Under review as a conference paper at ICLR 2023

AGING WITH GRACE: LIFELONG MODEL EDITING WITH
DISCRETE KEY-VALUE ADAPTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large pre-trained models often err during deployment as input distributions shift,
user requirements change, or crucial knowledge gaps are discovered. Recently,
model editors have been proposed to modify a model’s behavior by adjusting
its weights during deployment. However, when editing the same model multiple
times, these approaches quickly decay a model’s performance on upstream data and
forget how to fix previous errors. We propose and study a novel Lifelong Model
Editing setting, where streaming errors are identified for a deployed model and we
update the model to correct its predictions without influencing unrelated inputs.
We introduce General Retrieval Adaptors for Continual Editing, or GRACE, which
learns to cache a chosen layer’s activations in a codebook as edits stream in, while
the original model weights remain frozen. GRACE succeeds to edit pre-trained
models thousands of times in a row using only streaming errors, while minimally
influencing unrelated inputs. Experimentally, we show that GRACE substantially
improves over recent model editors while generalizing to unseen inputs.

1 INTRODUCTION

Modern machine learning systems perform extremely well on challenging, real-world tasks. Many
successes stem from large models trained on massive amounts of data, achieving state-of-the-art
performance on challenging tasks in natural language processing (Rae et al., 2021; Brown et al.,
2020) and computer vision (Ramesh et al., 2022; Dosovitskiy et al., 2020). However, despite high
performance, large models still make critical mistakes during deployment (Sinitsin et al., 2019;
Balachandran et al., 2022; Wang et al., 2021). Further, when models are deployed over long periods
of time without updates, their error rates increase as data distributions shift, as labels shift, or as
ground-truth information about the world simply changes (Lazaridou et al., 2021). For example, a
language model trained in 2016 that correctly identifies Barack Obama as president of the United
States would be incorrect after 2017, as illustrated in Figure 1. Furthermore, multiple errors often
occur sequentially, requiring many fixes to the same model over time. To handle this case, we
introduce Lifelong Model Editing to continuously correct large models’ mistakes over long sequences
of edits. By editing a model, we avoid costly retraining while maintaining its performance on
unrelated inputs (Mitchell et al., 2022a).

One approach to lifelong editing is to directly finetune a model on errors as they arrive. However,
finetuning on errors is prone to overfitting, even with customized regularization (Lin et al., 2022).
Further, finetuned models quickly forget original training data, devaluing upstream pretraining
(Lee et al., 2020). And even worse, finetuned models can easily forget previously-fixed errors,
counteracting the objective of editing in the first place (Sinitsin et al., 2019).

Another candidate for lifelong editing is through standard model editing, which outperforms finetuning
by updating model behavior with minimal influence on unrelated inputs (Mitchell et al., 2022a).
While a promising direction, these methods require large amounts of data in order to make edits. For
example, some recent works use training sets filled with pre-collected errors to train hypernetworks
(von Oswald et al., 2020) that edit a model’s behavior by predicting new weights (Mitchell et al.,
2022a) or offload predictions to a new classifier (Mitchell et al., 2022b). However, large pools
of representative training edits are rarely available before deployment. Alternatively, regularized
finetuning approaches (Meng et al., 2022a; Sinitsin et al., 2019; De Cao et al., 2021) rely on sets of
semantically-equivalent inputs to preserve upstream model performance. Additionally, prior model

Under review as a conference paper at ICLR 2023

Continually Editing a Pre-Trained model with GRACE

[Pretrained Language Model f] Edit required |

L —2= s

Biden Modi

] o -

L £

o--‘ ?looo ; coo‘ % oee
o
T T T GRACE learns cached activations T) T
Who is the president Who is the PM Who is the US that modify the model's behavior ~he president of the ‘Who is India’s PM?
of the US? of India? President? United States is who?
| s 7 7 T >
2019 Streaming inputs during deployment 2022

Figure 1: GRACE edits pretrained models during deployment by maintaining layer-specific codebooks
that cache learned activations for selected layers. When inputs similar to previous edits arrive, the
corresponding activations are passed to the next layer to correct the model’s predictions. GRACE
continuously edits a deployed model using only streaming errors without accessing upstream data.

editors (Mitchell et al., 2022a; Sinitsin et al., 2019; De Cao et al., 2021; Mitchell et al., 2022b) fail to
make multiple edits sequentially. Consequently, they fail as lifelong editors, as we demonstrate.

In this paper, we introduce Lifelong Model Editing. Assume we have a model f, that was pretrained
on a set of upstream instances . During deployment, we observe a stream of errors {(X¢, y¢) },
such that f;_1(XF) # y¢ V t. Here, f;_1 is the model being used for inference at step ¢, and y§ is
the correct label for input X . At each step ¢, we receive an input-label pair for an edit (X7, y¢), and
our aim is to produce an edited model f; that meets three criteria:

1. fi(X7) = yy; the error at step ¢ is corrected.
2. fu(X§) = y§ for i < t; the model remembers the corrections for previous errors.

3. fu(X) =y V (X,y) € U; the model’s upstream test performance is maintained.

To address this challenging setting, we propose General Retrieval Adaptors for Continual Editing,
or GRACE. GRACE edits individual layers of a frozen, pretrained model f, treating it as an encoder.
GRACE introduces a codebook memory to a chosen layer, using encodings from the previous layer as
queries to find the nearest key, which is associated with a value. Each value can replace the model’s
predicted activation, which can be decoded by future layers, ultimately leading to a prediction.
Additionally, GRACE learns one e-ball per key. During inference, if an encoding does not land
within any key’s e-ball, then the frozen pre-trained model is used directly, avoiding interference with
any edits. By adding and updating key—value pairs and their € values as edits stream in, GRACE
fixes model mistakes without decaying performance on upstream training data. For example, in
Figure 1, where GRACE corrects f’s predictions about the United States President without impacting
knowledge of India’s Prime Minister. During training GRACE adapts to changing distributions of
edits by shrinking and expanding each e-ball, leading to coarse- or fine-grained influence on the
edited layer’s representation space. Further, we can initialize € to manage the trade-off between
remembering upstream data and successfully fixing long sequences of errors.

Our contributions in this work are:

1. We cast model editing in a new and realistic lifelong streaming setting. To our knowledge,
this setting is unstudied, yet is crucial to successfully deploying large language models.

2. We present GRACE, a novel key-value model editor which learns to cache and retrieve
activations for selected layers using only errors observed during deployment. Further,
GRACE directly applies to any existing transformer-based model, with straight-forward
alterations for other architectures.

3. Our experiments show that GRACE is a state-of-the-art model editor, outperforming al-
ternatives like MEND (Mitchell et al., 2022a) on domain-free question answering and a
classification task with shifting label distributions. We also find that GRACE successfully
generalizes edits to previously-unseen inputs.

Under review as a conference paper at ICLR 2023

Edit needed for X (GRACE Layer
fo(X) # N1 X 0000
Sl y
Retrieve E
¥ [
1
X, - Values y
Layer [No Edit needed for X, (Frozen pretrained layer Tayer [+ 1

Jio1(X) =0

Figure 2: GRACE learns and maintains a codebook for selected layers in a pretrained model. Each
codebook contains keys and their corresponding e and values. When an input like X is similar to any
previous edits, the GRACE codebook produces an activation to correct the behavior of the pre-trained
model. Unrelated instances like X5, land far from existing keys and defer to the pretrained layer.

2 EDITING LARGE MODELS WITH GRACE

2.1 PROBLEM FORMULATION

The Lifelong Model Editing task is to edit the same model hundreds to thousands of times in a row
without forgetting upstream performance or fixes for previous edits. Assume we are given a large
model that was pre-trained on some upstream dataset /. Let fy denote the frozen pre-trained model at
time step ¢ = 0. We then deploy fj on a given downstream task and begin monitoring its predictions
9: = f(X}) as inputs X, stream in, one step ¢ at a time. Over time, we receive errors X; one at a
time for which ¢; # y;, where y; is the true label for X;. In order to continue safely deploying f, we
aim to edir f such that f(X;) = y;. Let f; denote the edited model at step ¢. Note that f; will be
an updated version of model f. We desire that f; maintain high performance on 1) prior edits X .,
and 2) the upstream dataset {/. Further, upstream training data are often proprietary or prohibitively
large, so we assume no access to U during editing, in contrast to prior works’ stronger assumptions
(Mitchell et al., 2022a;b; De Cao et al., 2021; Sinitsin et al., 2019; Meng et al., 2022a).

2.2 GENERAL RETRIEVAL ADAPTORS FOR CONTINUAL EDITING

GRACE presents a novel paradigm for editing models many times in a row: As errors are identified
and corrected over time, GRACE modifies a pre-trained model’s behavior without altering its weights,
as illustrated in Figure 2. A GRACE adaptor at a layer [contains two components: (1) a deferral
mechanism that decides whether to use the GRACE adaptor for any given input and (2) a discrete
codebook of key—value pairs. The keys are cached activations from layer [— 1, denoted by h!~! and
the values serve to replace h', the frozen model’s predictions at layer [.

Training and Inference During training, when a GRACE adaptor at layer [performs an edit, it
either creates a new, randomly initialized value, or updates an existing key—value pair. To ensure
that values correct the model’s behavior, we train the values using backpropagation through the
finetuning loss on the model’s prediction given the edit. This updated value replaces h' for the rest of
the forward pass. In our experiments, we perform 100 gradient descent steps to train the values.

During inference, if GRACE is activated at layer [— as decided by the deferral mechanism — the value
corresponding to the closest key is returned. Similar to the training step, this value replaces h' for the
rest of the forward pass.

GRACE codebook A GRACE adaptor at layer [maintains a discrete codebook, adding and updating
elements over time to edit a model’s predictions. The codebook contains four components:

* Keys (K): Set of keys, where each key is a cached activation h!~! predicted by layer [— 1.

* Values (V): Set of values that are learned while model is deployed and is accumulating
errors. Each key maps to a single value — values are randomly initialized and are updated

Under review as a conference paper at ICLR 2023

using finetuning loss on edit examples. By replacing f’s activation at layer [with a learned
value, f then successfully predicts the correct edit label.

* Deferral radii (€): Each key has a deferral radius €, which serves as a threshold for similarity
matching. Given a GRACE adaptor for layer / and input h'~!, we use a similarity search
over existing keys to find the key closest to 2! ~! via a distance function d(-):

dinin = min(d(h!=1, K1)).

GRACE is activated at layer [only if d i < efc, where k indexes the most-similar key. The
larger the value of €, the more influence the key has, since it covers more of the embedding
space. As we discuss below, as GRACE edits a model over time, € values also change,
adapting GRACE layers to changing data distributions.

* Key labels (Y): When a new key is added, its corresponding edit label is also stored in the
codebook. By accessing edit labels only while editing, keys and their € values can be adapted
to generalize to similar instances without influencing too much of the embedding space.

Deferral mechanism Before editing begins, GRACE layers are empty. As editing progresses,
GRACE adds and adapts key-value pairs. Conceptually, performing inference with a GRACE-edited
model entails a deferral decision, computing &' using a discrete key-value search over GRACE’s keys:

i JGRACE!('™1) ifminy(d(h'~", K}) — €) <0,
- f(l)(hlfl) otherwise,

where f4(h!=1) denotes the unedited model’s activation of the [-th layer. GRACE (h!~!) retrieves the
value associated with the key closest to h'~1. ¢! and K! are the influence radius and key i in layer [,
respectively, and d(-) is a distance function (we use Euclidean distance in our experiments).

By using a discrete similarity search, if a new input is unlike any cached keys, GRACE simply defers
to fo’s pretrained weights. This way, GRACE layers can avoid interference with upstream data by
leaving the model unaltered, which can be especially good if input distributions are shifting. Further,
if labels flip locally in the embedding space, GRACE partitions the embedding space to correct
fo’s predictions locally, adapting to the distribution of the input edits. In practice, edits are rare
compared to streaming inputs, so a GRACE-edited model will often defer to a pretrained layer’s
outputs, successfully leaving unrelated inputs unedited.

Codebook maintenance As illustrated in Figure 2, when an edit is required, fo serves as an
encoder, computing an embedding for an instance at layer [. Then, f} serves as a query across any
existing keys in the GRACE codebook for layer [. A GRACE layer can perform one of the following
operations at any given time step:

1. KEY-ADD: If the codebook is empty or the input embedding h!~! falls outside the e radius
of all existing keys according to distance function d(-), then initialize a new key h'~! along
with a corresponding value v, base influence radius €', and edit label y¢. To alter the model’s
predictions via the value v, finetune the value with respect to the model’s final predictions
until its prediction is accurate.

2. KEY-UPDATE: If d(h'™!, kpear) < € + €inir» we must decide whether to expand the
influence of the nearest key or to shrink its influence and add a new key, depending on
whether or not the keys share edit labels. In practice, we can check if labels are the same
by either caching the edit labels associated with each key or simply performing inference.
There are two possible casses:

(@) If d(q, knear) < €; + €inir and the nearest key’s edit label is the same as the edit label,
expand the nearest key’s € to encompass the query.
(K Vi ely = {K3 = Vi d(fo, KD}

(b) If the nearest key’s label is different than the edit label, split the nearest key by first
decreasing the influence radius of the nearest key, then creating a new key-value pair
where the key is the query. The new key is simply the query h!~!.

Kb [VE 05 d(fl, KD
. L H i 0 7
{K!: V] €y —>{ £ Vi, 0.5%d(fL, KD

7

4

Under review as a conference paper at ICLR 2023

As edits stream in, by continuously adding and updating GRACE’s keys and values, the embedding
space for a selected layer [becomes partitioned according to which instances need modified outputs.
When not performing edits, these operations are bypassed, and keys are entirely frozen, regardless of
whether or not the instance lands within a key’s influence. Overall, GRACE introduces a new model
editing paradigm in which edits can be made sequentially, similar edits are encouraged to be edited
similarly, and the ultimate influence of new edits can be controlled and monitored explicitly.

2.3 GRACE LAYERS FOR SEQUENTIAL INPUTS

When edited layers have sequential inputs, like tokenized sentences, each token receives its own
activation. In this case, we broadcast a value to each token’s corresponding activations in layer [.
This approach gives the values strong control over the model’s behavior and makes them easier to
learn than caching values for the first or last tokens, which may lead to better composability in future
works. To find a query’s nearest key, we find that euclidean distance works well, similar to (Trduble
et al., 2022). GRACE naturally applies to all recent transformer models.

3 EXPERIMENTS

To evaluate GRACE, we first show that GRACE outperforms alternative editors by successfully
making thousands of edits on a real QA and document classification tasks with shifting labels
during deployment. Then, we dig deeper into GRACE, evaluating which layers to edits, effects of
hyperparameters, and its generalization when editing a model up to 5,000 times in a row, based only
on streaming edits. Finally, we illustrate how GRACE makes edits using a simple synthetic example.

3.1 EXPERIMENTAL SETUP

We compare GRACE with recent model editors and their capacity to sequentially edit models hundreds
to thousands of times in a row. This setting is categorically harder than recent works, which make
multiple edits simultaneously, updating models once based on large sets of edits, akin to finetuning
(Mitchell et al., 2022a;b; Meng et al., 2022b). We measure performance for lifelong model editing on
multiple axes, including a) performance degradation on upstream data, b) capacity to remember long
sequences of previous edits, and ¢) generalizability to related, but previously-unseen edits.

Compared methods We assume no access to training edits, semantically-equivalent inputs, or
exogenous datasets at any stage of editing. Therefore, we must modify existing editors for fair
comparison. First, we Continually Finetune (Lin et al., 2022) on streaming errors. Second, we
compare against MEND (Mitchell et al., 2022a), which pretrains a hypernetwork on a large set of
training edits. We adapt MEND to our setting by continually finetuning MEND’s hypernetwork on
streaming errors. Third, we implement a Defer Adaptor, inspired by SERAC (Mitchell et al., 2022b),
which pretrains a deferral model and a prompt-adjusting hypernetwork on training edits, then the
deferral model chooses when to trust the pretrained model vs. the editing hypernetwork. We lack
training edits, so implement a conceptually-similar adaptor, using a deferral model to predict when to
trust the frozen layer vs. predict the next activation with another hypernetwork. Both are continually
trained on streaming errors. Fourth, we also consider a soft version of GRACE via a Memory
Network Adaptor, which includes a memory module and an attention mechanism. The memory
module contains learnable values that serve as cached activations, and the attention mechanism takes
in the activation from the previous layer (the same as GRACE), then predicts attention weights for
each value. The weighted sum serves as the input to the next layer. For all compared editors, we edit
only a selected layer. We tune the learning rate for each method, reporting only the best-performing
editor for each case. Further implementation details and hyperparameter tuning experiments are
available in the Appendix.

3.2 GRACE OUTPERFORMS ALTERNATIVE EDITORS ON REAL DEPLOYMENT TASKS

We first compare GRACE to existing model editors on realistic deployment settings by correcting
pre-trained models on long sequences of real mistakes on real datasets. To evaluate each model editor,
we take a pre-trained model, simulate deployment on a streaming task, and edit the model when
mistakes are made. In these experiments, we pass 1,000 inputs into each model and edit only when

Under review as a conference paper at ICLR 2023

Streamed Inputs Streamed Inputs

08 o 08 o
L o7 L o7
= 10 = 10
S 06 — 0 o o6 = 50
Q o5 > Q o5 5
wn 100 7] 100
o 04 = 04
= o3 Bl 250 = o3 B 250
E‘ 0.2 . 500 3 o2 . 500
o1 . 750 o1 . 750
0.04 1000 0.0 1000
Finetune Memory Deferral MEND GRACE Finetune Memory Deferral MEND GRACE

(a) Results from editing a TS model for open-domain (b) Results from editing BERT for multi-class classifi-
QA with shifting answers from zsRE. cation on SCOTUS with shifted labels.

Figure 3: Main results comparing GRACE to alternative editors on context-free QA and SCOTUS
document classification. Edit Score is the average of Upstream and Online performance. Each editor
is applied to a model deployed on the same sequence of inputs and ends up making roughly 500 edits
out of 1000 inputs during deployment. GRACE achieves strong performance both upstream data and
previous edits, and € exerts direct control over this trade-off.

the prediction is wrong. Each editor ends up making roughly sequential 500 edits. Whenever the
model is edited, we then measure both Upstream and Online Performance, then compute an Edit
Score, which is the average of the two metrics.. In each case, we report results only for methods that
succeed to edit the model over 75% of the time, and report once 10 edits have been made; previous
editors and finetuning methods are expected to decay upstream performance quickly, since they rely
on continually-trained hypernetworks, which should underperform early on without training data. We
perform this experiment on two distinct settings using different pre-trained models.

First, we follow Mitchell et al. (2022a) and edit a 60-million parameter TS5 model (Roberts et al.,
2020) trained for open-domain Question Answering. The TS model was pretrained on the Natural
Questions dataset (NQ) (Kwiatkowski et al., 2019), and we simulate deployment on the zsRE dataset
(Levy et al., 2017) extracting potential edits from De Cao et al. (2021)’s validation split. Following
Mitchell et al. (2022a), we edit the dense-relu-dense layer of the last encoder block of a 60 million
parameter model, though we ablate this choice in Section 3.3.

Second, we experiment with a BERT model on the SCOTUS dataset, which features court documents
from across multiple decades. Over the decades, label distributions shift and models trained on earlier
data become outdated. Each document is labeled with one of 11 issue areas and SCOTUS is divided
into a training split with 7.4k cases from 1946-1982 and a test split with 931 cases from 1991-2016. To
illustrate lifelong model editing, we exacerbate the label shifts by merging semantically-similar labels
in the training split. For example, we map categories {Civil Rights, First Amendment} — {Civil
Rights}. In the test split, we then separate the labels. Further details are in the Appendix.

Results: Overall, GRACE dramatically outperforms all four alternative editors, as shown in Figure
3. Over streaming edits, GRACE succeeds to maintain high upstream performance while also
remembering how to fix previous edits. We further compare all methods in the Appendix, which
includes a hyperparameter study for each method. As expected, continual finetuning is the most
competitive with GRACE on both tasks. Also as expected, without access to privileged information,
the compared methods decay performance quickly—similar to Hase et al. (2021), we find that after
only 10 inputs, the alternatives have already decayed the pretrained model’s performance.

3.3 MEMORIZATION VS. GENERALIZATION IN GRACE LAYERS FOR THOUSANDS OF EDITS

Next, we evaluate GRACE’s memorization vs. generalization performance using extremely long
sequences of edits on the QA task. We take the first 2,000 questions from the zsRE dataset, and
augment them using 5 rephrasings of each question, resulting in 10,000 questions with which we edit
the TS QA model. Given this controlled setting, we edit each encoder layer’s final dense relu module,
ranging € from 0.1 to 10.0, above which performance stabilizes. Each parameter setting leads to the
model being edited over 2,500 times, with some being edited nearly 5,000 times!.

We seek to answer the following questions simultaneously in order to explore the tradeoff between
memorization and generalization for GRACE by tracking relevant metrics:

15,000 sequential edits is extremely large. Hase et al. (2021), for example, perform a sequential editing
experiment where they show that even 10 sequential edits catastrophically decays their performance.

Under review as a conference paper at ICLR 2023

s 210 210 < 1O £ 4000

K] I £] 2

£ 0.50 2 2 3 S

g H H S >

1025 5051, Z 05 %:;0.5 £ 2000 p

. & = |

5 CEEAS AN = 5 g /

8 s S A 2 E

= 0.00 = 0.0 = 0.0 0.0 o

(o] 2000 4000 o 2000 4000 o 2000 4000 o 2000 4000 o 2000 4000
Steps Steps Steps Steps Steps
= Layer 7 Layer 6 = Layer 5 = Layer 4 === Layer 2 = Layer 0 Layer 1 == Layer 3
(a)e=0.1

g E 1.0 — 2 1.0 5 10 ——— | £ 4000

£ 0.50 %‘!_\ hv-) § — el A 3

g R 2 H v S —_— s

£ | S— £ 0.5 2051 4 é 0.5 | 2 2000

50.25 & = =) E

g § 8 : :

& =) * © o

0.00° 0.0 0.0 0.0
o 2000 4000) 2000 4000) 2000 4000) 2000 4000 o 2000 4000

Steps Steps. Steps Steps Steps
== Layer 7 Layer 6 = Layer 5 = Layer 4 === Layer 3 == Layer 2 Layer 1 === Layer 0

(bye=2.0

iy
(=]

F1 on Upstream Data
°
N
@
Fi1 on Previous Edits
°
o
F1 on Holdout Edits
o
o
% of Edits Cached

1.0

i

: 0.50 \“O& 2000

—

Cumulative # Edits

3 /
0.00 0.0 0.0 0.0 0
o 2000 4000 o 2000 4000 o 2000 4000 o 2000 4000 o 2000 4000
Steps Steps Steps Steps Steps
= Layer 6 Layer 5 = Layer 4 = Layer 3 === Layer 2 == Layer 1 Layer 0
(c)e=6.0

Figure 4: Evaluating GRACE’s memorization vs. generalization when choosing e values and editing
different layers. Some layers are better to edit than others, GRACE layers generalizes to unseen edits,
e-selection trades off memorization and generalization, and GRACE codebooks stabilize over time.

* How accurate is GRACE for long edit sequences? Metrics: Upstream and Online F1.
* How well do GRACE’s keys generalize? Metric: F1 on set of holdout edits.

* Does GRACE simply memorize new inputs? Metric: Fraction of input errors that lead to
new keys being created.

* Does GRACE edit every potential edit sample? Tracked metric: Proportion of the 10,000
potential edits that actually require editing

Figure 4 shows our main results, with remaining plots in the Appendix. We derive four key findings:

1. Not all layers are equally-good to edit. We first find that GRACE achieves substantially different
performance when editing different layers in the TS model. In Figure 4, we compare the effects
of editing the outputs from the final dense ReLU layer of each encoder block. As seen in different
colors, the results are strikingly different. First, editing later layers improves upstream performance,
but forgets previous errors quickly. On the flip side, editing early layers seems to remember previous
edits quite well, but at the expense of upstream performance. For some combinations of layer- and
e-choice, there appears to be a good balance. Finally, as shown in the 5™ column, editing later layers
leads to models that need to be edited more often than others, as the number of edits is nearly linear
for all three values of e.

2. GRACE-edited layers indeed generalize to unseen inputs. We also evaluate generalizability of
GRACE-edited models to previously-unseen edits. To achieve this, when a model is edited, we also
record its performance on a holdout set of edits containing rephrasings of each training edit. We
keep this set of edits static over time, so as edits arrive and are corrected, performance increases on
the whole set, as expected. As shown in the 3™ column of Figure 4, editing earlier layers leads to
better generalization. Excitingly, larger € values also lead to better generalization, implying that the
semantically-similar inputs indeed land in the same deferral radii.

3. Choosing ¢ balances memory between upstream data and previous edits. In Figure 4, we
report each metric for different choices of ¢, the learned deferral radius for a GRACE-edited layer.
As expected, we find that for tiny choices of € (Figure 4a), after correctly choosing the layer to edit,
we can achieve nearly-perfect F1 on both Upstream data and Previous Edits. However, this is at
the expense of the codebook size: Nearly 100% of edits are cached as new keys (column 4). While
such memorization may be sufficient during deployment sometimes, it is akin to a sheer lookup table.

Under review as a conference paper at ICLR 2023

- 2 - e - 2 -

(;1) UpstreamATrainying Data (b) UE)stream Training Data + Edits (05 Predictions before editing (&) Predictions after editing

Figure 5: Results for GRACE on synthetic data. A model is pretrained on the data in (a), then label
shift is introduced in (b) via a local set of label-swapped edit instances. Then, the pretrained model
predicts the wrong class for these edit instances, as shown in (c). Finally, as shown in (d), GRACE
successfully edits the pretrained model, swapping its labels without impacting distant data.

Excitingly, we find that choosing a bigger € successfully avoids memorization, while maintaining
strong performance.

4. GRACE codebooks stabilize over time for well-selected parameters. As shown in the 4" column
of Figure 4, we report the % of edits that end up being cached as new keys over time. We find that
this % flattens over time, indicating that the rate of key caching decreases as the model trains. As
expected, for tiny € values (Figure 4a), nearly 100% of the edits are cached as keys. However, for
larger e values, the % of cached edits goes down to around 50%, indicating that GRACE adaptors
effectively manages codebook size. This finding is true across all € values and edited layers.

3.4 JLLUSTRATING GRACE USING SYNTHETIC DATA

We finally illustrate GRACE using a simple synthetic dataset. As shown in Figure 5(a), we sample
two-dimensional instances from two clusters, each corresponding to a class, shown in red and blue.
On these data, we pre-train a three-layer fully connected classification network. The network projects
the instances into 100 dimensions, 100 dimensions, and back to 1 dimension for binary classification
with ReLLU activations (Nair & Hinton, 2010). Since these data are linearly separable, the model
learns to split the feature space vertically. We then introduce a set of likely edits by introducing a
tight circle of instances inside the distribution on the left, simulating local label shift, as shown in
Figure 5(b). As shown in Figure 5(c), the upstream model then classifies the flipped labels incorrectly.
We then use a GRACE layer to edit the pre-trained model, sampling edits from the edit set one by one
and initializing € to be 0.45 to roughly align with the scale of the edit set.

Result: In Figure 5(d), we see that GRACE succeeds to locally edit the model’s predictions for
the edits without influencing the model’s predictions on unrelated training data. While this case is
relatively simple, Finetuning a model only on errors—especially those from a single class—leads to
catastrophic forgetting on upstream data. We show in the Appendix that Finetuning indeed flips all
predictions to the blue edit class. Additionally, GRACE edits this model using only one key. Using
one key is ideal in this simple setting, since the edits are clustered. As we show next, as tasks become
more complicated, edits spread out and require more keys to cover the model’s representation space.

4 RELATED WORK

Model editing. Model editing is a recent and active research area. Classic approaches focus on focus
on regularized-finetuning, altering a model’s weights by incorporating auxiliary information, like
upstream training data and semantically-equivalent instances (Sinitsin et al., 2019). Recent works
have extended this paradigm to pretrain hypernetworks that predict edits (De Cao et al., 2021; Mitchell
et al., 2022b;a), often decomposing weight updates into low-rank components (Meng et al., 2022a;
Hu et al., 2022). Due to notorious training costs, many works focus on editing transformer models
(Zhu et al., 2020), leading to natural extensions to multi-lingual editing (Xu et al., 2022). Many
recent works have considered parameter-efficient finetuning, often by using low-rank updates Hu et al.
(2022). While parameter-efficient approaches like prompt tuning train an extension of pretrained
models, they often require more training steps and are more prone to overfit than regular finetuning
(Zhong et al., 2022; Su et al., 2022), making them inappropriate from a model editing standpoint
compared to approaches such as Mitchell et al. (2022a) and Mitchell et al. (2022b). Some recent

Under review as a conference paper at ICLR 2023

works have begun considering editing models multiple times. Batch editing, for instance, attempts to
fix models on batches of edits simultaneously. While MEND (Mitchell et al., 2022a) demonstrates
their performance decays quickly, more-recent works like SERAC (Mitchell et al., 2022b) and
MEMIT (Meng et al., 2022b) are showing more promising results in this direction. However, these
exciting works use large amounts of privileged information compared to our problem setting, like
computing layer statistics given exogeneous datasets or requiring training sets of representative edits.
We assume no access to these extra datasets, and pose that selecting these datasets probably has
massive impact on an editor’s success. One recent work does discuss sequential editing: Hase et al.
(2021) shows that after editing the same model 10 times, editing performance drops dramatically. In
our paper, we focus exclusively on this harder sequential editing problem, but edit models thousands
of times in a row.

Recent works have also begun considering continual finetuning, where large language models are
refined over time as new instances arrive. For example, Lin et al. (2022) show that regularizing
finetuning with continual learning methods like Elastic Weight Consolidation (Kirkpatrick et al.,
2017), Experience Replay (Rolnick et al., 2019), and Maximally Interfered Replay (Aljundi et al.,
2019) decay upstream performance rapidly when shifting between multiple tasks.

Key-Value Methods for Continual Learning. Key-value methods are now a powerful paradigm for
a variety of machine learning problems. These approaches have deep roots in computer vision (Van
Den Oord et al., 2017; Liu et al., 2021), driving recent high-profile results like DALLE-2 (Ramesh
et al., 2022). Further, key-value methods are particularly strong in continual learning settings, with
recent works demonstrating prompt-learning for NLP (Wang et al., 2022b;a) for applications like
text retrieval (Xiong et al., 2021). Recent works have shown that discrete key-value methods in
particular performs well on distribution shifts (Trduble et al., 2022), with recent works extending
to question answering (Dai et al., 2022). This performance stems from the stored values, which
can remain within the expected distribution of a downstream encoder, regardless of shifting inputs.
Further, storing values allows for unlimited long-term memory, resources permitting. We corroborate
these advantages in our experiments, where we demonstrate GRACE’s robustness to shifting inputs
and labels over long sequences of edits.

5 CONCLUSIONS

Language models are quickly becoming larger and are being applied to a diverse set of downstream
tasks. However, they are often computationally prohibitive to finetune and easily forget past knowl-
edge. In this work, we propose a realistic problem setting where we edit such large models, Lifelong
Model Editing. In this setting, we edit large models many times in a row given only errors that
arrive during deployment, without access to any upstream data or test-distribution examples. We
then present GRACE, a plug-in module that can wrap around any given layer in any large pretrained
NLP model. GRACE layers (1) retain the functionality of the original model, thereby minimizing
catastrophic forgetting and (2) adapt to changing data distributions by storing a codebook of cached
activations that can grow or shrink over time. We demonstrate GRACE’s efficacy by showing that
GRACE provides the best trade-off between upstream performance and accuracy on streaming edits
among competing model editing baselines and finetuning methods. We further investigate GRACE’S
capacity to make extremely long sequences of edits and show that choosing the wrong layer to edit can
decay performance substantially and that GRACE succeeds to generalize its edits to previously-unseen
inputs and avoids simply memorizing edits.

6 REPRODUCIBILITY

To encourage reproducibility of both GRACE and our experiments, we have provided thorough
descriptions of our experimental setup in Section 3. Our descriptions contain specific layers we
choose to edit. In Section 2, we include clear steps that detail GRACE’s behavior.

7 ETHICAL CONCERNS

Model editing may alleviate some ethical concerns, for example correcting previously-incorrect
information. However, editing models may also introduce new errors if the proposed fixes are

Under review as a conference paper at ICLR 2023

themselves incorrect or biased against a given sub-population. Researchers who design, implement,
and deploy such techniques should consider how best to evaluate sources of edits and verify they are
not harmful.

REFERENCES

Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin, Laurent Charlin, and
Tinne Tuytelaars. Online continual learning with maximally interfered retrieval. ArXiv preprint,
abs/1908.04742, 2019.

Vidhisha Balachandran, Hannaneh Hajishirzi, William Cohen, and Yulia Tsvetkov. Correcting diverse
factual errors in abstractive summarization via post-editing and language model infilling. In
Empirical Methods in Natural Language Processing, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Yi Dai, Hao Lang, Yinhe Zheng, Fei Huang, Luo Si, and Yongbin Li. Lifelong learning for question
answering with hierarchical prompts. arXiv preprint arXiv:2208.14602, 2022.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.
6491-6506, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zornitsa Kozareva, Veselin Stoyanov, Mohit
Bansal, and Srinivasan Iyer. Do language models have beliefs? methods for detecting, updating,
and visualizing model beliefs. arXiv preprint arXiv:2111.13654, 2021.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521-3526, 2017.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee, Kristina N.
Toutanova, Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov.
Natural questions: a benchmark for question answering research. Transactions of the Association
of Computational Linguistics, 2019.

Angeliki Lazaridou, Adhi Kuncoro, Elena Gribovskaya, Devang Agrawal, Adam Liska, Tayfun Terzi,
Mai Gimenez, Cyprien de Masson d’ Autume, Tomas Kocisky, Sebastian Ruder, et al. Mind the gap:
Assessing temporal generalization in neural language models. Advances in Neural Information
Processing Systems, 34:29348-29363, 2021.

10

Under review as a conference paper at ICLR 2023

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang. Mixout: Effective regularization to finetune
large-scale pretrained language models. In International Conference on Learning Representations,
2020.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction
via reading comprehension. In Proceedings of the 21st Conference on Computational Natural
Language Learning (CoNLL 2017), pp. 333-342, 2017.

Bill Yuchen Lin, Sida I Wang, Xi Lin, Robin Jia, Lin Xiao, Xiang Ren, and Scott Yih. On continual
model refinement in out-of-distribution data streams. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3128-3139, 2022.

Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training quantization
for vision transformer. Advances in Neural Information Processing Systems, 34:28092-28103,
2021.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. arXiv preprint arXiv:2202.05262, 2022a.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. arXiv preprint arXiv:2210.07229, 2022b.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
editing at scale. In International Conference on Learning Representations, 2022a.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-
based model editing at scale. In International Conference on Machine Learning, pp. 15817-15831.
PMLR, 2022b.

Marius Mosbach, Maksym Andriushchenko, and Dietrich Klakow. On the stability of fine-tuning
bert: Misconceptions, explanations, and strong baselines. In International Conference on Learning
Representations, 2021.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Ieml, 2010.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1-67, 2020.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the
parameters of a language model? In Empirical Methods in Natural Language Processing (EMNLP),
2020.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in Neural Information Processing Systems, 32, 2019.

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Pyrkin, Sergei Popov, and Artem Babenko. Editable
neural networks. In International Conference on Learning Representations, 2019.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan, Yankai Lin, Huadong Wang, Kaiyue Wen,
Zhiyuan Liu, Peng Li, Juanzi Li, et al. On transferability of prompt tuning for natural language pro-
cessing. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 3949-3969, 2022.

Frederik Trduble, Anirudh Goyal, Nasim Rahaman, Michael Mozer, Kenji Kawaguchi, Yoshua
Bengio, and Bernhard Scholkopf. Discrete key-value bottleneck. arXiv preprint arXiv:2207.11240,
2022.

11

Under review as a conference paper at ICLR 2023

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Johannes von Oswald, Christian Henning, Benjamin F Grewe, and Jodo Sacramento. Continual
learning with hypernetworks. In International Conference on Learning Representations, 2020.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-
time adaptation by entropy minimization. In International Conference on Learning Representations,
2021.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. arXiv preprint arXiv:2204.04799, 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139-149, 2022b.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N Bennett, Junaid Ahmed,
and Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense text
retrieval. In International Conference on Learning Representations, 2021.

Yang Xu, Yutai Hou, and Wanxiang Che. Language anisotropic cross-lingual model editing. arXiv
preprint arXiv:2205.12677, 2022.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and Dacheng Tao. Panda: Prompt transfer meets
knowledge distillation for efficient model adaptation. arXiv preprint arXiv:2208.10160, 2022.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv
Kumar. Modifying memories in transformer models. arXiv preprint arXiv:2012.00363, 2020.

12

Under review as a conference paper at ICLR 2023

A LIMITATIONS

Lifelong model editing is new and challenging, so our method GRACE has limitations. Understandably,
introducing codebooks between layers of a pretrained model slows down inference. This slow-down
is largely due to repeated similarity searching between embeddings and keys. Even though GRACE’s
current design does not emphasize inference time, making GRACE faster is a promising avenue for
future work, especially given recent accelerations in adaptor methods like LoRA (Hu et al., 2022)
and language models using similarity like Gopher (Rae et al., 2021).

While GRACE can scale to use in multiple layers simultaneously, we do not perform these experiments.
In the most-general case, GRACE layers may be stacked between subsequent layers. Then, the output
of one codebook may be passed to another codebook. Stacking codebooks will lead to highly-flexible
models that provide friendly interfaces with which to control their outputs. Our work takes the first
step towards this new model primitive, which has clear implications for responsible machine learning.

Finally, autoregressively decoding long sequences with GRACE is particularly challenging. In the
long term, language model editors will control long sequence generation. While this is a current
challenge for all current editors, GRACE will require modification to generate many tokens in a row.
This limitation is due to GRACE’s similarity-search between input queries, which are embeddings, and
existing keys: During autoregressive generation, the embedding for prior tokens is updated. Then, the
resultant embedding may point to new GRACE keys, leading to continuous distribution shift. However,
most NLP tasks are not autoregressive, despite autoregressive models currently being popular. We
look forward to future work that 1) extends codebook-based edits to autoregressive models, and
2) more-deeply evaluates prior model editors’ capacity to alter autoregressive text generation for
sentences longer than a few words. In this short text generation paradigm, GRACE can surely be
extended.

Implementation Details We experiment with TS (Raffel et al., 2020) and BERT (Devlin et al.,
2018), though GRACE is general and applicable to other transformer-based NLP models as well. To
ensure fair comparisons, we edit the same layers across all methods for each experiment and only
consider methods that successfully edit each input instance.

For TS5 experiments, we edit the dense-relu-dense layer of the last encoder block of a 60 million
parameter model, following (Mitchell et al., 2022a). For BERT, we edit a 110 million parameter
model’s last encoder layer’s dense output that was pretrained to classify sentiment. We then finetune
BERT ourselves on the SCOTUS training set.

During evaluation, we hyperparameter tune each method, only considering methods that successfully
edit each input instance. For Finetuning, Memory Networks, Deferral, and MEND, we edit with
learning rates of le1,1e72, 1e73, 1e~4, and 1le°. Intuitively, small learning rates retain upstream
performance while large learning rates learn to apply new edits. Therefore, for some learning
rates, finetuning methods may achieve higher individual upstream and online scores than we report.
However, akin to constrained optimization, the minimal editing success is to actually modify the
model’s performance on one edit. Here, finetuning is particularly prone to overfitting.

B ADDITIONAL DATASET DESCRIPTIONS

Question Answering with Shifting Answers We perform our QA experiments using a TS model
that was pretrained on Natural Questions (NQ). For evaluation, we sample 1000 random question—
answer pairs from NQ to serve as upstream data. During editing, for the main results comparing all
editors (Figure 3) we extract the first 200 questions that have at least 5 rephrasings in the zsRE dataset.
We then use each rephrasing as a separate edit. This creates 1000 potential edits to pass into the
pretrained model during deployment. Expanding beyond this setting to evaluate edit generalization
presented in Figure 4, we extract the first 1000 instances from zsRE that have at least 10 rephrasings,
but split the rephrasings into an edit set and a holdout set. This creates 10,000 potential edits, and
10,000 holdout edits.

SCOTUS Document Classification The US Supreme Court (SCOTUS) is the highest federal court
in the United States of America and hears only the most controversial or otherwise complex cases.
We consider a single-label multi-class classification task, where given a document (court opinion),

13

Under review as a conference paper at ICLR 2023

€ Num edits Num keys key /error ratio Upstream Accuracy Accuracy on Prev. Edits
1.0 403 403 1.0 79.8 % 99.7%
2.5 387 256 0.66 73.9% 74.2%
5.0 375 245 0.65 76.5% 64.6%

Table 1: Effect of € on the number of keys created by GRACE for Shifting Annotation Guidelines.

the task is to predict the relevant issue areas. The 14 issue areas cluster 278 issues whose focus
is on the subject matter of the controversy (dispute). The list of issue areas include: {Criminal
Procedure, Civil Rights, First Amendment, Due Process, Privacy, Attorneys, Unions, Economic
Activity, Judicial Power, Federalism, Interstate Relations, Federal Taxation, Miscellaneous, Private
Action}. To simulate a scenario for shifting annotation guidelines, we modify the training set as
follows:

» Relabel samples in classes {First Amendment, Due Process} as Civil Rights.

 Relabel samples in Unions as Economic Activity.

In the edit set and the test set, we use the original labels i.e. no relabeling was done. Thus, our
upstream dataset contains 11 labels and our edit/test sets contain 14 labels, where some classes are
expanded in scope as explained above.

C ADDITIONAL SCOTUS EVALUATION

We further evaluate the relationship between ¢ and performance on SCOTUS in Table 1. Here, we
see that Upstream Accuracy decays slightly as e grows, while accuracy on previous edits drops
quickly. The key / error ratio shows the number of errors that lead to creating a new key.
As expected, for € = 1.0, which is relatively small, all edits result in keys. Then, as ¢ grows, this ratio
goes down because inputs land within the deferral radius of existing keys.

D MULTI-OBJECTIVE COMPARISONS RESULTS ON QA AND SCOTUS TASKS

We include an alternative view of the results shown in Figure 3 here in Figure 6. In this Figure, we
plot each editor’s performance on a growing history of previous edits and its performance on the
pretrained model’s upstream data. For both Figures, optimal performance is in the upper right-hand
corner. As expected, each model decays the pretrained model’s upstream performance over time,
though this decay scales down with learning rate. Also as expected, MEND underperforms in each
case as it lacks an edit training set, which is privileged information with respect to our task. We also
observe that editing BERT on SCOTUS is far noisier than T5 on QA for all editors. This finding
corroborates recent works that show BERT training tends to be highly unstable (Mosbach et al., 2021;
Dodge et al., 2020).

We also include the single-metric version of Figure 3 in the main paper. Here in Figure 7, we see that
the trends from the main paper remain the same.

E ADDITIONAL RESULTS FROM QA HYPERPARAMETER STUDY

To extend the results shown in Figure 4, we add results from more choices of e in Figure 8. The
trends identified in the main paper remain true: some layers are better to edit than others, GRACE
succeeds to generalize to previously-unseen inputs, e controls the trade-off between memorization
and generalization, and GRACE codebooks stabilize in size over time. Performance remains remain
the same above € = 6.0. Interestingly, for e = 2.0, Layer 6 appears to be highly unstable over time.

14

Under review as a conference paper at ICLR 2023

[GRACE Finetune Memory Adaptor ~ Streaming MEND l’k"'t"’/\llﬂlﬂm'} [GRACE Finetune Memory Adaptor ~Streaming MEND I)tfmx\daplorJ
f . s10 @
epsio < 08 °. e 6
0.6 Ir-0.001 : S
< ® H < -
= ' A o071 ° -
2] 1-0.001 ~~ 9 :
A 0.5 H E ve
® 061
£ SO0l e e
< 0.4 2 LI » LT
L a,0.5 .'\‘ Ir-0a
— % Ir-0.01 Ir-0.001 > ® 4 .
- Y H D RN S K 4
a 0.3 ‘ 001 = : ‘ .
; E o. [S :
) ' 3 o4 [.
: > oo A, v
8 0.2 : g o3 e f.‘ o001
; = : B
E: }" =] H -..' #0001
0.1 Oy g o2 : /
Ir-0.1 < 1 L S
---------- > Ve
0.0 4___ Ir-0.001 S seeTTe— 0.1 ® Ir-0.0001
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10

F1 on Previous Edits Accuracy on Previous Edits

(a) Results from editing a TS model for open-
domain QA with shifting answers from zsRE.

(b) Results from editing BERT for multi-class clas-
sification on SCOTUS with shifted labels.

Figure 6: Main results comparing GRACE to alternative editors on context-free QA and SCOTUS
document classification. Each editor is applied to a model deployed on the same sequence of inputs
and ends up making roughly 500 edits. Ideal performance is in the upper right corner. Arrows denote
each model’s performance throughout streaming. GRACE achieves strong performance both upstream
data and previous edits, and € exerts direct control over this trade-off.

Streamed Inputs

081 Streamed Inputs 08 o
— 07 10 [071 _ i _ B B -
[0.6 f—— g o6
Qo5 100 @ 05 50
g 5} = 100
= 04 250 o 04
S BN 500 % 03 B 250
O o2 e Q02 = 500
o . 1000 P oa . 750
0.0 —~ 0. L L L I 1000
Finetune Memory Deferral MEND GRACE Finetune Memory Deferral MEND GRACE

(a) F1 on Previous Edits when editing TS on zsRE. (b) Upstream F1 when editing TS on zsRE.
zosl Streamed Inputs zos| T - = - - Streamed Inputs
g 0.7 10 g 07 ‘:0
206 == 50 2 0.6
Z o5 = 100 2os e
go4 - 2s0 goq = 100
Sos S0 . 250
5 B 500 o 0.3
Soa - Eoz - 500
17} 750 17
i oa = 1000 5o I g

0.0 o L L L B 1000
Finetune Memory Deferral MEND GRACE Finetune Memory Deferral MEND GRACE

(c) Accuracy on Previous Edits when editing BERT on (d) Upstream Accuracy when editing BERT on SCO-
SCOTUS. TUS.

Figure 7: Comparing Upstream and Online performance for GRACE to alternative editors on context-
free QA and SCOTUS document classification. Each editor is applied to a model deployed on the
same sequence of inputs and ends up making roughly 500 edits out of 1000 inputs during deployment.
GRACE achieves strong performance both upstream data and previous edits, and € exerts direct control
over this trade-off.

15

Under review as a conference paper at ICLR 2023

) e=8.0

= 2 1.0 2 1.0 1.0 A
=] JISE—— E e 2 4000
£ 0.50 P z S =
] g s 8 *
s $ 05 Z o5 05 £
& = £ o. £ 2000
2 o5 £ g 2
= < = 5 E
3 s 2 =]
£ 0.00 = 0.0 = 0.0 0.0 ° o
o 2000 4000 o 2000 4000 o 2000 4000 o 2000 4000 o 2000 4000
Steps Steps Steps Steps Steps
= Layer 7 == Layer 6 = Layer 5 = Layer 4 = Layer 2 == Layer 0 == Layer 1 = Layer 3
(@e=0.1
E 210 z 10 - Lo 2 4000
% 0.50 2 = 2 g
- = S
g 05] 5 S *®
g '505 '305 £ 0.5 £ 2000
5025 £ = = E
= 5 N~ | 3 E
s S 2 =]
£ 0.007 = 0.0 = 0.0 0.0 ° o
o 2000 4000 o 2000 4000 o 2000 4000 o 2000 4000 o 2000 4000
Steps Steps Steps Steps Steps
= Layer 7 == Layer 6 = Layer 5 = Layer 4 = Layer 3 = Layer 2 == Layer 1 = Layer 0
b)e=1.0
s 210 z 1.0 5 10 24000
a 5
£ 0.50 % z e =)
g E] 5 8 *
] '505 '805 £ 0.5 £ 2000
5025 £ = 5]
] g g s E
3 S 2 =]
= 0.007 = 0.0 = 0.0 0.0 ° o
o 2000 4000 o 2000 4000 o 2000 4000 o 2000 4000 o 2000 4000
Steps Steps Steps Steps Steps
— Layer 7 = Layer 6 e Layer 5 w— Layer 4 w—— Layer 3 w—— Layer 2 === Layer 1 w—— Layer 0
(©) e=20
- 210 z 10 - 10 2 4000
a g e E z
£ 0.50 5 o} e =)
g E] 5 8 *
E '505 —805 2 0.5 £ 2000
7 % O. = 2 5
5o0.25 £ 2 s K}
=] = 5 H
3 H 2 =]
£ 0.00 = 0.0 = 0.0 0.0 ° o
o 2000 4000 o 2000 4000 o 2000 4000 o 2000 4000 o 2000 4000
Steps Steps. Steps Steps Steps
—— Layer 7 = Layer 6 s Layer 5 w— Layer 4 - Layer 3 w—— Layer 2 === Layer 1 w—— Layer 0
(d)e=4.0
g § 1.0 g 1.0 3 1.0 2
E 2 z
g 050 3 E] 8 # 2000
g £ o5 Zos %05 z
Z R 2 £o. 2
Zo25 £ £ g 5
E & K 3 |
£ 0.00 = 0.0 = 0.0 0.0 ° o
o 2000 4000 o 2000 4000 o 2000 4000 o 2000 4000 o 2000 4000
Steps Steps Steps Steps Steps
= Layer 6 === Layer 5 w—— Layer 4 w— Layer 3 = Layer 2 w—— Layer 1 == Layer 0
(e) e =6.0
s 2 1.0 2 1.0 1.0 8
g 3 Z K] 3
= = 5 =
g 0.50 2 e 8 #* 2000
g £ o5 Zos %05 z
g . = £o. 3
& 025 £ £ g H
E g K s |
£ 0.00 = 0.0 = 0.0 0.0 ° o
o 2000 4000 o 2000 4000 o 2000 4000 (o} 2000 4000 o 2000 4000
Steps Steps. Steps Steps Steps
= Layer 6 == Layer 5 w—— Layer 4 w— Layer 3 = Layer 2 w—— Layer 1 == Layer 0

Figure 8: Evaluating GRACE’s memorization vs. generalization when choosing e values and editing
different layers. Some layers are better to edit than others, GRACE layers generalizes to unseen edits,
e-selection trades off memorization and generalization, and GRACE codebooks stabilize over time.

16

