
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BIGO(BENCH) - CAN LLMS GENERATE CODE WITH
CONTROLLED TIME AND SPACE COMPLEXITY?

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce BIGO(BENCH), a novel coding benchmark designed to evaluate the
capabilities of generative language models in understanding and generating code
with specified time and space complexities. This benchmark addresses the gap in
current evaluations that often overlook the ability of models to comprehend and
produce code constrained by computational complexity. BIGO(BENCH) includes
tooling to infer the algorithmic complexity of any Python function from profiling
measurements, including human- or LLM-generated solutions. BIGO(BENCH)
also includes of set of 3,105 coding problems and 1,190,250 solutions from
CODE CONTESTS annotated with inferred (synthetic) time and space complex-
ity labels from the complexity framework, as well as corresponding runtime and
memory footprint values for a large set of input sizes. We present results from
evaluating multiple state-of-the-art language models on this benchmark, highlight-
ing their strengths and weaknesses in handling complexity requirements. In par-
ticular, token-space reasoning models are unrivaled in code generation but not in
complexity understanding, hinting that they may not generalize well to tasks for
which no reward was given at training time.

1 INTRODUCTION

Nicholas, a painter is going to paint
several new canvases. Nicholas is sure
that the canvases will turn out so great
that each one will need framing and
being hung on the wall. Frames are what
Nicholas decided to begin with.

Nicholas has n sticks whose lengths
equal a1, a2, ... an. Nicholas does...

Problem Description Human Solutions
n=int(input())
a=list(map(int,
input().split()))
a.sort()
b,t,c=[],1,0
for i in range(n):
 if i==n-1 or a[i]!=a[i+1]:
 c+=t//4
 if t%4>=2:b.append(t%2)
 t=1
 else:t+=1
print(len(b)//2+c)

n=int(input())
a=list(map(int,
input().split()))
a.sort()
b,t,c=[],1,0
for i in range(n):
 if i==n-1 or a[i]!=a[i+1]:
 c+=t//4
 if t%4>=2:b.append(t%2)
 t=1
 else:t+=1
print(len(b)//2+c)

n=int(input())
a=list(map(int,
input().split()))
a.sort()
b,t,c=[],1,0
for i in range(n):
 if i==n-1 or a[i]!=a[i+1]:
 c+=t//4
 if t%4>=2:b.append(t%2)
 t=1
 else:t+=1
print(len(b)//2+c)

Complexity
Framework

LLM

Time O(n) Time O(nlogn) Time O(n2)

“What is
the time
complexity
of this

solution?”

from collections import
Counter

n = int(input())
arr = list(map(int,
input().split()))
freq = Counter(arr)
ans = 0

for val in
freq.values():
 ans += val//2*2

print(ans//4)

“Can you
generate an
optimized
solution in
O(n) time?”

“It’s O(n) !”

“It’s O(n2) !”

✅
❌

n = int(input())
a = map(int, input().split())

cnt = {}
for num in a:
 cnt[num] = cnt.get(num, 0) + 1

pairs = sum(val // 2 for val in
cnt.values())
print(pairs // 2)

O(n)

not O(n)

✅
❌

better coeff

worse coeff

✅
❌

1.Complexity
Prediction

2.Complexity
Generation

3.Complexity
Coeff Ranking

Complexity Coeff Distribution

Figure 1: BIGO(BENCH) framework overview: Given a coding problem and human solutions, the
framework evaluates LLMs on three key tasks: (1) predicting time-space complexities of existing
solutions, (2) generating new code that meets specified complexity requirements, and (3) ranking
solutions against human-written code with similar complexity profiles. The complexity framework
automatically validates model outputs by computing runtime distributions and curve coefficients.

A junior developer writes an elegant solution to a coding challenge that passes all test cases, yet fails
catastrophically in production. The issue isn’t a bug – it’s an O(n2) algorithm processing millions

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

of records, when an O(n · log(n)) solution could have handled the load effortlessly. As large lan-
guage models (LLMs) increasingly assist in code generation, their ability to understand and control
computational complexity becomes critical. While modern LLMs can generate syntactically correct
and functional code with impressive accuracy, our new benchmark BIGO(BENCH) shows that they
often struggle with the higher-level reasoning required to optimize time and space complexity – a
skill that separates novice programmers from experienced engineers.

Our comprehensive evaluation of state-of-the-art code generation models reveals a concerning gap:
while reasoning models like DeepSeek R1 (DeepSeek-AI et al., 2025) achieve above 70% accuracy
(pass@1) on programming contests (CODEFORCES1), they show significantly weaker performance
(4.8%) when tasked with generating solutions under specific complexity constraints (a detailed fail-
ure example is in Appendix K). They fare barely better than non-reasoning models at analyzing a
function for its complexity, e.g. 6.8% better in complexity prediction vs. Llama 4 Maverick (Meta,
2025). This limitation becomes particularly acute in real-world applications, where scalability and
controllable, understandable, performance constraints are often as critical as functional correctness.

Our main contributions are threefold:
• Firstly, to address the challenge mentioned above, we introduce BIGO(BENCH), a novel

benchmark for code generation that evaluates a model’s understanding of time and space
complexities, including runtime and memory profiling measurements for a set of 3,105
coding problems and 1,190,250 solutions from CODE CONTESTS (Li et al., 2022). As
shown in Fig. 1, for a given coding challenge and human solution, the model can be queried
to a. predict time-space complexities, b. generate code that solves the challenge while
adhering to a specified feasible complexity, and c. on top of it ranks better than human
solutions of the same challenge and complexity.

• Secondly, we release the code for our complexity inference framework, that takes a
Python function and returns time and space complexities. It’s a rule-based algorithm
based on fuzzing, profiling, and regressing of major complexity classes (including multi-
dimensional). This is what we used to produce ground truth labels for BIGO(BENCH),
which are statistically significant ground truth performance profiles and not theoretical
complexities. This complexity evaluation framework achieves 84% and 82% match (with
human annotated theoretical complexity) respectively on time/space complexity test sets.

• Thirdly, we evaluate 14 popular models on our benchmark along fine-tuned ones and
compare performance in detail: using our All@1 metric, DEEPSEEK-R1 LLAMA70B
(DeepSeek-AI et al., 2025) scores best on time complexity prediction (41.4%), while
QWEN3 32B(Team, 2025) leads on time complexity generation (6.5%) and LLAMA 3.1
NEMOTRON-ULTRA(Bercovich et al., 2025) on space complexity generation (5.6%).

2 RELATED WORK

Benchmarks for Code Generation As the coding skills of LLMs were still limited, benchmarks
for code generation originally focused on simple functions and coding challenges, as illustrated by
HumanEval (Chen et al., 2021a) and MBPP (Austin et al., 2021) , probably the most famous coding
benchmarks. Today, these benchmarks are considered saturated, as top reported pass@1 scores lean
towards 90-95% success rate. A first area of work has focused on extending, improving quality and
correcting these benchmarks, be it with HumanEval+ (Liu et al. (2023) added more tests to pass) or
HumanEvalPack (Muennighoff et al. (2024) added more tasks and programming languages).

A different area of research pursues scale and reasoning around code as a way to formulate bench-
marks that can challenge LLMs over a longer term. SWE-Bench (Jimenez et al., 2024) and As-
sistantBench (Yoran et al., 2024) leverage Github as a source of large software development tasks,
that do not resemble nor include obvious patterns of reproduction, therefore not solvable with simple
fine-tuning on similar data. Nevertheless, the evaluation cost in time and compute is a non-negligible
limitation that restrains certain teams from using these benchmarks.

BIGO(BENCH) is a tentative benchmark to integrate challenging notions of reasoning around code
into a simple formulation, providing a practical evaluation metric for code LLMs that can easily be
used to discriminate and iterate improvements of their coding capabilities.

1https://codeforces.com/

2

https://codeforces.com/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Time-Space Complexity Task Coding interviews for software engineers are centered around
small coding challenges to be solved and explained, typically by discussing the time-space complex-
ity of the proposed solutions. Only a few previous works attempted to frame the task of time-space
complexity explanation for LLMs. Nevertheless, they all fall short of providing sufficient elements
to build a solid benchmark: CoRCoD (Sikka et al., 2019) contains 932 Java code pieces labeled
for five time complexity classes without using any LLMs; TASTY (Moudgalya et al., 2023) uses
3000 C++/Python problems across five complexity classes, limited to classification only and just
benchmarking small BERT models (Devlin et al., 2019); CodeComplex (Baik et al., 2024) contains
10k Python/Java programs annotated for five time complexity classes as classification only; finally
RACE (Zheng et al., 2024a) contains limited test cases (∼100) and only measure runtime similarity
between proposed and human solutions.

Most of the work around code efficiency focuses on absolute runtime/memory measurement, scoring
code measured as faster/lighter (Qiu et al., 2025; Peng et al., 2025; Huang et al., 2024; Liu et al.,
2024; Peng et al., 2024; Du et al., 2024). Whereas absolute runtime remains context-dependent and
conditioned on hardware and specific test cases being executed, code complexity reveals the intrinsic
comprehension the model has of the underlying algorithmic structure of the code, measuring its
efficiency at scale and its asymptotic performance.

In order to improve on the previous attempts, BIGO(BENCH) explores not only time but also space
complexity, out of an unconstrained set of classes to capture more various solutions and problems.
The benchmark not only studies the classification task but also the more challenging open-framed
generation task, so to mimic the real-world thought process of designing a solution for a target
complexity. Altogether, this turns out to create a challenging task that wide-used LLMs are bench-
marked upon, and hopefully it provides a new perspective on the limitations of current models and
their reasoning capabilities around code.

3 DYNAMIC COMPLEXITY INFERENCE FRAMEWORK

Throughout this study, complexity refers to worst-case complexity, finding how input growth maxi-
mally affects runtime and memory. Python is considered as the only language studied, and therefore
complexity can account for python-specific optimizations (e.g. CPython (cpy, 2024) or the com-
piler) that get reflected in the empirical time and space measures. In the quest of finding the worst
case scenario of a snippet of code, natural language constraints on the inputs as detailed in the prob-
lem description can be ignored, as long as the program runs and does not fail. Any basic operator
like number addition or initialization of an empty list are considered as constant time and space.

Implementation The time-space complexity framework is a rule-based algorithm that processes
Python functions to infer time and space complexities dynamically. It takes a Python function with
example inputs and corresponding dataclass (Section 4.2), processes them, then measures runtime
and memory during several executions. From a high-level perspective, the framework increases in-
put sizes using various strategies to assess size impact on execution metrics (runtime, memory). For
multi-argument functions, arguments can be expanded independently or together to determine over-
all complexity, considering interdependencies. Prepared code and expanded inputs run in indepen-
dent Bubblewrap sandboxes (bub, 2024) to prevent harmful side effects. While running, Cprofiler is
used for runtime measures and tracemalloc for memory footprint. Using non-negative least squares
curve fitting (Lawson & Hanson, 1976) on each set of measures, the coefficients and residuals of
each complexity class are computed. The gold complexity class output for a given set of measures
is chosen as the minimizer of the residuals, taking into account a simplicity bias (the more simple
the complexity class is, the smaller the simplicity bias). This curve fitting is applied on each set
of measures, each corresponding to a different subset of arguments being expanded with a differ-
ent expansion method. Using ensemble methods, the global complexity of the Python function is
computed by aggregating the individual complexity outputs along the different set of measures. Fi-
nally, the complexity framework also returns the coefficients of the curve of each elected complexity.
These coefficients can be leveraged to rank and classify different optimized Python solutions within
the same complexity class. More details are shared on our Github and in Section G.

Parametrization The framework involves three main parametrized steps. The first step, Process
Allocation, handles the multiple (Code,Expanded inputs) pairs to be run and measured for time

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and space, trying to maximize the execution throughput while minimizing its variability and insta-
bility. Second, Execution Measures consists in leveraging various measuring tools for various ranges
of input size values with more or less granularity. Third, Complexity Fitting relies on the measures
obtained to apply various curve fitting methods, aggregation methods and ensemble methods to form
the global complexity formula across all inputs.

Figure 2: Distribution
of time-space com-
plexity classes across
BIGO(BENCH) dataset
of 3,105 coding problems.
Each problem is included
when at least one solution
exists with that specific
time-space complexity pair.
The chart orders classes by
computational efficiency,
with less common classes
grouped under “other”.

Parameters from each of these three groups were optimized towards
three metrics of interest: pure accuracy of detecting the correct
complexity class, coverage by handling as many code snippets and
problems as possible, and self-consistency of outputting stable re-
sults over multiple runs and across different compute instances.

4 BENCHMARK DATA RELEASE

4.1 COMPOSITION

CODEFORCES is an online competitive coding platform that gath-
ers challenging problems to be solved in various programming lan-
guages. Humans can submit candidate solutions that are rewarded
more the faster and more memory-efficient they are. Using coding
problems and solutions from CODEFORCES mostly (and in minority
from a few other coding platforms), CODE CONTESTS is a dataset
that provides the problem descriptions along with correct and incor-
rect human solutions.

We annotated data from CODE CONTESTS for time and space com-
plexity to create BIGO(BENCH) using the complexity framework
described in Section 3. CODE CONTESTS data was limited to
correct solutions (according to public and private tests) written in
Python code only, which sum up to 8,139 problems and 1,485,888
solutions in total. In addition, problems that have no working data-
class (see Section 4.2), too few solutions (fewer than 50) or unusual data types are also filtered out.
This leads to our general dataset, annotated and released as part of BIGO(BENCH), consisting of
3,105 coding problems and 1,190,250 solutions. Problems are characterized by their difficulty level
(A: 942; B: 682; C: 427; D+: 321; Unknown: 733), their algorithmic notions (37 different notions
in total) and their inputs (1 to 11 distinct arguments across 32 different data types).

Each solution is annotated by the complexity framework and associated with time and space com-
plexity classes, the corresponding coefficients of the complexity curves and the runtime/memory-
footprint measures that were used to infer these attributes. Therefore, each problem gets associated
with one or several time-space complexity classes consisting of solutions that have various complex-
ity coefficients, corresponding to different optimization tricks within the same class of complexity.
Dataclasses generated for each problem are also released (see Section 4.2).

Time/space complexity test sets are selected among this global pool of problems/solutions by ex-
ecuting a range of post-processing and filtering steps, to provide meaningful metrics by enforcing
diversity of classes as well as performance and stability of the framework on the problems. For in-
stance, only problems with several complexity classes are kept; absolute and relative thresholds (to
the most popular class of the problem) filter out outliers; complexities with unlikely variable counts
or high failure rates are removed; finally solutions with unlikely abstract trees (relative to their com-
plexity) or unstable predictions are withdrawn. The resulting test sets have distinct supports of prob-
lems (though there is an overlap of 63 problems), since few problems have diverse classes in both
time and space. Moreover they ignore official CODE CONTESTS splits, as the CODE CONTESTS
test set lacks sufficient discriminative power, and lacks problems with multiple complexity classes.

The time complexity test set is made out of 311 problems and 640 corresponding solutions covering
11 different classes (the most represented ones being O(n), O(n · log(n)), O(n2), O(1), O(n×m)
and the least represented O((n + m)log(n + m))). The space complexity test set consists in 308
problems and 636 solutions covering 5 different classes (by order of popularity O(n), O(1), O(n2),
O(n + m), O(n × m)). A training split for fine-tuning purposes is also released. Fig. 2 shares

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

more details about the distribution of complexity classes in the data being released. It is imbalanced
and heavily tailed: linear time complexity represents 38% of all solutions, constant time complexity
20%; for space complexity, distribution is even more skewed with respectively 47% and 25%.

4.2 DATACLASS GENERATION
Table 1: Comparison of models for
generating problem-specific dataclasses
that can parse the incoming input
streams into each problem’s variables,
on CODE CONTESTS. All models but
CodeLlama 70B Instruct (16k only)
(Rozière et al., 2024) use a context win-
dow of 32k tokens.

MODEL CORR@10 BCKTR@10

CODESTRAL 22B 63.6 54.0
CODELLAMA 34B INSTRUCT 22.1 17.8
CODELLAMA 70B INSTRUCT 10.3 7.9
LLAMA 3.1 8B INSTRUCT 31.9 21.4
LLAMA 3.1 405B INSTRUCT 70.2 58.1

Algorithm 1 Dataclass Template
@dataclass
class Input:

var_1: type_1
var_2: type_2
...
@classmethod
def from_str(cls, input_: str):

...
return cls(var_1, var_2, ...)

def __repr__(self):
...
return input_

Figure 3: Failure rate analysis of the
complexity inference framework. The
top plot shows the overall distribution of
framework failures across all problems.
The bottom heatmap breaks down fail-
ure rates by input type and number of
distinct inputs.

To infer labels with the complexity framework on
CODE CONTESTS code snippets, code inputs must be
parsable into a dataclass matching Algorithm 1. We
define the task of dataclass generation as querying a
LLM for such dataclass given the problem description
and an example solution. For each generated dataclass
Input, we introduce two metrics that measure the qual-
ity of the dataclass methods Input.from str (con-
verting string stream inputs to argument dictionaries) and
Input. repr (the reverse conversion).

Performance is measured by CORR, that accounts
for the correction (executability) of the methods
Input.from str and Input. repr , and
BCKTR, which measures accuracy of the backtranslation
(Edunov et al., 2018):

input == Input.from str(input). repr ()

CORR@K and BCKTR@K are unbiased estimators of
performance of CORR and BCKTR among k samples,
following the definition of Chen et al. (2021a). Mathe-
matical definitions of these metrics are provided in Sec-
tion A.1. Table 1 sums up the benchmark results of the
dataclass generation task. LLAMA 3.1 405B INSTRUCT
(Dubey et al., 2024) reaches best performance, capable of
58.1% correct backtranslation for one dataclass out of ten
attempts per problem. To further boost performance, sev-
eral passes corresponding to different solutions per prob-
lem are performed, thus generating a correct dataclass for
82% of CODE CONTESTS problems.

4.3 COMPLEXITY FRAMEWORK PERFORMANCE

Accuracy A human review measured the accuracy of the
labels as output by the complexity framework (after post-
processing and filtering) compared to the labels assigned
by a human. The framework achieves 84% and 82% ac-
curacy on time and space complexity test sets respectively
(125 sample split each).

Coverage Fig. 3 measures the ratio of solutions per
problem for which the framework fails to predict a la-
bel. Whatever the type of complexity, approximately 84%
of problems have a fail rate below 30%, and only 4.5%
of problems have a fail rate above 0.9, for reasons rang-
ing from incorrect generated dataclass to an edge case not
covered by the range of tests the framework performs. Most input types are correctly covered by the
framework. Exceptions (e.g. tuple and triple-nested lists) are infrequent.

Self-consistency Relying on empirical runtime and memory measures exposes the framework to
stochastic noise affecting prediction reliability. Running the framework 20 times on 10 solutions of
every problem and complexity class of the candidate test set, before any filtering based precisely on
stability, 91.9% (resp. 89.1%) self-consistency is achieved for time (resp. space) complexity, for a
total of 10,130 (resp. 10,520) different code solutions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: BIGO(BENCH) benchmark results for popular LLMs. Program Synthesis checks the
correctness of model-generated solutions to given programming problems, not taking into account
any complexity requirement. Complexity Prediction measures whether a model can find the time-
space complexity of an existing code snippet. Complexity Generation evaluates whether a model
can output a working code snippet to a given problem that meets a time-space complexity require-
ment. Pass@k considers each complexity class of all problems independently and calculates a
macro-average between them. Best@k is a refinement of Pass@k, focusing only on the most opti-
mized complexity class for each problem. All@k checks if all complexity classes for each problem
are correctly predicted or generated simultaneously, then macro-averages across all problems.

MODEL
PROG. SYNTHESIS COMPLEXITY PRED. COMPLEXITY GEN.
PASS PASS PASS BEST ALL PASS PASS BEST ALL
@1 @10 @1 @1 @1 @1 @10 @1 @1

TIME
BASELINES 30.3 55.4 39.5 68.5 0.0 12.1 29.7 19.0 0.9
LLAMA 3.3 70B 43.4 66.0 58.2 72.6 33.7 17.7 40.0 25.7 3.3
LLAMA 4 SCOUT 17BX16E 61.7 80.1 48.7 66.3 23.0 22.8 48.0 31.8 3.5
LLAMA 4 MAVERICK 17BX128E 59.3 78.9 57.4 70.8 32.8 19.9 44.6 27.0 5.3
GEMMA 3 27B 37.7 45.6 60.8 69.2 37.6 15.1 20.9 17.8 1.8
CODESTRAL 22B 23.7 47.5 56.0 67.8 33.5 10.6 26.6 14.9 1.3
QWEN2.5-CODER 32B 30.5 50.8 58.5 68.2 34.9 12.2 26.5 15.2 3.1
GPT-4O 51.0 78.3 57.7 69.7 33.1 20.6 44.7 30.2 4.3
O1-MINI 62.5 76.8 58.3 65.2 35.6 19.8 65.2 27.6 4.5
DEEPSEEKCODERV2 236B 44.1 65.5 54.9 68.9 29.6 19.5 38.0 27.6 3.3
DEEPSEEKV3 671B 41.4 63.6 54.4 72.4 27.1 17.7 37.7 23.0 3.4
DEEPSEEKR1 QWEN 32B 70.1 83.7 62.2 72.7 41.1 29.0 49.9 46.1 4.8
DEEPSEEKR1 LLAMA 70B 70.1 83.8 64.2 75.4 41.4 29.2 51.6 46.5 4.8
LLAMA 3.1 NEMOTRON-ULTRA 253B 80.0 89.4 63.1 74.5 41.1 33.5 54.9 51.8 6.1
QWEN3 32B 70.0 81.3 61.3 70.5 39.0 29.1 53.8 43.5 6.5

SPACE
BASELINES 30.1 52.6 45.4 50.3 0.0 12.2 32.4 17.8 1.3
LLAMA 3.3 70B 42.6 62.5 41.1 55.2 10.9 15.0 37.7 21.9 1.8
LLAMA 4 SCOUT 17BX16E 56.7 73.5 37.4 58.8 5.2 20.0 40.1 31.1 2.2
LLAMA 4 MAVERICK 17BX128E 58.4 75.7 44.6 54.5 8.9 16.8 28.2 30.4 0.8
GEMMA 3 27B 40.3 49.0 44.8 62.9 13.2 16.2 24.3 22.5 1.4
CODESTRAL 22B 25.7 47.6 44.3 62.5 10.6 11.0 29.4 16.7 1.3
QWEN2.5-CODER 32B 31.1 49.2 45.6 63.4 12.6 10.1 23.3 15.3 1.2
GPT-4O 51.6 74.4 43.4 61.4 11.0 18.1 39.9 28.0 1.4
O1-MINI 58.0 72.9 42.7 45.6 8.1 16.6 61.3 25.7 2.5
DEEPSEEKCODERV2 236B 43.1 63.8 44.1 59.6 8.2 16.7 34.5 25.6 1.0
DEEPSEEKV3 671B 41.8 62.5 43.5 62.6 11.2 15.0 35.4 22.6 1.6
DEEPSEEKR1 QWEN 32B 68.0 80.6 43.2 55.0 8.1 24.8 48.6 38.6 3.1
DEEPSEEKR1 LLAMA 70B 68.8 81.2 44.4 56.1 10.4 25.6 50.0 38.7 3.4
LLAMA 3.1 NEMOTRON-ULTRA 253B 77.7 86.4 45.2 54.7 10.3 30.4 55.5 45.3 5.6
QWEN3 32B 65.9 77.7 47.7 58.3 15.1 25.5 47.8 39.6 5.1

5 EVALUATION

We use BIGO(BENCH) to evaluate several LLMs commonly used for coding and reasoning tasks:
LLAMA 3.3 70B (Dubey et al., 2024), LLAMA 4 models (Meta, 2025), GEMMA 3 27B (Team
et al., 2025), CODESTRAL 22B (MistralAI, 2024), GPT-4O (OpenAI et al., 2024b), O1-MINI (Ope-
nAI et al., 2024a), QWEN 2.5-CODER 32B (Hui et al., 2024), DEEPSEEK-CODER-V2 236B
(DeepSeek-AI et al., 2024b), DEEPSEEK-V3 671B (DeepSeek-AI et al., 2024a), DEEPSEEK-
R1 QWEN and LLAMA distilled (DeepSeek-AI et al., 2025), LLAMA 3.1 NEMOTRON-ULTRA
(Bercovich et al., 2025) and QWEN3 32B (Team, 2025). All models are evaluated using their
INSTRUCT variant, when available, in a zero-shot fashion (unless otherwise stated). GPT4-O and
O1-MINI do not share any estimate on inference compute. Also, O1-MINI returned many empty an-
swers, potentially due to reasoning collapse: we discarded these answers and used only non-empty
answers to compute metrics. As a result, its performance can be regarded as an upper-bound opti-
mistic estimate. DEEPSEEK-R1 distilled models used substantially more compute than LLAMA 4
(×2 compute nodes, ×5 compute time and ×16 generation tokens).

Pure program synthesis performance is also displayed on the same test splits as the rest of the
metrics. It is evaluated for pass@k using all public, private and generated tests. For each metric,
best values or any values not significantly lower than the best are displayed in boldface. Metrics are
macro-averaged first by complexity classes within each problem and then across problems. More
details and metric definitions are provided in Section A. 2

2One-tailed paired t-tests on 1000 bootstraps samples of the model results evaluate the significance of the
superiority of the best model. Any @k metric uses an unbiased estimator based on 20 samples.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.1 TIME-SPACE COMPLEXITY PREDICTION
Table 3: Using the complexity framework,
the best measured coefficient of the com-
plexity curve, out of 20 attempts, is used
to rank LLM-generated code among human
solutions from the same problem and time-
space complexity class. Ranking is per-
centile based, n% ranking score amounts for
n% human solutions having worse complex-
ity coefficient. If no LLM solution passes
correctness tests, ranking score is set to 0.
INTERSEC is the subset where all starred (*)
models have at least one successful solution.

MODEL
COEFFICIENT

RANKING ALL
FULL INTERSEC @1

TIME
LLAMA 3.3 70B 33.8 65.0 2.8
LLAMA 4 SCOUT 17BX16E 39.0 69.9 3.4
LLAMA 4 MAVERICK 17BX128E 43.2 72.1 3.6
GEMMA 3 27B 10.4 25.7 1.6
CODESTRAL 22B 21.6 50.7 1.5
QWEN2.5-CODER 32B 19.7 50.4 2.2
GPT-4O* 36.6 70.9 4.2
O1-MINI* 26.3 78.8 3.1
DEEPSEEKCODERV2 236B 27.7 54.1 2.8
DEEPSEEKV3 671B 28.7 58.6 3.4
DEEPSEEKR1 QWEN 32B* 38.6 79.0 4.2
DEEPSEEKR1 LLAMA 70B* 38.3 79.0 4.0
LLAMA 3.1 NEMOTRON-ULTRA 253B* 41.6 75.8 5.1
QWEN3 32B* 44.0 79.6 6.1

SPACE
LLAMA 3.3 70B 32.8 73.0 1.6
LLAMA 4 SCOUT 17BX16E 34.5 78.8 2.1
LLAMA 4 MAVERICK 17BX128E 21.8 60.0 0.8
GEMMA 3 27B 17.5 49.3 1.4
CODESTRAL 22B 25.2 64.6 1.2
QWEN2.5-CODER 32B 20.5 68.7 0.6
GPT-4O* 31.6 86.3 1.3
O1-MINI* 21.1 82.8 1.5
DEEPSEEKCODERV2 236B 26.8 68.5 1.2
DEEPSEEKV3 671B 27.2 72.3 1.3
DEEPSEEKR1 QWEN 32B* 40.1 88.5 3.0
DEEPSEEKR1 LLAMA 70B* 41.6 89.5 3.3
LLAMA 3.1 NEMOTRON-ULTRA 253B* 45.4 87.7 4.6
QWEN3 32B* 40.5 88.2 4.3

The first evaluation task of BIGO(BENCH), Com-
plexity Prediction, consists in predicting the time
and space complexity given a problem description
and a human solution. Our baseline for this task
is the naive model that always returns O(n), the
most frequent class. Pass@k measures the accu-
racy of finding the correct complexity, using a pars-
ing script that compares the output of the LLM with
the ground-truth complexity inferred by the frame-
work; Best@k measures accuracy only across the
most optimized complexity class of each problem;
All@k requires correct complexity output across all
complexity classes at once per problem: the LLM
has to correctly output a working solution that meets
the complexity requirement for all classes of com-
plexity of the problem. For each metric, @k is
the unbiased estimator among k samples, follow-
ing the definition of Chen et al. (2021a). Met-
rics are macro-averaged across complexity classes
(Pass@k), and then across problems (Pass@k,
Best@k and All@k).

Results are displayed in Table 2. A query exam-
ple, along with an output example of DEEPSEEK-R1
LLAMA 70B, is provided in Section J. More metric
definitions are detailed in Section A.2.

5.2 TIME-SPACE
COMPLEXITY CODE GENERATION

The second task Complexity Generation requires
the LLM to generate a correct solution to a given problem description that has to respect a feasible
time or space complexity requirement. Our baseline for this task is a LLAMA 3.1 70B model that is
queried for the same prompts without the complexity requirement. Pass@k measures the accuracy
of finding a correct solution, according to public, private and generated tests, that has the correct
complexity, as measured by the complexity framework; Best@k and All@k are similarly defined as
their counterparts of Section 5.1. Results are displayed in Table 2. An example with DEEPSEEK-R1
LLAMA 70B is provided in Section K.

5.3 TIME-SPACE COMPLEXITY COEFFICIENT PERCENTILE RANKING

The third task, Complexity Coefficient Percentile Ranking, measures how a generated solution to
a given problem, respecting a complexity requirement, ranks among human solutions of the same
complexity class and problem. The ranking is performed based on the coefficient of the complexity
curve, as measured by the framework: the lower the coefficient, the more flat the complexity curve
and the more optimized the solution. Ranking results are given in percentile of the distribution,
where a solution of the nth percentile is more optimized than n% of human solutions. The querying
is similar to Section 5.2 with the addition of the requirement ”Try to optimize the runtime of your
code as much as you can, while respecting the time complexity requirement”. See Table 3.

5.4 PREDICTION AND GENERATION FINE-TUNING

Using training sets of 2000 problems and 20k code solutions, LLAMA 3.1 70B is being fine-tuned
for the first and second task. Time and space generation training sets sums up to 22M tokens,
prediction training sets to 18-19M. Each complexity class of each problem includes 10 human
examples, filtered following the same steps as the test set creation (see Section 4.1). Models are
fine-tuned for 10 epochs in instruct format. See Table 4.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

6 QUANTITATIVE ANALYSIS
Table 4: BIGO(BENCH) benchmark results for
fine-tuned LLAMA 3.1 70B on time-space pre-
diction and generation tasks. Same metrics as in
Table 2.

METHOD
PROG. PREDICTION GENERATION

SYNTH. TIME SPACE TIME SPACE
PASS@1 ALL@1 ALL@1 ALL@1 ALL@1

ZERO-SHOT 29.6 33.8 11.9 3.1 1.8
FEW-SHOT 28.9 33.6 12.1 2.4 1.4
PREDICTION FINE-TUNING

TIME 27.4 36.5 6.6 2.9 1.3
SPACE 26.6 9.0 14.0 2.4 1.4

GENERATION FINE-TUNING
TIME 23.2 34.7 12.7 1.2 1.3
SPACE 23.4 34.6 13.0 1.5 1.4

Figure 4: LLM results aggregated by time com-
plexity and algorithmic notions. Scores are
Pass@1 on Time Complexity Generation.

Understanding time-space complexity Per
Table 2, all LLMs show performance drops
on the combined task Complexity Generation
versus individual tasks Program Synthesis and
Complexity Prediction. Across all tasks, the
top performing models remain the reasoning
models DEEPSEEK-R1 LLAMA 70B, QWEN3
32B and LLAMA NEMOTRON-ULTRA, achiev-
ing 64.2 and 33.5 Pass@1 for time predic-
tion and generation, except space prediction,
where performance patterns are less clear with
smaller differences, as these models tend to
overthink extra space complexity despite ex-
plicit prompts. Models tend to be even more
misled when asked to ”Optimize the solution
while respecting the complexity requirement”,
causing 12% average loss in time generation
All@1 (Table 3), reaching 30% for GPT-4O
and O1-MINI.

At a more granular level, models tend to under-
perform on non-optimal complexity classes,
compared to the most optimized class of every
problem, as underlined in Fig. 4. This contra-
dicts human programming patterns, where non-
optimized solutions are typically easier than
optimal ones, especially for competition prob-
lems. In addition, LLMs do not understand that
adding dummy pieces of code (e.g., list sort-
ing) could transform a, working linear solution
into a less-optimized linearithmic one. In the
end, All@1 metrics better capture true under-
standing by uniformly evaluating across opti-
mized and non-optimized solutions, verifying
that LLMs do not just stumble upon a solution
of the right complexity because they learned by
heart the widespread optimized code snippets.
Top model QWEN3 32B achieves only 6.5 All@1 on time generation. These complexity metrics
can also be used as a proxy of the understanding of other notions, such as combinatorics, where
models explicitly optimized for math reach score higher (Fig. 4). When analyzing these results, one
has to keep in mind that the splits were done on the training data of CODE CONTESTS that includes
all solutions of the different complexity classes to all problems, already seen by models.

Token-space reasoning models Though they largely outperform other LLMs on pure program
synthesis, reasoning models such as O1-MINI, DEEPSEEK-R1 and LLAMA NEMOTRON-ULTRA
are much closer in terms of performance on complexity-related tasks, and these are even outper-
formed by QWEN2.5-CODER on space complexity prediction specifically: while the latter obtains
12.6 All@1, the former respectively only reach 8.1, 10.4 and 10.3. For this specific case, reasoning
models seem to exhibit patterns of overthinking, misunderstanding the notion of extra space com-
plexity, even if clearly described in the prompt. When explicitly prompted in order to understand
their failure modes, it turns out that such models are able to recognize all classes of complexity of a
problem from a prediction point of view, but when asked to generate them, they fail to return the less
optimized classes of complexity, favoring the optimal solution. Not to mention that these models
could just easily ‘cheat’ by tweaking the optimal solution with a dummy sort or nested for-loop, so
to transform it, as any programmer could figure it out, as a less-than-optimal solution.

In general, these models struggle with the ambiguity of higher-level reasoning tasks, especially when
there is no explicit verifier that they may have been confronted with during their reinforcement, such

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

as programming tests to pass. This triggers the question of whether they really understand how to
‘think’ about notions they ‘know’, or if they only learn by heart patterns of ‘thoughts’ exhibited by
human annotation efforts and training rewards. As all these complexity solutions were, in fact, in
their training data, it demonstrates that these highly efficient search models can still fail to recover
the correct data points when they were not reinforced for the specific search criteria.

Developing challenging reasoning benchmarks As newly released benchmarks usually quickly
saturate, BIGO(BENCH) aims at evaluating high-level reasoning skills that stay out-of-scope of
current LLMs, bringing their performance down as displayed by Fig. 5. Table 4 measures that
the benchmark remains robust to fine-tuning. In particular, complexity prediction fine-tuning barely
improves performance on the same task, and complexity generation fine-tuning even slightly hurt the
performance of LLMs. This suggests that learning such high-level reasoning tasks is not effectively
captured by standard fine-tuning to learn logical deduction and more convoluted patterns of thoughts.
With reasoning models topping benchmarks, new challenging benchmarks are perhaps more about
finding out-of-distribution patterns of thinking rather than new data points of existing reasoning
scenarios. It was especially difficult to design BIGO(BENCH) without any human labels available,
as the qualification level required from annotators was not reachable. But this is also probably why
the models had been underexposed to this reasoning task, therefore making it challenging for them.

Figure 5: Model scores per coding benchmark:
HUMANEVAL, MBPP and BIGCODEBENCH
main metrics are all Pass@1; for BIGO(BENCH),
we display All@1 results.

Limitations The complexity framework itself
is prone to errors, as for specific problems it
can potentially fall upon worst-complexity edge
cases. In addition, the measures on which the
complexity prediction is based remain noisy,
still relying on real CPU runtimes and using sta-
tistical measuring tools; they could potentially
become more reliable with the help of virtual
CPU cores.

Although we fine-tune LLAMA models, we
did not use advanced multiturn prompting
(Zheng et al., 2024b) nor further reinforcement
(Gehring et al., 2025). Proximal Policy Opti-
mization (Schulman et al., 2017) could help re-
fine LLMs for these tasks. Human annotations
could also help models reason better for these tasks. Finally, the coding problems and the frame-
work remain limited to Python. Mixing other languages such as C++ and Java could measure cross-
languages optimization strategies.

7 CONCLUSION

In this work, we introduced BIGO(BENCH), a novel benchmark of LLMs on code generation, fo-
cusing on their understanding of time and space complexities when producing code. It consists in
three tasks: first, given a coding challenge, predicting the time-space complexity of a given corre-
sponding solution; second, for a given challenge and time or space complexity, generating a solution
that solves the challenge while fulfilling the complexity requirements; third, optimizing the coeffi-
cient of the complexity cure compared to the human distribution. This benchmark is supported by
the release of time-space complexity labels corresponding to 3,105 coding problems and 1,190,250
corresponding solutions from CODE CONTESTS. In addition, we developed and release the code
of a complexity framework, capable of dynamically inferring the time-space complexity of a given
snippet of code, used to automatically evaluate any synthetic snippet of code and therefore the gen-
eration of LLMs conditioned on a given complexity trade-off. Finally, we benchmark 14 LLMs
considered as the top coding assistants and analyse their performance.

BIGO(BENCH) is a challenging benchmark with current top scores belonging to the reasoning mod-
els DEEPSEEK-R1 LLAMA 70B, QWEN3 32B and LLAMA NEMOTRON-ULTRA, achieving up to
6.5% and 5.6% All@1 on the time-space complexity generation tasks. Even when fine-tuning a
LLAMA 3.1 70B model, performance increases only marginally, only on prediction tasks. We hope
this benchmark can keep challenging upcoming models and help guide the development of new
models towards better understanding of coding abstract notions beyond pure code generation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

BIGO(BENCH) does not include any model release, and therefore there is no risk for model misuse.
The data used for BIGO(BENCH) comes from an already existing public dataset (Li et al., 2022).
Any code execution is to be done within sandboxes, as documented and provided in our associated
Github repository, using the Bubblewrap library (bub, 2024), to avoid any harmful side effects of
the code being run.

Furthermore, we establish guidelines for users to follow when utilizing the benchmark, including
the requirement to report any potential misuse or harmful applications, and to provide transparency
in their use of the benchmark data and results. More details are provided in the Code of Conduct
that we publish alongside our Github repository. We also establish a mechanism for users to report
any concerns or issues related to the benchmark, and to provide feedback on how to improve the
benchmark’s safety and responsibility, on top of any potential security issues: this is detailed further
in the security policy attached to our code repository as well.

9 REPRODUCIBILITY STATEMENT

To ensure reproducibility of the work presented in this paper, we provide comprehensive details
on the different steps of our study. The complexity framework implementation is detailed in Sec-
tion 3 with technical specifics in Section G. Our dataset construction and pre-processing procedures
are documented in Section 4. Benchmark design methodologies and theoretical foundations for
our evaluation metrics are described in Section A, while time-space complexity definitions are for-
malized in Section B. Ablation studies validating our benchmark design choices are presented in
Section C.

The computational infrastructure and experimental setup used for our evaluations are documented in
Section H. Main experimental results are presented in Section 5, with extended multi-sample anal-
ysis in Section D. Representative examples of benchmark prompts for both complexity prediction
and generation tasks are provided in Sections J and K. All open-source models and their reposito-
ries are listed in Section I, while we also evaluate several closed-source models accessible through
vendor platforms. Upon acceptance, we will release our complete codebase, dataset, and interactive
leaderboard to facilitate future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Bubblewrap library. https://github.com/containers/bubblewrap, 2024.

Cpython library. https://github.com/python/cpython, 2024.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Pro-
gram synthesis with large language models. CoRR, abs/2108.07732, 2021. URL https:
//arxiv.org/abs/2108.07732.

Seung-Yeop Baik, Mingi Jeon, Joonghyuk Hahn, Jungin Kim, Yo-Sub Han, and Sang-Ki Ko.
Codecomplex: A time-complexity dataset for bilingual source codes, 2024. URL https:
//arxiv.org/abs/2401.08719.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
Zach Moshe, Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropp, Ehud Karpas, Ran Zil-
berstein, Jiaqi Zeng, Soumye Singhal, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Ger-
ald Shen, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Yoshi Suhara, Olivier Delalleau, Zijia
Chen, Zhilin Wang, David Mosallanezhad, Adi Renduchintala, Haifeng Qian, Dima Rekesh,
Fei Jia, Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Narenthiran, Alek-
sander Ficek, Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov,
Wei Du, Shubham Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria
Gitman, Evelina Bakhturina, Jane Polak Scowcroft, John Kamalu, Dan Su, Kezhi Kong, Markus
Kliegl, Rabeeh Karimi, Ying Lin, Sanjeev Satheesh, Jupinder Parmar, Pritam Gundecha, Bran-
don Norick, Joseph Jennings, Shrimai Prabhumoye, Syeda Nahida Akter, Mostofa Patwary,
Abhinav Khattar, Deepak Narayanan, Roger Waleffe, Jimmy Zhang, Bor-Yiing Su, Guyue
Huang, Terry Kong, Parth Chadha, Sahil Jain, Christine Harvey, Elad Segal, Jining Huang,
Sergey Kashirsky, Robert McQueen, Izzy Putterman, George Lam, Arun Venkatesan, Sherry
Wu, Vinh Nguyen, Manoj Kilaru, Andrew Wang, Anna Warno, Abhilash Somasamudramath,
Sandip Bhaskar, Maka Dong, Nave Assaf, Shahar Mor, Omer Ullman Argov, Scot Junkin, Olek-
sandr Romanenko, Pedro Larroy, Monika Katariya, Marco Rovinelli, Viji Balas, Nicholas Edel-
man, Anahita Bhiwandiwalla, Muthu Subramaniam, Smita Ithape, Karthik Ramamoorthy, Yut-
ing Wu, Suguna Varshini Velury, Omri Almog, Joyjit Daw, Denys Fridman, Erick Galinkin,
Michael Evans, Katherine Luna, Leon Derczynski, Nikki Pope, Eileen Long, Seth Schneider,
Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika Katariya, Joey Conway, Trisha
Saar, Ann Guan, Krzysztof Pawelec, Shyamala Prayaga, Oleksii Kuchaiev, Boris Ginsburg,
Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen, Bryan Catanzaro, Jonah Alben, Yonatan Geif-
man, Eric Chung, and Chris Alexiuk. Llama-nemotron: Efficient reasoning models, 2025. URL
https://arxiv.org/abs/2505.00949.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021a.
URL https://arxiv.org/abs/2107.03374.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,

11

https://github.com/containers/bubblewrap
https://github.com/python/cpython
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2401.08719
https://arxiv.org/abs/2401.08719
https://arxiv.org/abs/2505.00949
https://arxiv.org/abs/2107.03374

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021b. URL https://arxiv.org/abs/2107.03374.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2024a. URL
https://arxiv.org/abs/2412.19437.

DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu,
Yukun Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao Bi, Zihui Gu, Hanwei Xu, Damai
Dai, Kai Dong, Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie, Zhewen Hao, Bingxuan Wang,
Junxiao Song, Deli Chen, Xin Xie, Kang Guan, Yuxiang You, Aixin Liu, Qiushi Du, Wenjun Gao,
Xuan Lu, Qinyu Chen, Yaohui Wang, Chengqi Deng, Jiashi Li, Chenggang Zhao, Chong Ruan,
Fuli Luo, and Wenfeng Liang. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence, 2024b. URL https://arxiv.org/abs/2406.11931.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,

12

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2406.11931

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Mingzhe Du, Anh Tuan Luu, Bin Ji, Qian Liu, and See-Kiong Ng. Mercury: A code efficiency
benchmark for code large language models, 2024. URL https://arxiv.org/abs/2402.
07844.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay

13

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2402.07844
https://arxiv.org/abs/2402.07844

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation at
scale, 2018. URL https://arxiv.org/abs/1808.09381.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen, and
Gabriel Synnaeve. Rlef: Grounding code llms in execution feedback with reinforcement learning,
2025. URL https://arxiv.org/abs/2410.02089.

14

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1808.09381
https://arxiv.org/abs/2410.02089

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

J. L. Hodges Jr. and E. L. Lehmann. Estimates of location based on rank tests. Ann. Math. Statist.,
34(2):598–611, 1963. doi: 10.1214/aoms/1177704172.

Dong Huang, Jianbo Dai, Han Weng, Puzhen Wu, Yuhao Qing, Heming Cui, Zhijiang Guo, and
Jie M. Zhang. Effilearner: Enhancing efficiency of generated code via self-optimization, 2024.
URL https://arxiv.org/abs/2405.15189.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men,
Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xu-
ancheng Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL
https://arxiv.org/abs/2409.12186.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Charles L. Lawson and Richard J. Hanson. Solving least squares problems. In Classics in
applied mathematics, 1976. URL https://api.semanticscholar.org/CorpusID:
122862057.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. Science, 378(6624):1092–1097, December 2022. ISSN 1095-
9203. doi: 10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.
abq1158.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation, 2023.
URL https://arxiv.org/abs/2305.01210.

Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei, Yifeng Ding, and Lingming Zhang. Evaluat-
ing language models for efficient code generation, 2024. URL https://arxiv.org/abs/
2408.06450.

Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation. https:
//ai.meta.com/blog/llama-4-multimodal-intelligence/, 2025. Blog post.

MistralAI. Codestral, 2024. URL https://mistral.ai/news/codestral/. Accessed:
2024-05-29.

Kaushik Moudgalya, Ankit Ramakrishnan, Vamsikrishna Chemudupati, and Xing Han Lu. Tasty:
A transformer based approach to space and time complexity, 2023. URL https://arxiv.
org/abs/2305.05379.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: Instruction
tuning code large language models, 2024. URL https://arxiv.org/abs/2308.07124.

Yannic Noller, Rody Kersten, and Corina S. Păsăreanu. Badger: complexity analysis with fuzzing
and symbolic execution. In Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA ’18, pp. 322–332. ACM, July 2018. doi: 10.1145/3213846.
3213868. URL http://dx.doi.org/10.1145/3213846.3213868.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao,

15

https://arxiv.org/abs/2405.15189
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2310.06770
https://api.semanticscholar.org/CorpusID:122862057
https://api.semanticscholar.org/CorpusID:122862057
http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2408.06450
https://arxiv.org/abs/2408.06450
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://mistral.ai/news/codestral/
https://arxiv.org/abs/2305.05379
https://arxiv.org/abs/2305.05379
https://arxiv.org/abs/2308.07124
http://dx.doi.org/10.1145/3213846.3213868

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel
Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai o1 system card, 2024a. URL https://arxiv.org/abs/2412.16720.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen

16

https://arxiv.org/abs/2412.16720

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024b. URL
https://arxiv.org/abs/2303.08774.

Karl Pearson and Francis Galton. Vii. note on regression and inheritance in the case of two parents.
Proceedings of the Royal Society of London, 58(347-352):240–242, 1895. doi: 10.1098/rspl.1895.
0041. URL https://royalsocietypublishing.org/doi/abs/10.1098/rspl.
1895.0041.

Yun Peng, Akhilesh Deepak Gotmare, Michael Lyu, Caiming Xiong, Silvio Savarese, and Doyen
Sahoo. Perfcodegen: Improving performance of llm generated code with execution feedback,
2024. URL https://arxiv.org/abs/2412.03578.

Yun Peng, Jun Wan, Yichen Li, and Xiaoxue Ren. Coffe: A code efficiency benchmark for code
generation, 2025. URL https://arxiv.org/abs/2502.02827.

Ruizhong Qiu, Weiliang Will Zeng, James Ezick, Christopher Lott, and Hanghang Tong. How
efficient is llm-generated code? a rigorous & high-standard benchmark, 2025. URL https:
//arxiv.org/abs/2406.06647.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL https://arxiv.org/abs/2308.12950.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Jagriti Sikka, Kushal Satya, Yaman Kumar, Shagun Uppal, Rajiv Ratn Shah, and Roger Zim-
mermann. Learning based methods for code runtime complexity prediction, 2019. URL
https://arxiv.org/abs/1911.01155.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas

17

https://arxiv.org/abs/2303.08774
https://royalsocietypublishing.org/doi/abs/10.1098/rspl.1895.0041
https://royalsocietypublishing.org/doi/abs/10.1098/rspl.1895.0041
https://arxiv.org/abs/2412.03578
https://arxiv.org/abs/2502.02827
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1911.01155

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xi-
aohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Cole-
man, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry,
Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh,
Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
Sheth, Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry,
Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
ral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier
Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
Gemma 3 technical report, 2025. URL https://arxiv.org/abs/2503.19786.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Yan Wang, Peng Jia, Luping Liu, and Jiayong Liu. A systematic review of fuzzing based on machine
learning techniques, 08 2019.

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang. Fuzz4all:
Universal fuzzing with large language models. In Proceedings of the IEEE/ACM 46th Inter-
national Conference on Software Engineering, ICSE ’24, pp. 1–13. ACM, April 2024. doi:
10.1145/3597503.3639121. URL http://dx.doi.org/10.1145/3597503.3639121.

Hanxiang Xu, Wei Ma, Ting Zhou, Yanjie Zhao, Kai Chen, Qiang Hu, Yang Liu, and Haoyu Wang.
Ckgfuzzer: Llm-based fuzz driver generation enhanced by code knowledge graph. pp. 243–254,
04 2025. doi: 10.1109/ICSE-Companion66252.2025.00079.

Ori Yoran, Samuel Joseph Amouyal, Chaitanya Malaviya, Ben Bogin, Ofir Press, and Jonathan
Berant. Assistantbench: Can web agents solve realistic and time-consuming tasks?, 2024. URL
https://arxiv.org/abs/2407.15711.

Jiasheng Zheng, Boxi Cao, Zhengzhao Ma, Ruotong Pan, Hongyu Lin, Yaojie Lu, Xianpei Han,
and Le Sun. Beyond correctness: Benchmarking multi-dimensional code generation for large
language models, 2024a. URL https://arxiv.org/abs/2407.11470.

Kunhao Zheng, Juliette Decugis, Jonas Gehring, Taco Cohen, Benjamin Negrevergne, and Gabriel
Synnaeve. What makes large language models reason in (multi-turn) code generation?, 2024b.
URL https://arxiv.org/abs/2410.08105.

18

https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2505.09388
http://dx.doi.org/10.1145/3597503.3639121
https://arxiv.org/abs/2407.15711
https://arxiv.org/abs/2407.11470
https://arxiv.org/abs/2410.08105

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A FORMAL METRIC DEFINITIONS

A.1 DATACLASS GENERATION METRICS

In order to measure the quality of the dataclasses as generated by a LLM, we introduce two metrics
CORR and BCKTR, used over a test set of code problems and solutions to compare performance of
LLMs on the dataclass generation task.

We introduce the following variables, and the structure of a problem dataclass:

• P = Problem description
• S = Example solution
• D = LLM-generated dataclass (from P and S), that has the following class template (see

Algorithm 1):

D =

{
D.from str(·) : str → dict
D. repr () : dict → str

• input = Input string, that corresponds to the input of an Input/Output test case pair of the
code problem

• D.from str(input) = Dictionary of parsed arguments
• D. repr () = String representation of parsed arguments
• P: Distribution over problems P
• S(P): Distribution over human solutions S for problem P

• DLLM (P, S): LLM’s output distribution for dataclass D given P and S.
• I(P): Set of test case inputs for problem P .

Based on these definitions, we define the following two metrics:

1. Correction (Corr): Executability of both methods
Corr = EP∼P, S∼S(P), D∼DLLM (P,S)I(D.from str(·) and D. repr() are executable)

2. Backtranslation Accuracy (BckTr): Round-trip consistency

BckTr = EP∼P, S∼S(P), D∼DLLM (P,S)I

 ⋂
input∈I(P)

(input == D.from str(input). repr())


In practice, we will want an approximation of these metrics, especially as we are operating under a
fixed sampling budged for the LLM. We define a sampling budget parametrized by n, the number of
times we will be sampling a dataclass D from DLLM (P, S). Each problem is sampled with equal
probability, and for the sake of limiting the compute budget only the first human solution of the
attached set of solutions S(P) will be used to compute the metrics. Then, for each (P, S), we use
the model to generate n samples D1, . . . , Dn ∼ DLLM (P, S).

We generalize the above metrics to the case of k-success, where we want to record the probablity
that at least one of k generated dataclasses {Di}ki=1 satisfies the metric, leveraging our compute
budget of n possible samples (in practice we take n = 2 × k) to have the best unbiased estimator
(we use Codex (Chen et al., 2021b) pass@k estimator).

This leads us to the following definitions of the estimators Corr@k and BckTr@k:

1. Corr@k estimator that at least one of k LLM attempts satisfies dataclass correction

Corr = E P∼P
S1∈S(P)

[
1−

(
n−c
k

)(
n
k

)]
, where

{
c =

∑n
i=1 I(Corr is satisfied for Di),

Di ∼ DLLM (P, S1).

2. BckTr@k estimator that at least one of k LLM attempts satisfies backtranslation of the
dataclass methods

Corr = E P∼P
S1∈S(P)

[
1−

(
n−c
k

)(
n
k

)]
, where

{
c =

∑n
i=1 I(BckTr is satisfied for Di),

Di ∼ DLLM (P, S1).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.2 COMPLEXITY METRICS

A.2.1 COMPLEXITY PREDICTION METRICS

The first evaluation task, Complexity Prediction, involves predicting the time and space complexity
of a problem given its description and a human solution. The metrics for this task are defined as
follows:

• Pass@k: Measures the accuracy of correctly predicting the complexity class for each
problem, macro-averaged across complexity classes and then across problems. The
unbiased estimator among k samples is used.

• Best@k: Measures accuracy only for the most optimized complexity class of each
problem, using the unbiased estimator among k samples.

• All@k: Requires correct complexity output across all complexity classes simultaneously
for each problem, using the unbiased estimator among k samples.

We share below more formal definitions of these metrics. First, we define the following setup for the
task, on top of the general set up of coding problems involving problems P ∼ P and corresponding
human solutions S ∼ S(P) as introduced in Section A.1:

• C: Set of complexity classes (e.g., time, space).

• For each problem P , C(P) ⊆ C: Subset of complexity classes relevant to P . This set
is determined in our case using the complexity framework on the ground truth human
solutions, and post-processing the distribution of complexity classes (typically to remove
any obvious outlier).

• H(P, c): Set of human solutions for problem P and complexity class c ∈ C(P).

• S′: LLM-generated solution containing the predicted complexity for the given human
code S and problem P . This solution is generated by the LLM S′ ∼ DLLM (P, S).

• G the function that extracts the ground-truth label assigned to the human code, the very
same complexity that we are trying to predict using the LLM.

• parse(S′): Parsing function that extracts the predicted complexity of class c′ from S′.

• Icorrect(S
′, S, P): Indicator function equal to 1 if parse(S′) = G(S), else 0.

That said, we define the above introduced metrics as the following:

1. Pass@k: Measures correctness for each complexity class of each problem independently,
averaged over all classes and problems. Correctness of having at least one correct solution
out of k attempts, using a sampling budget of n > k (usually using n = 2× k):

Pass@k = EP∼P

 1

|C(P)|
∑

c∈C(P)

1−
(
n− cc

k

)
(
n

k

)

 ,

where cc is the count of times the LLM found the correct solution, that is to say labeled the
complexity class of the human solution correctly:

cc =

n∑
i=1

Icorrect(S
′
i, S1, P),

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

and S1 is a human solution from the same problem and complexity class S1 ∈ H(P, c).

2. Best@k: Evaluates correctness only for the best (e.g., most efficient) complexity class per
problem, in particular the probability of getting one correct answer among k answers:

Best@k = EP∼P

1−
(
n− ccbest

k

)
(
n

k

)
 ,

where ccbest is the count of times the LLM found the correct solution, that is to say labeled
the complexity class of the human solution correctly, only for the best class of complexity
cbest for each problem:

cbest =

n∑
i=1

Icorrect(S
′
i, S1, P),

with cbest(P) is the most optimized complexity class for P , and S1 ∈ H(P, cbest(P))

3. All@k: Joint accuracy across all complexity classes. It requires correctness for all
complexity classes simultaneously:

All@k = EP∼P

1−
(
n− call

k

)
(
n

k

)
 ,

where

call =

n∑
i=1

I

 ⋂
c∈C(P)

Icorrect(S
′
i, Sc, P)


with Sc ∈ H(P, c).

These metrics all use the unbiased estimator 1−

(
n− c.
k

)
(
n

k

) from Chen et al. (2021b), where n is the

total number of samples, and c. is the count of valid samples, usually parametrized by a complexity
class for instance.

A.2.2 COMPLEXITY GENERATION METRICS

The second task, Complexity Generation, involves generating solutions that meet specific complex-
ity requirements. The metrics are defined as follows:

• Pass@k: Measures performance of generating a correct solution that meets each complex-
ity class requirement independently, averaged over all classes and problems.

• Best@k: Measures generation correctness for the most optimized complexity class per
problem.

• All@k Requires the solution to meet all complexity classes simultaneously for each
problem.

For each problem P ∼ P:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• C(P): Set of complexity classes (e.g., time and/or space) that exist for a particular problem.

• S′: Generated solution by the LLM. We can write S′(P, c) or S′ ∼ DLLM (P, c) to precise
that the generation of the LLM is conditioned on a particular problem P and a requested
complexity class c for the solution.

• Icorrect(S
′, P): 1 if S′ passes all tests associated with problem P which means it is

evaluated as a correct solution to the coding challenge, 0 otherwise (therefore this does not
take into account the complexity of the generated solution).

• Iclass(S
′, c, P): 1 if S′ meets complexity class c ∈ C(P), 0 otherwise. This does not

depend on the correctness of the solution with respect to the coding challenge P alone.
So a solution that compiles, runs and produces wrong results can potentially meet the
complexity requirement.

In this context, we can define the following metrics associated with the task of complexity
generation:

• Pass@k:

Pass@k = EP∼P

 1

|C(P)|
∑

c∈C(P)

1−

(
n− cc

k

)
(
n

k

)

 ,

where cc =
∑n

i=1 Iclass(S
′
i, c, P)× Icorrect(S

′
i, P).

• Best@k:

Best@k = EP∼P

1−
(
n− cbest

k

)
(
n

k

)
 ,

where cbest =
∑n

i=1 Iclass(S
′
i, cbest(P), P) × Icorrect(S

′
i, P), and cbest(P) is the most

optimized class in C(P).

• All@k:

All@k = EP∼P

1−
(
n− call

k

)
(
n

k

)
 ,

where call =
∑n

i=1

∏
c∈C(P) Icorrect(S

′
i,c, P)× Iclass(S

′
i,c, c, P) with S′

i,c ∼ DLLM (P, c).

A.2.3 COMPLEXITY RANKING METRICS

Concerning the Complexity Ranking Task, as explained in the main manuscript, the prompt is mod-
ified so to query the model for the complexity generation task, with an optimization addition - the
model needs to generate correct code, with correct complexity, as optimized as possible while ad-
hering to this complexity requirement.

To formalize the metrics of this task, we add the following elements to the formalism defined in the
previous subsections:

• H(P, c): Set of human solutions for problem P and complexity class c ∈ C(P).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• coeff(S, P, c): Complexity coefficient of solution S for problem P and class c (lower is
better).

• best coeffLLM (P, c): Best coefficient from n = 20 LLM-generated solutions for
P and c. This is obtained by sampling S′

1, S
′
2, . . . S

′
n ∼ DLLM (P, c) and ranking

coeff(S′
1, P, c), coeff(S′

2, P, c), . . . coeff(S′
n, P, c).

• Icorrect(S
′, P) has the exact same definition as for the complexity generation task. It

measures whether the generated solution is correct for a given problem given its I/O test
cases.

• Iclass(S
′, c, P) has the exact same definition as for the complexity generation task. It

measures whether a generated solution respects the complexity class it was conditioned
upon.

We now introduce the following metrics. Pass@k, Best@k and All@k have the same definitions as
in the complexity generation task:

• Pass@k:

Pass@k = EP∼P

 1

|C(P)|
∑

c∈C(P)

1−

(
n− cc

k

)
(
n

k

)

 ,

where cc =
∑n

i=1 Iclass(S
′
i, c, P)× Icorrect(S

′
i, P).

• Best@k:

Best@k = EP∼P

1−
(
n− cbest

k

)
(
n

k

)
 ,

where cbest =
∑n

i=1 Iclass(S
′
i, cbest(P), P) × Icorrect(S

′
i, P), and cbest(P) is the most

optimized class in C(P).

• All@k:

All@k = EP∼P

1−
(
n− call

k

)
(
n

k

)
 ,

where call =
∑n

i=1

∏
c∈C(P) Icorrect(S

′
i,c, P)× Iclass(S

′
i,c, c, P) with S′

i,c ∼ DLLM (P, c).

• COEFF: Percentile ranking against human solutions of the same problem and complexity
class. It compares the LLM’s best coefficient to human solutions in the same class. This
metric uses a fixed sampling budget of size n (in our experiments we take n = 20):

COEFF = EP∼P, c∈C(P) [rankLLM (P, c)] ,

where:

rankLLM (P, c) =

{
|{h∈H(P,c)|coeff(h,P,c)>best coeffLLM (P,c)}|

|H(P,c)| × 100 if ∃S′ valid,
0 otherwise.

In addition, we also introduce COEFFintersect (and distinguish it from COEFF by denoting
the latter one as COEFFfull) as the expectation used in the definition of COEFF restricted

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

to a subset of problems and complexity classes. For the set M∗ of stared models of the
complexity ranking table, we define the set of problems P ′ as the collection of problems
P from P where there exists at least one complexity class c associated with P , to that for
every model M in the set M∗, sampling n solutions from M on P and c yields at least
one valid solution. Formally:

P ′ =
{
P ∈ P | ∃c ∈ C(P),∀M ∈ M∗,

n∑
i=1

Icorrect(S
′
i, P)× Iclass(S

′
i, c, P) ≥ 1

where S′
i ∼ DM (P, c)

}

Similarly, we define the set of corresponding complexity classes C′(P) where all models
are indeed producing at least one correct sample code. For any P ∈ P ′, we define C′(P):

C′(P) =
{
c ∈ C(P) | ∀M ∈ M∗,

n∑
i=1

Icorrect(S
′
i, P)× Iclass(S

′
i, c, P) ≥ 1

where S′
i ∼ DM (P, c)

}

Based on that, COEFFintersec can formalized as:

COEFFintersect = EP∼P′, c∈C′(P) [rankLLM (P, c)]

where we are using the above definition of rankLLM (P, c).

Note that the COEFF metric uses the best coefficient from n (20 in practice) LLM attempts and
ranks it against human solutions in the same complexity class. A higher percentile means the LLM’s
solution is more optimized than most human solutions. The Intersec subset ensures comparisons are
only made when all models have at least one valid solution, avoiding skewed rankings from partial
failures. We are selecting models that are good enough in the first place so to make the subset viable
and interesting (it has to contain enough samples in the first place). Finally, the unbiased estimator

1−

(
n− c

k

)
(
n

k

) remains consistent with prior work (Chen et al., 2021b).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B TIME AND SPACE COMPLEXITY DEFINITIONS

B.1 INTRODUCTION ON THE NOTION OF COMPLEXITY

When writing software, it is crucial to understand how our algorithms perform with different input
sizes. Complexity analysis helps us:

1. Predict performance on large inputs, so to understand how the code would behave in run-
time and memory footprint on large untested inputs.

2. Compare different algorithms objectively, not on a few example cases but in a generalized
case.

3. Identify optimization opportunities.

Big O notation describes how an algorithm’s requirements (time or space) grow as input size in-
creases. It focuses on:

• Worst-case scenario: Maximum required resources

• Growth rate: How needs scale with input size n

• Upper bound: Simplified representation of complexity

When analyzing time complexity, we simplify our analysis by focusing on the fundamental growth
pattern rather than exact measurements. Constant factors are disregarded because they do not affect
the overall growth rate - an algorithm that takes 2n operations and one that takes 100n operations
are both considered O(n) since their linear scaling behavior is identical. Similarly, lower-order
terms become insignificant as input sizes grow large; for example, O(n2 + n) simplifies to O(n2)
because the quadratic term dominates the growth pattern. Ultimately, we focus on identifying the
dominant term - the component of the complexity expression that grows fastest with input size - as
this determines the algorithm’s scalability characteristics in the worst-case scenario.

B.2 ALGORITHMIC EXAMPLES

Time complexity measures how the number of operations grows with input size. Below are listed a
few examples of Python codes that belong to various time complexity classes:

Constant Time (O(1))
Algorithms with constant time complexity execute in the same time regardless of input size. This is
achieved through direct access operations, like retrieving the first element of an array:

d e f g e t f i r s t e l e m e n t (a r r) :
r e t u r n a r r [0] # E x e c u t i o n t ime r e m a i n s c o n s t a n t

Logarithmic Time (O(log n))
Logarithmic algorithms reduce the problem size exponentially with each step. Binary search demon-
strates this by halving the search space each iteration:

d e f b i n a r y s e a r c h (a r r , t a r g e t) :
low , h igh = 0 , l e n (a r r) −1
w h i l e low <= h igh :

mid = (low + h igh) / / 2
i f a r r [mid] == t a r g e t :

r e t u r n mid
low = mid + 1 i f a r r [mid] < t a r g e t e l s e h igh = mid − 1

r e t u r n −1

Linear Time (O(n))
Linear algorithms scale directly with input size, requiring a single pass through all elements:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

d e f sum e lemen t s (a r r) :
t o t a l = 0
f o r num i n a r r : # P r o c e s s e s each e l e m e n t e x a c t l y once

t o t a l += num
r e t u r n t o t a l

Linearithmic Time (O(n log n))
This complexity combines linear and logarithmic growth, seen in efficient sorting algorithms like
merge sort:

d e f m e r g e s o r t (a r r) :
i f l e n (a r r) > 1 :

mid = l e n (a r r) / / 2
l e f t = m e r g e s o r t (a r r [: mid]) # D iv ide phase
r i g h t = m e r g e s o r t (a r r [mid :]) # O(l o g n) d i v i s i o n s
r e t u r n merge (l e f t , r i g h t) # O(n) merging

r e t u r n a r r

Quadratic Time (O(n²))
Nested iterations over input data characterize quadratic complexity, as seen in bubble sort:

d e f b u b b l e s o r t (a r r) :
n = l e n (a r r)
f o r i i n r a n g e (n) : # Oute r loop (O(n))

f o r j i n r a n g e (n− i −1) : # I n n e r loop (O(n))
i f a r r [j] > a r r [j + 1] : # Comparison o p e r a t i o n

a r r [j] , a r r [j +1] = a r r [j + 1] , a r r [j]
r e t u r n a r r

Exponential Time (O(2n))
Algorithms with exponential complexity double their runtime with each new element, exemplified
by naive Fibonacci calculation:

d e f f i b (n) :
i f n <= 1 : # Base c a s e

r e t u r n n
r e t u r n f i b (n −1) + f i b (n −2) # R e c u r s i v e b r a n c h i n g

Factorial Time (O(n!))
The most resource-intensive complexity class grows factorially, demonstrated by permutation gen-
eration:

from i t e r t o o l s i m p o r t p e r m u t a t i o n s
d e f a l l p e r m u t a t i o n s (a r r) :

r e t u r n l i s t (p e r m u t a t i o n s (a r r)) # G e n e r a t e s n ! c o m b i n a t i o n s

Space complexity examines the growth of memory usage with input size. Key considerations
include auxiliary space, input storage, and recursion stack usage. Below are a few examples in
Python code of various space complexity classes:

Constant Space (O(1))
Algorithms using fixed memory regardless of input size:

d e f swap (a , b) :
a , b = b , a # Temporary v a r i a b l e s on ly
r e t u r n a , b

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Linear Space (O(n))
Memory usage scales directly with input size, as in array copying:

d e f c r e a t e c o p y (a r r) :
copy = [x f o r x i n a r r] # New a r r a y o f same s i z e
r e t u r n copy

Quadratic Space (O(n²))
Memory grows with input squared, typical for 2D arrays:

d e f c r e a t e m a t r i x (n) :
r e t u r n [[0 f o r i n r a n g e (n)] f o r i n r a n g e (n)] # n x n g r i d

Logarithmic Space (O(log n))
Efficient divide-and-conquer algorithms use logarithmic space:

d e f b i n a r y t r e e d e p t h (node) :
i f n o t node :

r e t u r n 0
r e t u r n 1 + max (# S i n g l e r e c u r s i v e b r an c h a t a t ime

b i n a r y t r e e d e p t h (node . l e f t) ,
b i n a r y t r e e d e p t h (node . r i g h t)

)

Recursive Space Considerations
Recursive implementations have hidden stack costs. The Fibonacci example shows O(n) space de-
spite O(2n) time:

d e f r e c u r s i v e f i b (n) :
i f n <= 1 :

r e t u r n n
r e t u r n r e c u r s i v e f i b (n −1) + r e c u r s i v e f i b (n −2)

Each recursive call adds a stack frame, creating O(n) space complexity from the maximum recursion
depth.

B.3 BIG-O VERSUS BIG-THETA

It is important to notice that not only does big-O notation exist but also big-Theta and big-Omega. In
mathematical analysis, these notions are clearly defined over a single-variable function (or at least a
function on an input space with a well-defined ordering) as respectively an upper bound, a tight both
upper and lower bound, and a lower bound. The problem is that these notions do not clearly translate
to the domain of programming given that in many cases programs take a variety of inputs that are
not clearly ordered (this is the case for example for a function that takes an integer and a dictionary,
or a function that takes an integer and a list where it is not clear whether a list gets “bigger” when
elements of the list grow in size versus when the list itself grows, not to mention how the content of
the list input may intertwine with the integer input). For this reason, programming refers to “running
cases”, where a running case can be seen as a generator of inputs parametrized by a single variable
(the size), and can be denoted as “best-running case” when running the program on this case across
many sizes leads to the best time execution (or memory footprint) curve. For a well-defined running
case g of the code program f , this enables to close the gap with the well-defined mathematical
analysis definition as f ◦ g is now a single-variable function of a correctly ordered input space.

In this context, programming does have to take into account best, average and worst running cases
when talking about big-O, big-Theta and big-Omega notations. Talking about general big-Theta
behavior of a program is not defined in many programming cases, as this would require the program
to have the same big-Theta behavior across all running cases, if we were to generalize the definition.
For example, Quick Sort has a best running case complexity in O(1) and worst running case com-
plexity in O(n2), which means no clear big-Theta behavior is generally defined for this program: in

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

this case, the query “predict the big-Theta complexity of this program” is not clearly defined. For
this reason, we chose to adhere to the commonly accepted definition in programming of assuming
that:

• BigO is used to describe the worst running case complexity of a piece of code, that is to
say the tightest possible lower bound of this running case.

• BigTheta is used to describe a tight bound, that exists only when the algorithm does behave
the same on any type of input.

• BigOmega is used to describe the best running case complexity, that is to say the tightest
possible upper bound of this running case.

On top of that, we underline that the goal of the BIGO(BENCH) benchmark is also to reflect the
usability of LLMs in practice, and provide an accurate measure of the performance of LLMs when
being queried by daily users. Choosing a prompt that does not involve too many definitions, though
it may leave some unclarities and ill-defined terms, ensures we better capture how the LLM perfor-
mance will be perceived by users.

More ablations on the task prompts, including how we refer to the notion of complexity, are pre-
sented in Section C.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

C ABLATIONS ON TASK PROMPTS

We ran ablations on the prompts, for each task, comparing the performance on a reasoning (tak-
ing QWEN QWQ 32B) and a non-reasoning model (LLAMA 3.3 70B). The following subsections
provide the types of prompts that were used (every time the example corresponds to the time com-
plexity variant, given that the space complexity variant can easily be derived from it; similarly, given
the complexity prediction variant, the complexity generation variant can also be derived in a simple
manner).

C.1 ORIGINAL BIGOBENCH PROMPT - TIME COMPLEXITY PREDICTION

Provide the time complexity for the following competitive programming question and corresponding
solution.

When analyzing the complexity of an algorithm, consider the worst-case scenario where all possi-
ble input combinations are tried, given the following conditions: 1. the inputs must adhere to the
specified data types of the problem; 2. the inputs should not cause the code to crash or exit on an
exception; 3. the inputs do not necessarily need to satisfy additional constraints that are potentially
mentioned in the problem statement; 4. calling input() does not consume runtime nor memory, but
of course any operations on top of it or afterwards will be counted towards runtime and memory
footprint; 5. Anything printed gets added to the memory. You can take advantage of Python-specific
optimizations provided by the underlying CPython interpreter or compiler to achieve the desired
complexity, and you must account for them when analyzing the complexity.

Here is the programming question: context.

Here is the corresponding Python solution: code content.

Please ignore any constraints on the input sizes that may have been previously mentioned in the
problem description. Compute the big-O complexity as if inputs can be as large as possible.

Output the big-O time complexity only, no explanation needed, no other words needed.

C.2 BIG-THETA VARIANT - TIME COMPLEXITY PREDICTION

Provide the time complexity for the following competitive programming question and corresponding
solution.

When analyzing the complexity of an algorithm, consider the worst-case scenario where all possi-
ble input combinations are tried, given the following conditions: 1. the inputs must adhere to the
specified data types of the problem; 2. the inputs should not cause the code to crash or exit on an
exception; 3. the inputs do not necessarily need to satisfy additional constraints that are potentially
mentioned in the problem statement; 4. calling input() does not consume runtime nor memory, but
of course any operations on top of it or afterwards will be counted towards runtime and memory
footprint; 5. Anything printed gets added to the memory. You can take advantage of Python-specific
optimizations provided by the underlying CPython interpreter or compiler to achieve the desired
complexity, and you must account for them when analyzing the complexity.

Here is the programming question: context.

Here is the corresponding Python solution: code content.

Please ignore any constraints on the input sizes that may have been previously mentioned in the
problem description. Compute the big-Theta complexity as if inputs can be as large as possible.

Output the big-Theta time complexity only, no explanation needed, no other words needed.

C.3 DETAILED BIG-O VARIANT - TIME COMPLEXITY PREDICTION

Provide the time complexity for the following competitive programming question and corresponding
solution.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

When analyzing the complexity of an algorithm, consider the worst-case scenario where all possi-
ble input combinations are tried, given the following conditions: 1. the inputs must adhere to the
specified data types of the problem; 2. the inputs should not cause the code to crash or exit on an
exception; 3. the inputs do not necessarily need to satisfy additional constraints that are potentially
mentioned in the problem statement; 4. calling input() does not consume runtime nor memory, but
of course any operations on top of it or afterwards will be counted towards runtime and memory
footprint; 5. Anything printed gets added to the memory. You can take advantage of Python-specific
optimizations provided by the underlying CPython interpreter or compiler to achieve the desired
complexity, and you must account for them when analyzing the complexity.

Here is the programming question: context.

Here is the corresponding Python solution: code content.

Please ignore any constraints on the input sizes that may have been previously mentioned in the
problem description. Compute the big-O complexity as if inputs can be as large as possible.

The big-O complexity is the time complexity of the program when running on the worst case, which
means you may want to find the worst running case first, and then find its corresponding time com-
plexity, that you need to output in big-O format. For example, if the worst case is in the order of
nlogn, do output precisely O(nlogn), as O(n**2) will be considered too high of an upper bound
(though mathematically speaking one could say that what is O(nlogn) is also O(n**2)). Find the
tightest possible upper bound in big-O notation.

Output the big-O time complexity only, no explanation needed, no other words needed.

C.4 COT BIG-O VARIANT - TIME COMPLEXITY PREDICTION

Provide the time complexity for the following competitive programming question and corresponding
solution.

When analyzing the complexity of an algorithm, consider the worst-case scenario where all possi-
ble input combinations are tried, given the following conditions: 1. the inputs must adhere to the
specified data types of the problem; 2. the inputs should not cause the code to crash or exit on an
exception; 3. the inputs do not necessarily need to satisfy additional constraints that are potentially
mentioned in the problem statement; 4. calling input() does not consume runtime nor memory, but
of course any operations on top of it or afterwards will be counted towards runtime and memory
footprint; 5. Anything printed gets added to the memory. You can take advantage of Python-specific
optimizations provided by the underlying CPython interpreter or compiler to achieve the desired
complexity, and you must account for them when analyzing the complexity.

Here is the programming question: context.

Here is the corresponding Python solution: code content.

Please ignore any constraints on the input sizes that may have been previously mentioned in the
problem description. Compute the big-O complexity as if inputs can be as large as possible.

Break down the analysis into these steps: 1. Identify all loops, recursive calls, and operations depen-
dent on input size; 2. Explicitly state the time complexity of each Python-specific operation (e.g.,
list appends, dictionary lookups, sorting); 3. Assume all inputs are adversarially chosen to maxi-
mize runtime (e.g., hash collisions, worst-case comparisons); 4. Account for memory allocations
(e.g., dynamic array resizes, string concatenation costs); 5. If recursion is used, include the cost
of stack frames and potential tail-call optimizations; 6. Treat all arithmetic operations as O(1), but
flag if arbitrary-precision integers could introduce hidden costs; 7. For nested operations, multiply
complexities conservatively (e.g., O(n) loops inside O(n) loops = O(n²)); 8. Ignore Python’s global
interpreter lock (GIL) and concurrency effects; 9. Explicitly confirm whether built-in functions like
sorted() or re.search() are treated as black-box with known complexities; 10. Final answer must be
the tightest possible upper bound in big-O notation, even if the problem’s original constraints imply
smaller inputs.

Output the big-O time complexity at the end.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

C.5 ORIGINAL BIGOBENCH PROMPT - TIME COMPLEXITY RANKING

Provide a Python solution for the following competitive programming question: context.

Output the code only. Generate code that has an algorithmic time complexity of time complexity.
Try to optimize the runtime of your code as much as you can, while respecting the time complexity
requirement.

When analyzing the complexity of an algorithm, consider the worst-case scenario where all possi-
ble input combinations are tried, given the following conditions: 1. the inputs must adhere to the
specified data types of the problem; 2. the inputs should not cause the code to crash or exit on an
exception; 3. the inputs do not necessarily need to satisfy additional constraints that are potentially
mentioned in the problem statement; 4. calling input() does not consume runtime nor memory, but
of course any operations on top of it or afterwards will be counted towards runtime and memory
footprint; 5. Anything printed gets added to the memory. You can take advantage of Python-specific
optimizations provided by the underlying CPython interpreter or compiler to achieve the desired
complexity, and you must account for them when analyzing the complexity.

Your code should be enclosed in triple backticks like so: “‘python YOUR CODE HERE “‘. Use the
backticks for your code only.

C.6 PYTHON SPECIFICATIONS BIG-O VARIANT - TIME COMPLEXITY RANKING

Provide a Python solution for the following competitive programming question: context.

Output the code only. Generate code that has an algorithmic time complexity of time complexity.
Try to optimize the runtime of your code as much as you can, while respecting the time complexity
requirement.

When analyzing the complexity of an algorithm, consider the worst-case scenario where all possi-
ble input combinations are tried, given the following conditions: 1. the inputs must adhere to the
specified data types of the problem; 2. the inputs should not cause the code to crash or exit on an
exception; 3. the inputs do not necessarily need to satisfy additional constraints that are potentially
mentioned in the problem statement; 4. calling input() does not consume runtime nor memory, but
of course any operations on top of it or afterwards will be counted towards runtime and memory
footprint; 5. Anything printed gets added to the memory. You can take advantage of Python-specific
optimizations provided by the underlying CPython interpreter or compiler to achieve the desired
complexity, and you must account for them when analyzing the complexity.

As additional specifications: 1. Python Version - The code must be compatible with Python 3.10.0,
avoid using features deprecated in this version or introduced in later versions, you can leverage
the optimization that are proper to this version; 2. Libraries Allowed - You may use standard
libraries (e.g., itertools, collections, math) and third-party libraries (e.g., NumPy, pandas) to op-
timize performance (For example, use numpy for vectorized operations on numerical data (e.g.,
np.where, np.concatenate), use collections.defaultdict for faster dictionary-like structures with de-
fault values. . .); 3. Memory Constraints - Avoid unnecessary copies of large data structures, Prefer
in-place operations where possible (e.g., list.sort() instead of sorted() for large lists); 4. Edge Cases -
Assume inputs adhere to the problem’s data types and constraints (e.g., non-negative integers, valid
strings) but do not need to handle invalid cases (e.g., non-integer inputs where integers are expected);
5. Output Handling - Minimize printing intermediate results to reduce memory overhead. Use gen-
erators or lazy evaluation (e.g., yield) for large datasets. Your code must still adhere strictly to the
specified time complexity and avoid unnecessary operations.

Your code should be enclosed in triple backticks like so: “‘python YOUR CODE HERE “‘. Use the
backticks for your code only.

C.7 ABLATION RESULTS

Taking all these variations of the tasks’ formulations in account, BIGO(BENCH) scores can be re-
evaluated for each model. Table 5 compares prompt results across complexity prediction and gen-
eration, while Table 6 look at the complexity ranking task. For all tasks, only the time complexity
version was tried out.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

As seen on these figures, the reasoning model’s performance on Time Complexity Prediction de-
creased slightly with the big-Theta and detailed big-O variants, and significantly with the COT-
prompted variant, reaching an All@1 score of 31.8 (compared to the official BigOBench score of
40.4). The non-reasoning model’s performance also decreased slightly with the big-Theta variant,
but improved with the detailed big-O and COT variants, reaching 36.1 All@1. We believe that shar-
ing more details with the reasoning model leads to overthinking, while the non-reasoning model
benefits from the added context. The non-reasoning model’s performance, even with COT, remains
significantly lower than the reasoning model’s.

In the case of Time Complexity Generation, the non-reasoning model falls short of seeing any im-
provements with the different prompt variants. We believe the performance is so low (3.3 All@1
for Llama 3.3 70B) that even sharing slightly more details can not help a model that simply does
not grasp the objective of the task. In the case of the reasoning model, we do see an improvement
using the variants, up to scores of 11.7 All@1 with the big-Theta variant. The base reported score
of Qwen QwQ on this task is 9.6 All@1, which in our intuition means the model starts to grasp the
task, though it lacks guidance compared to the Complexity Prediction equivalent (40.4 All@1). In
this case, we believe the added details to the prompt helps the model perform better while staying
far from overthinking. It also helps put more focus on the complexity requirement compared to code
correctness, given that a manual error analysis underlined the models often lose focus from the first
objective during the reasoning process.

Finally, adding python specifications to the prompt resulted in a marginal improvement in perfor-
mance (up to +2 coeffFULL for Qwen QwQ).

Table 5: BIGO(BENCH) benchmark results for variation of the task prompts on a reasoning model
(QWEN QWQ 32B) and a non-reasoning model (LLAMA 3.3 70B). Program Synthesis checks
the correctness of model-generated solutions to given programming problems, not taking into ac-
count any complexity requirement. Complexity Prediction measures whether a model can find the
time-space complexity of an existing code snippet. Complexity Generation evaluates whether a
model can output a working code snippet to a given problem that meets a time-space complexity re-
quirement. Pass@k considers each complexity class of all problems independently and calculates a
macro-average between them. Best@k is a refinement of Pass@k, focusing only on the most opti-
mized complexity class for each problem. All@k checks if all complexity classes for each problem
are correctly predicted or generated simultaneously, then macro-averages across all problems.

MODEL
PROG. SYNTHESIS COMPLEXITY PRED. COMPLEXITY GEN.
PASS PASS PASS BEST ALL PASS PASS BEST ALL
@1 @10 @1 @1 @1 @1 @10 @1 @1

QWEN QWQ
BIGOBENCH PROMPT 60.7 75.8 62.7 72.2 40.3 26.9 50.9 37.8 8.3
BIG THETA 58.4 74.8 62.0 71.4 39.9 28.8 52.1 37.3 11.7
BIGO WITH MORE DETAILS 58.4 74.7 61.9 70.8 39.5 26.7 51.3 36.7 8.8
BIGO WITH COT 57.9 74.1 57.1 62.9 31.8 27.0 51.6 36.3 9.7

LLAMA 3.3
BIGOBENCH PROMPT 34.0 54.9 58.0 72.3 33.7 13.1 31.3 19.1 2.1
BIG THETA 33.5 54.8 57.2 72.7 32.1 12.3 30.8 18.5 1.8
BIGO WITH MORE DETAILS 33.5 54.5 59.9 73.6 35.5 12.5 31.1 18.3 1.9
BIGO WITH COT 37.0 62.4 59.3 68.1 36.1 14.1 37.5 20.3 2.2

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 6: BIGO(BENCH) benchmark results for variation of the task prompts on a reasoning model
(QWEN QWQ 32B) and a non-reasoning model (LLAMA 3.3 70B). Program Synthesis checks the
correctness of model-generated solutions to given programming problems, not taking into account
any complexity requirement. Complexity Ranking evaluates whether a model can output a work-
ing code snippet to a given problem that meets a time-space complexity requirement, while being
as optimized as possible within this complexity class of solutions. Pass@k considers each com-
plexity class of all problems independently and calculates a macro-average between them. Best@k
is a refinement of Pass@k, focusing only on the most optimized complexity class for each prob-
lem. All@k checks if all complexity classes for each problem are correctly predicted or generated
simultaneously, then macro-averages across all problems. Finally for CoeffFull, using the com-
plexity framework, the best measured coefficient of the complexity curve, out of 20 attempts, is
used to rank LLM-generated code among human solutions from the same problem and time-space
complexity class. Ranking is percentile based, n% ranking score amounts for n% human solutions
having worse complexity coefficient. If no LLM solution passes correctness tests, ranking score is
set to 0.

MODEL
PROGRAM SYNTHESIS COMPLEXITY RANKING
PASS PASS PASS PASS BEST ALL COEFFFULL
@1 @10 @1 @10 @1 @1

QWEN QWQ
BIGOBENCH PROMPT 68.8 82.8 27.7 54.8 40.6 6.9 48.1
BIGO WITH PYTHON DETAILS 68.9 82.5 26.6 55.3 37.7 6.6 49.8

LLAMA 3.3
BIGOBENCH PROMPT 36.3 58.8 13.6 33.4 20.1 2.1 29.5
BIGO WITH PYTHON DETAILS 33.8 57.0 10.9 32.8 16.4 1.4 30.2

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

D MULTI-SAMPLE RESULTS SCORES

For any of the metrics defined for the tasks of Complexity Prediction, Complexity Generation and
Complexity Ranking, the models are queried multiple times in order to provide accurate unbiased
estimators for each of those metrics. In the specific case of Complexity Prediction, we do only
report @1 scores: this is because this task remains a classification and not a generative task, having an
output space small and fixed, in which case repeated sampling would conflate model uncertainty with
true performance, instead of reflecting some true exploration capabilities such as in code generation.

As defined in Section 5 and in Section A, we define Pass@k for Complexity Generation for example
following the definition of Chen et al. (2021a):

Pass@k = EP∼P

 1

|C(P)|
∑

c∈C(P)

1−

(
n− cc

k

)
(
n

k

)

 ,

where cc =
∑n

i=1 Iclass(S
′
i, c, P)× Icorrect(S

′
i, P).

Table 7: BIGO(BENCH) benchmark results for popular LLMs on the tasks of Program Synthesis
and Complexity Generation, with multiple @k estimators. Program Synthesis checks the cor-
rectness of model-generated solutions to given programming problems, not taking into account any
complexity requirement. Complexity Generation evaluates whether a model can output a working
code snippet to a given problem that meets a time-space complexity requirement. Pass@k consid-
ers each complexity class of all problems independently and calculates a macro-average between
them. Best@k is a refinement of Pass@k, focusing only on the most optimized complexity class
for each problem. All@k checks if all complexity classes for each problem are correctly predicted
or generated simultaneously, then macro-averages across all problems.

MODEL
PROG. SYNTHESIS COMPLEXITY GEN.

PASS PASS PASS PASS PASS PASS BEST BEST BEST ALL ALL ALL
@1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

TIME
BASELINES 30.3 48.5 55.4 12.1 23.7 29.7 19.0 33.5 40.3 0.9 3.7 6.0
LLAMA 3.3 70B 43.4 60.7 66.0 17.7 32.9 40.0 25.7 41.8 47.8 3.3 9.5 13.9
LLAMA 4 SCOUT 17BX16E 61.7 76.9 80.1 22.8 40.5 48.0 31.8 50.8 58.2 3.5 10.7 16.2
LLAMA 4 MAVERICK 17BX128E 59.3 74.6 78.9 19.9 37.0 44.6 27.0 45.9 52.4 5.3 12.1 17.1
GEMMA 3 27B 37.7 43.7 45.6 15.2 19.3 20.8 17.6 21.9 23.4 1.8 3.2 3.9
CODESTRAL 22B 23.7 40.5 47.5 10.6 21.2 26.6 14.9 27.6 33.8 1.3 4.3 6.4
QWEN2.5-CODER 32B 30.5 45.3 50.8 12.2 22.0 26.5 15.2 26.8 31.5 3.1 6.6 8.7
GPT-4O 51.0 73.1 78.3 20.6 37.5 44.7 30.2 51.9 59.5 4.3 11.7 16.4
DEEPSEEKCODERV2 236B 44.1 60.5 65.5 19.5 32.3 38.0 27.6 43.0 48.7 3.3 8.1 11.8
DEEPSEEKV3 671B 41.4 58.4 63.6 17.7 31.5 37.7 23.0 39.6 46.2 3.4 8.9 12.2
DEEPSEEKR1 QWEN 32B 70.1 81.2 83.7 29.0 44.1 49.9 46.1 61.7 66.0 4.8 14.7 21.0
DEEPSEEKR1 LLAMA 70B 70.1 81.3 83.8 29.2 45.3 51.6 46.5 63.4 68.4 4.8 15.5 22.6
LLAMA 3.1 NEMOTRON-ULTRA 253B 80.0 88.1 89.4 33.5 49.0 54.9 51.8 66.5 71.5 6.1 16.8 23.2
QWEN3 32B 70.0 79.4 81.3 29.1 47.2 53.8 43.5 61.9 67.2 6.5 19.0 26.1

SPACE
BASELINES 30.1 46.8 52.6 12.2 25.3 32.4 17.8 32.7 40.0 1.3 5.4 8.9
LLAMA 3.3 70B 42.6 58.1 62.5 15.0 30.6 37.7 21.9 38.7 45.2 1.8 6.2 10.0
LLAMA 4 SCOUT 17BX16E 56.7 70.3 73.5 20.0 34.3 40.1 31.1 47.9 53.9 2.2 8.2 12.8
LLAMA 4 MAVERICK 17BX128E 58.4 72.0 75.7 16.8 24.7 28.2 30.4 41.2 45.2 0.8 3.0 4.6
GEMMA 3 27B 40.3 46.9 49.0 16.2 22.1 24.3 22.5 29.8 31.9 1.4 3.5 5.1
CODESTRAL 22B 25.7 41.4 47.6 11.0 23.3 29.4 16.7 31.1 37.1 1.3 5.3 8.8
QWEN2.5-CODER 32B 31.1 44.6 49.2 10.1 19.2 23.3 15.3 26.4 30.5 1.2 4.0 6.2
GPT-4O 51.6 70.8 74.4 18.1 33.7 39.9 28.0 47.0 53.0 1.4 6.0 10.1
DEEPSEEKCODERV2 236B 43.1 58.8 63.8 16.7 29.0 34.5 25.6 40.0 45.0 1.0 4.1 7.0
DEEPSEEKV3 671B 41.8 57.9 62.5 15.0 29.1 35.4 22.6 40.4 46.8 1.6 5.6 8.8
DEEPSEEKR1 QWEN 32B 68.0 78.7 80.6 24.8 41.9 48.6 38.6 58.7 64.3 3.1 11.4 17.8
DEEPSEEKR1 LLAMA 70B 68.8 79.3 81.2 25.6 43.4 50.0 38.7 59.1 64.6 3.4 12.2 18.8
LLAMA 3.1 NEMOTRON-ULTRA 253B 77.7 85.2 86.4 30.4 48.7 55.5 45.3 65.6 70.9 5.6 16.4 23.7
QWEN3 32B 65.9 75.5 77.7 25.5 41.9 47.8 39.6 58.7 64.2 5.1 14.0 19.5

The main results are summarized in Table 2 which includes pass@10 scores for program synthesis
and complexity generation scores. On top of it, we present in Table 7 more details on performance
when the generation budget allows for multiple attempts (note that for O1-MINI, due to limited
inference budget, we could not retrieve the scores at higher @k values). For Program Synthe-
sis, we include pass@{1, 5, 10} scores, along with best@{1, 5, 10} and all@{1, 5, 10} scores for
Complexity Generation and Complexity Ranking.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 8: BIGO(BENCH) benchmark results for popular LLMs on the tasks of Complexity Genera-
tion, with multiple @k estimators, where @5 and @10 are displayed relative to the corresponding @1
score. Complexity Generation evaluates whether a model can output a working code snippet to a
given problem that meets a time-space complexity requirement. Pass@k considers each complexity
class of all problems independently and calculates a macro-average between them. All@k checks
if all complexity classes for each problem are correctly predicted or generated simultaneously, then
macro-averages across all problems.

MODEL
COMPLEXITY GEN.

PASS PASS PASS ALL ALL ALL
@1 @5 @10 @1 @5 @10

TIME
LLAMA 3.3 70B 17.7 +85.8% +126.2% 3.3 +183.4% +315.0%
LLAMA 4 SCOUT 17BX16E 22.8 +77.4% +110.4% 3.5 +206.8% +365.2%
LLAMA 4 MAVERICK 17BX128E 19.9 +86.4% +124.8% 5.3 +127.9% +221.0%
GEMMA 3 27B 15.2 +27.1% +37.5% 1.8 +81.7% +122.6%
CODESTRAL 22B 10.6 +100.5% +151.6% 1.3 +222.8% +382.2%
QWEN2.5-CODER 32B 12.2 +80.0% +116.6% 3.1 +114.1% +182.4%
GPT-4O 20.6 +81.5% +116.4% 4.3 +170.8% +280.0%
DEEPSEEKCODERV2 236B 19.5 +66.0% +95.0% 3.3 +141.1% +252.6%
DEEPSEEKV3 671B 17.7 +78.2% +113.3% 3.4 +157.4% +254.9%
DEEPSEEKR1 QWEN 32B 29.0 +52.1% +72.1% 4.8 +202.8% +333.3%
DEEPSEEKR1 LLAMA 70B 29.2 +55.2% +76.8% 4.8 +223.2% +371.3%
LLAMA 3.1 NEMOTRON-ULTRA 253B 33.5 +46.4% +63.8% 6.1 +175.1% +279.8%
QWEN3 32B 29.1 +62.0% +84.7% 6.5 +190.7% +299.7%

SPACE
LLAMA 3.3 70B 15.0 +103.9% +151.1% 1.8 +256.0% +471.5%
LLAMA 4 SCOUT 17BX16E 20.0 +71.4% +100.5% 2.2 +279.3% +490.7%
LLAMA 4 MAVERICK 17BX128E 16.8 +47.2% +68.5% 0.8 +266.9% +471.5%
GEMMA 3 27B 16.2 +36.5% +50.1% 1.4 +145.5% +253.5%
CODESTRAL 22B 11.0 +111.5% +166.7% 1.3 +319.6% +592.4%
QWEN2.5-CODER 32B 10.1 +90.3% +131.3% 1.2 +245.5% +434.2%
GPT-4O 18.1 +86.3% +120.5% 1.4 +318.7% +608.4%
DEEPSEEKCODERV2 236B 16.7 +73.1% +106.1% 1.0 +298.8% +572.4%
DEEPSEEKV3 671B 15.0 +93.4% +135.3% 1.6 +256.8% +459.8%
DEEPSEEKR1 QWEN 32B 24.8 +68.7% +95.6% 3.1 +264.3% +470.9%
DEEPSEEKR1 LLAMA 70B 25.6 +69.8% +95.3% 3.4 +259.0% +452.6%
LLAMA 3.1 NEMOTRON-ULTRA 253B 30.4 +60.4% +82.6% 5.6 +192.3% +322.7%
QWEN3 32B 25.5 +63.9% +87.2% 5.1 +176.3% +286.0%

When pushing all@k scores to k=10, the new best scores are obtained by Qwen3 32B on time com-
plexity generation with 26.1 all@10 (also best model for all@1 with 6.5) and Llama 3.1 Nemotron-
Ultra 253B on space complexity generation with 23.7 all@10 (also best model for all@1 with 5.6).

In general, the order of models does not change much when pushing @k scores to higher values,
except for Gemma 3, which shows less performance return. This is especially visible in Fig. 6,
which provides the score evolution for all models across 1-step increments of k on time and space
complexity tasks. Reasoning models benefit more from higher @k generations than non-reasoning
models, especially on time complexity generation. Across all models, we notice higher gains for
higher @k metrics when using all@k, and on space complexity generation.

Across all models, we notice higher gains for higher @k metrics when using all@k (compared to
pass@k), and on space complexity generation (compared to time complexity generation). On aver-
age, models get +100% performance for time pass@1 to pass@10, +275% time all@1 to all@10,
and on space complexity generation respectively +110% and up to +450%. In general, the more
challenging the tasks, the higher the gains for higher @k values.

Finally, for time complexity generation, we observe more marginal gains the further we improve
@k values on all@k scores, compared to pass@k scores. For example, on average across models,
pass@5 is 70% higher than pass@1, whereas pass@10 is only 15% higher than pass@5. In compar-
ison, all@5 is a staggering 160% higher than all@1, and all@10 remains 40% higher than all@5.
Looking at the difference between @10 and @9, all@k still grows two times faster than pass@k.

This gives more extensive details on the strategies to adopt to use the compute budget where it mat-
ters the most in the context of complexity related tasks. Though some tasks remain very challenging

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

at the single-sample level (all models on time-space complexity generation keep all@1 score below
10), even just doubling the sampling budget already leads to substantial performance gains.

Figure 6: Comparing gains of Pass@k and All@k across all models on the task of Complexity
Generation.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

E FINE-TUNING EXPERIMENTS MORE RESULTS

In this section, we provide more extensive results about the SFT experiments. Table 9 displays mul-
tiple @k values for the LLAMA 3.1 70B model queried for zero-shot, few-shot, and then further
trained with either Time Prediction Fine-tuning, Space Prediction Fine-tuning, Time Genera-
tion Fine-tuning, or Space Generation Fine-tuning, evaluated for the Time Complexity tasks.
Similarly, Table 11 displays the same methods but evaluated on Space Complexity tasks.

Table 10 provides relative scores for @5 and @10 on Time Complexity, and Table 12 for Space
Complexity.

Finally, Fig. 7 displays visually the gain on the task of Complexity Generation.

Table 9: Time Complexity BIGO(BENCH) benchmark results when fine-tuning LLAMA 3.1 70B on
the tasks of Time Complexity Prediction, Space Complexity Prediction, Time Complexity Gen-
eration and Space Complexity Generation, then evaluated on the tasks of Program Synthesis and
Time Complexity Generation, with multiple @k estimators. Program Synthesis checks the cor-
rectness of model-generated solutions to given programming problems, not taking into account any
complexity requirement. Complexity Generation evaluates whether a model can output a working
code snippet to a given problem that meets a time-space complexity requirement. Pass@k consid-
ers each complexity class of all problems independently and calculates a macro-average between
them. Best@k is a refinement of Pass@k, focusing only on the most optimized complexity class
for each problem. All@k checks if all complexity classes for each problem are correctly predicted
or generated simultaneously, then macro-averages across all problems.

METHOD
PROG. SYNTHESIS TIME COMPLEXITY GEN.

PASS PASS PASS PASS PASS PASS BEST BEST BEST ALL ALL ALL
@1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

ZERO-SHOT 29.6 47.2 54.0 14.2 27.9 34.8 20.3 35.0 41.2 3.1 8.9 13.0
FEW-SHOT 28.9 45.9 52.8 13.4 26.4 33.0 19.6 35.0 41.8 2.4 6.6 9.6

PREDICTION FINE-TUNING
ON TIME 27.4 46.4 53.6 12.6 27.2 34.2 17.2 32.6 39.0 2.9 9.1 13.2
ON SPACE 26.6 46.4 54.3 12.3 26.6 34.2 17.3 33.5 40.9 2.4 7.6 11.3

GENERATION FINE-TUNING
ON TIME 23.2 42.0 48.5 10.0 23.1 29.6 13.3 27.6 33.6 1.2 4.5 7.0
ON SPACE 17BX128E 23.4 42.7 50.0 9.9 23.0 29.8 13.1 27.8 34.9 1.5 5.6 8.7

Table 10: Time Complexity BIGO(BENCH) benchmark results when fine-tuning LLAMA 3.1 70B
on the tasks of Time Complexity Prediction, Space Complexity Prediction, Time Complexity
Generation and Space Complexity Generation, then evaluated on the tasks of Time Complexity
Generation, with multiple @k estimators, where @5 and @10 are displayed relative to the corre-
sponding @1 score. Complexity Generation evaluates whether a model can output a working code
snippet to a given problem that meets a time-space complexity requirement. Pass@k considers
each complexity class of all problems independently and calculates a macro-average between them.
All@k checks if all complexity classes for each problem are correctly predicted or generated simul-
taneously, then macro-averages across all problems.

MODEL
TIME COMPLEXITY GEN.

PASS PASS PASS ALL ALL ALL
@1 @5 @10 @1 @5 @10

ZERO-SHOT 14.2 +95.9% +144.2% 3.1 +188.1% +322.1%
FEW-SHOT 13.4 +97.0% +145.6% 2.4 +173.4% +293.4%

PREDICTION FINE-TUNING
ON TIME 12.6 +115.6% +170.8% 2.9 +215.8% +359.6%
ON SPACE 12.3 +116.9% +178.6% 2.4 +216.0% +371.6%

GENERATION FINE-TUNING
ON TIME 10.0 +131.4% +196.3% 1.2 +271.3% +481.0%
ON SPACE 9.9 +132.1% +200.8% 1.5 +260.8% +464.4%

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 11: Space Complexity BIGO(BENCH) benchmark results when fine-tuning LLAMA 3.1 70B
on the tasks of Time Complexity Prediction, Space Complexity Prediction, Time Complexity
Generation and Space Complexity Generation, then evaluated on the tasks of Program Synthesis
and Space Complexity Generation, with multiple @k estimators. Program Synthesis checks the
correctness of model-generated solutions to given programming problems, not taking into account
any complexity requirement. Complexity Generation evaluates whether a model can output a
working code snippet to a given problem that meets a time-space complexity requirement. Pass@k
considers each complexity class of all problems independently and calculates a macro-average be-
tween them. Best@k is a refinement of Pass@k, focusing only on the most optimized complexity
class for each problem. All@k checks if all complexity classes for each problem are correctly pre-
dicted or generated simultaneously, then macro-averages across all problems.

METHOD
PROG. SYNTHESIS SPACE COMPLEXITY GEN.

PASS PASS PASS PASS PASS PASS BEST BEST BEST ALL ALL ALL
@1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

ZERO-SHOT 29.7 45.7 52.3 11.7 25.5 33.0 17.2 32.4 39.1 1.8 6.9 10.9
FEW-SHOT 29.8 46.5 53.3 11.3 24.8 31.7 16.4 31.6 38.6 1.4 5.5 8.9

PREDICTION FINE-TUNING
ON TIME 27.3 44.7 51.4 10.5 24.5 32.1 15.0 30.2 36.8 1.3 5.6 9.6
ON SPACE 27.0 45.0 51.9 10.5 24.4 31.8 15.2 30.9 38.1 1.4 5.6 9.0

GENERATION FINE-TUNING
ON TIME 23.9 42.6 49.5 9.9 23.9 31.4 14.6 31.1 38.3 1.3 5.7 9.5
ON SPACE 17BX128E 24.2 42.1 48.8 10.3 23.7 30.4 15.0 31.1 37.6 1.4 5.3 8.8

Table 12: Space Complexity BIGO(BENCH) benchmark results when fine-tuning LLAMA 3.1 70B
on the tasks of Time Complexity Prediction, Space Complexity Prediction, Time Complexity
Generation and Space Complexity Generation, then evaluated on the tasks of Space Complexity
Generation, with multiple @k estimators, where @5 and @10 are displayed relative to the corre-
sponding @1 score. Complexity Generation evaluates whether a model can output a working code
snippet to a given problem that meets a time-space complexity requirement. Pass@k considers
each complexity class of all problems independently and calculates a macro-average between them.
All@k checks if all complexity classes for each problem are correctly predicted or generated simul-
taneously, then macro-averages across all problems.

MODEL
SPACE COMPLEXITY GEN.

PASS PASS PASS ALL ALL ALL
@1 @5 @10 @1 @5 @10

ZERO-SHOT 11.7 +117.3% +181.5% 1.8 +284.0% +509.9%
FEW-SHOT 11.3 +119.3% +180.5% 1.4 +291.1% +538.4%

PREDICTION FINE-TUNING
ON TIME 10.5 +133.8% +206.0% 1.3 +332.0% +638.9%
ON SPACE 10.5 +133.2% +203.4% 1.4 +298.3% +533.7%

GENERATION FINE-TUNING
ON TIME 9.9 +141.2% +217.7% 1.3 +324.9% +614.1%
ON SPACE 10.3 +131.2% +196.4% 1.4 +289.1% +548.8%

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Figure 7: Comparing gains of Pass@k and All@k across LLAMA 3.1 70B variants on the task of
Complexity Generation.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

F TASKS CORRELATIONS

Figure 8: Correlation matrices comparing the distribution of scores across all models benchmarked
on BIGO(BENCH) for the tasks of Program Synthesis (on the corresponding time or space com-
plexity test set), Complexity Prediction and Complexity Generation, the two latter being respect-
fully on the time and space complexity test sets. Correlations are computed with the Pearson stan-
dard correlation coefficient.

Figure 9: Correlation matrix comparing the distribution of scores across all models benchmarked on
BIGO(BENCH) for the tasks of Time Complexity Prediction and Time Complexity Generation,
along Space Complexity Prediction and Space Complexity Generation. Correlations are com-
puted with the Pearson standard correlation coefficient.

Leveraging the many scores computed across models on the different tasks of BIGO(BENCH), cor-
relations can be measured between scores and tasks (program synthesis, complexity prediction and
complexity generation for both time and space). These are depicted in Fig. 8 for correlations ma-
trices within time-related tasks and within space-related tasks. On top of that, Fig. 9 measures

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

correlations between time and space prediction and generation tasks. All of these measures are
based on Pearson standard correlation coefficient (Pearson & Galton, 1895).

Overall, the correlations are the highest between program synthesis and complexity generation, re-
spectively 0.81 and 0.76 for time and space complexity, across all models. Intuitively, we believe
that this is because models are more frequently exposed to the time optimization objective when
being trained for generating code, as this objective is more popular (on code competition platforms
for example) and more documented than its space equivalent. Time prediction has a correlation
coefficient of 0.56 with time complexity generation, meaning that the program synthesis objective
may dominate on this task, when the model is trying to answer this double-requirement task. On
space generation, a task where we see very low all@1 scores, the correlation between prediction
and generation falls down to 0.1. This is probably explained by the very low performance on space
generation, models being confused by the notion of generation under a space complexity constraint,
therefore losing focus on this objective and mostly correlating with the performance on more simple
program synthesis.

Finally, when comparing time and space tasks, we observe that time prediction correlates more with
time generation than with space prediction, but that the converse does not hold, as space prediction
has a correlation coefficient of 0.5 with time prediction and only 0.1 with space generation, a task
that is dominated by the program synthesis objective, given that the double objective remains too
hard for most models. Time generation and space generation both correlate the most with one
another, compared to their respective prediction counterparts.

Notice that the fine-tuning experiments presented Table 4 and discussed in Section 6 can also help
better understand the dependencies between the tasks introduced in BIGO(BENCH).

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

G FRAMEWORK IMPLEMENTATION DETAILS

G.1 GENERAL FRAMEWORK OUTLINE

Input Example

Code Snippet

arr: [2, 3, 5, 6, 1]

n: 7

[2, 3, 5, 6, 1]
[2, 3, 5, 6, 1,
4, 5, 6, 7, 2]

[2, 3, 5, 6, 1,
4, 5, 6, 7, 2,
10, 5, 9, 13,
12]

…

[1, 3, 2, 4, 5]
[1, 3, 2, 4, 5,
1, 3, 2, 4, 5]

[1, 3, 2, 4, 5,
1, 3, 2, 4, 5,
1, 3, 2, 4, 5]

…

[1, 1, 1, 1, 1]
[1, 1, 1, 1, 1,
1, 1, 1, 1, 1]

[1, 1, 1, 1, 1,
1, 1, 1, 1, 1,
1, 1, 1, 1, 1]

…

7 14 21 …

Random

Copy

Identity

Copy

Input size1 2 3

arr: List[int]

n:int

Input Generation

Execution
Queue

Code Processing

from collections import
Counter

n = int(input())
arr = list(map(int,
input().split()))
arr.sort()
freq = Counter(arr)
ans = 0

for val in freq.values():
 ans += val//2*2

print(ans//4)

Cleaning, solving dependencies, ...

Runtime Curves

Memory Footprint Curves

Execution MeasuresComplexity
Output

Execution
Sandboxes

arr: List[int] n: int

— Case 1: O(nlogn)

code

inp1 method;size m

inp2 method;size k

n

code

arr random;size 1

n copy;size 1

1

code

arr random;size 2

n copy;size 1

2

code

arr random;size 3

n copy;size 1

3

…

Process
2

Process
1

Process
4

Process
3

Process
m

Process
n

Complexity Fitting

Time: O(nlogn)

Space: O(n)

— Case 1: O(1)
— Case 2: O(n)

— Case 1: O(nlogn)
— Case 2: O(nlogn)
— Case 3: O(nlogn)
— Case 4: O(nlogn)
— Case 5: O(n)
— Case 6: O(n)
— Case 7: O(nlogn)
— Case 8: O(nlogn)

 {arr: List[int]} X {n: int}

Figure 10: Outline of the dynamic complexity inference framework. The framework takes a code
snippet and a single example of inputs to this code snippet. Then, it processes the code snippet
and proceeds with extensive inputs generation, based on the provided example of inputs: inputs are
independently or interdependently increased in size, using several expansion methods that can be
the identity or random, among else. This forms a queue of synthetic inputs on which to execute
the provided code snippet. These executions happen independently in sandboxes, where runtime
and memory footprint measures are taken. Once all the measures are collected, the framework can
model the code snippet time and space dependencies to the different inputs. Using curve fitting, the
time and space complexity of the code is computed on each input separately and then altogether.
The global time and space complexity over all inputs is what is being returned.

The time-space complexity framework is a rule-based algorithm that can process any Python func-
tion in order to infer its time and space complexities dynamically. The high-level principles of the
framework are presented in Fig. 10, explaining how it takes a code-snippet and an input example
and try to infer a time and space complexity from it.

As inputs, it takes a Python function along its function inputs and their corresponding dataclass,
which are then processed and modified before being run while runtime and memory footprints are
measured. From a high-level perspective, the framework increases the size of inputs following var-
ious strategies, in order to assess the impact of their size on execution metrics (e.g. execution time,
memory used). When the function has several arguments, they can be expanded independently or
together to determine the overall complexity of the function, taking into account potential inter-
dependencies. The prepared code, along with the various sets of expanded inputs are queued up
and run in independent sandboxes, using the Bubblewrap library (bub, 2024), to avoid any harmful
side effects of the code being run. While running, Cprofiler (cpy, 2024) is used for time execution
measures and tracemalloc for memory footprint. Using non-negative least squares curve fitting on
each set of measures, the coefficients and residuals of each complexity class are computed. The
gold complexity class output for a given set of measures is chosen as the minimizer of the residuals,
taking into account a simplicity bias (the more simple the complexity class is, the smaller the sim-
plicity bias). This curve fitting is applied on each set of measures, each corresponding to a different
subset of arguments being expanded with a different expansion method. Using ensemble methods,
the global complexity of the Python function is computed by aggregating the individual complexity
outputs along the different set of measures. Finally, the complexity framework also returns the co-

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

efficients of the curve of each elected complexity. These coefficients can be leveraged to rank and
classify the optimizations of different Python solutions within the same complexity class.

G.2 COMPLEXITY FRAMEWORK INPUTS

The complexity framework handles two types on input codes, on which to measure time and space
complexity. The released datasets (as part of our project on HuggingFace), as well as all the re-
sults detailed in our paper, do follow format 1, but in case you need it for different input data, the
framework can also handle a second type of data.

Input Format 1 - With a dataclass This format corresponds to the case where snippets of input
code are I/O based, such as in the following examples:

#A. Array
n = i n t (i n p u t ())
a , b , c = [] , [] , []
l = l i s t (map (i n t , i n p u t () . s p l i t ()))
f o r i i n l :

i f i <0:
a . append (i)

e l i f i >0:
b . append (i)

e l s e :
c . append (i)

i f l e n (b) ==0 and l e n (a) >2:
b . append (a . pop ())
b . append (a . pop ())

i f l e n (a) %2==0:
c . append (a . pop ())

p r i n t (l e n (a) ,* a)
p r i n t (l e n (b) ,* b)
p r i n t (l e n (c) ,* c)

In which case the corresponding input example, as given to the complexity framework, will be
formatted in the following manner:

’4\n−1 −2 −3 0\n ’

This is the case where the input, whatever the number of distinct arguments there really is, is con-
catenated as a single string. In this case, the framework could not alone guess where the arguments
are, without context, especially as it is not relying on any LLM. The framework, in order to run,
needs an external dataclass that specifies how to understand the input string and cut it into different
arguments, that the framework can then try to change to understand the time and space dependencies
upon each of them.

Using a LLM, we can first infer the dataclass corresponding to a particular code challenge, before
using it as part of the complexity framework in order to parse the input example and perform the
various measurements on the variations of the inputs. Such a dataclass will have the following
format:

@ d a t a c l a s s
c l a s s I n p u t :

n : i n t
a l i s t : L i s t [i n t]

@classmethod
d e f f r o m s t r (c l s , i n p u t : s t r) :

n , a l i s t , = i n p u t . s p l i t (’\ n ’)
n = i n t (n)
a l i s t = l i s t (map (i n t , a l i s t . s p l i t ()))
a s s e r t n == l e n (a l i s t)
r e t u r n c l s (n , a l i s t)

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

d e f r e p r (s e l f) :
r e t u r n s t r (s e l f . n) + ’\n ’ + ’ ’ . j o i n (map (s t r , s e l f . a l i s t)) + ’\n

’

Input Format 2 - Standalone code snippet This second format corresponds to the case where
the input code is call-based, that is to say a particular function is being executed on a particular set
of inputs, in which case the framework does have the information of how the inputs are separated
into different arguments to the function (and that will also parametrize the final time and space
complexity). Such call-based code generally has the following aspect:

c l a s s Array 300 A :
d e f s o l v e (s e l f , n , l) :

#A. Array
a , b , c = [] , [] , []
f o r i i n l :

i f i <0:
a . append (i)

e l i f i >0:
b . append (i)

e l s e :
c . append (i)

i f l e n (b) ==0 and l e n (a) >2:
b . append (a . pop ())
b . append (a . pop ())

i f l e n (a) %2==0:
c . append (a . pop ())

p r i n t (l e n (a) ,* a)
p r i n t (l e n (b) ,* b)
p r i n t (l e n (c) ,* c)

It is accompanied by inputs of the form:

{” n ” : ” 4 ” , ” l ” : ” [−1 , −2 , −3 , 0]”}

The framework can in this case directly understand the structure of the input example, and based on
that infer the complexity of the code snippet.

G.3 FUZZING AND WORST RUNNING CASES

BIGO(BENCH) focuses on worst-case time and space complexities, therefore any LLM-generated
code solution is evaluated to infer its tightest upper-bound time and space complexities. To do so,
any code solution input to the framework comes with a corresponding edge case input, as shared in
the corresponding dataset that we made available. Using fuzzing, this edge case input is derived into
many inputs of different sizes following different generators: for example, an input pair consisting
of an integer and a list can see the integer input grow independently from the list (the integer can
grow linearly, with random size steps, etc, whereas the list can remain static) or on the contrary
interdependently (both the integer and the list grow at a regular pace, with same size steps). In the
Github repository also made available, src/complexity/input generations is the module in charge of
handling the fuzzing. Then, the sandbox and the time and memory profilers record the behavior
of the code solution on all sets of inputs, a set of inputs being parametrized by a specific input
generator suggesting inputs over a range of sizes. This enables to gather time execution and memory
footprint curves over many input cases, and worst execution curves are used to derive the form of
the associated complexity using curve fitting methods, in the module src/complexity/curve fitting.

Fuzzing is in itself a whole area of research, with many publications covering Java or C++ programs
(Noller et al., 2018; Wang et al., 2019). More recently, LLM capabilities are more and more studied
as a way of making fuzzing techniques more exhaustive (Xia et al., 2024; Xu et al., 2025). In our
benchmark, we chose to design an evaluation framework completely independent from any machine
learning model, so as to avoid biasing the evaluation. Nevertheless, the modularity of the codebase
we release enables to switch the default fuzzer so to experiment with any other fuzzer released
by the computer science community, or more recently from LLM-based approaches. This would

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

enable to measure what kind of bias can arise, and whether coverage and accuracy of the complexity
evaluation are improved. Finally, without changing the fuzzer, the input edge cases example can also
be interchanged easily as it is an input of the framework fuzzer: one can experiment with prompting
a LLM for more edge case inputs.

Our paper provides methods to evaluate the quality of the fuzzing as performed by our evaluation
framework, using ground-truth human solutions to all BigOBench benchmark problems. As detailed
in Section 4.3, we conducted a thorough review to evaluate whether our evaluation framework cor-
rectly identifies worst-case scenarios and accurately derive complexity estimates from them, using
a total of 250 samples, including 125 for time complexity and 125 for space. On the time complex-
ity test set, the framework reaches 84% accuracy, with 1000-bootstrap samples confidence interval
[0.776, 0.904] (for space, 82% accuracy [75.2, 88.8]). In addition, these test sets include, for time
complexity, 42% problems of difficulty A (for space 45%), 29% of B (for space 25%) and 30% of
C+ (for space 30%). On hard problems C+, framework accuracy is 84% for time complexity (84%
for space). Being exposed to stochastic noise when measuring runtimes and memory footprints, the
evaluation framework also got evaluated for its consistency, running the framework 20 times on 10
solutions of every problem and complexity class of the candidate test set: self-consistency of the
framework is measured to be at 91.9% (resp. 89.1%) for time (resp. space) complexity, for a total
of 10,130 (resp. 10,520) different code solutions.

Section G provide an illustration and more details concerning the methods being used in the frame-
work in order to measure worst-case complexities.

G.4 VARIANCE REDUCTION TECHNIQUES

Variance reduction techniques are important as the complexity framework relies on empirical mea-
sures of runtime and memory footprint, which are subject to noise. The framework was tested and
ablated on a validation set in order to measure the effect of each design choice. Among them, each
measure of runtime and memory footprint is repeated R times (in the current setting, R = 10 after
ablation, trading-off accuracy with added compute cost) and then aggregated following a variance
reduction technique. It turned out that the min-aggregation provided the best results for runtime
measurements, improving complexity framework by 3.5% over median aggregation and 19% over
max aggregation, among others. Our intuition is that runtimes are typically subject to variability
caused by external factors (such as background processes, CPU throttling, system load etc.) in a
way that increases runtime, creating high outliers.

The Hodges-Lehmann estimator (Hodges Jr. & Lehmann, 1963; Qiu et al., 2025) for exam-
ple has not been specifically tested yet for the complexity framework. The codebase was de-
signed with modularity as a core principle and any estimator can be added to src/complexi-
ty/curve fitting/fitting curve.py as a function of a set of empirical measures.

Beyond the variance-reduction techniques that can be used on empirical noisy measures,
BIGO(BENCH) also employs similar technique when aggregating scores over multi-samples. Qiu
et al. (2025) employs a Rao-Blackwellized bootstrap estimator, while we use an unbiased estimator
for @k measures by leveraging n = 20 samples for k <= 10 with c <= n correct samples:

pass@k = Ep

1−
(
n− c

k

)
(
n

k

)


This estimator, introduced in Chen et al. (2021a), is an unbiased measure of the multi-sample per-
formance as demonstrated in the appendix A of this paper.

In general, given that as measured in Section 4.3 we measure the accuracy of the framework with
human annotations at ∼85%, we estimated that this success rate ensured the framework was accurate
enough to provide reliable conclusions on the performance of LLMs as part of the BIGO(BENCH).

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

G.5 COMPLEXITY FRAMEWORK PARAMETRIZATION

The complexity framework is parameterized by a suite of arguments that govern its execution,
categorized into several domains. Dataset-related arguments specify the input data, including
the required path to jsonl file and optional sub key for nested dictionaries, along-
side indices (code start index, code end index) and filters (filter on problem,
multiply samples factor) to control code selection and replication. Input handling
is configured via input handler, while logging and output behaviors (log outputs,
save results, skip saving full results, results folder name root) dic-
tate result persistence. Measurement parameters (shuffle runs, correct nlogn,
multiplier op, multiplier start, multiplier repeat, multiplier end,
multiplier mult step, multiplier max increase, size of other arguments,
time profiler) regulate input scaling and timing. Complexity fitting is modulated by
outlier removal (filter outliers), penalty/constraint application (apply penalty,
apply constraints), and aggregation strategies (aggregate y values,
max time rate, elect complexity time, elect complexity space,
fix constant complexity, fix negligeable complexity). Resource management
includes memory/time thresholds (temp file name seed, memory limit, timeout,
large timeout, giga timeout, global timeout) and CPU allocation policies
(max workers, number solutions per worker, main process cpu id list,
forkserver type, use distinct forkservers, forkserver cpu id list).
SLURM-specific arguments in slurm.sh further tailor high-performance computing deployment.

G.6 IMPLEMENTATION LIMITATIONS AND FUTURE DIRECTIONS

The Dynamic Complexity Inference Framework can be improved in many ways. The current version
that we release is more of a Proof-of-Concept, trying to see whether such framework can be used
reliably on this task, for evaluation purposes of reinforcement learning. The following suggestions
on how to improve the performance, reliability and maintainability of the framework are listed:

1. Refactoring the whole framework: the goal being to allow for flexible extensions. Some
parts of the codebase, for instance around the input generations, are already designed to
allow new methods of input generation.

2. Fuzzing: The modularity of the codebase presents opportunities for future research
directions. One potential area of investigation is the exploration of alternative fuzzers,
including those leveraging large language models (LLMs), to measure the introduction
of bias and evaluate their impact on coverage and accuracy of complexity evaluation.
Additionally, researchers could investigate the effectiveness of using LLMs to generate
input edge cases, potentially leading to improved coverage and accuracy. Furthermore,
the framework’s modularity enables the study of the impact of different fuzzers on the
codebase, allowing for a deeper understanding of the relationships between fuzzing
strategies, input edge cases, and complexity evaluation outcomes. By experimenting with
different fuzzers and input edge cases, researchers can gain insights into the strengths
and limitations of various approaches, ultimately contributing to the development of more
robust and effective fuzzing techniques.

3. Noise reduction: several methods can help with noise reduction, and therefore better
accuracy of the framework as well as more stable results. Deterministic CPU operations
is a huge axis of improvement, but post-processing methods on the runtime and memory
footprint measures is also promising. Variance reduction techniques such as Hodges-
Lehmann estimator could also be used.

4. Complexity definition: work on the definition of complexity and therefore how complexity
is induced by the framework. Current assumptions may not be accurate, and maybe some
choices in the framework implementation and not coherent with more widely spread
definitions of complexity of a code snippet.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

5. Complexity coverage: The way we designed the framework is that it defines a set of base
functions in its module src/complexity/curve fitting/fitting class.py, and the framework can
combine these functions with addition and multiplication operators to best fit the time exe-
cution and memory footprint curves.
As long as such a function is defined, it is fit by the complexity framework. In practice,
currently there is a class for the cubic function, and no classes that represent x → x3

log x ,
x → (log x)6 nor x → 2polylog(x)

In practice, accuracy limitations may arise when two classes exhibit similar behavior over
typical input sizes (1-10,000). Empirical noise from profiler measurements (runtime or
memory footprint) can make fitting complexities challenging. We recommend testing the
framework on labeled examples when introducing a new function class.

6. Pure performance: the performance of the complexity framework is limited. Measurement
of these limitations and their improvement is the priority goal.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

H BENCHMARK EXPERIMENTAL SETUP

The experiments conducted in this paper were done on an internal cluster of H100 GPUs. Running
the BIGO(BENCH) evaluation on low-compute models that do not produce reasoning tokens, e.g.
the LLAMA 4 models, with @10 metrics for the three tasks of complexity prediction, generation and
ranking, both on time and space complexity test sets, required 100 GPU hours. On the contrary,
more compute-intensive workflows involving reasoning models, e.g. QWEN QWQ, necessitates up
to 2500 GPU hours.

Using the solutions generated by a LLM, the BIGO(BENCH) evaluation framework can be run on
a set of n CPUs in order to perform the runtime and memory footprint measures, based on which a
time-space complexity estimate is attributed to the code solution. For each LLM being benchmarked
on BIGO(BENCH), hundreds of CPU hours can be required in total to run the framework on the
time/space generation/ranking tasks, though this can highly vary depending on its parametrization:
range of the measures, replication rate of each measure, ... In our most compute intensive setting
(up to 3000× the original input size and 10 measure replicas), we used up to 10k CPU hours.

Finally, as part of our fine-tuning experiments, we used for each of the four fine-tunings of LLAMA
3.1 70B, that is to say on time prediction, space prediction, time generation and space genera-
tion data, 120 GPU hours. These models were then evaluated based on the low-compute set-up,
and finally the generated solutions were evaluated using compute for the complexity framework as
detailed above.

Preliminary experiments for the complexity framework, that only require CPUs, used more compute
than for the final runs used to evaluate the models on BIGO(BENCH). This is because as detailed in
Section 3 ablations were conducted to find the optimal set of parameters for the framework, given
the resources we had access to; we insist on the fact that the framework can be run with much lower
compute by adjusting various parameters such as its range of measures or its replication rate. On
the contrary, for the GPU compute, which comes from running the inference on a variety of models
being benchmarked by BIGO(BENCH), the majority of it corresponds directly to the experiments
being reported in this paper.

In total, the experiments reported in this paper used 12,000 GPU hours for model fine-tuning and
inference. In order to run the evaluation framework on all tasks of all models, the experiments used
180,000 CPU hours, though this number can be easily divided by a factor of 100 down to 1,800
CPU hours when using a less compute-intensive framework parametrization.

Concerning the results of these experiments being reported in the paper, we precise that only
DEEPSEEK-R1 distilled models are reported, and that DEEPSEEK-R1 is not reported as an ini-
tial assessment led to over-budget compute usage; this partial run gave similar results on complexity
tasks as DEEPSEEK-R1 LLAMA 70B.

The table results that correspond to the BIGO(BENCH) benchmarking of models are supported by
one-tailed paired t-tests on 1000 bootstraps samples of the model results evaluate the significance of
the superiority of the best model. The application of one-tailed paired t-tests on bootstrap samples
assumes that the differences in model performance metrics (e.g., pass@1 scores) across the bench-
mark tasks are approximately normally distributed, an assumption that is bolstered by the Central
Limit Theorem given the large number of bootstrap iterations (1000). Fig. 11 provides an overview
of the distribution of differences in model performance metrics. Additionally, the tests presume that
the paired nature of the data—where each model is evaluated on the same set of tasks—is preserved
through resampling, ensuring that dependencies between model outputs are accounted for.

Any @k metric uses an unbiased estimator based on 20 samples.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Figure 11: Pass@1 absolute gain of DEEPSEEK R1 LLAMA 70B over LLAMA 3.3 70B for the
task of time complexity prediction, over 1000 bootstrap samples of BIGO(BENCH) time complexity
test set.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

I LICENSES

Code Repository/Dataset License
CodeContests Apache 2.0 [link]
big O BSD-3 [link]
llama 4 models Llama 4 License
llama 3.3 Llama 3.3 License
Gemma 3 27B Gemma License
Codestral 22B MNPL 0.1 License
Qwen2.5-Coder 32B Apache 2.0 [link]
DeepseekCoderV2 236B Deepseek License
DeepseekV3 671B Deepseek License Agreement
DeepseekR1 Qwen 32B MIT License [link]
DeepseekR1 Llama 70B MIT License [link]
Llama 3.1 Nemotron-Ultra 253B NVIDIA Open License Agreement
Qwen QwQ 32B Apache 2.0 [link]
Qwen3 32B Apache 2.0 [link]

Table 13: Licenses of Code Repositories and Datasets

Table 13 lists all licenses of code and data that were used in this paper, along with licenses of models
that were downloaded and run locally to be benchmarked for this paper.

50

https://www.apache.org/licenses/LICENSE-2.0
https://github.com/pberkes/big_O
https://opensource.org/licenses/BSD-3-Clause
https://github.com/meta-llama/llama-models/blob/main/models/llama4/LICENSE
https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/LICENSE
https://ai.google.dev/gemma/terms
https://mistral.ai/static/licenses/MNPL-0.1.md
https://www.apache.org/licenses/LICENSE-2.0
https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct/blob/main/LICENSE
https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

J COMPLEXITY PREDICTION EXAMPLE

J.1 EXAMPLE OF QUERY

Provide the time complexity for the following competitive programming question and corresponding
solution. When analyzing the complexity of an algorithm, consider the worst-case scenario where
all possible input combinations are tried, given the following conditions: 1. the inputs must adhere
to the specified data types of the problem; 2. the inputs should not cause the code to crash or
exit on an exception; 3. the inputs do not necessarily need to satisfy additional constraints that are
potentially mentioned in the problem statement; 4. calling input() does not consume runtime nor
memory, but of course any operations on top of it or afterwards will be counted towards runtime
and memory footprint; 5. Anything printed gets added to the memory. You can take advantage of
Python-specific optimizations provided by the underlying CPython interpreter or compiler to achieve
the desired complexity, and you must account for them when analyzing the complexity. Here is the
programming question:

You are given n segments on a number line; each endpoint of every segment has integer coordinates.
Some segments can degenerate to points. Segments can intersect with each other, be nested in each
other or even coincide.

The intersection of a sequence of segments is such a maximal set of points (not necesserily having
integer coordinates) that each point lies within every segment from the sequence. If the resulting
set isn’t empty, then it always forms some continuous segment. The length of the intersection is the
length of the resulting segment or 0 in case the intersection is an empty set.

For example, the intersection of segments [1;5] and [3;10] is [3;5] (length 2), the intersection of
segments [1;5] and [5;7] is [5;5] (length 0) and the intersection of segments [1;5] and [6;6] is an
empty set (length 0).

Your task is to remove exactly one segment from the given sequence in such a way that the intersec-
tion of the remaining (n - 1) segments has the maximal possible length.

Input

The first line contains a single integer n (2 ≤ n ≤ 3×105) the number of segments in the sequence.

Each of the next n lines contains two integers li and ri (0 ≤ li ≤ ri ≤ 109) the description of the
ith segment.

Output

Print a single integer - the maximal possible length of the intersection of (n - 1) remaining segments
after you remove exactly one segment from the sequence.

Examples

Input

4 1 3 2 6 0 4 3 3

Output

1

Input

5 2 6 1 3 0 4 1 20 0 4

Output

2

Input

3 4 5 1 2 9 20

Output

0

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Input

2 3 10 1 5

Output

7

Note

In the first example you should remove the segment [3;3], the intersection will become [2;3] (length
1). Removing any other segment will result in the intersection [3;3] (length 0).

In the second example you should remove the segment [1;3] or segment [2;6], the intersection will
become [2;4] (length 2) or [1;3] (length 2), respectively. Removing any other segment will result in
the intersection [2;3] (length 1).

In the third example the intersection will become an empty set no matter the segment you remove.

In the fourth example you will get the intersection [3;10] (length 7) if you remove the segment [1;5]
or the intersection [1;5] (length 4) if you remove the segment [3;10].

Here is the corresponding Python solution:

n = int(input())
L = []
R = []
S = []
for _ in range(n):

a,b = [int(x) for x in input().split()]
L.append(a)
R.append(b)
S.append((a,b))

L.sort(reverse = True)
R.sort()

if (L[0],R[0]) in S:
print(max(R[1]-L[1],0))

else:
print(max(R[0]-L[1],R[1]-L[0],0)).

Please ignore any constraints on the input sizes that may have been previously mentioned in the
problem description. Compute the big-O complexity as if inputs can be as large as possible. Output
the big-O time complexity only, no explanation needed, no other words needed.

J.2 EXAMPLE OF RESPONSE FROM DEEPSEEK-R1 LLAMA 70B

<think>

Okay, I need to figure out the time complexity of the given Python solution for the problem. Let’s
go through the code step by step.

First, the code reads n, which is the number of segments. Then, for each of the next n lines, it reads
two integers l i and r i, appending them to lists L and R, and storing the tuples in S.

So the initial part is O(n) time because each of the n lines is processed once.

Next, the code sorts L in descending order. Sorting a list of size n in Python using the built-in sort
function is O(n log n). Similarly, R is sorted in ascending order, which is also O(n log n).

After sorting, there’s a condition checking whether the tuple (L[0], R[0]) is in S. Checking mem-
bership in a list in Python is O(n) because it has to potentially scan all elements. So this check is
O(n).

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Then, depending on the condition, it either prints max(R[1] - L[1], 0) or max(R[0] - L[1], R[1] -
L[0], 0). Both of these operations are O(1) since they involve a couple of subtractions and a max
function.

So putting it all together:

- Reading the inputs: O(n) - Sorting L and R: O(n log n) each, so total O(2n log n) which simplifies
to O(n log n) - Checking the tuple in S: O(n) - The rest is O(1)

The dominant term here is O(n log n) from the sorting steps. The other steps are either O(n) or O(1),
which are lower order terms.

Therefore, the overall time complexity is O(n log n).

<\think>
The time complexity is O(n log n).

O(n log n)

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

K COMPLEXITY GENERATION EXAMPLE

K.1 EXAMPLE OF QUERY

Provide a Python solution for the following competitive programming question: You are given n
segments on a number line; each endpoint of every segment has integer coordinates. Some segments
can degenerate to points. Segments can intersect with each other, be nested in each other or even
coincide.

The intersection of a sequence of segments is such a maximal set of points (not necesserily having
integer coordinates) that each point lies within every segment from the sequence. If the resulting
set isn’t empty, then it always forms some continuous segment. The length of the intersection is the
length of the resulting segment or 0 in case the intersection is an empty set.

For example, the intersection of segments [1;5] and [3;10] is [3;5] (length 2), the intersection of
segments [1;5] and [5;7] is [5;5] (length 0) and the intersection of segments [1;5] and [6;6] is an
empty set (length 0).

Your task is to remove exactly one segment from the given sequence in such a way that the intersec-
tion of the remaining (n - 1) segments has the maximal possible length.

Input

The first line contains a single integer n (2 ≤ n ≤ 3×105) the number of segments in the sequence.

Each of the next n lines contains two integers li and ri (0 ≤ li ≤ ri ≤ 109) the description of the
ith segment.

Output

Print a single integer - the maximal possible length of the intersection of (n - 1) remaining segments
after you remove exactly one segment from the sequence.

Examples

Input

4 1 3 2 6 0 4 3 3

Output

1

Input

5 2 6 1 3 0 4 1 20 0 4

Output

2

Input

3 4 5 1 2 9 20

Output

0

Input

2 3 10 1 5

Output

7

Note

In the first example you should remove the segment [3;3], the intersection will become [2;3] (length
1). Removing any other segment will result in the intersection [3;3] (length 0).

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

In the second example you should remove the segment [1;3] or segment [2;6], the intersection will
become [2;4] (length 2) or [1;3] (length 2), respectively. Removing any other segment will result in
the intersection [2;3] (length 1).

In the third example the intersection will become an empty set no matter the segment you remove.

In the fourth example you will get the intersection [3;10] (length 7) if you remove the segment [1;5]
or the intersection [1;5] (length 4) if you remove the segment [3;10].

Output the code only. Generate code that has an algorithmic time complexity of O(n.log(n)).

When analyzing the complexity of an algorithm, consider the worst-case scenario where all possi-
ble input combinations are tried, given the following conditions: 1. the inputs must adhere to the
specified data types of the problem; 2. the inputs should not cause the code to crash or exit on an
exception; 3. the inputs do not necessarily need to satisfy additional constraints that are potentially
mentioned in the problem statement; 4. calling input() does not consume runtime nor memory, but
of course any operations on top of it or afterwards will be counted towards runtime and memory
footprint; 5. Anything printed gets added to the memory. You can take advantage of Python-specific
optimizations provided by the underlying CPython interpreter or compiler to achieve the desired
complexity, and you must account for them when analyzing the complexity.

Your code should be enclosed in triple backticks like so: “‘python YOUR CODE HERE “‘. Use the
backticks for your code only.

K.2 EXAMPLE OF RESPONSE FROM DEEPSEEK-R1 LLAMA 70B

<think>

Okay, I’ve got this programming problem to solve. Let me read it carefully.

So the problem is about segments on a number line. Each segment has integer endpoints, and some
might be just points. We need to remove exactly one segment such that the intersection of the
remaining n-1 segments is as long as possible. The output is the maximum possible length of this
intersection.

Hmm, the intersection of multiple segments is the maximum set of points that lie in all of them.
So for each segment, if I remove it, I need to compute the intersection of the others and find which
removal gives the maximum length.

The challenge is to do this efficiently, especially since n can be up to 3e5, which is 300,000. So any
O(nˆ2) approach is out of the question. I need an O(n log n) solution.

Let me think about what determines the intersection of all segments except one.

The intersection of all segments except one is determined by the maximum of the left endpoints and
the minimum of the right endpoints. So, for each i, if I remove the i-th segment, the new intersection
would be [max left, min right], where max left is the maximum of all l’s except l i, and min right
is the minimum of all r’s except r i. The length is max(0, min right - max left).

So the problem reduces to, for each i, compute the maximum of l’s excluding l i, and the minimum
of r’s excluding r i, then calculate the difference.

But how do I compute these efficiently?

One approach is to precompute prefix and suffix maximums for the left endpoints and prefix and
suffix minimums for the right endpoints.

Wait, let me think:

For each position i, the max left when excluding i can be found by taking the maximum of the prefix
up to i-1 and the suffix starting from i+1. Similarly for the min right.

Yes, that makes sense.

So, let’s outline the steps:

1. Read all the segments into two lists: lefts and rights.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

2. Precompute prefix max left: an array where prefix max left[i] is the maximum of lefts[0..i].

3. Precompute suffix max left: an array where suffix max left[i] is the maximum of lefts[i..n-1].

4. Similarly, compute prefix min right and suffix min right.

Wait, no. Wait, for prefix max left, it’s the maximum up to i, but for the suffix, it’s the maxi-
mum from i to the end. But when we want to exclude the i-th element, the max left is the max-
imum of all elements except the i-th. So, for each i, the max left is max(prefix max left[i-1],
suffix max left[i+1]). Similarly for the min right.

So, to compute the max left when excluding i, we take the maximum of the prefix up to i-1 and the
suffix starting at i+1.

Similarly, the min right when excluding i is the min of the prefix up to i-1’s min and the suffix
starting at i+1’s min.

So, let’s think about how to precompute these prefix and suffix arrays.

For the prefix max left:

prefix max left[0] = lefts[0] prefix max left[i] = max(prefix max left[i-1], lefts[i])

Similarly, suffix max left[n-1] = lefts[n-1] suffix max left[i] = max(suffix max left[i+1], lefts[i])

Same logic applies to prefix min right and suffix min right, but using min instead.

Wait, no. For prefix min right:

prefix min right[0] = rights[0] prefix min right[i] = min(prefix min right[i-1], rights[i])

And for suffix min right:

suffix min right[n-1] = rights[n-1] suffix min right[i] = min(suffix min right[i+1], rights[i])

Once I have these arrays, for each i, the max left excluding i is:

if i is 0: suffix max left[1] if i is n-1: prefix max left[n-2] else: max(prefix max left[i-1], suf-
fix max left[i+1])

Similarly for the min right.

Then, for each i, calculate the possible length as max(0, min right - max left). Keep track of the
maximum such value.

That seems manageable.

Now, let’s think about the steps in code:

- Read n. - Read n lines, collect lefts and rights. - Compute prefix max left and suffix max left.
- Compute prefix min right and suffix min right. - For each i, compute max left and min right as
described. - Calculate the length, and track the maximum.

But wait, what about when n=2? For example, when i is 0, the suffix max left is suffix max left[1],
which is lefts[1]. Similarly, when i is 1, the prefix max left is prefix max left[0], which is lefts[0].
So that case is handled correctly.

Let’s test the approach against the sample inputs.

First sample:

Input: 4 1 3 2 6 0 4 3 3

So lefts = [1,2,0,3] rights = [3,6,4,3]

Compute prefix max left: prefix[0] = 1 prefix[1] = max(1,2)=2 prefix[2] = max(2,0)=2 prefix[3] =
max(2,3)=3

suffix max left: suffix[3] =3 suffix[2] = max(0,3)=3 suffix[1] = max(2,3)=3 suffix[0] = max(1,3)=3

prefix min right: prefix[0] =3 prefix[1] = min(3,6)=3 prefix[2] = min(3,4)=3 prefix[3] = min(3,3)=3

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

suffix min right: suffix[3]=3 suffix[2] = min(4,3)=3 suffix[1] = min(6,3)=3 suffix[0] = min(3,3)=3

Now, for each i:

i=0: max left = suffix max left[1] =3 min right = suffix min right[1] =3 length is 0.

i=1: max left = max(prefix max left[0], suffix max left[2])=max(1,3)=3 min right =
min(prefix min right[0], suffix min right[2])= min(3,3)=3 length 0.

i=2: max left = max(prefix max left[1] (2), suffix max left[3] (3)) =3 min right =
min(prefix min right[1] (3), suffix min right[3] (3)) =3 length 0.

i=3: max left = prefix max left[2] =2 min right = prefix min right[2] =3 so 3-2=1.

So the maximum is 1, which matches the sample.

Another sample:

Input: 2 3 10 1 5

lefts = [3,1] rights = [10,5]

prefix max left: [3,3] suffix max left: [3,1]

prefix min right: [10,5] suffix min right: [5,5]

For i=0: max left is suffix max left[1] =1 min right is suffix min right[1] =5 length 5-1=4.

For i=1: max left is prefix max left[0]=3 min right is prefix min right[0]=10 length 7.

So maximum is 7, which is correct.

So the approach seems correct.

Now, the code:

We can implement this in Python.

We’ll read n, then the list of segments.

Compute prefix max left, suffix max left, prefix min right, suffix min right.

Then loop through each i, compute the max left and min right when excluding i.

Compute the length and keep the maximum.

Now, let’s think about handling the cases where i is at the beginning or end.

For example, when i=0, the suffix max left[i+1] is suffix max left[1], and the prefix max left[i-1]
is nothing (since i-1 is -1). So for i=0, the max left is suffix max left[1], and the min right is
suffix min right[1].

Similarly, for i =n-1, the suffix is nothing, so the max left is prefix max left[n-2], and the min right
is prefix min right[n-2].

So in code, for each i:

if i ==0: current max left = suffix max left[1] current min right = suffix min right[1] elif
i ==n-1: current max left = prefix max left[n-2] current min right = prefix min right[n-2]
else: current max left = max(prefix max left[i-1], suffix max left[i+1]) current min right =
min(prefix min right[i-1], suffix min right[i+1])

Then compute current length = max(0, current min right - current max left)

We can keep track of the maximum.

Now, let’s think about the implementation.

In Python:

n = int(input()) segments = [] lefts = [] rights = [] for in range(n): l, r = map(int, input().split())
lefts.append(l) rights.append(r)

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

Compute prefix max left:

prefix max = [0]*n prefix max[0] = lefts[0] for i in range(1, n): prefix max[i] = max(prefix max[i-
1], lefts[i])

Compute suffix max:

suffix max = [0]*n suffix max[-1] = lefts[-1] for i in range(n-2, -1, -1): suffix max[i] = max(lefts[i],
suffix max[i+1])

Same for prefix min right:

prefix min = [0]*n prefix min[0] = rights[0] for i in range(1, n): prefix min[i] = min(prefix min[i-1],
rights[i])

suffix min:

suffix min = [0]*n suffix min[-1] = rights[-1] for i in range(n-2, -1, -1): suffix min[i] = min(rights[i],
suffix min[i+1])

Then, for each i in 0..n-1:

if i ==0: ml = suffix max[1] if n¿1 else 0 mr = suffix min[1] if n¿1 else 0 elif i ==n-1: ml =
prefix max[n-2] if n¿1 else 0 mr = prefix min[n-2] if n¿1 else 0 else: ml = max(prefix max[i-1],
suffix max[i+1]) mr = min(prefix min[i-1], suffix min[i+1])

Wait, but what if n=1? Oh, but according to the problem statement, n is at least 2. So n is ¿=2, so no
problem.

So code:

max length = 0 for i in range(n): if i ==0: ml = suffix max[1] mr = suffix min[1] elif i == n-
1: ml = prefix max[n-2] mr = prefix min[n-2] else: ml = max(prefix max[i-1], suffix max[i+1])
mr = min(prefix min[i-1], suffix min[i+1]) current length = max(0, mr - ml) if current length ¿
max length: max length = current length

print(max length)

Wait, but wait: in the case where all segments except one have a higher max left than the min right,
the current length could be negative, but we take max with 0.

Yes.

Testing this logic with the first sample:

n=4, i=3 (last element). So i=3 is n-1.

ml is prefix max[2] =2.

mr is prefix min[2] =3.

3-2=1. So correct.

Another test case: when n=2.

i=0: ml is suffix max[1] =1, mr is suffix min[1] =5.

5-1=4.

i=1: ml is prefix max[0]=3, mr is prefix min[0]=10.

10-3=7.

So maximum is 7.

Another test case:

Input:

3 4 5 1 2 9 20

lefts = [4,1,9] rights = [5,2,20]

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

prefix max:

[4,4,9]

suffix max:

[4,9,9]

prefix min:

[5,2,2]

suffix min:

[2,2,20]

Now, for each i:

i=0: ml = suffix max[1] =9, mr = suffix min[1] =2. 2-9 is -7, so 0.

i=1: ml is max(prefix max[0] (4), suffix max[2] (9)) =9.

mr is min(prefix min[0] (5), suffix min[2] (20)) =5.

5-9 is -4, 0.

i=2: ml is prefix max[1] =4.

mr is prefix min[1] =2.

2-4 is -2, 0.

So maximum is 0.

Which matches the sample.

So the code seems correct.

Now, considering the time complexity.

Each of the prefix and suffix arrays are computed in O(n) time. Then, for each i, it’s O(1) operations.
So overall O(n) time, which is acceptable for n up to 3e5.

So this should work.

Now, let’s code this.

Wait, but in Python, for n=2, the suffix max for i=1 is lefts[1], which is correct.

Yes.

Now, code:

Read n.

Read n lines, collect lefts and rights.

Compute prefix max, suffix max, prefix min, suffix min.

Loop through each i, compute ml and mr.

Compute current length.

Update max length.

Finally, print max length.

So, the code is as follows.

<\think>
To solve this problem, we need to determine the maximum possible length of the intersection of
segments after removing exactly one segment from the given sequence. The approach involves
efficiently computing the intersection of the remaining segments for each possible removal and
selecting the maximum length.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

1. **Reading Input:** Read the number of segments and their endpoints. 2. **Prefix and Suffix
Arrays:** Compute prefix and suffix arrays for both left and right endpoints: - ‘prefix max left‘
and ‘suffix max left‘ to track the maximum left endpoints up to and from each position. - ‘pre-
fix min right‘ and ‘suffix min right‘ to track the minimum right endpoints up to and from each
position. 3. **Compute Intersection for Each Removal:** For each segment, compute the inter-
section length when that segment is removed using the precomputed prefix and suffix arrays. The
intersection length is determined by the maximum left endpoint and minimum right endpoint of the
remaining segments. 4. **Track Maximum Length:** Keep track of the maximum intersection
length encountered.

“‘python

n = int(input())
lefts = []
rights = []
for _ in range(n):

l, r = map(int, input().split())
lefts.append(l)
rights.append(r)

prefix_max = [0] * n
prefix_max[0] = lefts[0]
for i in range(1, n):

prefix_max[i] = max(prefix_max[i-1], lefts[i])

suffix_max = [0] * n
suffix_max[-1] = lefts[-1]
for i in range(n-2, -1, -1):

suffix_max[i] = max(lefts[i], suffix_max[i+1])

prefix_min = [0] * n
prefix_min[0] = rights[0]
for i in range(1, n):

prefix_min[i] = min(prefix_min[i-1], rights[i])

suffix_min = [0] * n
suffix_min[-1] = rights[-1]
for i in range(n-2, -1, -1):

suffix_min[i] = min(rights[i], suffix_min[i+1])

max_length = 0
for i in range(n):

if i == 0:
current_max_left = suffix_max[1]
current_min_right = suffix_min[1]

elif i == n-1:
current_max_left = prefix_max[n-2]
current_min_right = prefix_min[n-2]

else:
current_max_left = max(prefix_max[i-1], suffix_max[i+1])
current_min_right = min(prefix_min[i-1], suffix_min[i+1])

current_length = max(0, current_min_right - current_max_left)
if current_length > max_length:

max_length = current_length

print(max_length)

“‘

1. **Reading Input:** The input is read and stored in two lists, ‘lefts‘ for the left endpoints and
‘rights‘ for the right endpoints. 2. **Prefix and Suffix Arrays:** These arrays help efficiently com-
pute the maximum left and minimum right endpoints when excluding each segment: - ‘prefix max‘
and ‘suffix max‘ store the maximum left endpoints up to each index and from each index onwards,

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

respectively. - ‘prefix min‘ and ‘suffix min‘ store the minimum right endpoints up to each index and
from each index onwards, respectively. 3. **Compute Intersection:** For each segment, compute
the intersection of the remaining segments by excluding the current segment. This is done using
the precomputed prefix and suffix arrays to find the maximum left and minimum right endpoints
efficiently. 4. **Track Maximum Length:** The maximum length of the intersection is updated
each time a valid intersection is found, ensuring the result is the longest possible intersection after
removing exactly one segment.

This approach ensures an efficient solution with a time complexity of O(n), making it suitable for
large input sizes up to 300,000 segments.

K.3 NOTE ON THE LLM SOLUTION

Using public and private tests, the solution given by the LLM was evaluated as correct. Using
the complexity framework, it was determined it is running in O(n) time, which does not fulfill the
O(n.log(n)) requirement.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

L REPARTITION OF COMPLEXITY CLASSES PER ALGORITHMIC NOTIONS

Figure 12: Breakdown of time complexity classes across different algorithmic categories. The
stacked bar charts reveal how complexity requirements vary by problem type. Problems involv-
ing graph handling and string manipulation tend to have higher computational complexity, while
basic arithmetic and sequence operations typically achieve more efficient complexity classes.

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

Figure 13: Breakdown of space complexity classes across different algorithmic categories. The
stacked bar charts reveal how complexity requirements vary by problem type. Problems involving
graph handling and string manipulation tend to have higher computational complexity, while basic
arithmetic and sequence operations typically achieve more efficient complexity classes.

Figure 14: Evolution of time and space complexity distributions across problem difficulty levels (A
through D+). This visualization demonstrates how harder problems tend to require more compu-
tationally intensive solutions. The proportion of linear and constant-time solutions decreases with
difficulty, while the share of higher-order polynomial and logarithmic complexities increases.

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

M LLM USAGE

We employed LLMs as general-purpose writing assistance tools throughout the preparation of this
paper. Specifically, LLMs were used to: (1) proofread text and correct grammatical errors, (2) refine
and rewrite sentences and paragraphs for clarity and flow, (3) convert mathematical expressions
and formulas into proper LaTeX format, (4) describe and explain implementation details of various
components in our codebase, and (5) provide general assistance with academic writing structure
and style. While LLMs contributed to the presentation and clarity of our work, all research ideas,
methodologies, experimental design, and scientific contributions remain entirely the product of the
listed authors.

64

	Introduction
	Related Work
	Dynamic Complexity Inference Framework
	Benchmark Data Release
	Composition
	Dataclass Generation
	Complexity Framework Performance

	Evaluation
	Time-Space Complexity Prediction
	Time-Space Complexity Code Generation
	Time-Space Complexity Coefficient Percentile Ranking
	Prediction and Generation Fine-Tuning

	Quantitative Analysis
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Formal Metric Definitions
	Dataclass Generation Metrics
	Complexity Metrics
	Complexity Prediction Metrics
	Complexity Generation Metrics
	Complexity Ranking Metrics

	Time and Space Complexity Definitions
	Introduction on the Notion of Complexity
	Algorithmic Examples
	Big-O versus Big-Theta

	Ablations on Task Prompts
	Original BigOBench Prompt - Time Complexity Prediction
	Big-Theta Variant - Time Complexity Prediction
	Detailed Big-O variant - Time Complexity Prediction
	COT Big-O variant - Time Complexity Prediction
	Original BigOBench Prompt - Time Complexity Ranking
	Python Specifications Big-O variant - Time Complexity Ranking
	Ablation Results

	Multi-sample Results Scores
	Fine-Tuning Experiments More Results
	Tasks Correlations
	Framework Implementation Details
	General Framework Outline
	Complexity Framework Inputs
	Fuzzing and Worst Running Cases
	Variance Reduction Techniques
	Complexity Framework Parametrization
	Implementation Limitations and Future Directions

	Benchmark Experimental Setup
	Licenses
	Complexity Prediction Example
	Example of query
	Example of response from DeepSeek-R1 Llama 70B

	Complexity Generation Example
	Example of query
	Example of response from DeepSeek-R1 Llama 70B
	Note on the LLM solution

	Repartition of Complexity Classes per Algorithmic Notions
	LLM Usage

