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Abstract

Benchmarking models is a key factor for the rapid progress in machine learning
(ML) research. Thus, further progress depends on improving benchmarking met-
rics. A standard metric to measure the behavioral alignment between ML models
and human observers is error consistency (EC). EC allows for more fine-grained
comparisons of behavior than other metrics such as accuracy, and has been used
in the influential Brain-Score benchmark to rank different DNNs by their behav-
ioral consistency with humans. Previously, EC values have been reported without
confidence intervals. However, empirically measured EC values are typically
noisy—thus, without confidence intervals, valid benchmarking conclusions are
problematic. Here we improve on standard EC in two ways: First, we show how
to obtain confidence intervals for EC using a bootstrapping technique, allowing
us to derive significance tests for EC. Second, we propose a new computational
model relating the EC between two classifiers to the implicit probability that one of
them copies responses from the other. This view of EC allows us to give practical
guidance to scientists regarding the number of trials required for sufficiently pow-
erful, conclusive experiments. Finally, we use our methodology to revisit popular
NeuroAl-results. We find that while the general trend of behavioral differences
between humans and machines holds up to scrutiny, many reported differences
between deep vision models are statistically insignificant. Our methodology en-
ables researchers to design adequately powered experiments that can reliably detect
behavioral differences between models, providing a foundation for more rigorous
benchmarking of behavioral alignment.

1 Introduction

Consider the following problem: Given two classifiers operating on the same domain, how should we
quantify their similarity? This abstract problem has become highly practically relevant in the context
of cognitive science and beyond. In cognitive science, deep neural networks (DNNs) have been
proposed as models of the human visual system [Doerig et al.; 2023} Kriegeskorte} 2015} |Cichy and
Kaiser, 2019, |Kietzmann et al., 2017, |Yamins et al.,[2014]], and thus the question arises how similarly
they behave to human observers. In other domains, e.g. law or medicine, it is also crucial to know
whether DNNGs interpret and judge information similarly to humans. Thus, a metric is needed that
can reliably quantify the degree of behavioral similarity between DNNs and human decision makers.

The standard method proposed for this purpose is error consistency (EC) [Geirhos et al.|[2020], which
has seen wide application in the context of human-machine comparisons, e.g. in|Geirhos et al.|[2021],
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Figure 1: Schematic: Error Consistency is noisy. The gist of our findings is that by calculating
confidence intervals for empirical EC values, we show that while the human-machine gap is probably
real, the measure is not stable enough to resolve differences between models.

Ollikka et al.| [2024], [Li et al.|[2025]], [Parthasarathy et al.| [2023]]. Similarity metrics based on EC
have also seen application in the behavioral similarity section of the vision-branch of Brain-Score
[Schrimpf et al.,[2018]]. More recently, a variation of EC—sharing many of the relevant properties, so
that our considerations apply—has been proposed as a metric to compare Large Language Models
(LLMs) [[Goel et al.} [2025]].

EC builds on Cohen’s « [[Cohen, [1960], which considers the trial-level agreement observed for a
pair of classifiers to compute a scalar similarity score, which is 1 if the two models are behaviorally
indistinguishable and —1 if they are as different as they could possibly be. A value of 0 indicates
independence. In practice, EC is reported as a point estimate of a unit-less scalar value, based on
classification decisions obtained on a single set of test stimuli, like in [Figure Zh. However, since EC
relies on trial-by-trial similarity, the measure is inherently noisy, as individual trials can have a large
impact on the final score, especially when the total number of trials is small—as is often the case
when conducting experiments with humans.

Our contributions are as follows:

* We explain how confidence intervals for empirical EC values can be estimated on any dataset
on which EC may be calculated using bootstrapping [Efron and Tibshiranil [1994]).

* We propose a novel method of modeling classifier consistency, allowing us to simulate
classifiers with a specific consistency and thus to plan sufficiently powerful, conclusive
experiments.

* We apply our methods to two influential benchmarks (Model-vs-Human [Geirhos et al.|
2021]] and Brain-Score [[Schrimpf et al.,[2018]]), showing that the currently available amount
of human reference data is not sufficient to draw conclusions about model differences in
many cases, as illustrated in

* We provide a python package containing utility functions for obtaining confidence intervals
around error consistency values, calculating p-values, planning experiments, and testing
results for significance.

We will begin by providing a brief introduction to EC in to then explain how confi-
dence intervals can be calculated in A detailed Related Work section is provided in
since we discuss related work on measuring behavioral alignment, Error Consistency,
and benchmarking.



2  Error Consistency

First, we provide a brief introduction to error consistency and introduce our notation; see |Geirhos
et al.| [2020] for an in-depth description. EC is measured by applying Cohen’s x to evaluate whether
two classifiers’ responses are jointly correct or incorrect—that is, whether they are consistent about
when they make errors. The experimental setting in which EC can be calculated is the following:
Two classifiers categorize each of N samples (e.g., natural images) into one of K classes (e.g., the
1,000 ImageNet classes). Each sample, x;, has a ground-truth label y; € {1,..., K} and receives
classifications, f/l(] ) e {1, ..., K}, with j € {1,2}. Whether these classifications are correct or not is
coded as 7’2(] ) e {0,1} where rgj ) = 1lifand only if the j-th classifier responded with the true label,
QZ(J ) = y;. This renders EC agnostic to the number of classes of the classification task because it only
considers agreement on which samples are jointly classified correctly and incorrectly.

In this setting, EC is measuring the agreement between (1) and r(*) using Cohen’s r (which is
typically applied to (") and §(?):

_ DPobs — Pexp

()
1 — Pexp

where p.ps 1S the observed agreement, that is, the proportion of trials which are jointly classified
correctly or incorrectly. This quantity is normalized by the amount of agreement expected from
independent classifiers, pesp. This normalization accounts for the fact that classifiers with high
accuracies are a priori expected to agree more often in their classifications than classifiers with low
accuracies.

However, the normalization does not render EC fully orthogonal to the accuracies of the classifiers,
because Cohen’s « depends on the marginal distributions of classifier responses [Falotico and Quatto,
2014, |Grant et al.,2016]. This is easy to see in the limiting case where two classifiers have perfect
accuracies (p;1 = po = 1): Division by zero renders EC undefined because, intuitively, error
consistency can not be evaluated in the absence of errors. Moreover, if exactly one classifier has
perfect accuracy, EC will be 0 irrespective of the accuracy of the other classifier. This phenomenon,
which we prove in may be counterintuitive and can lead to estimation instabilities, see
below.

EC is bounded by the mismatch of the two classifiers’ accuracies [Geirhos et al. 2020]]. We provide
an instructive visualization of these asymmetric bounds in[Figure 2p. Only when the accuracies of
both classifiers are equal can all values in [—1, 1] be achieved. This implies that EC can never be high
between two classifiers if their accuracies are substantially different. In practice, one can therefore
not take EC at face value: EC has to be interpreted with the accuracies of the two classifiers in mind,
and is, unfortunately, strongly susceptible to both floor- and ceiling-effects. The precondition for a
straightforward interpretation of EC is thus a good match of classifiers’ accuracies.

However, previous work has evaluated EC in conditions in which accuracies of the two classifiers
were vastly different, see[Figure 2b. Even without considering their joint probabilities, EC between
classifiers must be low in these cases because their accuracy mismatch imposes an upper bound on
the observable EC values.

To formalize this dependence of EC on classifiers’ accuracy match, we present two propositions. First,
when the accuracies of the two classifiers are equal, EC can best be understood as the proportion
of copied responses: In a model in which the second classifier copies the responses of the first
with probability pc., and responds independently at random otherwise, EC is related to that copy
probability. In[Proposition I] we present this result as a general property of Cohen’s x (for relating
7 and (®)) which immediately translates to the application as EC (relating (") and (?)), where
equal marginal distributions correspond to equal accuracies.

Proposition 1. Let a classifier give responses according to some marginal distribution §V) ~ PO,
If another classifier copies that response %) = §(Y) with probability Deopy and otherwise draws

independently from a marginal distribution §® ~ P® that is the same as the first P() = P2,
then

’ J—
Cohen’s k = peopy-
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Figure 2: Theoretical issues with EC. (a) The bounds on error consistency (EC) depend on the
mismatch between the accuracies of the two compared classifiers. (b) Similar to (a) but with accuracies
on the x and y axes. Here, each orange dot corresponds to one model-vs-human comparison and
each black dot to one human-vs-human comparison in the analysis of |Geirhos et al.| [2021]]. Red dots
correspond to conditions that were sampled but excluded for the analysis by the original authors.
Human-vs-human comparisons have lower accuracy mismatches, so EC values are expected to be
higher a priori.

Proof. The underlying distributions translate into the observed distributions P(}) = ff(l) and
P® = peopy PY + (1 = peopy ) PP With P = P?) we have P(V) = P() = p(1) = p(2),

For the joint distribution, we have P12 (y,y) = PM(y)(peopy + (1 — Peopy) PP (y)) because
the second classifier makes the same prediction as the first not only in all copy cases (Dcopy),
but also in those cases in which it does not copy but coincidentally makes the same prediction
(1 = Peopy) PP (y)). With that, x simplifies to peopy-
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Second, in the general case when the two classifiers have different accuracies, EC measures two
aspects of similarity between the two classifiers:



(1) the proportion of copied responses (pcopy) and

(2) the (mis-)match between their accuracies (factor f in[Proposition 2)).

Both are intuitively valid determinants of the similarity between two classifiers. We formalize the
interplay between these two aspects in In contrast, [Safak] [2020] tackled the same
problem but proposed a linear scaling whereas our result reflects a more interpretable multiplicative
scaling. Again, this result holds for Cohen’s « in general and, therefore, also when it is applied to
measure EC (for which y would be replaced by r and different marginals correspond to different
accuracies).

Proposition 2. Let a classifier give correct responses according to some marginal distribution
g1~ PO, If another classifier copies that response 12 = 1) with probability Deopy and
otherwise draws independently from its (potentially different) marginal distribution §?) ~ P®, then

1=, PM(y)?
1=, PW(y)PA(y)

factor f due to mismatching marginals

4 —
Cohen’s k = Peopy -

with observed marginal distributions PO = p) gng P2 = pcopyﬁ(l) +(1- pcopy)p@).

See for the proof. Crucially, this view of Cohen’s  holds with generality as long as
K = 2, without limiting assumptions about the marginal distributions. Note that the relation between
EC and pcopy is not symmetric: Whether classifier A is considered to copy from classifier B or
vice versa results in different mismatch factors f. But note also that this factor vanishes (f = 1)
if the reference classifier, from which responses are assumed to be copied, has a uniform marginal
distribution.

This inspires a strong recommendation for applications of EC: When comparing multiple DNNs with
different accuracies to humans, ensure that the human responses have uniform marginal distributions
(i.e., have equally many correct as incorrect responses). In these cases, EC becomes interpretable as
the proportion of responses that the DNNs copied from the human responses, EC = p.opy, regardless
of the overall accuracy of the different DNNs. Without a uniform marginal distribution, DNNs with a
higher-than-human accuracy may be evaluated as less similar to humans because their classification
process is more accurate, not because it is functionally different. To be clear, we still believe that it is
meaningful to interpret differences in accuracies between classifiers. But, ideally, EC would offer
additional, orthogonal information beyond that accuracy mismatch—which is ensured by keeping the
marginal distribution of the reference classifier (humans) uniform.

Beyond this contribution to interpreting EC, the generative model in contributes in
another way: It allows simulating data to predict the stability of real data. We will heavily use the
latter to give guidance to practitioners planning how many samples they should present to real human
participants in their experiments.

3 Calculating confidence intervals for EC values

Whenever an aggregate measure of empirical data is reported, it is best practice to also quantify
the degree of uncertainty about the final value. Historically, this has not always been done for EC,
e.g. none of |Geirhos et al.[[2018]],|Ollikka et al.| [2024]], [Li et al.|[2025]] report confidence intervals.
While [Geirhos et al.|[2020] provide a basic variant of confidence intervals, these were computed in a
suboptimal way: They were based on the expected agreement p,, rather than the actual accuracies of
the two classifiers, p; and p». This creates an ambiguity because, for example, (p; = 0.5, p2 = 0.5)
as well as (p2 = 0.5,p1 = 0.99) both produce the same expected agreement of p.,;, = 0.5 but
result in different confidence interval widths. Moreover, these confidence intervals were necessarily
centered around 0, because they were constructed only for independent observers. Our approach
enables calculating confidence intervals for two dependent observers by making use of the observed
accuracies. We begin by outlining how confidence intervals can be obtained for existing empirical
data, using a straight-forward bootstrapping approach. After that, we make use of the generative
model implied by to derive confidence intervals ahead of time to plan sufficiently
powerful experiments.



3.1 Using existing data for bootstrapping

Assuming that we already have access to two sequences of binary responses, (1) and r(2) of length
N, we can obtain a measure of uncertainty simply by bootstrapping [|Efron and Tibshirani, |1994]].
To do so, we sample N elements with uniform probability and replacement from the sequences,

((7"1(1), 7“1(2)) | i € {1,...,N}), and re-calculate EC based on the sampled trials. This procedure
is established in other fields using consistency measures [McKenzie et al.l [1996| [Vanbelle and
Albert, |2008]]. Doing this repeatedly yields an empirical distribution of EC values, for which we can
report a 95% confidence interval by taking the central 95% of the posterior mass, i.e. the interval
[90.025; 90.975), Where ¢, denotes the p-th quantile of the posterior distribution. Alternatively, one
could report the Highest Posterior Density Interval (HDPI), which is the narrowest interval containing
a certain amount (e.g. 95%) of the posterior mass. The only parameter of this procedure is the number
of bootstraps, M, which we typically set to M = 10, 000, see for a justification of this
choice. For readers unfamiliar with the bootstrap approach, we provide a more detailed description in

and an explicit algorithm in

We apply this method of estimating Cls via bootstrapping to the data from |Geirhos et al.| [2021]]
in In their work, several human observers (typically four to six) and 52 models were
evaluated on corrupted natural images, which had to be classified into sixteen classes. There are 17
different corruptions, most of which are parameterized by a scalar intensity level, leading to multiple
conditions within each corruption. Each condition contains 160 to 640 images. For every model, its
EC to human observers is calculated in a hierarchical fashion: First, within each condition, the ECs
to all human observers are calculated and then averaged. Then, the conditions of each corruption
are averaged again, before calculating the final “human-machine error consistency” as an average
over corruptions. To accurately reflect this procedure, we bootstrap through the entire calculation,
obtaining a posterior over the final average itself and plot 95% percentile intervals of these averages

in[Figure 4
3.2 Using for simulations

But what about the scenario in which no data is available yet, e.g. when planning an experiment?
Without data, we first need a stochastic generative model that can produce trial sequences resulting in
a target EC, given two classifiers characterized by their marginals, i.e. their accuracies.

provides such a model in which the underlying marginals and copy probability can be
specified to generate data. Note that, depending on the copy probability, the observed marginals will
deviate from the underlying marginal: The more responses the second classifier copies from the first,
the more its marginal distribution adapts. To simulate data with specific marginal distributions P(!)
and P as well as EC, one can simulate data with copy probability and underlying marginals

e (Lo X PP WP )
pcopy 1 K P(l) 5
- Zy:l (y)
P (y) = PY(y), and

p@ _ P (Y) — Peopy P(l)(y)
(y) = T :
copy

Equipped with this generative model, we can estimate confidence intervals for a pair of classifiers
as follows: We first sample N trials for the first classifier by drawing from a Bernoulli distribution

rgl) ~ P, Next, we copy peopy - IN responses from the first classifier to the second. For the
remaining (1 — Peopy) - IV responses, we sample independently from a Bernoulli distribution from the

underlying marginal 1"1(2) ~ P®)_ This yields one data set based on which we estimate EC. Repeating

this process then yields an estimate for the variability of these EC values. We provide an algorithmic

description of this approach in

We plot the resulting confidence intervals in and include sample sizes used in the literature
[Geirhos et al., [2021}, |Ollikka et al.l 2024 [L1 et al., [2025] [Wiles et al.,2024] as reference points. We
focus on the most severe case where x = 0.5, but discuss the effect of x on CI size in[Appendix E]
Note that the x-axis is on a logarithmic scale and reaches values that are very difficult to meet in
experiments with human observers. Even so, the width of the confidence intervals (especially that
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Figure 3: 95% Confidence Interval sizes as a function of trial number. We simulate data
demonstrating how the size of EC confidence intervals depends on both the accuracy of the classifiers
and the number of trials. The ground truth EC is 0.5, and we bootstrap 1,000 times for each pair
of observers, which are set to the same accuracy for simplicity. We also include the trial numbers
employed in the literature for reference (symbols on the x-axis).

of classifiers close to floor / ceiling performance) is very large and shrinks only slowly, covering
0.2 units of xk even at N = 400 trials, which is roughly the size of the difference found between
humans and machines by |Geirhos et al.|[2021]]. Especially noteworthy is the fact that at lower N and
performance close to floor / ceiling, the bootstrapped ECs are biased and undershoot the true value.
This happens for a simple reason: If one classifier is always correct (or always wrong) the EC will
be zero irrespective of the accuracy of the other one. In the critical performance regimes and at a
low number of trials, sub-sampling trial sequences for which these edge cases occur becomes likely
enough to bias results.

Limitations. A core limitation of our work is that we do not present an analytic solution for
confidence intervals, but rely on bootstrapping instead. This also limits the numerical accuracy of the
significance tests, which cannot resolve p-value differences < % While the analytic solutions (along
the lines of (Gwet|[2016], Fleiss et al.| [[1969], and |Vanbelle et al.|[2024]]) could improve this slightly,
we believe that for the discussed purpose here, our methodology is the pragmatic choice that comes
with fewer restrictions (and is certainly much better than not reporting confidence intervals at all).

3.3 Significance Tests for Error Consistency

Now that we can quantify the degree of uncertainty, we can also derive significance tests for error
consistency. Significance tests are an invaluable tool for empirical scientists because they provide
a standardized way of checking if results are statistically reliable. Given two sequences of binary
trials of length N which lead to an EC of «, we want to calculate a p-value for . The p-value is the
probability of observing an event at least as extreme as the observed one under the null hypothesis of
two independent binomial observers, i.e. k = 0.

Basic Significance Test. To obtain the distribution of EC values obtained under the null hypothesis
Hy : & = 0, we first need to model the independent binomial observers that constitute the null
hypothesis. They are fully characterized by their individual accuracies, of which the empirically
observed accuracies provide an estimate. The reliability of this estimate depends on the number
of trials. If we assume uniform priors over these accuracies, the posteriors are beta-distributions

characterized by the number of (in)correctly solved trials, Beta(N — >, rl(j ), > rl(j )).
We can now sample the two individual accuracies from their respective posteriors, sample N trials

from independent binomial distributions and calculate the resulting EC. Repeating this procedure M
times leads to a distribution of EC values expected under the null hypothesis. From this distribution,



we then calculate how many times the absolute value of the simulated EC exceeded the absolute value
of the empirically measured EC, for a two-sided significance test. We demonstrate this method by
applying it to data from model-vs-human in [Appendix HJto obtain p-values of the error consistency
between a human subject and the best-performing model, a CLIP-trained ViT [Radford et al., 2021]].

Advanced Significance Test. The empirical scenario which we investigate in [Section 4/ demands a
slightly different significance test: Given a fixed reference observer (e.g. a human) and two candidate
observers (e.g. two DNNs), is the difference of ECs to the reference observer found between the two
candidates statistically significant?

Such a test is also possible. Let x¢, , £, be the error consistencies of the two candidates. We consider
the null hypothesis of the candidates having the same error consistency to the reference classifier,
Hy : K¢y = Ke,. We first obtain a distribution of error consistency differences via bootstrapping as
above: First, we randomly sample N trial indices ¢ with replacement and uniform probability. We

select the corresponding response-correctness-triplets (rﬁef ), 7’561), rl(cz)) € {0, 1} and re-calculate

EC values and their difference. To obtain the distribution of differences one would expect under H,

we simply exchange 7’501), TZ(@) with probability p = 0.5, as if there had been only one underlying

model. We can then perform a t-test between the distributions of differences to compute p-values.

4 Revisiting earlier work

4.1 Model-vs-Human

Next, we re-analyze well-known literature results by calculating confidence intervals around their
empirically measured values. At the focus of our attention is the work by Geirhos et al.|[2021]], where
a cohort of human observers was asked to classify corrupted natural images. The same images were
also shown to 52 DNN:gs, to evaluate their alignment to human behavior. EC values were calculated
per condition and averaged as described in From our analysis in we already
know that some of the error consistencies were calculated in a low-data regime that will result in
large confidence intervals around the individual EC values, but we now compute confidence intervals
specifically for their empirical data. We do this by bootstrapping through the entire calculation, to
arrive at an empirical distribution of final scores, which we plot for humans and every model in
The best model is a CLIP-trained ViT[Radford et al.| 2021] which performs much better on
the distribution shifts like sketches and stylized images, achieving an EC to humans of 0.279. The
second-best model, BITM-ResnetV2-101x1, achieves an EC of 0.251, resulting in a difference of
0.028, which, as a two-sided t-test confirms, is significantly different from 0 (p < 1 x 10_10). But
note how model 24 (VGG-19 as per[Table 2)) has overlapping CIs with all models from 8 to 45, more
than 70% of all models. It is conceivable that if these experiments were done again, VGG-19 might
jump up to rank 8, or down to rank 45. It just so happens that the very best and very worst models
broaden the range we have to plot, thus rendering this effect less obvious than in [Figure T| Testing
the differences for all neighboring models for significance, we find no other significant result, even
without correcting for multiple comparisons.

For each bootstrap, we also obtain a ranking of models. Given that the CIs are fairly wide (for example,
no model’s confidence interval is separated from that of its neighbors), we wonder whether different
bootstraps imply different model rankings. To check this, we calculate Kendall’s 7 between the
original model ranking and the ranking implied by each of the 10k bootstraps. 7 is a statistical measure
of the rank correlation between two ordered sequences, similar to Spearman’s rank correlation, but
with the benefit of an intuitive interpretation: 7 measures the difference between the probability
that a pair of observations is concordant and the probability that it is discordant. The average 7
is 0.88, which means that two randomly sampled pairs have an 88% chance of being concordant.
Evidently, the main conclusion drawn by |Geirhos et al.|[2021] clearly still holds: Humans are more
consistent among themselves than models are to humans. Nevertheless, adding confidence intervals
to the reported EC values better quantifies the degree of uncertainty about the measurements for
individual models, and the 95% CIs do indeed overlap, meaning that differences between models are
not resolved.
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Figure 4: Models from MvH ranked by their EC to humans. Inter-human EC is plotted in red.
We plot the 95% percentile interval for the mean EC obtained via bootstrapping, using the standard
exclusion criteria of the benchmark (orange and black points in[Figure 2b). For the mapping of model
indices to names, see[Table 2] Note that while the gap to humans is large, confidence intervals of
many models overlap.

4.2 Brain-Score

One of the most widely-known applications of EC is the influential Brain-Score benchmar
[Schrimpf et al., [2018]], which evaluates arbitrary DNNs by how much they resemble the brain.
One dimension of this evaluation is the behavioral similarity to humans, including error consistency
as measured via the data by (Geirhos et al.[[2021]]. Here we assess how reliable the ranking of models
implied by their EC to humans really is.

In Brain-Score, the EC for each condition is first divided by the human-to-human EC for this condition,
to express values relative to a ceiling. We begin by reverting this operation to obtain raw EC values.
To properly bootstrap EC values for these models, we would need access to the complete sequences
of trials generated by the models, but this data is not stored anywhere, and re-running the models
(not all of which are publicly available anyway) seems excessive. Hence, we instead make mild
assumptions to estimate conservative CIs around the empirical values, demonstrating the utility of
our copy-model. (See for details on this procedure.) We obtain the result depicted in
for the top-30 models (by EC to humans). Again, the best model is a CLIP-trained ViT. For
the other models, the Cls are so large that any of the top ten models could be the second-best one,
meaning that the true rank order between models remains unclear.

We believe that the issue we raise here generalizes beyond just EC and Brain-Score: Any metric
that is used to derive rankings of models in a benchmark should come with a method for calculating
confidence intervals. Likewise, any benchmark that provides a ranking should quantify the degree of
uncertainty surrounding individual values and the stability of the resulting ranking.

5 Discussion

In this work, we have built on the error consistency metric proposed by |Geirhos et al.[[2020], demon-
strating how confidence intervals and significance tests for empirical measurements of EC can be
calculated using bootstrapping techniques. Additionally, we have presented a new computational
model of EC for planning sufficiently powerful, conclusive experiments. We have used our methodol-
ogy to revisit influential Neuro-Al results |Schrimpf et al.|[2018]], finding that many results are not
statistically reliable, because previous studies were underpowered. In the following, we recommend
best practices for future benchmarking of behavioral alignment, and facilitate their implementation
by making our python package publicly available. A core contribution of our work is an improved
understanding of error consistency through a new computational model: EC is broken down into

https://www.brain-score.org
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Figure 5: Confidence Intervals for Brain-Score ECs. Like in|[Figure 4] we plot the 95% confidence
interval of the EC of the top 30 Brain-Score models. Note that the confidence intervals of many
mid-range models overlap.

two interpretable components, copy probability p..p, and marginal mismatch f. As an analogy,
this is similar to breaking down accuracy into true positive and false positive rates—a necessary
shift in perspective that will improve interpretations in future studies measuring similarities between
classifiers.

5.1 Practical Recommendations: How to reliably benchmark behavioral alignment

From our analysis, we can derive concrete recommendations for practitioners. As shown in
a sufficiently high number of trials is required to obtain small confidence intervals around EC Values.
As arule of thumb, we suggest to collect at least 1000 trials per classifier to balance this requirement
against practical constraints. In experiments with human observers, achieving very high resolution
of EC differences could become prohibitively expensive, underlining the need for a good selection
of stimuli, which probe differences efficiently. Since the size of CIs also depends on the accuracy
mismatch between classifiers, we suggest to aim for an accuracy around 75%, but not more than 90%
to avoid ceiling-effects, which can be severe. The same holds for floor-effects. This is in agreement
with standard best practices from psychophysics, where one aims for a similar accuracy level in
human observers to sustain motivation whilst avoiding ceiling effects. Finally, future work should
always report confidence intervals and check results for statistical significance, which can easily be
done with the python package we provide.

5.2 Conclusion

The field of ML research relies heavily on the powerful machinery of benchmarking [Hardt, 2025].
Hence, the correctness and reliability of benchmarks is crucial for progress, since ill-calibrated
benchmarks will lead us astray. The field is also notorious for not quantifying uncertainty properly
[Pineau et al., 2021} Miller, 2024, Lehmann and Paromaul, 2025, Bouthillier et al., 2021|], which
is especially important in the context of benchmarks because of their large influence on other
developments. Our work raises general questions about how benchmarks should aggregate results.
For benchmarks that explicitly compute rankings, we give the concrete recommendations of (a)
providing confidence intervals around individual estimates and (b) quantifying the stability of the
resulting rankings as we did with error consistency.

In this work, we have revisited results by |Geirhos et al.| [2021]] which influence the Brain-Score
benchmark |Schrimpf et al.| [2018]], revealing that many differences reported between deep vision
models are not statistically reliable. The error consistency metric is particularly susceptible to such
issues, because it is inherently noisy, so the requirements for stable measurements are hard to meet in
practice. We envision that our work will help the field to overcome these issues, by providing tools to
plan sufficiently powerful experiments.
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A Related Work

DNNs s as vision models. Within the last decade, Deep Neural Networks (DNNs) have been proposed
as models of the human visual system [Doerig et al.,|2023| [Kriegeskorte, |2015} |Cichy and Kaiser,
2019, |Kietzmann et al.,2017]], not only because they form the only class of image-computable models
that achieves human-level performance on benchmark tasks like ImageNet [Russakovsky et al., 20135]],
but also because performance-optimized DNNs are the best predictors of biological neural activations
[Yamins et al.;, 2014} [Kubilius et al.| 2019} Zhuang et al.,[2021]]. However, the suitability of DNNs
as models of vision is debated [Bowers et al., 2022, [Wichmann and Geirhos} 2023| Maniquet et al.,
2024, |Serrel 2019, as is the question of how comparisons should best be conducted [Firestone} 2020,
Lonnqvist et al., [2021, [Wichmann and Geirhos}, 2023]].

Error Consistency. The underlying idea motivating error consistency is that of “molecular psy-
chophysics” [[Green, [1963]], which is to go beyond aggregate measures like accuracy, and instead
compare behavior on a trial-by-trial basis. EC promises to achieve this by building on Cohen’s
K [Cohen, 1960, Martin Andrés and Alvarez Herndndez, 2024]], which considers the trial-level
agreement observed for a pair of classifiers. |Geirhos et al.| [2020]] proposed EC in the context of
human-machine comparison, but in principle, the method applies to the general setting of comparing
arbitrary classifiers. Martin Andrés and Alvarez Hernandez [2024]] observe that  is a biased estimator
and should be corrected, which we support in our implementation. |Safak| [[2020]] also observe the
problem of ’s dependency on the marginals, which we outline in They propose to scale x
between its theoretical limits in an attempt to obtain a measure of error consistency that is orthogonal
to accuracy. |Goel et al.|[2025]] propose to apply Cohen’s x directly to the responses given by both
classifiers ¢; rather than the correctness values r;, and adapt the marginal probabilities of independent
classifiers to reflect their accuracy. We still focus on the standard error consistency proposed by
Geirhos et al.| [2020] because it has seen the widest application. In principle, our bootstrapping
methodology also works for these other metrics.

Uncertainties in Benchmarking. Benchmarking has a long history and is central to modern
machine learning [[Koch and Peterson, 2024, [Singh et al., 2025, Hardt, 2025} |Orr and Kang|,|2024].
For example, the popular Papers with Code database lists approximately 14,000 different benchmarks
[Codel [2025]]. With the emergence of modern benchmarks and leaderboards, issues such as overfitting
to benchmarks [Singh et al.} [2025]], the limitations of metrics [Thomas and Uminsky} [2020], and
various sources of uncertainty have been identified and challenged [Lehmann and Paromaul, [2025}
Bouthillier et al.| [2021]]. In general, it has been criticized that benchmarks should not be the primary
goal of scientific machine learning research [Alzahrani et al., 2024]. At the same time, it has
been pointed out that benchmarking itself requires a scientific approach and some kind of standard
methodology [Thiyagalingam et al.| 2022} Sculley et al., 2018, [Hardt, |2025]|. Similar to our work,
Nado et al.|[2021] argued that uncertainty is an important aspect to consider for benchmarks. In
contrast to previous work, we focus on uncertainty in the behavioral comparison of classifiers using
error consistency.

B Proof of Proposition 7

Proof. The underlying distributions translate into the observed distributions P; = Py and P =
- - - (@) (4)— pWw
Peopy P + (1 = peopy) P, Inverting the marginal P(2), we get P(?) (y) = W) peops P 7(W)

1_pcopy

For the joint distribution, we have P(y,y) = P™ (y)(Peopy + (1 — Peopy) P2 (1)) because the second
classifier makes the same prediction as the first in all copy cases (pcopy) and in those cases, in which

it does not copy but coincidentally makes the same prediction ((1 — peopy ) PP (y)).
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C Proof of Ceiling Effects

In we claim that as soon as one classifier achieves perfect accuracy on the investigated
sequence of trials, the EC of the pair will be O irrespective of the accuracy of the other one. Here,
we proof this claim, which is easiest to derive from a confusion matrix as shown in The
observed agreement is found on the diagonal, p,,s = a + d, while the expected agreement is what
would be on the diagonal if observers were independent (pezp = (@ + b)(a + ¢) + (¢ + d)(b + d)).
For the proof, consider without loss of generality that classifier 2 was perfect, i.e. a +c = 1.

r =1 r@ =9

r) =1 a b a+b
r) =0 c d c+d
a—+c b+d 1.0

Table 1: Error consistency matrix.

Proof. Leta+c=1,thenb+d = 0,50 pegp = (a +b)(a+¢c) + (c+ d)(b+d) = (a + b). Since
b>0andd>0,b=d=0.
:Pobs*pexp

L = peap

(a+d)—(a+0b)

1—(a+b)

. d-b
1—(a+b)
=0

K

O

By symmetry, the same argument holds for the case where one classifier gives incorrect responses on
all trials.
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D Lower bound on EC

Figure 2b showed how the mismatch in accuracies between two classifiers imposes upper bounds
on EC. In extension, Figure[6] shows that there are also non-trivial lower bounds (subplot b). These
lower bounds are not a simple function of the upper bounds. Instead, they are inversely related such
that when accuracies are inverted (i.e., p; = 1 — py along the off-diagonal) lower values can be
attained. But perhaps counterintuitively, even with inverted accuracies, EC = —1 can not always
be reached. This is in contrast to the upper bound, where aligned accuracies (i.e., p; = p2) always
allows EC = +1.

1.0
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0.8
|

0.8

0.6
L
0.6
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Accuracy of the Second Classifier
Accuracy of the Second Classifier

= b

i Max EC i Min EC
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Figure 6: Lower bound of EC in comparison to upper bounds. The left subplot (a) is the same as
[2b, showing regions in which EC is upper bounded by the mismatch in accuracies two classifiers (x
and y axes). Additionally, the right subplot (b) shows the lower bounds. Again, each point represents
a model-vs-human comparison in the analysis of |Geirhos et al.|[2021].

E Effect of EC on CI size

For [Figure 3] we have chosen a ground-truth EC of 0.5 to demonstrate how the EC between two
classifiers depends on their accuracy and the number of trials on which EC is measured. However,
the choice of the ground-truth EC influences the CI size as well, which we demonstrate in [Figure 7|
We again generate data using our copy-model, and plot the ground-truth EC (input of the model)
against the distribution of empirical ECs (calculated on model outputs). To better show the changes
in Cl size, we plot the delta between empirical and ground-truth EC rather than the absolute EC. Note
how the CI bounds are not symmetric and largest at a ground-truth EC of 0.5.

F Bootstrapping

For readers unfamiliar with bootstrapping, we provide a basic introduction here, but refer to
[and Tibshirani| [1994] for details. The idea is the following: We want to estimate the uncertainty in a
summary statistic (e.g., the mean), which is computed for a dataset X of size N. If we had access
to the underlying data-generating process, we could simply generate M more datasets (each of size
N) and compute the summary statistic for each. This would give us a distribution of values of the
statistic, from which we could then compute a measure of uncertainty (e.g. a percentile interval of the
distribution of means). Without access to the true data-generating process, we build the best possible
parameter-free model: To generate a data point, randomly select one of the data points x; with
uniform probability. To generate an entire dataset, draw N data points with uniform probability, with
replacement. In the context of error consistency between two observers, one data point corresponds to

one trial, i.e. a pair of responses r; = (7‘51)7 7'52)) € {0,1}2. The full algorithm to obtain a confidence
interval for two sequences of responses () and r(?) can thus be summarized in
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Delta between empirical and true EC

True EC

Figure 7: Ground-Truth EC against CI sizes. We simulate data with different ground-truth EC
values and plot the size of 95% confidence intervals. Evidently, one obtains the largest CIs at ground-
truth EC of 0.5.

Algorithm 1 Bootstrapping EC confidence intervals

Require: Arrays (") () € {0, 1}V, number of bootstrap iterations M, sample size N
Ensure: 95% confidence interval for error consistency

1 L+ 0 > Initialize list of EC values
2: fori=1to M do

3: T <+ sample N indices from {1, ..., N} uniformly with replacement

41 ec+ EC(rM[z],rP(1)) > Compute error consistency
5: L+ LU{ec} > Add to list
6: end for

7: [lower, upper| < Percentilegso; (L) > Compute 95% interval
8: return [lower, upper|

Similarly, the algorithm for estimating confidence intervals without access to real trials is described

in[ATgorithm 2]
G Validating the copy model

As proven by [Proposition 2} our copy model is correct in the limit of trials. Additionally, we
empirically validate the uncertainty estimates we derive from this model, by first generating some
ground-truth data with a fixed error consistency at a fixed accuracy of both classifiers. We then
bootstrap this data M = 1,000 times, as we would to obtain percentile intervals. Next, we instead
draw M samples from our copy model, to compare the CIs implied by our copy model to those
implied by the bootstrap, which we consider the gold standard. We plot this comparison in [Figure 9]
Evidently, the distributions we obtain from our copy model match the bootstrapped results quite well,
as long as the number of trials is sufficient or the accuracy avoids floor- and ceiling-effects.

H Details on Model-VS-Human results

An idiosyncrasy of the model-vs-human benchmark that we have not expanded on so far is the
fact that while the final scores (which are averages across the different corruptions) are stable, the
uncertainty within each corruption can be quite large. In|Figure 11} we plot the CIs surrounding the
EC values obtained for the phase-scrambling corruption as an example. In we plot the
pairwise rank correlations between all 17 corruptions, revealing that some, but not all corruptions are
highly correlated, i.e. imply similar model rankings. In we plot the confidence intervals
one would obtain under the alternative aggregation strategy of simply averaging across conditions,
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Figure 8: Convergence of EC estimates as a function of number of bootstraps. Starting from a
single sequence of 1, 000 trials generated by our copy model (arbitrary target EC of 0.5, classifier
accuracies 0.7 and 0.8 respectively) we chose a number of bootstrap runs and bootstrapped 100 times
for each, to obtain estimates of uncertainty. Shaded regions correspond to 95% percentile intervals.
Evidently, at the M = 10, 000 bootstrap runs we use, the estimates have stabilized, thus justifying
our choice of M.
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Figure 9: Validating our copy model. We plot the distributions of EC estimates from the copy model
to bootstrapped (gold standard) estimates of uncertainty. Top: 50 trials. Bottom: 1000 trials. Left:
Accuracy 50%. Right: Accuracy 95%. Evidently, if both the number of trials is low and accuracy
approaches the ceiling of 100%, the model diverges from bootstrapped results, but error consistency
is not well-behaved in this case anyway. Ideally, experiments should avoid this regime, which can be
achieved by increasing the number of trials and calibrating their difficulty.
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Algorithm 2 Bootstrapping EC confidence intervals without real trials

Require: Target marginals P("), P(?) over K classes, target error consistency EC, number of trials
N, number of simulations M
Ensure: 95% confidence interval for error consistency
1: Compute underlying parameters:

1=K PO ()P (y)
2: Peopy <~ EC- ( 1—yZlK P (y)2

y=1

: fori =1to M do
Generate responses for first classifier:
9: for j =1to N do

3. PO (y) < PW(y) forally € {1,...,K}
4: P@) P () —peopy P (1) for all 1 K
: (y) < T orally € {1,..., K}
5:
6: L+ 0 > Initialize list of EC values
7
8:

10: r§-1) ~ Categorical (P1)) > Sample from marginal
11: end for

12:

13: Generate responses for second classifier:

14: Neopy < | Peopy - V] > Number of responses to copy
15: Teopy < sample Neopy indices from {1, ..., N'} without replacement

16: for j =1to N do

17: if j € Zeopy then

18: r]@) — r}l) > Copy response
19: else ~

20: rj(-z) ~ Categorical (P(?) > Sample independently
21: end if

22: end for

23:

24: ec < EC(r(M) () > Compute error consistency
25: L+ LU{ec}

26: end for

27: [lower, upper] <— Percentilegsy, (£) > Compute 95% interval

28: return [lower, upper]

without grouping by corruption first. Evidently, this would drastically affect the confidence intervals.
To be clear, this is a deviation from the MvH protocol and thus “wrong”, but the data itself is the
same, thus illustrating the point that there is large variance in the data, which is obfuscated by the
hierarchical aggregation.

In [Figure 2pb, we explain how in many of the conditions within model-vs-human, the accuracy
mismatch between models and human participants is so large that k,,,,, takes on very small values.
One might wonder how model-vs-human scores would change if one excluded conditions not as
prescribed by the authors, but based on this mismatch. However, this would render the selection of
conditions dependent on the model. Hence, the benchmark would no longer present a fair comparison
of models, and final scores would no longer be comparable.

I Generating Synthetic Brain-Score Data

For the analysis conducted in[Section 4.2] we estimate the size of confidence intervals surrounding
models on the public Brain-Score benchmark. To estimate a model’s EC to humans within one
condition ¢, we would technically have to create one set of binary trials that has the property of having
the desired average EC to the n human observers of K;.cqi,.. To simplify, we drop this dependence
and generate n independent sequences of trials, one for each human who saw images in this condition.
Generating only one sequence of trials would drastically overestimate the variance, which is reduced
by taking the mean. For each of these sequences, we need three inputs for the copy-model: The
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Figure 10: EC to humans without hierarchical aggregation. If one were to simply define a model’s
EC to humans as its average EC over all conditions (without first grouping by corruption), one would
obtain the 95% confidence intervals depicted here, which clearly overlap for all models.
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Figure 11: ECs on phase-scrambled images. We plot CIs for the EC to humans achieved by all
models in the phase-scrambling corruption as an example, analogous to [Figure 4]

desired kappa (which is given by the Brain-Score data after removing the ceiling correction), the
accuracy of the humans (which is given by the model-vs-human data) and the accuracy of the model
in this condition. The latter is unknown, but bounded mathematically. We obtain the CI sizes in
[Figure 5|by selecting the accuracy in the middle of the bounds, which seems reasonable. Selecting
the lower bounds of the accuracy leads to the most optimistic estimate of CI size, which we plot in

Figure 14
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Figure 12: Spearman Correlation between Experiments. For all possible pairs formed by the 17
corruptions from model-vs-human, we compute the Spearman rank correlation between the rankings
of models they imply. All rank correlations are statistically significant at o« = 0.05 (without correcting
for multiple comparisons).
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Figure 13: p-values for the EC between CLIP and human participants. For all experimental
conditions (corruptions at a certain strength) we scatter the EC against the p-value, finding that the
majority of conditions is significant, while some values close to 0 are not, which is reasonable.

Index Model Name Index Model Name
0 clip 26  vggl6_bn
1 BiTM_resnetv2_101x1 27 mobilenet_v2
2  BiTM_resnetv2_152x2 28 vggll_bn
3 BiTM_resnetv2_50x1 29 resnetl101
4 resnetS0_I2_epsS 30 resnetl52
5 resnet50_12_eps3 31 mnasnetl O
6 ResNeXt101_32x16d_swsl 32  wide_resnet101_2
7 BiTM_resnetv2_152x4 33  resnext50_32x4d
8 BiTM_resnetv2_50x3 34  resnext101_32x8d
9 resnet50_12_epsl 35 simclr_resnet50x2
10 vit_large_patch16_224 36 vggl3_bn
11 vit_base_patch16_224 37 simclr_resnet50x4
12 vit_small_patch16_224 38 simclr_resnet50x1
13 transformer_L16_IN21K 39  resnet50_12_epsO
14  densenet201 40 MoCoV?2
15 resnet50_swsl 41 wide_resnet50_2
16 inception_v3 42  efficientnet_l2_noisy_student_475
17 transformer_B16_IN21K 43  squeezenetl_1
18 resnet50 44  mnasnet0O_5
19 densenet169 45 InfoMin
20 BiTM_resnetv2_101x3 46 alexnet
21 resnet34 47  shufflenet_v2_x0_5
22 resnet50_12_eps0_5 48 squeezenetl_0
23 resnetl8 49 MoCo
24 vggl9_bn 50 PIRL
25 densenetl21 51 InsDis

Table 2: Model Indices for MvH. We map model indices in to their full names.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In abstract and introduction, we claim to calculate confidence intervals for
error consistency and use this to revisit earlier work, which we then do.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our work, in particular the fact that we are limited
to bootstrapping instead of relying on particular analytical solutions. The computational
costs of our algorithms are negligible. There are no privacy and fairness concerns.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The new theoretical contribution of our paper is the copy model in
For didactic reasons, we first proof the correctness of the model for a simpler case of equal
accuracies, before moving on to the harder case of unequal accuracies in

Proposition

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide code to reproduce all experiments in the supplemental mate-
rial. The data sources for empirical experiments (Brain-Scoreﬂ and model-vs-humalﬂ) are
publicly available.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general, releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

*https://www.brain-score.org
*https://github.com/bethgelab/model-vs-human
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See previous question. The submitted code is extensively annotated with
instructions and contains an environment specification via requirements.txt.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: We do not train DNNSs in the context of this work.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The reporting of error bars is the topic of our paper.
Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: All experiments (bootstrapping) done for this work are at tiny scale and run on
consumer laptops in seconds or a few minutes.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our research is not in conflict with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We feel this question is not applicable to our work. We do not release models
that could be misused, or directly impact society.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the works we investigate and whose data we use, such as model-vs-
human.

Guidelines:
» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets. For the code we will release upon acceptance,
we will follow standard procedures by releasing via Github etc.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not conduct experiments with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not conduct experiments with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We do not make use of LLMs beyond standard programming aid for editing
purposes.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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