity Generation, with multiple @k estimators. Program Synthesis checks the cor-
rectness of model-generated solutions to given programming problems, not taking into account any
complexity requirement. Complexity Generation evaluates whether a model can output a working
code snippet to a given problem that meets a time-space complexity requirement. Pass@QFk consid-
ers each complexity class of all problems independently and calculates a macro-average between
them. BestQk is a refinement of Pass@Fk, focusing only on the most optimized complexity class
for each problem. All@Fk checks if all complexity classes for each problem are correctly predicted
or generated simultaneously, then macro-averages across all problems.

PROG. SYNTHESIS COMPLEXITY GEN.
MODEL PASS PASs  Pass PASS PASS  Pass BEST BEST BEST ALL ALL ALL
@l Q@5 @10 Q1 @5 @10 Q1 @5 @10 @l Q@b @10
TIME
BASELINES 30.3 485 554 12.1 237 297 19.0 335 403 09 37 6.0
LrLAMA 3.3 70B 434  60.7 66.0 17.7 329 40.0 25.7 41.8 47.8 33 9.5 13.9
LLAMA 4 ScouT 17BX16E 61.7 76.9 80.1 22.8 40.5 48.0 31.8 50.8 58.2 3.5 10.7 16.2
LLAMA 4 MAVERICK 17BX128E 59.3 74.6 789 19.9 37.0 44.6 27.0 45.9 52.4 5.3 12.1  17.1
GEMMA 3 27B 37.7 437 456 15.2 19.3  20.8 17.6 21.9 23.4 1.8 3.2 3.9
CODESTRAL 22B 23.7 405 475 10.6 21.2 26.6 14.9 27.6 33.8 1.3 4.3 6.4
QWEN2.5-CODER 32B 30.5 453 508 122 220 265 15.2 26.8 31.5 3.1 6.6 8.7
GPT-40 51.0 73.1 78.3 20.6  37.5 447 30.2 51.9 59.5 4.3 11.7 16.4
DEEPSEEKCODERV?2 236B 44.1  60.5 655 19.5 323 38.0 27.6  43.0 48.7 3.3 8.1 11.8
DEEPSEEKV3 671B 414 584 636 17.7 315 377 23.0 39.6 462 3.4 89 12.2
DEEPSEEKR1 QWEN 32B 70.1 81.2 837 29.0 44.1 49.9 46.1 61.7 66.0 4.8 147  21.0
DEEPSEEKR1 LLAMA 70B 70.1 81.3 838 292 453 516 46.5 63.4 68.4 4.8 15.5 226
LLAMA 3.1 NEMOTRON-ULTRA 253B 80.0 88.1 89.4 33,5 49.0 549 51.8 66.5 71.5 6.1 16.8 23.2
QWEN3 32B 70.0 79.4 81.3 29.1 47.2  53.8 43.5 61.9 67.2 6.5 19.0 26.1
SPACE
BASELINES 30.1 46.8 52.6 122 253 324 17.8 32.7 40.0 1.3 5.4 8.9
LLAMA 3.3 70B 42.6  58.1 625 15.0 30.6 37.7 219 387 452 1.8 62 10.0
LLAMA 4 ScouT 17BX16E 56.7 703 735 20.0 343 40.1 31.1 479 539 22 82 12.8
LLAMA 4 MAVERICK 17BX128E 584 720 757 16.8 247 282 304 412 452 0.8 3.0 4.6
GEMMA 3 27B 40.3 469 49.0 16.2  22.1 243 22.5 29.8 31.9 1.4 35 5.1
CODESTRAL 22B 257 414 476 11.0 233 294 16.7 31.1 37.1 1.3 53 8.8
QWEN2.5-CODER 32B 31.1 446 492 10.1 19.2 233 15.3 26.4 30.5 1.2 4.0 6.2
GPT-40 51.6 70.8 744 18.1 33.7 399 28.0 47.0 53.0 1.4 6.0 10.1
DEEPSEEKCODERV?2 236B 43.1 58.8  63.8 16.7 29.0 345 25.6 40.0 45.0 1.0 4.1 7.0
DEEPSEEKV3 671B 41.8 579 625 15.0 29.1 35.4 22.6 40.4 46.8 1.6 5.6 8.8
DEEPSEEKR1 QWEN 32B 68.0 78.7 80.6 248 419 48.6 38.6 58.7 64.3 3.1 11.4 17.8
DEEPSEEKR1 LLAMA 70B 68.8 79.3 81.2 25.6 434 500 38.7 59.1 64.6 3.4 12.2  18.8
LLAMA 3.1 NEMOTRON-ULTRA 253B 777 852 86.4 30.4 487 555 453 656 709 5.6 16.4 23.7
QWEN3 32B 659 755 717 25.5 419 4738 39.6 587 642 5.1 14.0 19.5

The main results are summarized in Table 2] which includes pass@ 10 scores for program synthesis
and complexity generation scores. On top of it, we present in Table [7/|more details on performance
when the generation budget allows for multiple attempts (note that for 01-MINI, due to limited
inference budget, we could not retrieve the scores at higher @k values). For Program Synthe-
sis, we include pass@{1, 5,10} scores, along with best@{1, 5,10} and all@{1, 5,10} scores for
Complexity Generation and Complexity Ranking.
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Table 8: BIGO(BENCH) benchmark results for popular LLMs on the tasks of Complexity Genera-
tion, with multiple @k estimators, where @5 and @10 are displayed relative to the corresponding @1
score. Complexity Generation evaluates whether a model can output a working code snippet to a
given problem that meets a time-space complexity requirement. Pass@Fk considers each complexity
class of all problems independently and calculates a macro-average between them. AllQFE checks
if all complexity classes for each problem are correctly predicted or generated simultaneously, then
macro-averages across all problems.

COMPLEXITY GEN.

MODEL PASS PAssS PASS ALL ALL ALL
Q1 @b Q@10 Q1 (@) @10

TIME

LLAMA 3.3 70B 17.7 +85.8% +126.2% 3.3 +183.4% +315.0%
LLAMA 4 ScouT 17BX16E 22.8 +77.4% +110.4% 3.5 +206.8% +365.2%
LLAMA 4 MAVERICK 17BXx128E 19.9 +86.4% +124.8% 5.3 +127.9% +221.0%
GEMMA 3 27B 15.2 +27.1% +37.5% 1.8 +81.7% +122.6%
CODESTRAL 22B 10.6  +100.5% +151.6% 1.3 +222.8% +382.2%
QWEN2.5-CODER 32B 12.2 +80.0% +116.6% 3.1 +114.1% +182.4%
GPT-40 20.6 +81.5% +116.4% 4.3 +170.8% +280.0%
DEEPSEEKCODERV?2 236B 19.5 +66.0% +95.0% 3.3 +141.1% +252.6%
DEEPSEEKV3 671B 17.7 +782% +113.3% 3.4 +157.4% +254.9%
DEEPSEEKR1 QWEN 32B 29.0 +52.1% +72.1% 4.8 +202.8% +333.3%
DEEPSEEKR1 LLAMA 70B 29.2 +55.2% +76.8% 4.8 +223.2% +371.3%
LLAMA 3.1 NEMOTRON-ULTRA 253B 33.5 +46.4% +63.8% 6.1 +175.1% +279.8%
QWEN3 32B 29.1 +62.0% +84.7% 6.5 +190.7%  +299.7%
SPACE
LLAMA 3.3 70B 15.0 +103.9% +151.1% 1.8 +256.0% +471.5%
LLAMA 4 ScouT 17BX16E 20.0 +71.4% +100.5% 2.2 +279.3% +490.7%
LLAMA 4 MAVERICK 17BX128E 16.8 +47.2% +68.5% 0.8 +266.9% +471.5%
GEMMA 3 27B 16.2 +36.5% +50.1% 1.4 +145.5% +253.5%
CODESTRAL 22B 11.0  +111.5% +166.7% 1.3 +319.6% +592.4%
QWEN2.5-CODER 32B 10.1 +90.3% +131.3% 1.2 +245.5% +434.2%
GPT-40 18.1 +86.3% +120.5% 1.4 +318.7% +608.4%
DEEPSEEKCODERV?2 236B 16.7 +73.1% +106.1% 1.0 +298.8% +572.4%
DEEPSEEKV3 671B 15.0 +93.4% +135.3% 1.6 +256.8% +459.8%
DEEPSEEKR1 QWEN 32B 24.8 +68.7% +95.6% 3.1 +264.3% +470.9%
DEEPSEEKR1 LLAMA 70B 25.6 +69.8% +95.3% 3.4 +259.0% +452.6%
LLAMA 3.1 NEMOTRON-ULTRA 253B 30.4 +60.4% +82.6% 5.6 +192.3% +322.7%
QWEN3 32B 25.5 +63.9% +87.2% 5.1 +176.3% +286.0%

When pushing all@k scores to k=10, the new best scores are obtained by Qwen3 32B on time com-
plexity generation with 26.1 all@10 (also best model for all@1 with 6.5) and Llama 3.1 Nemotron-
Ultra 253B on space complexity generation with 23.7 all@10 (also best model for all@1 with 5.6).

In general, the order of models does not change much when pushing @k scores to higher values,
except for Gemma 3, which shows less performance return. This is especially visible in Fig. [6]
which provides the score evolution for all models across 1-step increments of k on time and space
complexity tasks. Reasoning models benefit more from higher @k generations than non-reasoning
models, especially on time complexity generation. Across all models, we notice higher gains for
higher @k metrics when using all@k, and on space complexity generation.

Across all models, we notice higher gains for higher @k metrics when using all@k (compared to
pass@k), and on space complexity generation (compared to time complexity generation). On aver-
age, models get +100% performance for time pass@1 to pass@10, +275% time all@]1 to all@10,
and on space complexity generation respectively +110% and up to +450%. In general, the more
challenging the tasks, the higher the gains for higher @k values.

Finally, for time complexity generation, we observe more marginal gains the further we improve
@k values on all@k scores, compared to pass@k scores. For example, on average across models,
pass@5 is 70% higher than pass@ 1, whereas pass@ 10 is only 15% higher than pass@5. In compar-
ison, all@5 is a staggering 160% higher than all@1, and all@ 10 remains 40% higher than all@5.
Looking at the difference between @10 and @9, all@k still grows two times faster than pass @k.

This gives more extensive details on the strategies to adopt to use the compute budget where it mat-
ters the most in the context of complexity related tasks. Though some tasks remain very challenging
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at the single-sample level (all models on time-space complexity generation keep all@1 score below
10), even just doubling the sampling budget already leads to substantial performance gains.

Time Complexity Pass@k

All@k

Time Complexity Al@k

= Llama 3.3 70B

Llama 4 Scout 17Bx16E
Llama 4 Maverick 17Bx128E
Gemma 3 27B

Codestral 22B
Qwen2.5-Coder 32B

GPT-4o0

ol-mini

DeepSeekCoderV2 236B
DeepSeekV3 671B
DeepSeekR1 Qwen 32B
DeepSeekR1 Llama 70B
Llama 3.1 Nemotron-Ultra 253B

=== Qwen3 32B

Figure 6: Comparing gains of Pass@Qk and AllQFk across all models on the task of Complexity

Generation.
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E FINE-TUNING EXPERIMENTS MORE RESULTS

In this section, we provide more extensive results about the SFT experiments. Table[9]displays mul-
tiple @k values for the LLAMA 3.1 70B model queried for zero-shot, few-shot, and then further
trained with either Time Prediction Fine-tuning, Space Prediction Fine-tuning, Time Genera-
tion Fine-tuning, or Space Generation Fine-tuning, evaluated for the Time Complexity tasks.
Similarly, Table [[T]displays the same methods but evaluated on Space Complexity tasks.

Table [10| provides relative scores for @5 and @10 on Time Complexity, and Table |12] for Space
Complexity.

Finally, Fig.[/|displays visually the gain on the task of Complexity Generation.

Table 9: Time Complexity BIGO(BENCH) benchmark results when fine-tuning LLAMA 3.1 70B on
the tasks of Time Complexity Prediction, Space Complexity Prediction, Time Complexity Gen-
eration and Space Complexity Generation, then evaluated on the tasks of Program Synthesis and
Time Complexity Generation, with multiple @k estimators. Program Synthesis checks the cor-
rectness of model-generated solutions to given programming problems, not taking into account any
complexity requirement. Complexity Generation evaluates whether a model can output a working
code snippet to a given problem that meets a time-space complexity requirement. Pass@QFk consid-
ers each complexity class of all problems independently and calculates a macro-average between
them. BestQk is a refinement of Pass@Fk, focusing only on the most optimized complexity class
for each problem. AllQ@Fk checks if all complexity classes for each problem are correctly predicted
or generated simultaneously, then macro-averages across all problems.

PROG. SYNTHESIS TIME COMPLEXITY GEN.
METHOD PASS PASS  Pass PASS PAss  Pass BEST BEST BEST ALL ALL ALL
Q1 @b @10 Q1 @5 @10 @1 @b @10 Q1 @b @10
ZERO-SHOT 29.6 472 54.0 142 279 348 20.3 35.0 41.2 3.1 8.9 13.0
FEW-SHOT 289 459 528 13.4 264 330 19.6 35.0 41.8 2.4 6.6 9.6
PREDICTION FINE-TUNING
ON TIME 274 464 53.6 12.6  27.2 342 172 32,6  39.0 29 9.1
ON SPACE 26.6 46.4 543 123 26.6 342 17.3  33.5 409 24 7.6 11.3
GENERATION FINE-TUNING
ON TIME 232 42,0 485 10.0 23.1 29.6 13.3 27.6 33.6 1.2 4.5 7.0
ON SPACE 17BX128E 234 427 50.0 9.9 23.0 29.8 13.1 27.8 34.9 1.5 5.6 8.7

Table 10: Time Complexity BIGO(BENCH) benchmark results when fine-tuning LLAMA 3.1 70B
on the tasks of Time Complexity Prediction, Space Complexity Prediction, Time Complexity
Generation and Space Complexity Generation, then evaluated on the tasks of Time Complexity
Generation, with multiple @k estimators, where @5 and @10 are displayed relative to the corre-
sponding @1 score. Complexity Generation evaluates whether a model can output a working code
snippet to a given problem that meets a time-space complexity requirement. Pass@k considers
each complexity class of all problems independently and calculates a macro-average between them.
AllQF checks if all complexity classes for each problem are correctly predicted or generated simul-
taneously, then macro-averages across all problems.

TIME COMPLEXITY GEN.

MODEL PASS PASS PAss ALL ALL ALL
@1 Q@b @10 @1 @b @10
ZERO-SHOT 14.2 +95.9% +144.2% 3.1 +188.1%  +322.1%
FEW-SHOT 13.4 +97.0% +145.6% 2.4 +173.4%  +293.4%
PREDICTION FINE-TUNING
ON TIME 12,6 +115.6% +170.8% 2.9 +215.8% +359.6%
ON SPACE 123 +116.9% +178.6% 2.4 +216.0% +371.6%
GENERATION FINE-TUNING
ON TIME 10.0  +131.4% +196.3% 1.2 +271.3% +481.0%
ON SPACE 9.9 +132.1% +200.8% 1.5 +260.8% +464.4%
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Table 11: Space Complexity BIGO(BENCH) benchmark results when fine-tuning LLAMA 3.1 70B
on the tasks of Time Complexity Prediction, Space Complexity Prediction, Time Complexity
Generation and Space Complexity Generation, then evaluated on the tasks of Program Synthesis
and Space Complexity Generation, with multiple @k estimators. Program Synthesis checks the
correctness of model-generated solutions to given programming problems, not taking into account
any complexity requirement. Complexity Generation evaluates whether a model can output a
working code snippet to a given problem that meets a time-space complexity requirement. PassQk
considers each complexity class of all problems independently and calculates a macro-average be-
tween them. BestQF is a refinement of Pass@QFk, focusing only on the most optimized complexity
class for each problem. All@k checks if all complexity classes for each problem are correctly pre-
dicted or generated simultaneously, then macro-averages across all problems.

PROG. SYNTHESIS SPACE COMPLEXITY GEN.
METHOD PAss  PAass  PAss Pass  Pass  Pass BEST BEST BEST ALL ALL ALL
Q1 @b @10 @l @5 @10 @l @5 @10 Q1 @b @10
ZERO-SHOT 29.7 457 523 11.7 255 33.0 17.2 324  39.1 1.8 6.9 10.9
FEwW-SHOT 29.8 46.5 533 11.3 248 31.7 16.4 31.6 38.6 1.4 5.5 8.9
PREDICTION FINE-TUNING
ON TIME 273 447 514 10.5 245  32.1 15.0 30.2 36.8 1.3 5.6 9.6
ON SPACE 27.0 45.0 51.9 10.5 244 318 15.2 309 38.1 14 56 9.0
GENERATION FINE-TUNING
ON TIME 239 426 495 9.9 239 314 14.6  31.1 38.3 1.3 5.7 95
ON SPACE 17BX128E 242 42.1 48.8 10.3 237 304 15.0 31.1 37.6 1.4 53 8.8

Table 12: Space Complexity BIGO(BENCH) benchmark results when fine-tuning LLAMA 3.1 70B
on the tasks of Time Complexity Prediction, Space Complexity Prediction, Time Complexity
Generation and Space Complexity Generation, then evaluated on the tasks of Space Complexity
Generation, with multiple @k estimators, where @5 and @10 are displayed relative to the corre-
sponding @1 score. Complexity Generation evaluates whether a model can output a working code
snippet to a given problem that meets a time-space complexity requirement. Pass@k considers
each complexity class of all problems independently and calculates a macro-average between them.
AllQF checks if all complexity classes for each problem are correctly predicted or generated simul-
taneously, then macro-averages across all problems.

SPACE COMPLEXITY GEN.

MODEL PASs PAss PAss ALL ALL ALL
Q1 @j @10 Q1 @5p @10
ZERO-SHOT 11.7  +117.3% +181.5% 1.8 +284.0% +509.9%
FEW-SHOT 11.3 +119.3% +180.5% 1.4 +291.1% +538.4%
PREDICTION FINE-TUNING
ON TIME 10.5  +133.8% +206.0% 1.3 +332.0% +638.9%
ON SPACE 10.5  +133.2% +203.4% 1.4 +298.3%  +533.7%
GENERATION FINE-TUNING
ON TIME 9.9 +141.2% +217.7% 1.3 +324.9% +614.1%
ON SPACE 103 +131.2% +196.4% 1.4 +289.1% +548.8%

38



Under review as a conference paper at ICLR 2026

Time Complexity Pass@k Time Complexity Al@k

155 o = Llama 3.1 70B - Zero Shot

05 ” Llama 3.1 70B - Few Shot
Time Prediction SFT
Space Prediction SFT

0% 103 Time Generation SFT

. o ==== Space Generation SFT

£ 204 E
IUNswﬁueb'\sqs T S S T S S SN

Figure 7: Comparing gains of Pass@Qk and AllQk across LLAMA 3.1 70B variants on the task of
Complexity Generation.
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Figure 8: Correlation matrices comparing the distribution of scores across all models benchmarked
on BIGO(BENCH) for the tasks of Program Synthesis (on the corresponding time or space com-
plexity test set), Complexity Prediction and Complexity Generation, the two latter being respect-
fully on the time and space complexity test sets. Correlations are computed with the Pearson stan-
dard correlation coefficient.
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Figure 9: Correlation matrix comparing the distribution of scores across all models benchmarked on
BI1GO(BENCH) for the tasks of Time Complexity Prediction and Time Complexity Generation,
along Space Complexity Prediction and Space Complexity Generation. Correlations are com-
puted with the Pearson standard correlation coefficient.

Leveraging the many scores computed across models on the different tasks of BIGO(BENCH), cor-
relations can be measured between scores and tasks (program synthesis, complexity prediction and
complexity generation for both time and space). These are depicted in Fig. [8| for correlations ma-
trices within time-related tasks and within space-related tasks. On top of that, Fig. [0] measures
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correlations between time and space prediction and generation tasks. All of these measures are
based on Pearson standard correlation coefficient (Pearson & Galton, |1895)).

Overall, the correlations are the highest between program synthesis and complexity generation, re-
spectively 0.81 and 0.76 for time and space complexity, across all models. Intuitively, we believe
that this is because models are more frequently exposed to the time optimization objective when
being trained for generating code, as this objective is more popular (on code competition platforms
for example) and more documented than its space equivalent. Time prediction has a correlation
coefficient of 0.56 with time complexity generation, meaning that the program synthesis objective
may dominate on this task, when the model is trying to answer this double-requirement task. On
space generation, a task where we see very low all@1 scores, the correlation between prediction
and generation falls down to 0.1. This is probably explained by the very low performance on space
generation, models being confused by the notion of generation under a space complexity constraint,
therefore losing focus on this objective and mostly correlating with the performance on more simple
program synthesis.

Finally, when comparing time and space tasks, we observe that time prediction correlates more with
time generation than with space prediction, but that the converse does not hold, as space prediction
has a correlation coefficient of 0.5 with time prediction and only 0.1 with space generation, a task
that is dominated by the program synthesis objective, given that the double objective remains too
hard for most models. Time generation and space generation both correlate the most with one
another, compared to their respective prediction counterparts.

Notice that the fine-tuning experiments presented Table ] and discussed in Section [6] can also help
better understand the dependencies between the tasks introduced in BIGO(BENCH).
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G FRAMEWORK IMPLEMENTATION DETAILS

G.1 GENERAL FRAMEWORK OUTLINE

Execution

Code Snippet Code Processing

from collections import Cleaning, solving dependencies, ...
Counter

n = int(input())
arr = list(map(int,
input().split()))
arr.sort()

freq = Counter (arr
ans = 0

for val in freq.values():
ans += val//2%2

print (ans//4)

Input Example

arr: [2, 3, 5, 6, 1]
n: 7

4
t
1 2 3 Input size

Complexity Complexity Fitting Execution Measures
Output

Process  Process
3 4

Time: O(nlogn)

Execution
Sandboxes

Space: O(n)

Runtime Curves _ .

Memory Footprint Curves

Figure 10: Outline of the dynamic complexity inference framework. The framework takes a code
snippet and a single example of inputs to this code snippet. Then, it processes the code snippet
and proceeds with extensive inputs generation, based on the provided example of inputs: inputs are
independently or interdependently increased in size, using several expansion methods that can be
the identity or random, among else. This forms a queue of synthetic inputs on which to execute
the provided code snippet. These executions happen independently in sandboxes, where runtime
and memory footprint measures are taken. Once all the measures are collected, the framework can
model the code snippet time and space dependencies to the different inputs. Using curve fitting, the
time and space complexity of the code is computed on each input separately and then altogether.
The global time and space complexity over all inputs is what is being returned.

The time-space complexity framework is a rule-based algorithm that can process any Python func-
tion in order to infer its time and space complexities dynamically. The high-level principles of the
framework are presented in Fig. [I0] explaining how it takes a code-snippet and an input example
and try to infer a time and space complexity from it.

As inputs, it takes a Python function along its function inputs and their corresponding dataclass,
which are then processed and modified before being run while runtime and memory footprints are
measured. From a high-level perspective, the framework increases the size of inputs following var-
ious strategies, in order to assess the impact of their size on execution metrics (e.g. execution time,
memory used). When the function has several arguments, they can be expanded independently or
together to determine the overall complexity of the function, taking into account potential inter-
dependencies. The prepared code, along with the various sets of expanded inputs are queued up
and run in independent sandboxes, using the Bubblewrap library (bub, 2024), to avoid any harmful
side effects of the code being run. While running, Cprofiler (cpyl 2024) is used for time execution
measures and tracemalloc for memory footprint. Using non-negative least squares curve fitting on
each set of measures, the coefficients and residuals of each complexity class are computed. The
gold complexity class output for a given set of measures is chosen as the minimizer of the residuals,
taking into account a simplicity bias (the more simple the complexity class is, the smaller the sim-
plicity bias). This curve fitting is applied on each set of measures, each corresponding to a different
subset of arguments being expanded with a different expansion method. Using ensemble methods,
the global complexity of the Python function is computed by aggregating the individual complexity
outputs along the different set of measures. Finally, the complexity framework also returns the co-
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efficients of the curve of each elected complexity. These coefficients can be leveraged to rank and
classify the optimizations of different Python solutions within the same complexity class.

G.2 COMPLEXITY FRAMEWORK INPUTS

The complexity framework handles two types on input codes, on which to measure time and space
complexity. The released datasets (as part of our project on HuggingFace), as well as all the re-
sults detailed in our paper, do follow format 1, but in case you need it for different input data, the
framework can also handle a second type of data.

Input Format 1 - With a dataclass This format corresponds to the case where snippets of input
code are I/O based, such as in the following examples:

#A. Array
= int(input())
,bye =[1,[1,[1
= list(map(int,input().split()))
or i in 1:
if 1<0:
a.append (i)
elif i>0:
b.append (i)
else:
c.append (i)

n
a
1
f

if len(b)==0 and len(a)>2:
b.append(a.pop())
b.append(a.pop())

if len(a)%2==0:
c.append(a.pop())

print(len(a) ,xa)

print(len(b) ,xb)

print(len(c) ,xc)

In which case the corresponding input example, as given to the complexity framework, will be
formatted in the following manner:

"4\n-1 -2 -3 0\n’

This is the case where the input, whatever the number of distinct arguments there really is, is con-
catenated as a single string. In this case, the framework could not alone guess where the arguments
are, without context, especially as it is not relying on any LLM. The framework, in order to run,
needs an external dataclass that specifies how to understand the input string and cut it into different
arguments, that the framework can then try to change to understand the time and space dependencies
upon each of them.

Using a LLLM, we can first infer the dataclass corresponding to a particular code challenge, before
using it as part of the complexity framework in order to parse the input example and perform the
various measurements on the variations of the inputs. Such a dataclass will have the following
format:

@dataclass
class Input:
n: int
a_list: List[int]

@classmethod
def from_str(cls, input_: str):
n, a_list, _ = input_.split(’\n’)
n = int(n)
a_list = list(map(int, a_list.split()))
assert n == len(a_list)

return cls(n, a_list)
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def __repr-_(self):
return str(self.n) + ’\n> + * ’.join(map(str, self.a_list)) + ’\n

s

Input Format 2 - Standalone code snippet This second format corresponds to the case where
the input code is call-based, that is to say a particular function is being executed on a particular set
of inputs, in which case the framework does have the information of how the inputs are separated
into different arguments to the function (and that will also parametrize the final time and space
complexity). Such call-based code generally has the following aspect:

class Array_300_A:
def solve(self, n, 1):

#A. Array
a,b,c =[1.[1.[1]
for i in I:
if i<0:
a.append (i)
elif 1>0:
b.append (i)
else:

c.append (i)

if len(b)==0 and len(a)>2:
b.append(a.pop())
b.append(a.pop())

if len(a)%2==0:
c.append(a.pop())

print(len(a) ,*a)

print(len(b) ,xb)

print(len(c) ,*c)

It is accompanied by inputs of the form:
”n”: ”4’7’ ”1”: ”[_1’ _2’ _3, O]”}

The framework can in this case directly understand the structure of the input example, and based on
that infer the complexity of the code snippet.

G.3 FuzzING AND WORST RUNNING CASES

B1GO(BENCH) focuses on worst-case time and space complexities, therefore any LLM-generated
code solution is evaluated to infer its tightest upper-bound time and space complexities. To do so,
any code solution input to the framework comes with a corresponding edge case input, as shared in
the corresponding dataset that we made available. Using fuzzing, this edge case input is derived into
many inputs of different sizes following different generators: for example, an input pair consisting
of an integer and a list can see the integer input grow independently from the list (the integer can
grow linearly, with random size steps, etc, whereas the list can remain static) or on the contrary
interdependently (both the integer and the list grow at a regular pace, with same size steps). In the
Github repository also made available, src/complexity/input_generations is the module in charge of
handling the fuzzing. Then, the sandbox and the time and memory profilers record the behavior
of the code solution on all sets of inputs, a set of inputs being parametrized by a specific input
generator suggesting inputs over a range of sizes. This enables to gather time execution and memory
footprint curves over many input cases, and worst execution curves are used to derive the form of
the associated complexity using curve fitting methods, in the module src/complexity/curve_fitting.

Fuzzing is in itself a whole area of research, with many publications covering Java or C++ programs
(Noller et al., 2018 [Wang et al., 2019). More recently, LLM capabilities are more and more studied
as a way of making fuzzing techniques more exhaustive (Xia et al., 2024} Xu et al., 2025)). In our
benchmark, we chose to design an evaluation framework completely independent from any machine
learning model, so as to avoid biasing the evaluation. Nevertheless, the modularity of the codebase
we release enables to switch the default fuzzer so to experiment with any other fuzzer released
by the computer science community, or more recently from LLM-based approaches. This would
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enable to measure what kind of bias can arise, and whether coverage and accuracy of the complexity
evaluation are improved. Finally, without changing the fuzzer, the input edge cases example can also
be interchanged easily as it is an input of the framework fuzzer: one can experiment with prompting
a LLM for more edge case inputs.

Our paper provides methods to evaluate the quality of the fuzzing as performed by our evaluation
framework, using ground-truth human solutions to all BigOBench benchmark problems. As detailed
in Section[4.3] we conducted a thorough review to evaluate whether our evaluation framework cor-
rectly identifies worst-case scenarios and accurately derive complexity estimates from them, using
a total of 250 samples, including 125 for time complexity and 125 for space. On the time complex-
ity test set, the framework reaches 84% accuracy, with 1000-bootstrap samples confidence interval
[0.776, 0.904] (for space, 82% accuracy [75.2, 88.8]). In addition, these test sets include, for time
complexity, 42% problems of difficulty A (for space 45%), 29% of B (for space 25%) and 30% of
C+ (for space 30%). On hard problems C+, framework accuracy is 84% for time complexity (84%
for space). Being exposed to stochastic noise when measuring runtimes and memory footprints, the
evaluation framework also got evaluated for its consistency, running the framework 20 times on 10
solutions of every problem and complexity class of the candidate test set: self-consistency of the
framework is measured to be at 91.9% (resp. 89.1%) for time (resp. space) complexity, for a total
of 10,130 (resp. 10,520) different code solutions.

Section [G] provide an illustration and more details concerning the methods being used in the frame-
work in order to measure worst-case complexities.

G.4 VARIANCE REDUCTION TECHNIQUES

Variance reduction techniques are important as the complexity framework relies on empirical mea-
sures of runtime and memory footprint, which are subject to noise. The framework was tested and
ablated on a validation set in order to measure the effect of each design choice. Among them, each
measure of runtime and memory footprint is repeated R times (in the current setting, R = 10 after
ablation, trading-off accuracy with added compute cost) and then aggregated following a variance
reduction technique. It turned out that the min-aggregation provided the best results for runtime
measurements, improving complexity framework by 3.5% over median aggregation and 19% over
max aggregation, among others. Our intuition is that runtimes are typically subject to variability
caused by external factors (such as background processes, CPU throttling, system load etc.) in a
way that increases runtime, creating high outliers.

The Hodges-Lehmann estimator (Hodges Jr. & Lehmann, 1963} [Qiu et al., 2025) for exam-
ple has not been specifically tested yet for the complexity framework. The codebase was de-
signed with modularity as a core principle and any estimator can be added to src/complexi-
ty/curve_fitting/fitting_curve.py as a function of a set of empirical measures.

Beyond the variance-reduction techniques that can be used on empirical noisy measures,
BI1GO(BENCH) also employs similar technique when aggregating scores over multi-samples. |Qiu
et al.|(2025) employs a Rao-Blackwellized bootstrap estimator, while we use an unbiased estimator
for @k measures by leveraging n = 20 samples for k <= 10 with ¢ <= n correct samples:

<n ] C)
k

pass@k =E, |1 — N
k

This estimator, introduced in |Chen et al.| (2021a), is an unbiased measure of the multi-sample per-
formance as demonstrated in the appendix A of this paper.

In general, given that as measured in Section 4.3] we measure the accuracy of the framework with
human annotations at ~85%, we estimated that this success rate ensured the framework was accurate
enough to provide reliable conclusions on the performance of LLMs as part of the BIGO(BENCH).
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G.5 COMPLEXITY FRAMEWORK PARAMETRIZATION

The complexity framework is parameterized by a suite of arguments that govern its execution,
categorized into several domains. Dataset-related arguments specify the input data, including
the required path_to_jsonl_file and optional sub_key for nested dictionaries, along-
side indices (code_start_index, code_end_index) and filters (filter_on_problem,
multiply_samples_factor) to control code selection and replication. Input handling
is configured via input_-handler, while logging and output behaviors (log_outputs,
save_results, skip_saving_full_results, results_folder_name_root) dic-
tate result persistence. Measurement parameters (shuffle_runs, correct_nlogn,
multiplier_op, multiplier_start, multiplier_repeat, multiplier_end,
multipliermult_step, multiplier_max_increase, size_of_other_arguments,
time_ profiler) regulate input scaling and timing. Complexity fitting is modulated by
outlier removal (filter_outliers), penalty/constraint application (apply_penalty,
apply_constraints), and aggregation strategies (aggregate_y_values,
max_time_rate, elect_complexity_time, elect_complexity_space,
fix_constant_complexity, fix.negligeable_complexity). Resource management
includes memory/time thresholds (temp_file_name_seed, memory_limit, timeout,
large_timeout, giga_timeout, global timeout) and CPU allocation policies
(max_workers, number_solutions_per_worker, main_process_cpu-id_-list,
forkserver_type, use_distinct_forkservers, forkserver_cpu_id_list).
SLURM-specific arguments in s1urm. sh further tailor high-performance computing deployment.

G.6 IMPLEMENTATION LIMITATIONS AND FUTURE DIRECTIONS

The Dynamic Complexity Inference Framework can be improved in many ways. The current version
that we release is more of a Proof-of-Concept, trying to see whether such framework can be used
reliably on this task, for evaluation purposes of reinforcement learning. The following suggestions
on how to improve the performance, reliability and maintainability of the framework are listed:

1. Refactoring the whole framework: the goal being to allow for flexible extensions. Some
parts of the codebase, for instance around the input generations, are already designed to
allow new methods of input generation.

2. Fuzzing: The modularity of the codebase presents opportunities for future research
directions. One potential area of investigation is the exploration of alternative fuzzers,
including those leveraging large language models (LLMs), to measure the introduction
of bias and evaluate their impact on coverage and accuracy of complexity evaluation.
Additionally, researchers could investigate the effectiveness of using LLMs to generate
input edge cases, potentially leading to improved coverage and accuracy. Furthermore,
the framework’s modularity enables the study of the impact of different fuzzers on the
codebase, allowing for a deeper understanding of the relationships between fuzzing
strategies, input edge cases, and complexity evaluation outcomes. By experimenting with
different fuzzers and input edge cases, researchers can gain insights into the strengths
and limitations of various approaches, ultimately contributing to the development of more
robust and effective fuzzing techniques.

3. Noise reduction: several methods can help with noise reduction, and therefore better
accuracy of the framework as well as more stable results. Deterministic CPU operations
is a huge axis of improvement, but post-processing methods on the runtime and memory
footprint measures is also promising. Variance reduction techniques such as Hodges-
Lehmann estimator could also be used.

4. Complexity definition: work on the definition of complexity and therefore how complexity
is induced by the framework. Current assumptions may not be accurate, and maybe some
choices in the framework implementation and not coherent with more widely spread
definitions of complexity of a code snippet.
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5. Complexity coverage: The way we designed the framework is that it defines a set of base
functions in its module src/complexity/curve_fitting/fitting_class.py, and the framework can
combine these functions with addition and multiplication operators to best fit the time exe-
cution and memory footprint curves.

As long as such a function is defined, it is fit by the complexity framework. In practice,
currently there is a class for the cubic function, and no classes that represent x — %,

z — (log z)® nor z — 2pelee(z)

In practice, accuracy limitations may arise when two classes exhibit similar behavior over

typical input sizes (1-10,000). Empirical noise from profiler measurements (runtime or

memory footprint) can make fitting complexities challenging. We recommend testing the
framework on labeled examples when introducing a new function class.

6. Pure performance: the performance of the complexity framework is limited. Measurement
of these limitations and their improvement is the priority goal.
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H BENCHMARK EXPERIMENTAL SETUP

The experiments conducted in this paper were done on an internal cluster of H100 GPUs. Running
the BIGO(BENCH) evaluation on low-compute models that do not produce reasoning tokens, e.g.
the LLAMA 4 models, with @10 metrics for the three tasks of complexity prediction, generation and
ranking, both on time and space complexity test sets, required 100 GPU hours. On the contrary,
more compute-intensive workflows involving reasoning models, e.g. QWEN QWQ, necessitates up
to 2500 GPU hours.

Using the solutions generated by a LLM, the BIGO(BENCH) evaluation framework can be run on
a set of n CPUs in order to perform the runtime and memory footprint measures, based on which a
time-space complexity estimate is attributed to the code solution. For each LLM being benchmarked
on BIGO(BENCH), hundreds of CPU hours can be required in total to run the framework on the
time/space generation/ranking tasks, though this can highly vary depending on its parametrization:
range of the measures, replication rate of each measure, ... In our most compute intensive setting
(up to 3000 the original input size and 10 measure replicas), we used up to 10k CPU hours.

Finally, as part of our fine-tuning experiments, we used for each of the four fine-tunings of LLAMA
3.1 70B, that is to say on time prediction, space prediction, time generation and space genera-
tion data, 120 GPU hours. These models were then evaluated based on the low-compute set-up,
and finally the generated solutions were evaluated using compute for the complexity framework as
detailed above.

Preliminary experiments for the complexity framework, that only require CPUs, used more compute
than for the final runs used to evaluate the models on BIGO(BENCH). This is because as detailed in
Section [3| ablations were conducted to find the optimal set of parameters for the framework, given
the resources we had access to; we insist on the fact that the framework can be run with much lower
compute by adjusting various parameters such as its range of measures or its replication rate. On
the contrary, for the GPU compute, which comes from running the inference on a variety of models
being benchmarked by BIGO(BENCH), the majority of it corresponds directly to the experiments
being reported in this paper.

In total, the experiments reported in this paper used 12,000 GPU hours for model fine-tuning and
inference. In order to run the evaluation framework on all tasks of all models, the experiments used
180,000 CPU hours, though this number can be easily divided by a factor of 100 down to 1,800
CPU hours when using a less compute-intensive framework parametrization.

Concerning the results of these experiments being reported in the paper, we precise that only
DEEPSEEK-R1 distilled models are reported, and that DEEPSEEK-R1 is not reported as an ini-
tial assessment led to over-budget compute usage; this partial run gave similar results on complexity
tasks as DEEPSEEK-R1 LLAMA 70B.

The table results that correspond to the BIGO(BENCH) benchmarking of models are supported by
one-tailed paired t-tests on 1000 bootstraps samples of the model results evaluate the significance of
the superiority of the best model. The application of one-tailed paired t-tests on bootstrap samples
assumes that the differences in model performance metrics (e.g., pass@1 scores) across the bench-
mark tasks are approximately normally distributed, an assumption that is bolstered by the Central
Limit Theorem given the large number of bootstrap iterations (1000). Fig.|l1|provides an overview
of the distribution of differences in model performance metrics. Additionally, the tests presume that
the paired nature of the data—where each model is evaluated on the same set of tasks—is preserved
through resampling, ensuring that dependencies between model outputs are accounted for.

Any @k metric uses an unbiased estimator based on 20 samples.
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Figure 11: Pass@1 absolute gain of DEEPSEEK R1 LLAMA 70B over LLAMA 3.3 70B for the

task of time complexity prediction, over 1000 bootstrap samples of BIGO(BENCH) time complexity

test set.
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I LICENSES
Code Repository/Dataset License
CodeContests Apache 2.0|[link]
| |big_O BSD-3|[link]
Ilama 4 models Llama 4 License
Ilama 3.3 Llama 3.3 License
Gemma 3 27B Gemma License
Codestral 22B MNPL 0.1 License
Qwen2.5-Coder 32B Apache 2.0|[link]
DeepseekCoderV2 236B Deepseek License
DeepseekV3 671B Deepseek License Agreement
DeepseekR1 Qwen 32B MIT License [link]
DeepseekR1 Llama 70B MIT License [link]
Llama 3.1 Nemotron-Ultra 253B | INVIDIA Open License Agreement] |
Qwen QwQ 32B Apache 2.0|[link] N
Qwen3 32B Apache 2.0|[link]

Table 13: Licenses of Code Repositories and Datasets

Table[I3]lists all licenses of code and data that were used in this paper, along with licenses of models
that were downloaded and run locally to be benchmarked for this paper.
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https://www.apache.org/licenses/LICENSE-2.0
https://github.com/pberkes/big_O
https://opensource.org/licenses/BSD-3-Clause
https://github.com/meta-llama/llama-models/blob/main/models/llama4/LICENSE
https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/LICENSE
https://ai.google.dev/gemma/terms
https://mistral.ai/static/licenses/MNPL-0.1.md
https://www.apache.org/licenses/LICENSE-2.0
https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct/blob/main/LICENSE
https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
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J COMPLEXITY PREDICTION EXAMPLE

J.1 EXAMPLE OF QUERY

Provide the time complexity for the following competitive programming question and corresponding
solution. When analyzing the complexity of an algorithm, consider the worst-case scenario where
all possible input combinations are tried, given the following conditions: 1. the inputs must adhere
to the specified data types of the problem; 2. the inputs should not cause the code to crash or
exit on an exception; 3. the inputs do not necessarily need to satisfy additional constraints that are
potentially mentioned in the problem statement; 4. calling input() does not consume runtime nor
memory, but of course any operations on top of it or afterwards will be counted towards runtime
and memory footprint; 5. Anything printed gets added to the memory. You can take advantage of
Python-specific optimizations provided by the underlying CPython interpreter or compiler to achieve
the desired complexity, and you must account for them when analyzing the complexity. Here is the
programming question:

You are given n segments on a number line; each endpoint of every segment has integer coordinates.
Some segments can degenerate to points. Segments can intersect with each other, be nested in each
other or even coincide.

The intersection of a sequence of segments is such a maximal set of points (not necesserily having
integer coordinates) that each point lies within every segment from the sequence. If the resulting
set isn’t empty, then it always forms some continuous segment. The length of the intersection is the
length of the resulting segment or 0 in case the intersection is an empty set.

For example, the intersection of segments [1;5] and [3;10] is [3;5] (Iength 2), the intersection of
segments [1;5] and [5;7] is [5;5] (length 0) and the intersection of segments [1;5] and [6;6] is an
empty set (Ilength 0).

Your task is to remove exactly one segment from the given sequence in such a way that the intersec-
tion of the remaining (n - 1) segments has the maximal possible length.

Input
The first line contains a single integer n (2 < n < 3x 10°) the number of segments in the sequence.

Each of the next n lines contains two integers [; and ; (0 < [; < r; < 109) the description of the
ith segment.

Output

Print a single integer - the maximal possible length of the intersection of (n - 1) remaining segments
after you remove exactly one segment from the sequence.

Examples

Input
413260433
Output

1

Input
526130412004
Output

2

Input
34512920
Output

0
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Input
231015
Output

7

Note

In the first example you should remove the segment [3;3], the intersection will become [2;3] (Iength
1). Removing any other segment will result in the intersection [3;3] (Iength 0).

In the second example you should remove the segment [1;3] or segment [2;6], the intersection will
become [2;4] (Iength 2) or [1;3] (length 2), respectively. Removing any other segment will result in
the intersection [2;3] (length 1).

In the third example the intersection will become an empty set no matter the segment you remove.

In the fourth example you will get the intersection [3;10] (length 7) if you remove the segment [1;5]
or the intersection [1;5] (Iength 4) if you remove the segment [3;10].

Here is the corresponding Python solution:

n = int (input ())

L =[]

R = []

S =[]

for _ in range(n):
a,b = [int(x) for x in input().split()]
L.append (a)
R.append (b)
S.append((a,b))

L.sort (reverse = True)

R.sort ()

if (LIO],R[0]) in S:
print (max (R[1]-L[1],0))
else:
print (max(R[0]-L[1],R[1]-L[0],0)).

Please ignore any constraints on the input sizes that may have been previously mentioned in the
problem description. Compute the big-O complexity as if inputs can be as large as possible. Output
the big-O time complexity only, no explanation needed, no other words needed.

J.2 EXAMPLE OF RESPONSE FROM DEEPSEEK-R1 LLAMA 70B

<think>

Okay, I need to figure out the time complexity of the given Python solution for the problem. Let’s
go through the code step by step.

First, the code reads n, which is the number of segments. Then, for each of the next n lines, it reads
two integers 1_i and r_i, appending them to lists L. and R, and storing the tuples in S.

So the initial part is O(n) time because each of the n lines is processed once.

Next, the code sorts L in descending order. Sorting a list of size n in Python using the built-in sort
function is O(n log n). Similarly, R is sorted in ascending order, which is also O(n log n).

After sorting, there’s a condition checking whether the tuple (L[0], R[0]) is in S. Checking mem-
bership in a list in Python is O(n) because it has to potentially scan all elements. So this check is
O(n).
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Then, depending on the condition, it either prints max(R[1] - L[1], 0) or max(R[0] - L[1], R[1] -
L[0], 0). Both of these operations are O(1) since they involve a couple of subtractions and a max
function.

So putting it all together:

- Reading the inputs: O(n) - Sorting L and R: O(n log n) each, so total O(2n log n) which simplifies
to O(n log n) - Checking the tuple in S: O(n) - The rest is O(1)

The dominant term here is O(n log n) from the sorting steps. The other steps are either O(n) or O(1),
which are lower order terms.

Therefore, the overall time complexity is O(n log n).
<\think>

The time complexity is O(n log n).

O(n log n)
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K COMPLEXITY GENERATION EXAMPLE

K.1 EXAMPLE OF QUERY

Provide a Python solution for the following competitive programming question: You are given n
segments on a number line; each endpoint of every segment has integer coordinates. Some segments
can degenerate to points. Segments can intersect with each other, be nested in each other or even
coincide.

The intersection of a sequence of segments is such a maximal set of points (not necesserily having
integer coordinates) that each point lies within every segment from the sequence. If the resulting
set isn’t empty, then it always forms some continuous segment. The length of the intersection is the
length of the resulting segment or 0 in case the intersection is an empty set.

For example, the intersection of segments [1;5] and [3;10] is [3;5] (Iength 2), the intersection of
segments [1;5] and [5;7] is [5;5] (length 0) and the intersection of segments [1;5] and [6;6] is an
empty set (length 0).

Your task is to remove exactly one segment from the given sequence in such a way that the intersec-
tion of the remaining (n - 1) segments has the maximal possible length.

Input
The first line contains a single integer n (2 < n < 3x 10°) the number of segments in the sequence.

Each of the next n lines contains two integers [; and ; (0 < [; < r; < 109) the description of the
ith segment.

Output

Print a single integer - the maximal possible length of the intersection of (n - 1) remaining segments
after you remove exactly one segment from the sequence.

Examples

Input
413260433
Output

1

Input
526130412004
Output

2

Input
34512920
Output

0

Input

231015
Output

7

Note

In the first example you should remove the segment [3;3], the intersection will become [2;3] (Iength
1). Removing any other segment will result in the intersection [3;3] (Iength 0).
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In the second example you should remove the segment [1;3] or segment [2;6], the intersection will
become [2;4] (Ilength 2) or [1;3] (length 2), respectively. Removing any other segment will result in
the intersection [2;3] (length 1).

In the third example the intersection will become an empty set no matter the segment you remove.

In the fourth example you will get the intersection [3;10] (length 7) if you remove the segment [1;5]
or the intersection [1;5] (length 4) if you remove the segment [3;10].

Output the code only. Generate code that has an algorithmic time complexity of O(n.log(n)).

When analyzing the complexity of an algorithm, consider the worst-case scenario where all possi-
ble input combinations are tried, given the following conditions: 1. the inputs must adhere to the
specified data types of the problem; 2. the inputs should not cause the code to crash or exit on an
exception; 3. the inputs do not necessarily need to satisfy additional constraints that are potentially
mentioned in the problem statement; 4. calling input() does not consume runtime nor memory, but
of course any operations on top of it or afterwards will be counted towards runtime and memory
footprint; 5. Anything printed gets added to the memory. You can take advantage of Python-specific
optimizations provided by the underlying CPython interpreter or compiler to achieve the desired
complexity, and you must account for them when analyzing the complexity.

Your code should be enclosed in triple backticks like so: “‘python YOUR CODE HERE “*. Use the
backticks for your code only.

K.2 EXAMPLE OF RESPONSE FROM DEEPSEEK-R1 LLAMA 70B

<think>
Okay, I’ve got this programming problem to solve. Let me read it carefully.

So the problem is about segments on a number line. Each segment has integer endpoints, and some
might be just points. We need to remove exactly one segment such that the intersection of the
remaining n-1 segments is as long as possible. The output is the maximum possible length of this
intersection.

Hmm, the intersection of multiple segments is the maximum set of points that lie in all of them.
So for each segment, if I remove it, I need to compute the intersection of the others and find which
removal gives the maximum length.

The challenge is to do this efficiently, especially since n can be up to 3e5, which is 300,000. So any
O(n"2) approach is out of the question. I need an O(n log n) solution.

Let me think about what determines the intersection of all segments except one.

The intersection of all segments except one is determined by the maximum of the left endpoints and
the minimum of the right endpoints. So, for each i, if I remove the i-th segment, the new intersection
would be [max_left, min_right], where max_left is the maximum of all I’s except 1_i, and min_right
is the minimum of all r’s except r_i. The length is max(0, min_right - max_left).

So the problem reduces to, for each i, compute the maximum of I’s excluding 1.i, and the minimum
of 1’s excluding r_i, then calculate the difference.

But how do I compute these efficiently?

One approach is to precompute prefix and suffix maximums for the left endpoints and prefix and
suffix minimums for the right endpoints.

Wait, let me think:

For each position i, the max left when excluding i can be found by taking the maximum of the prefix
up to i-1 and the suffix starting from i+1. Similarly for the min right.

Yes, that makes sense.
So, let’s outline the steps:

1. Read all the segments into two lists: lefts and rights.
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2. Precompute prefix_max_left: an array where prefix_max_left[i] is the maximum of lefts[O0..i].
3. Precompute suffix_max_left: an array where suffix_max_left[i] is the maximum of lefts[i..n-1].
4. Similarly, compute prefix_min_right and suffix_min_right.

Wait, no. Wait, for prefix_max_left, it’s the maximum up to i, but for the suffix, it’s the maxi-
mum from i to the end. But when we want to exclude the i-th element, the max left is the max-
imum of all elements except the i-th. So, for each i, the max left is max( prefix_max_left[i-1],
suffix_max_left[i+1] ). Similarly for the min right.

So, to compute the max left when excluding i, we take the maximum of the prefix up to i-1 and the
suffix starting at i+1.

Similarly, the min right when excluding i is the min of the prefix up to i-1’s min and the suffix
starting at i+1’s min.

So, let’s think about how to precompute these prefix and suffix arrays.

For the prefix_max_left:

prefix_max_left[0] = lefts[0] prefix_max_left[i] = max(prefix_max_left[i-1], lefts[i])

Similarly, suffix_max_left[n-1] = lefts[n-1] suffix_max_left[i] = max(suffix_max_left[i+1], lefts[i])
Same logic applies to prefix_min_right and suffix_min_right, but using min instead.

Wait, no. For prefix_min_right:

prefix_min_right[0] = rights[0] prefix_min_right[i] = min(prefix_min_right[i-1], rights[i])

And for suffix_min_right:

suffix_min_right[n-1] = rights[n-1] suffix_min _right[i] = min(suffix_min_right[i+1], rights[i])
Once I have these arrays, for each i, the max left excluding i is:

if i is O: suffix_max_left[1] if i is n-1: prefix_max_left[n-2] else: max(prefix_max_left[i-1], suf-
fix_max _left[i+1])

Similarly for the min right.

Then, for each i, calculate the possible length as max(0, min_right - max_left). Keep track of the
maximum such value.

That seems manageable.
Now, let’s think about the steps in code:

- Read n. - Read n lines, collect lefts and rights. - Compute prefix_max_left and suffix_max_left.
- Compute prefix_min_right and suffix_min_right. - For each i, compute max_left and min_right as
described. - Calculate the length, and track the maximum.

But wait, what about when n=2? For example, when i is 0, the suffix_max_left is suffix_max_left[1],
which is lefts[1]. Similarly, when i is 1, the prefix_max_left is prefix_max_left[0], which is lefts[0].
So that case is handled correctly.

Let’s test the approach against the sample inputs.
First sample:

Input: 413260433

So lefts = [1,2,0,3] rights = [3,6,4,3]

Compute prefix_max_left: prefix[0] = 1 prefix[1] = max(1,2)=2 prefix[2] = max(2,0)=2 prefix[3] =
max(2,3)=3

suffix_max_left: suffix[3] =3 suffix[2] = max(0,3)=3 suffix[1] = max(2,3)=3 suffix[0] = max(1,3)=3
prefix_min_right: prefix[0] =3 prefix[1] = min(3,6)=3 prefix[2] = min(3,4)=3 prefix[3] = min(3,3)=3
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suffix_min_right: suffix[3]=3 suffix[2] = min(4,3)=3 suffix[1] = min(6,3)=3 suffix[0] = min(3,3)=3
Now, for each i:
i=0: max_left = suffix_max_left[1] =3 min_right = suffix_min_right[1] =3 length is 0.

i=1: max_left = max(prefix_.max_left[0], suffix_.max_left[2])=max(1,3)=3 min_right
min(prefix_min_right[0], suffix_min_right[2])= min(3,3)=3 length O.

i=2: max_left = max(prefix-max_left[1] (2), suffixomax_left[3] (3)) =3 min.right
min(prefix_min_right[1] (3), suffix_min_right[3] (3)) =3 length 0.

i=3: max_left = prefix_max_left[2] =2 min_right = prefix_min_right[2] =3 so 3-2=1.

So the maximum is 1, which matches the sample.

Another sample:

Input: 231015

lefts = [3,1] rights = [10,5]

prefix_max_left: [3,3] suffix_max_left: [3,1]

prefix_min_right: [10,5] suffix_min_right: [5,5]

For i=0: max_left is suffix_max_left[1] =1 min_right is suffix_min_right[1] =5 length 5-1=4.
For i=1: max_left is prefix_max_left[0]=3 min_right is prefix_min_right[0]=10 length 7.
So maximum is 7, which is correct.

So the approach seems correct.

Now, the code:

We can implement this in Python.

We’ll read n, then the list of segments.

Compute prefix_max_left, suffix_max_left, prefix_min_right, suffix_min_right.

Then loop through each i, compute the max left and min right when excluding i.
Compute the length and keep the maximum.

Now, let’s think about handling the cases where i is at the beginning or end.

For example, when i=0, the suffix_max_left[i+1] is suffix_max_left[1], and the prefix_max_left[i-1]
is nothing (since i-1 is -1). So for i=0, the max left is suffix_max_left[1], and the min right is
suffix_min_right[1].

Similarly, for i =n-1, the suffix is nothing, so the max left is prefix_max_left[n-2], and the min right
is prefix_min_right[n-2].

So in code, for each i:

if i ==0: current_max_left = suffix_-max_left[1] current_min_right = suffix_-min_right[1] elif
i ==n-1: current.max_left = prefix_-max_left[n-2] current_min_right = prefix_min_right[n-2]
else: current_max_left = max(prefix_max_left[i-1], suffix_max_left[i+1]) current_min_right =
min(prefix_min_right[i-1], suffix_min_right[i+1])

Then compute current_length = max(0, current_min_right - current_max _left)
We can keep track of the maximum.

Now, let’s think about the implementation.

In Python:

n = int(input()) segments = [] lefts = [] rights = [] for _ in range(n): I, r = map(int, input().split())
lefts.append(l) rights.append(r)
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Compute prefix_max_left:

prefix_max = [0]*n prefix_max[0] = lefts[0] for i in range(1, n): prefix_max[i] = max(prefix_max[i-
1], lefts[i])

Compute suffix_max:

suffix_max = [0]*n suffix_max[-1] = lefts[-1] for i in range(n-2, -1, -1): suffix_max[i] = max(lefts[i],
suffix_max[i+1])

Same for prefix_min_right:

prefix_min = [0]*n prefix_min[0] = rights[0] for i in range(1, n): prefix_min[i] = min(prefix_min[i-1],
rights[i])

suffix_min:

suffix_min = [0]*n suffix_min[-1] = rights[-1] for i in range(n-2, -1, -1): suffix_min[i] = min(rights[i],
suffix_min[i+1])

Then, for eachiin 0..n-1:

if i ==0: ml = suffix_max[1] if n;1 else 0 mr = suffix_-min[1] if n;1 else O elif i ==n-1: ml =
prefix_max[n-2] if n;1 else O mr = prefix_min[n-2] if n;1 else 0 else: ml = max(prefix_max[i-1],
suffix_max[i+1]) mr = min(prefix_min[i-1], suffix_min[i+1])

Wait, but what if n=1? Oh, but according to the problem statement, n is at least 2. So n is (=2, so no
problem.

So code:

max_length = 0 for i in range(n): if i ==0: ml = suffix_.max[1] mr = suffix_min[1] elif i == n-
1: ml = prefix_-max[n-2] mr = prefix_min[n-2] else: ml = max(prefix_max[i-1], suffix_max[i+1])
mr = min(prefix_min[i-1], suffix_.min[i+1]) current_length = max(0, mr - ml) if current_length ¢
max_length: max_length = current_length

print(max_length)

Wait, but wait: in the case where all segments except one have a higher max left than the min right,
the current_length could be negative, but we take max with 0.

Yes.

Testing this logic with the first sample:

n=4, i=3 (last element). So i=3 is n-1.

ml is prefix_max[2] =2.

mr is prefix_min[2] =3.

3-2=1. So correct.

Another test case: when n=2.

1=0: ml is suffix_max[1] =1, mr is suffix_min[1] =5.
5-1=4.

i=1: ml is prefix_max[0]=3, mr is prefix_min[0]=10.
10-3=7.

So maximum is 7.

Another test case:

Input:

34512920

lefts = [4,1,9] rights = [5,2,20]
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prefix_max:

[4,4,9]

suffix_max:

[4,9,9]

prefix_min:

[5,2,2]

suffix_min:

[2,2,20]

Now, for each i:

i=0: ml = suffix_max[1] =9, mr = suffix_min[1] =2. 2-9 is -7, so 0.
i=1: ml is max(prefix_max[0] (4), suffix_max[2] (9)) =9.
mr is min(prefix_min[0] (5), suffix_min[2] (20)) =5.
5-9is -4, 0.

i=2: ml is prefix_max[1] =4.

mr is prefix_min[1] =2.

2-4is -2, 0.

So maximum is 0.

Which matches the sample.

So the code seems correct.

Now, considering the time complexity.

Each of the prefix and suffix arrays are computed in O(n) time. Then, for each i, it’s O(1) operations.
So overall O(n) time, which is acceptable for n up to 3e5.

So this should work.

Now, let’s code this.

Wait, but in Python, for n=2, the suffix_max for i=1 is lefts[1], which is correct.
Yes.

Now, code:

Read n.

Read n lines, collect lefts and rights.

Compute prefix_max, suffix_max, prefix_min, suffix_min.
Loop through each i, compute ml and mr.

Compute current_length.

Update max_length.

Finally, print max_length.

So, the code is as follows.

<\think>

To solve this problem, we need to determine the maximum possible length of the intersection of
segments after removing exactly one segment from the given sequence. The approach involves
efficiently computing the intersection of the remaining segments for each possible removal and
selecting the maximum length.
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1. **Reading Input:** Read the number of segments and their endpoints. 2. **Prefix and Suffix
Arrays:** Compute prefix and suffix arrays for both left and right endpoints: - ‘prefix_max_left’
and ‘suffix_max_left‘ to track the maximum left endpoints up to and from each position. - ‘pre-
fix_min_right* and ‘suffix_min_right® to track the minimum right endpoints up to and from each
position. 3. **Compute Intersection for Each Removal:** For each segment, compute the inter-
section length when that segment is removed using the precomputed prefix and suffix arrays. The
intersection length is determined by the maximum left endpoint and minimum right endpoint of the
remaining segments. 4. **Track Maximum Length:** Keep track of the maximum intersection
length encountered.

“‘python

n = int (input ())
lefts = []

rights = []

for _ in range(n):

1, r = map(int, input () .split())
lefts.append(1l)
rights.append (r)

prefix_max = [0] * n
prefix_max[0] = lefts[0]
for i in range( n) :

[

1,
prefix_max[i] = max(prefix_max[i-1], lefts[i])
suffix_max = [0] * n
suffix max[-1] = lefts[-1]
for i in range(n-2, -1, -1):
suffix _max[i] = max(lefts[i], suffix max[i+1l])

prefix_min = [0] * n
prefix_min[0] = rights[0]
for i in range( n):

[

1,
prefix_min[i] = min(prefix_min[i-1], rights[i])
suffix min = [0] * n
suffix_min[-1] = rights[-1]
for i in range(n-2, -1, -1):
suffix_min[i] = min(rights[i], suffix_min[i+1])
max_length = 0
for i in range(n):
if i ==
current_max_left = suffix_max[1l]
current_min_right = suffix_min[1]
elif i == n-1:
current_max_left = prefix_max[n-2]
current_min_right = prefix_min[n-2]
else:
current_max_left = max(prefix_max[i-1], suffix_max[i+1])
current_min_right = min(prefix _min[i-1], suffix_min[i+1])
current_length = max (0, current_min_right - current_max_left)
if current_length > max_length:
max_length = current_length

print (max_length)
1. **Reading Input:** The input is read and stored in two lists, ‘lefts® for the left endpoints and
‘rights* for the right endpoints. 2. **Prefix and Suffix Arrays:** These arrays help efficiently com-

pute the maximum left and minimum right endpoints when excluding each segment: - ‘prefix_max*
and ‘suffix_max‘ store the maximum left endpoints up to each index and from each index onwards,
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respectively. - ‘prefix_min‘ and ‘suffix_min° store the minimum right endpoints up to each index and
from each index onwards, respectively. 3. **Compute Intersection:** For each segment, compute
the intersection of the remaining segments by excluding the current segment. This is done using
the precomputed prefix and suffix arrays to find the maximum left and minimum right endpoints
efficiently. 4. **Track Maximum Length:** The maximum length of the intersection is updated
each time a valid intersection is found, ensuring the result is the longest possible intersection after
removing exactly one segment.

This approach ensures an efficient solution with a time complexity of O(n), making it suitable for
large input sizes up to 300,000 segments.

K.3 NOTE ON THE LLM SOLUTION
Using public and private tests, the solution given by the LLM was evaluated as correct. Using

the complexity framework, it was determined it is running in O(n) time, which does not fulfill the
O(n.log(n)) requirement.
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L  REPARTITION OF COMPLEXITY CLASSES PER ALGORITHMIC NOTIONS
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Figure 12: Breakdown of time complexity classes across different algorithmic categories. The
stacked bar charts reveal how complexity requirements vary by problem type. Problems involv-
ing graph handling and string manipulation tend to have higher computational complexity, while
basic arithmetic and sequence operations typically achieve more efficient complexity classes.
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Figure 13: Breakdown of space complexity classes across different algorithmic categories. The
stacked bar charts reveal how complexity requirements vary by problem type. Problems involving
graph handling and string manipulation tend to have higher computational complexity, while basic
arithmetic and sequence operations typically achieve more efficient complexity classes.
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Figure 14: Evolution of time and space complexity distributions across problem difficulty levels (A
through D+). This visualization demonstrates how harder problems tend to require more compu-
tationally intensive solutions. The proportion of linear and constant-time solutions decreases with
difficulty, while the share of higher-order polynomial and logarithmic complexities increases.
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M LLM USAGE

We employed LLMs as general-purpose writing assistance tools throughout the preparation of this
paper. Specifically, LLMs were used to: (1) proofread text and correct grammatical errors, (2) refine
and rewrite sentences and paragraphs for clarity and flow, (3) convert mathematical expressions
and formulas into proper LaTeX format, (4) describe and explain implementation details of various
components in our codebase, and (5) provide general assistance with academic writing structure
and style. While LLMs contributed to the presentation and clarity of our work, all research ideas,
methodologies, experimental design, and scientific contributions remain entirely the product of the
listed authors.
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