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Abstract

Effective properties of composite materials are defined as the ensemble average of
property-specific PDE solutions over the underlying microstructure distributions.
Traditionally, predicting such properties can be done by solving PDEs derived
from microstructure samples or building data-driven models that directly map
microstructure samples to properties. The former has a higher running cost, but
provides explainable sensitivity information that may guide material design; the
latter could be more cost-effective if the data overhead is amortized, but its learned
sensitivities are often less explainable. With a focus on properties governed by
linear self-adjoint PDEs (e.g., Laplace, Helmholtz, and Maxwell curl-curl) defined
on bi-phase microstructures, we propose a structure-property model that is both
cost-effective and explainable. Our method is built on top of the strong contrast
expansion (SCE) formalism, which analytically maps N -point correlations of an
unbounded random field to its effective properties. Since real-world material
samples have finite sizes and analytical PDE kernels are not always available, we
propose Neural Contrast Expansion (NCE), an SCE-inspired architecture to learn
surrogate PDE kernels from structure-property data. For static conduction and
electromagnetic wave propagation cases, we show that NCE models reveal accurate
and insightful sensitivity information useful for material design. Compared with
other PDE kernel learning methods, our method does not require measurements
about the PDE solution fields, but rather only requires macroscopic property
measurements that are more accessible in material development contexts.

1 Introduction
This paper is concerned with effective properties of composite materials, which are macroscopic
measurements affected by the materials’ random microstructure [1]. We seek a model trained
on structure–property data that explains what and how microstructural features affect the effective
property, providing insights for microstructural design. Some structure–property relations are intuitive
(e.g., the effective conductivity of a composite is dominated by the connectivity of its conductive filler
[2, 3]); others have been derived from first principles by materials scientists, e.g., minimizing energy
dissipation of light propagation within an optical sensor during wave propagation can be achieved by
a hyperuniform arrangement of the random microstructure [4, 5]. However, for novel materials and
target properties, such human-comprehensible knowledge may not be accessible from first principles
due to the multiscale and nonlinear nature of the governing equations.
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Figure 1: This paper improves the workflow for deriving composite material design insights from
measurement data regarding microstructures (“S”) and their effective properties (“Σ”). We propose
Neural Contrast Expansion (NCE), which learns PDE kernels (“H”) based on data and physics
knowledge (PDE “L ” and basis “B”) to provide accurate sensitivity information (“∇SΣ”). The
sensitivity derived from NCE is much more accurate than that of purely data-driven models (see
Fig. 4), and in turn, provides explainable design insights through LLM and optimal microstructure
design (“S∗”). For optical material design with minimal energy loss, design insights derived from
NCE lead to hyperuniform microstructures, consistent with recent literature [16].

Conventionally, property prediction is achieved by either solving the governing PDEs or building
data-driven surrogates: The former requires knowledge about the PDEs and often a significant amount
of compute. Although when differentiable, the solution process yields explainable sensitivities; the
latter is more cost-effective with amortized data overhead, but generally lacks explainable sensitivities
because it is detached from the physics. Structure–property mappings that leverage advantages of
both have been developed in the context of effective-medium theorems [6, 4]; among these, we focus
on the strong contrast expansion (SCE), which is accurate and explicit for linear PDEs. SCE states
that linear effective properties of unbounded random fields are analytical functions given by spatial
convolutions between the PDE kernel (i.e., Green’s functions or their Hessians) and the infinite series
of N -point correlation functions (NPCFs) [1, 7, 8], which characterize random fields at increasing
orders and in semantic ways (Fig. 2 and [9]). For example, connectivity of a contrast phase within a
composite material is captured by its 2-point correlation function [10, 11] (Fig. 2). However, SCE
has practical limitations: real samples are finite (introducing boundary effects not captured by SCE),
and the relevant kernels may lack closed forms or may not exist.

Method. To address these limitations, we investigate Neural Contrast Expansion (NCE), a learnable
model with an SCE-guided architecture. We encode physics by mapping structure to property as
a convolution of NPCFs with a learnable kernel, and estimate that kernel from structure–property
data. We use two-dimensional static conduction and electromagnetic wave propagation in bi-phase
composites as case studies, whose governing equations (Laplace and Maxwell curl-curl, respectively)
have analytic kernels under mild conditions. Numerical results show that NCE generalizes com-
parably to convolutional neural networks and neural operators, while producing sensitivities that
are substantially more explainable and accurate than purely data-driven counterparts. Compared
with supervised methods that learn Green’s functions or closures [12, 13, 14], NCE does not require
measurements of PDE solution fields; it only needs macroscopic property measurements that are more
accessible in practice. Compared with physics-informed methods for learning Green’s functions [15],
NCE avoids numerical issues introduced by the singularity of Green’s functions through a cavity
technique inherited from SCE.

Scope and limitations. In this work we restrict attention to randomness entering the zeroth- or
second-order terms of linear second-order PDEs. These two classes admit a unified SCE because
their perturbations appear as self-adjoint modifications to a coercive baseline operator and generate
even convolutional kernel structures that close under ensemble averaging. In contrast, first-order
randomness (random drift/advection) produces skew-adjoint, odd-kernel perturbations that, in general,
break this closure: the resulting effective operator depends on nonlocal flow statistics rather than
solely on local correlations, and the convergence of SCE is generally not guaranteed (see App. A.2
for explanation). We note that there are niche yet valuable applications of NCE for the focused
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Figure 2: (a) Illustration of two- and three-point configurations (C2 and C3) in a binary microstructure.
The black and gray regions represent two distinct phases of the medium, while the white line
segments and yellow triangles mark representative 2-point and 3-point configurations. (b) Binary
microstructures with distinct features: (left) isotropic, (middle) anisotropic with horizontal elongation,
and (right) high-volume fraction. The parameters σx and σy indicate the effective directional
conductivity along the x and y axes. The second row shows the corresponding 2PCFs.

randomness classes beyond materials science: For climate science, elliptic/parabolic PDEs for heat,
moisture, or tracer transport (e.g., diffusion or advection–diffusion) include spatially heterogeneous
parameter fields (e.g., diffusivities, reaction rates, subgrid closures). NCE could be used to learn
kernels that predict how fast heat, moisture, or pollution spreads and mixes when tiny swirls of air
or water cannot be resolved. For neuroscience, the quasi-static electromagnetic forward problem is
modeled by Laplace/Poisson equations with spatially varying and anisotropic tissue conductivities.
When solution fields (e.g., MRI) are unavailable, NCE could be used to estimate how electrical
signals travel through different parts of the brain using sensor-level measurements. For cosmology,
the gravitational potential obeys the Poisson equation and the matter density is a random field with
rich N -point correlations. NCE can learn kernels that map these correlations to large-scale effective
observables (e.g., summary statistics related to lensing or clustering) without requiring full field
solutions. The advantage of NCE against other kernel-learning models with stronger cosmology
priors (e.g., effective field theorem [17] and Halo models [18]) is yet to be understood.

2 Related Work
Learning Green’s functions from field-level data. A substantial line of work learns Green’s
function of linear PDEs directly from source–solution data, using either physics-regularized setups or
supervised excitation–response pairs. Representative approaches include multiscale neural networks
tailored to the singular/multiscale structure of the Green’s function [15], rational-network regression of
Green’s functions [12], and low-rank/operator–SVD interpolation of learned kernels [13]; extensions
like DeepGreen address nonlinear BVPs via latent linearization [14]. These methods assume access
to dense fields or high-fidelity simulations for training.

Nonlocal closures and operator learning. In parallel, closure and operator-learning work fits non-
local convolution kernels (e.g., eddy-diffusivity [19, 20], nonlocal constitutive laws [21]) so a coarse
model matches resolved simulations, enforcing physics constraints such as symmetry/reciprocity,
decay, and positivity. Examples include systematic constructions of nonlocal eddy-diffusivity opera-
tors in fluids and oceanography [19, 20], and data-driven learning of nonlocal constitutive/transport
kernels from high-fidelity simulations [22, 17].

Our setting and gap. By contrast, many experimental regimes (notably in materials) lack field-level
supervision but do provide structure–property datasets and statistics of heterogeneous coefficients.
Our NCE targets this regime: We (i) learn the PDE kernel at a chosen coarse resolution from
ensemble/effective measurements (rather than field snapshots), and (ii) plug that kernel into SCE to
obtain closed-form maps and sensitivities from coefficient correlations to effective properties.

3 Preliminaries
We shall start with the formal definitions of random fields, effective properties, NPCFs, and SCE.
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Notations. Let the relative position between two vertices (i, j) be r(i, j) = i − j, r = ∥r∥2, and
n = r/r. δ(r) is the Dirac delta function. E[·] denotes the ensemble average and ⟨·⟩ the spatial
average. ∇, ∇·, and ∇× are gradient, divergence, and curl operators, respectively. A/a is set A
subtracts element a.

Random field. We consider stationary and ergodic random fields defined on a grid that describe
binary-phase microstructures: Let a random field be X = {Xi ∈ {0, 1} : i ∈ G}, where Xi is a
binary random variable located at vertex i on a d-dimensional grid G ⊂ Zd where G := |G|. The
grid G is taken as a uniform discretization of a unit d-dimensional hypercube [0, 1]d. Here Xi = 1
indicates the inclusion (contrast) phase and Xi = 0 the matrix (reference) phase. X is stationary
if all of its moments are invariant to linear translations, and is ergodic if its spatial and ensemble
averages are equal. Ergodicity allows us to focus the analysis on a single realization x ∼ X defined
on a large enough grid. The volume fraction of the contrast phase is ϕ = E[Xi] = ⟨Xi⟩. For a binary
medium ϕ1 = ϕ, ϕ0 = 1− ϕ denote the phase 1 and phase 0 volumetric proportions, respectively.

Effective property. A linear effective property of the composite is defined via a homogenization of
the governing PDE solution. Here we use static conduction and wave propagation as two representa-
tive examples, where randomness of microstructures affect the second- and zeroth-order terms of the
respective PDEs. Static conduction: In a static conduction problem with a reference conductivity σ0
and inclusion conductivity σ1, if an electric field E0 is applied at the boundary ∂G, the local electric
potential Φ(i, x) in the sample x satisfies the elliptic equation

∇ · [σ(xi)∇Φ] = 0 in G,

with −∇Φ|∂G = E0. The induced current density is J(i, x) = σ(xi)E(i, x) for i ∈ ∂G, whose
spatial average ⟨J⟩(x) equals the ensemble-averaged flux due to ergodicity. The effective conductivity
tensor Σe is then defined by Ohm’s law ⟨J⟩(x) = Σe(x)E0. In practice, one can compute Σe(x)
by solving the PDE (or measuring ⟨J⟩(x) experimentally) under d linearly independent boundary
conditions and averaging fluxes. Wave propagation: We now consider the time-harmonic Maxwell
equations. In a nonmagnetic composite (µ = µ0) with spatially varying permittivity ϵ(xi) and e−iωt
convention, the electric field satisfies the curl–curl equation

∇×∇×E(i, x) − ω2µ0 ϵ(xi;k)E(i, x) = 0 in G,

with appropriate radiation/periodic boundary conditions and an incident plane wave of wave vector k.
The effective dynamic dielectric tensor ϵe(x,k) is defined by the macroscopic constitutive relation
⟨D⟩(x) = ϵe(x,k) ⟨E⟩(x) where k is the wave vector of the incident radiation. Unless stated
otherwise, we assume a homogeneous reference medium on Rd with translation-invariant boundary
conditions; consequently the Green’s function is homogeneous. We note that in these examples,
randomness appears in the second-order term for conduction and in the zeroth-order term for wave
propagation. As a result, the PDE kernel for the former will turn out to be the Hessian of Green’s
function, while that of the latter be the Green’s function itself.

N -point correlation function. The NPCF of a random field describes the probability of simulta-
neously finding a specific N -tuple of points in the inclusion phase. Formally, for any configuration
c = {i1, . . . , iN} of N points (with i1 = 0 as a reference origin), the N -point function is defined as

SN (X; c) = E
[
Xi1Xi2 · · ·XiN

]
=

1

G

∑
{j2,...,jN}

xj1xj2 · · ·xjN , (2)

where the second equality is enabled by ergodicity of X and the sum runs over all placements
{j1, . . . , jN} congruent to c in the domain. Dependency on the sample x will be omitted when
possible. For N = 2, S2(r) (with r = i2 − i1) is the two-point correlation giving the probability that
two points separated by vector r are both in the inclusion phase. The lower-order correlations are
contained in higher-order ones, i.e., CN ⊂ CN+1 where CN is the set of all N -point configurations.
In particular, knowledge of all N -point functions up to N = ∞ fully characterizes the microstructure.
In practice, low-order correlations (e.g. N = 2, 3) already capture important morphological features
such as phase connectivity and clustering.

Strong Contrast Expansion. SCE treats the contrast medium as a perturbation about the reference
medium and systematically accounts for multiple scattering or interactions via successive convolution
integrals, resulting in an analytical expression of effective properties as series expansions in terms of
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NPCFs convolved with a PDE kernel [23]. Here we briefly outline SCE in terms of static conduction
and electromagnetic wave propagation. See detailed derivation in App. A.1. Static conduction:
Briefly, SCE introduces a polarization field based on the spatial perturbation of the contrast phase:

P(i, x) =
(
σ(xi)− σ0

)
E(i, x),

and derives a fixed-point iteration of the polarization field from the Laplace equation:

P(i, x) = a(xi)E0 + a(xi)∆V
∑
j∈G/i

H(i− j)P(j, x), (1)

where ∆V is the d-dimensional unit volume occupied by each vertex of G,

a(xi) = dσ0βσ xi, βσ =
σ1 − σ0

σ1 + (d− 1)σ0
∈
[
− 1

d− 1
, 1
)
, (2)

and

H(r) =
dnn⊤ − I

Ωd σ0 rd

is the kernel (Hessian of Green’s) for 2D conductivity with Ωd being the d-dimensional total solid
angle. Iterative substitution of Eq. (1) into itself and a spatial averaging lead to the following series
expansion of the effective conductivity:

β2
σϕ

2(Σe − σ0I)
−1

(
Σe + (d− 1)σ0I

)
= βσϕ I−

G∑
n=2

An β
n
σ , (3)

where each An is an n-th order convolution integral of total correlation functions (constructed from
Sn) with (n− 1) factors of the operator kernel T = Ωdσ0H

1:

An =

(
−1

ρ

)n−2 (
d

Ωd

)n−1 ∫
d2 · · · dn∆(1, · · · , n)T(1, 2)T(2, 3) · · ·T(n− 1, n), (4)

where ∆(1, · · · , n) is the n-order total correlation defined by the configuration {1, · · · , n}:

∆(1, · · · , n) =

∣∣∣∣∣∣∣∣
S2(x, {1, 2}) S1(x, 2) · · · 0
S3(x, {1, 2, 3}) S2(x, {2, 3}) · · · 0

...
...

. . .
...

Sn(x, {1, . . . , n}) Sn−1(x, {1, . . . , n}) · · · S2(x, {n− 1, n})

∣∣∣∣∣∣∣∣
At second order, the leading correction involves the two-point function S2 via an integral of S2(r)
against H(r), linking phase connectivity to effective conductivity. Wave propagation: For a
macroscopically anisotropic bi-phase medium with matrix permittivity ϵ0 and inclusion permittivity
ϵ1, one obtains an SCE formulation for the dielectric constant ϵe dependent on the wave number k.
This formulation turns out to be identical to that of the static conduction problem [24]:

β2
ϵϕ

2(ϵe(k)− ϵ0I)
−1

(
ϵe(k) + (d− 1)σ0I

)
= βϵϕ I−

G∑
n=2

A(k)n β
n
ϵ , (5)

where
βϵ =

ϵ1 − ϵ0
ϵ1 + (d− 1)ϵ0

. (6)

Different from the conduction case, since microstructural randomness in permittivity only affects the
zeroth-order term of the Maxwell equation, the kernel becomes the Green’s function itself. In 2D and
when local material properties (µ, ϵ0, and ϵ1) are isotropic, this Green’s function H(0)(r) has been
derived as:

H
(0)
ij (r) =

i

4 ϵ0

[(
k20H

(1)
0 (k0r)−

k0
r
H(1)

1 (k0r)
)
δij + k20H

(1)
2 (k0r)ninj

]
(7)

1For conciseness, we use “1” instead i1 when appropriate.
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where k0 = ω
√
µ0ε0 and ω are the wave vector and frequency of the incident radiation respectively,

k0 = ∥k0∥, and H(1)
ν is the Hankel function of the first kind of order ν. It should be noted that when

local permittivity constants are anisotropic, this analytical Green’s does not exist [25]. We also note
that in both cases, the convolution integral An is defined on G/N (0), where N (0) is a cavity around
around r = 0, and is therefore proper. This is because with proper choice of N (0), e.g., sphere or
cylinder, the improper convolution integral over N (0) can have an analytical form and moved out
of the integral. In plain language, for the purpose of predicting effective properties, we do not need
to compute an accurate convolution integral within N (0). This sets our method apart from existing
works on learning Green’s functions for predicting PDE solution fields [15], where singularity of the
Green’s function becomes a learning challenge.

4 Neural Contrast Expansion
Building upon the SCE framework, we propose Neural Contrast Expansion (NCE), a data-driven
learnable architecture for approximating PDE kernels through structure-property data, circumventing
the theoretical assumptions of SCE and allowing explainable sensitivity analysis for structure-property
mappings where the kernel cannot be analytically derived (e.g., in the case of anisotropic permittivity
in Maxwell’s) or does not exist (e.g., when a PDE is mildly nonlinear). Our key insights are: (1) When
microstructural randomness only affects one of the second- and zeroth-order terms of the governing
PDE, SCE provides a universal functional relationship between the NPCFs and the effective property,
evidenced by Eq. (3) and Eq. (5), and (2) the derivation of this functional relationship does not require
an explicit kernel. In the following we explain the choice of a hypothesis space for learning kernels,
and regularization considerations for promoting explainability and physics consistency.

Bessel–Fourier Kernel Parameterization. NCE approximates H(r) via a surrogate Ĥ(r) with
radial-angular decomposition. For 2D problems, we have

Ĥ(r) =

(
Ĥ11(r, θ) Ĥ12(r, θ)

Ĥ21(r, θ) Ĥ22(r, θ)

)
, (8)

where r = (x, y) and θ = arctan2(y, x). We consider a Bessel-Fourier space for each entry:

Ĥij(r, θ) = r−αenv

N∑
n=0

M∑
m=1

(
C

(R)
ij,n,m + i C

(I)
ij,n,m

)
Jn(αn,m r)ψn(θ), (9)

where Jn is the Bessel function of order n, and ψn(θ) is an angular Fourier basis mode einθ. This
basis is chosen because solutions to isotropic PDEs in 2D naturally separate into radial Bessel
and angular Fourier modes [26]. The coefficients C(R)

ij,n,m and C(I)
ij,n,m are real learnable parameters

representing the cosine- and sine-phase weights of each basis mode. The coefficientC(R)+iC(I) thus
encode complex amplitudes for modes Jn(αn,mr)einθ. A multiplicative envelope r−αenv imposes
the appropriate physical decay, with a learnable αenv. The radial wavenumbers αn,m are treated as
additional learnable parameters, initialized to span a range of physically relevant length scales.

Regularization for explainability. An ℓ1-regularization penalty is applied to all coefficients C(R)

and C(I), encouraging sparsity in the active Bessel–Fourier modes. This improves interpretability by
forcing only the most salient radial and angular components to represent the kernel, while reducing
overfitting.

Regularization for physics consistency. We impose a physics-informed regularization to ensure
that Ĥ(r) is consistent with the target PDE. Recall that the Green’s function G(r) of a linear
differential operator L satisfies

L [G(r)] = δ(r), (10)

and the relationship between Ĥ(r) and G(r) is known: When randomness affects the second-
order PDE term, H(r) is the Hessian of G(r), and when randomness affects the zeroth-order term,
H(r) = G(r). Therefore the residual of Eq. (10) is considered a regularization term in the learning
of Ĥ(r) to embed the PDE’s defining property directly into the learning, ensuring that Ĥ(r) remains
within the physically admissible family determined by the target PDE.
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Figure 3: (a) Approximated conductivity and (b) dielectric constant versus ground truth for CNN,
low-resolution PDE solver, SCE and NCE methods based on 2- and 3PCF. The vertical dashed line
marks the transition from interpolation (left) to extrapolation (right). Shaded regions indicate one
standard deviation.

To summarize, with dataset D = {(S(m)
n ,Σ

(m)
e )}Mm=1, the loss is defined as:

L(Θ) =
1

M

M∑
m=1

∥∥∥D(S(m)
n )− D̂(S(m)

n ; Θ)
∥∥∥2
2
+ λ1∥C∥1 + λ2∥L [Ĝ(r)]− δ(r)∥2

+ 1Hessian λ3
1

|G|
∑

(x,y)∈G

∑
i,j,k

∣∣∣∂xĤij(x, y)− ∂yĤik(x, y)
∣∣∣2 , (11)

where D and D̂ are defined as:

D(Sn) = β2ϕ2 (Σe(Sn)− σ0I)
−1

(Σe(Sn) + σ0I) , D̂(Sn; Θ) = βϕI−
N∑
n=2

An(Sn; Θ)βn.

We choose to fit D rather than regressing Σe to avoid numerical instabilities, since the inversion in
(Σe(Sn)− σ0I)

−1 can become singular or ill-conditioned during optimization. The indicator 1Hessian
activates the mixed-partial regularization only when H(r) is the Hessian of G(r), emphasizing the
curl-free conditions for hessian of a scalar potential. In a discretized setting, the Dirac delta function
δ(r) is approximated as a Kronecker delta, which is non-zero only at the origin, making the residual
computationally tractable. We also reiterate that the physics consistency loss ∥L [Ĝ(r)]− δ(r)∥2
only requires a numerical integral in G/N (0) where the Green’s function is smooth.

5 Experimental Results
Data. We use 10 distinct parameter settings of bi-phase 2D random fields with contrast-phase
volume fraction ϕ = 0.5, defined by correlation lengths in the x- and y-directions. The correlation
length in the x-direction is fixed at 0.1% of the resolution, while in the y-direction, it varies from 5%
to 60%. For each parameter settings, we generate 100 realizations of 1024 × 1024 microstructure of
size and use the same set for both static conduction and wave propagation. For the static conduction
problem, the effective conductivity of the reference phase and contrast phase is set to 5 and 20
respectively; for the wave propagation problem, the dielectric constants are 1 and 2. These property
values are chosen arbitrarily to ensure a strong contrast between the two media. For the wave-
propagation problem, we fix the reference-phase wave number k = 10. Volume fraction and
correlation lengths are chosen so that the ergodicity assumption is satisfied: i.e., the effective
conductivities and dielectric constant computed from all 100 microstructure samples using a PDE
solver have a small within-group standard deviation (see the gray shade in Fig. 3). For each
microstructure x, we collect (S2(x), S3(x),Σ

∗
e(x)), where S2(x) (resp. S3(x)) contains all 2-point

(resp. 3-point) correlations averaged over 256 patches (64 × 64 each) randomly sampled from the
1024 × 1024 microstructure. This mimics realistic settings where microstructure reconstruction is
only affordable on small material samples yet effective properties can be experimentally measured
from a relatively large sample.

Baselines and the training setting. We generate a high-resolution (1024 × 1024) ground truth
benchmark using PDE solvers tailored to specific physics. For static conduction, we employ a
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Figure 4: Sensitivity analysis of directional effective conductivity for SCE(top), NCE (middle), and
end-to-end approach (bottom)—shown across different orientations θ. The color scale (yellow to
dark blue) indicates regions of positive versus negative influence.

Figure 5: Sensitivity analysis of the real and imaginary parts of the directional effective dielectric
constant with respect to power spectral density is shown for both the SCE and NCE approaches across
different orientation angles. The color scale (yellow to dark blue) indicates regions of strong positive
influence versus negligible influence. (See the time-domain counterpart in Fig. 6)

conventional steady-state solver, while for wave propagation, we use the Finite-Difference Time-
Domain (FDTD) method [27]. We then assess three low-resolution (64 × 64) methods against this
benchmark: a down-sampled solver serving as a baseline, and two machine learning models. Both
machine learning models are trained to predict effective property from spatial correlations. The first
is an end-to-end (E2E) convolutional neural network using 2PCF as input. The second is our Neural
Contrast Expansion model, which is trained on either 2-point (2PCF) or both 2- and 3-point (3PCF)
correlations and learns its kernel corrections via Eq. (11).

Interpolation and extrapolation accuracy. Fig. 3 compares the predicted conductivities from
all models with the ground truth. Indicated by the vertical dashed line, the test uses random field
parameters that are both within and out of the training distribution. The standard deviation in
the prediction across all 100 realizations are characterized by the shades. We have the following
observations: While both NCE and the E2E model performed well on random fields within the training
distribution (interpolation), the E2E model’s accuracy deteriorated significantly when presented with
novel random fields (extrapolation). In contrast, NCE maintained high accuracy in both regimes
for the static conduction and wave propagation problems, demonstrating a robust generalization
capability that the purely data-driven approach lacks. The analytical SCE models showed inherent
prediction errors, confirming that their truncation error and infinite-domain assumption is a significant
limitation for finite-sized samples, a gap that NCE’s learned kernel mitigates.
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Explainability for static conduction. This superior generalization is a direct consequence of
NCE’s ability to learn physically meaningful relationships, which we validated through sensitivity
analysis. Specifically, we compute the partial derivative of directional electrical conductivity with
respect to corresponding 2PCF. The directional physical property is measured along an angle θ
from the x-axis. For static conduction, Fig. 4 shows that NCE correctly learns the characteristic
quadrupole sensitivity pattern provided by the analytical SCE model. This pattern physically signifies
that directional conductivity is enhanced by phase connectivity parallel to the applied field and
impeded by connectivity in the orthogonal direction. The localized nature of the influence indicates
that short-range spatial correlations dominate charge transport mechanisms, providing a clear design
implications on synthesizing composite materials. On the other hand, the sensitivity map of the E2E
model (Fig. 4, bottom) is not physically interpretable since the model does not utilize physics-informed
inductive biases. Thus while the E2E model can achieve reasonable in-distribution prediction accuracy
(Fig. 3), it lacks physical explainability to provide material design guidelines.

Design insights from wave propagation. We analyze sensitivity in the Fourier domain by dif-
ferentiating the directional component of the effective dielectric tensor with respect to the Fourier
transform of the two-point correlation (equivalently the power spectral density). Both SCE and NCE
produce the same physical picture: sensitivity concentrates on the k-shell |k| = k0, forming a ring
in Fig. 5. Crucially, the imaginary part Im(ϵe) controls scattering loss; the maps show that loss is
driven by spectral power placed on this ring (and, directionally, on its angular sectors). Therefore, to
reduce scattering loss at a target frequency k0, design the microstructure to suppress spectral power
on |k| = k0 (isotropically or in selected sectors). This directly serves low-loss applications such as
transparent electromagnetic windows [28] and on-chip photonic waveguides [29], where minimizing
Im(ϵe) is essential.

This design insight connects directly to the concept of hyperuniformity: a novel class of exotic
disordered patterns possessing hidden long-range order [30, 16, 31]. Hyperuniform microstructures
strongly suppress long-wavelength scattering and thus possess an exclusion zone in their spectral
density [16]. By shaping the exclusion to cover or intersect the k0 ring, one suppresses the long-
wavelength scattering channels that feed Im(ϵe), achieving low loss while retaining control of Re(ϵe)
via modes away from the ring. Indeed, the resulting microstructures shown in Fig. 1(a) are verified
to be hyperuniform and consistent with those constructed based on specific spectral densities with
anisotropic and isotropic exclusion zones [32, 33]. Because NCE learns a kernel consistent with the
governing physics, its sensitivity maps become actionable design levers: weighting a candidate power
spectrum by the learned sensitivity identifies the loss-dominant bands to remove and the angular
sectors in which to remove them. In this way, Fig. 5 functions not only as diagnosis but as a compact,
quantitative recipe for engineering low-loss, anisotropic dielectrics at prescribed (ω, k0).

6 Conclusion
In this work, we propose Neural Contrast Expansion (NCE), a data-driven model that preserves the
analytical architecture of strong-contrast expansion while learning a surrogate PDE kernel directly
from structure–property data. Across static conduction and electromagnetic wave propagation,
NCE matched or exceeded the predictive accuracy of purely data-driven baselines while retaining
physically interpretable sensitivities. In conduction, NCE recovered the quadrupolar sensitivity
pattern connecting directional effective conductivity to phase connectivity; in waves, Fourier-domain
sensitivities concentrated on the |k| = k0 shell, cleanly separating how spectral content controls
Re(ϵe) versus Im(ϵe). This yields actionable design rules: suppress power on the k0-ring to reduce
scattering loss in Im(ϵe) and adjust off-ring content to tailor anisotropy in Re(ϵe)—linking directly
to (stealthy) hyperuniform microstructures that enforce spectral exclusion zones. Practically, NCE
requires only macroscopic property measurements, not field-level supervision, and its physics-
informed kernel parameterization mitigates SCE’s finite-domain and truncation errors while enabling
principled extrapolation to novel microstructures.

Limitations suggest clear next steps. Our analysis focuses on randomness entering zeroth- or second-
order terms of linear, self-adjoint PDEs; extending to skew-adjoint and weakly nonlinear settings
will require a careful re-examination of the SCE derivation and its solvability assumptions. A
complementary direction is to jointly optimize over selected higher-order correlations which could
boost sample and computational efficiency. Ultimately, NCE provides a practical, physics-grounded
framework that translates microstructural statistics into actionable guidelines, accelerating more
reliable material discovery and design.
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A Appendix

A.1 Derivation of SCE for 2D conductivity and discussion about its computational complexity

We now provide the derivation of the effective linear conductivity under the assumption of an infinite
boundary (i.e., a static electric field at infinity) [23]. For clarity, we focus on a continuous two-
dimensional domain G. Dependence on the random field realization x is omitted when possible. The
governing equation is

∇ ·
(
σ∇ϕ

)
= 0, (12)

with the Neumann boundary condition ∇ϕ(xi) = −E0 and with σ(xi) = σ0 for all i ∈ ∂G. Writing
the local conductivity as

σ(xi) = σ0 + (σ1 − σ0)xi = σ0 + σ′ xi,

the PDE becomes:
∇2ϕ = − 1

σ0
∇ ·

(
σ′∇ϕ

)
. (13)

This can be solved by introducing an appropriate Green’s function for the Laplace operator. When
boundary is at infinity and in 2D, we have:

G(i, i′) = − 1

2πσ0
ln ∥i− i′∥2, (14)

which satisfies
∇ · ∇G(i, i′) = − 1

σ0
δ(i− i′),

where δ(·) is the 2D Dirac delta function. The solution to Eq. (13) in terms of the Green’s function is
shown to be:

ϕ(i) = ϕ0(i)−
∫
G
G(i, i′)∇′ ·P(i′) di′

= ϕ0(i) +

∫
G
∇′G(i, i′)⊤ P(i′) di′,

(integral by part and X = 0 at ∂G)

= ϕ0(i)−
∫
G
∇G(i, i′)⊤P(i′)di′,

(∇′G(i, i′) = −∇G(i, i′)),

(15)

where ϕ0(i) = −⟨E0, i⟩ is the potential for the homogeneous reference phase, P = −σ′∇ϕ is the
polarization field, and ∇′· is the divergence with respect to i′.

Since ∇ϕ(i) = −E(i) and P is proportional to E, we take the gradient of both sides of Eq. (15) to
create a fixed-point iteration with respect to P. However, it should be first noted that

∇G(i, i′) = − 1

2πσ0

r

r2
, with r = i− i′,

is singular at r = 0. To handle this, we decompose the integration domain by separating a small disk

Bϵ = {i′ ∈ G | ∥i− i′∥2 ≤ ϵ}

from the rest of the domain G/ϵ. Applying the divergence theorem shows that the contribution from
Bϵ yields

∇
∫
∂Bϵ

⟨G(i, i′)P(i′),n′⟩ds′ = − 1

2σ0
P(i), (16)

where n′ is the outward normal on ∂Bϵ. For d > 2, the gradient in Eq. (16) is in general − 1
dσ0

P.
Therefore, differentiating Eq. (15) gives

E(i) = E0 −
1

dσ0
P(i) +

∫
G/ϵ

∇2G(i, i′)P(i′) di′, (17)
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where for 2D we set d = 2.

Defining

F =
(
1 +

σ′

dσ0

)
E and l =

σ′

1 + σ′

dσ0

,

so that P = lF, and letting H = ∇2G, Eq. (17) can be rewritten as

F = E0 +HP. (18)

Iteratively applying this relation yields

P = lE0 + lH lE0 + lH lH lE0 + · · ·

=
(
l + lH l + lH lH l + · · ·

)
E0

= SE0.

(19)

Ensemble averaging Eq. (19) along with Eq. (18) leads to

⟨F⟩ =
(
⟨S−1⟩+H

)
⟨P⟩.

A further expansion (involving ensemble averages of the products of l and H) yields an expression
for ⟨F⟩ in terms of the microstructural correlation functions. Introducing the expansion parameter

β =
σ1 − σ0

σ1 + (d− 1)σ0
,

one finds that
⟨l(i)⟩ = dσ0β ϕ, ⟨l(i) l(i′)⟩ = (dσ0β)

2S2(i, i
′),

for all points in G (with ϕ denoting the phase density). With further algebra, the operator

Q := ⟨S−1⟩+H

can be recast as

Q =
1

dσ0β2ϕ2

(
βϕ I−

∞∑
n=2

An β
n
)
,

where An is defined in Eq. (4).

Relating the polarization field to the effective conductivity via

⟨P⟩ = Le⟨F⟩

with

Le = dσ0
(
Σe − σ0I

)[
(d− 1)σ0I+Σe

]−1

,

one finally arrives at the SCE series for the effective conductivity in Eq. (3). Note that Eq. (19) is an
expansion of the fixed-point iteration for solving the linear system of equation defined in Eq. (17)
with respect to E. By focusing on the polarization field P, we introduce an expansion parameter β
that has value between 0 and 1 when σ1 > σ0. This derivation underpins the SCE method, naturally
leading to the infinite series representation for the effective conductivity, as given in Eq. (3).

Critically, Eq. (3) shows that effective linear properties such as conductivity can be analytically
explained by two decoupled factors: the Green’s function that is only related to the property-
dependent physics, and the NPCFs that are only related to the random field. Lem. 1 characterizes the
computational complexity of SCE for approximating effective linear properties:

Lemma 1. Let Σe(X) be a ground-truth effective linear property for X and Σ̂e(X) be its ap-
proximation up to an order N . Let the approximation error be defined by the Frobenius norm:
ϵ(X) := ∥Σe(X)− Σ̂e(X)∥2. Given ϵ > 0, ϵ(X) ≤ ϵ can be achieved with a computational cost
of O(ϵ−|β| ln(G)).
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Proof. By reorganizing (3), we have:

Σe = (A+D)−1(B+D), (20)

where A := (βϕ − β2ϕ2)I −∆N , B := β2ϕ2(d − 1) + βϕI −∆N , D :=
∑G
n=N+1 Anβ

n, and
∆N :=

∑N
n=2 Anβ

n. The finite-order SCE approximation is

Σ̂e = A−1B, (21)

and the approximation error is
ϵprop := ∥Σ̂e −Σe∥2. (22)

We now derive an upper bound on ϵprop. First

ϵprop = ∥(A+D)−1(B+D)−A−1B∥2
= ∥((A+D)−1 −A−1)B+ (A+D)−1D∥2
≤ ∥A−1(A+D−A)(A+D)−1B∥2
+ ∥(A+D)−1D∥2
≤ ∥(A+D)−1∥2∥D∥2(∥A−1∥2∥B∥2 + 1).

(23)

Since D is a bounded sum of high-order residuals, ∥D∥2 ≤ ∥A∥2 for large enough N . Under this
condition, we have

(A+D)−1 =
[
A
(
I+A−1D

)]−1

=
(
I+A−1D

)−1
A−1

=

∞∑
k=0

(
−A−1D

)k
A−1.

(24)

Therefore

ϵprop ≤ ∥A−1∥2
1− ∥A−1∥2∥D∥2

∥D∥2(∥A−1∥2∥B∥2 + 1). (25)

ϵprop monotonically increases with ∥D∥2, i.e., to achieve ϵprop ≤ ϵ, we need ∥D∥2 ≤ C1ϵ with
some C1 > 0.

Inspecting the structure of D to have

D =

G∑
n=N+1

βnδn, (26)

where the matrix δn absorbs the convolution between the field kernel and the NPCF at order n. Let
C2 be the largest element of δn for any n ∈ {N + 1, ..., G} and notice that |β| < 1, we can bound
∥D∥2 by

∥D∥2 ≤ C2

G∑
n=N+1

|β|n = C3|β|N . (27)

Therefore, to achieve ∥D∥2 ≤ C1ϵ, we need N ≥ ln(C1ϵ/C3)
ln(|β|) . Since the computational complexity

of the SCE approximation is determined by that of the highest order NPCF, this complexity is

O
(
G

ln(C1ϵ/C3)

ln(|β|) −1
)
= O

(
ϵ−|β| ln(G)

)
.

Remarks. For regular grid G, we have ln(G) = d ln(s−1). Therefore the worst-case complexity of
the SCE approximation is O(ϵ|β|d ln(s)). While the exact computational complexities of the PDE and
SCE approaches are not directly comparable due to their involvement of problem specific paramters,
the following observations are useful: (1) Both approaches are affected by the phase-wise property
gap σ1 − σ0. For PDE, the gap affects the condition number of the resultant system of equations,
which in turn affects the convergence rate of the solver. For SCE, the gap directly controls β. In
the trivial case of σ1 = σ0, SCE directly provides the analytical solution, making PDE unnecessary.
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(2) Real-world random fields often have limited correlation lengths, i.e., there exists r0 > 0 such
that for any i1, i2 ∈ G and ∥i1 − i2∥2 ≥ r0, E[Xi1Xi2 ] = E[Xi1 ]E[Xi2 ]. With this property, Lem. 2
shows that the proportion of non-zero ∆N among CN reduces exponentially along N . Therefore, we
hypothesize that it is possible to replace {Cn}Nn=1 with a significantly smaller subset C∗ to achieve
both good approximation of Σe and a much lower computational complexity.
Lemma 2. Given correlation order N and the grid G, let γ(N) be the fraction of N -point configura-
tions c ∈ CN for which the total correlation ∆N (c) > 0, and let Γ(·) be the the Gamma function. If

r0 <
(
Γ(d/2 + 1)/πd/2

)1/d
, γ(N) decreases exponentially with N .

Proof. The total number of possible N -point configurations (considered as ordered tuples) is GN−1

considering that the first point is fixed to 0. An N -point configuration c is said to be connected if
every pair of points in c is connected via a path of points within c such that consecutive points in the
path are within distance r0 of each other. The number of connected configurations of size N can
be approximated as µN−1, where µ is the average number of ways to add a new site to a connected
cluster, also known as the branching factor. For a regular grid, µ can be approximated as V (r0)/l

d,
where V (r0) is the volume of a sphere with radius r0 in Rd, and ld is the volume occupied by each
grid point.

We now show that if c is not connected, i.e., there exists clusters c1, ...cK so that c =
⋃
k∈[K] ck and

ck
⋂
ck′ = for all k ̸= k′, then ∆(c) = 0. To show this, first notice that ∆(c) is a joint cumulant and

is invariant to the permutation of points in c. We can now consider c = c0
⋃
c1 and c0

⋂
c1 =, so

that for any X0 ∈ c0 and X1 ∈ c1, E[X0X1] = E[X0]E[X1]. We can reorder the elements of ∆(c)
so that for some k ∈ [N ], points involved in the rows above the kth row all belong to c0, and the new
elements introduced on and after the kth row belong to c1. Thus the elements on the k − 1 and kth
rows are linearly dependent and therefore the determinant is 0.

Let the side length of the grid be 1. The fraction γ(N) is therefore

γ(N) =
Number of connected configurations

Total configurations

≈ µN−1

GN−1
=

(
πd/2rd0

Γ(d/2 + 1)

)N−1

.

(28)

Therefore, when r0 <
(
Γ(d/2 + 1)/πd/2

)1/d
, γ(N) decreases exponentially with N . The threshold

for r0 is 0.61 for d = 2 and 0.64 for d = 3.

A.2 SCE breaks down for first–order randomness

Here we investigate the case where the randomness appears only in the first–order term (e.g.,
a drift/advection field) of a linear second-order PDE.2 We derive the corresponding Lippmann–
Schwinger representation, identify the associated kernels and their singular structure, and then show
precisely why SCE cannot be carried out: the perturbation is non–self–adjoint, there is no local
“polarizability” linking the polarization to the driving field, and interface distributions enter in a way
that breaks the usual correlation–function framework. A narrow exception occurs when the drift is a
potential field, which can be removed by a similarity transform that converts the problem into one
with zeroth–order randomness, where SCE applies.

Fix d ≥ 2. Consider the linear PDE

Lu := −∇· (A0∇u) + b(x)·∇u + c0 u = s, (29)

where A0 ∈ Rd×d is constant, symmetric positive definite (SPD), c0 ≥ 0 is constant, and the
randomness is only in the drift b(x). We take the baseline

L0u := −∇· (A0∇u) + c0u, L0G0(r) = δ(r). (30)

We will impose a uniform macroscopic gradient E0 in the baseline medium so that the baseline
solution is u0(x) = −E0 ·x (or a periodic surrogate), and denote the total gradient (“field”) by

E(x) := ∇u(x), ⟨E⟩ = E0.

2The derivation in this subsection is assisted by GPT5 Pro and verified by the authors.
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Self–adjointness. The formal L2 adjoint (integration by parts) of the drift term is
(b·∇)∗ = −b·∇ − (∇· b) ,

hence the adjoint of L is
L∗ = −∇· (A0∇·) − b·∇ − (∇· b) + c0. (31)

Therefore L is self–adjoint in L2 iff b ≡ 0. Even if ∇· b = 0 (divergence–free drift), the operator
remains non–self–adjoint because of the −b·∇ in (31).

Lippmann–Schwinger representation for first–order randomness. Subtract L0u0 = s from
Lu = s to get

L0(u− u0) = −b·∇u.
Convolving with G0 and using L0G0 = δ gives the resolvent identity

u = u0 −G0 ∗ (b·∇u). (32)
Use the product rule to expose only multiplications (no derivatives on u) inside the convolution:

b·∇u = ∇· (bu)− (∇· b)u.
Integrate by parts inside the convolution:∫

Rd

G0(x− y)∇·y (b(y)u(y)) dy = −
∫
Rd

∇G0(x− y)·(b(y)u(y)) dy.

Thus

u(x) = u0(x) +

∫
Rd

∇G0(x− y)·
[
b(y)u(y)

]︸ ︷︷ ︸
:=P (y)

dy −
∫
Rd

G0(x− y)
[
(∇· b)(y)u(y)

]︸ ︷︷ ︸
:= q(y)

dy.

(33)
Differentiating (33) yields the gradient equation

E(x) = E0 +

∫
Rd

∇∇G0(x− y)︸ ︷︷ ︸
:=K0(x−y)

: P (y) dy −
∫
Rd

∇G0(x− y) q(y) dy. (34)

Singular structure of the kernels. The Hessian kernel K0(r) = ∇∇G0(r) has a short–range
δ–singular part:

K0(r) = −Λ2 δ(r) + TL(r), Λ2 := 1
d A

−1
0 . (35)

The remainder TL is integrable and satisfies
∫
Rd T

L(r) dr = Λ2. In contrast, the vector kernel
∇G0(r) is odd and has ∫

Rd

∇G0(r) dr = 0 and no δ part. (36)

(An easy Fourier–domain check: ∇̂G0(k) = ik/(k·A0k+ c0) is odd in k, so it cannot produce a
constant term, i.e., a δ in real space.)

Plugging (35) into (34) gives

E = E0 − Λ2 P + TL ∗ P − (∇G0) ∗ q, P := bu, q := (∇· b)u. (37)

How SCE works in the self–adjoint cases. For comparison, when the randomness is in the
second–order term, such as in the case of conduction, write A(x) = A0 +X(x) and define

P = X E.

Equation (37) then becomes E = E0 −Λ2XE +TL ∗ (XE), so one can move the local term to
the left and invert it pointwise:

(I+Λ2X)E = E0 +TL ∗ (XE) =⇒ P =M E0 +M TL ∗ P ,
with the local polarizability

M := X (I+Λ2X)−1.

This produces the SCE series for the effective tensor in terms of N -point correlation functions of
the microstructure. A similar (scalar) story holds when the randomness is purely in the zeroth–order
term.
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Why SCE breaks for first–order randomness. Return to (37), where

P = bu and q = (∇· b)u.
The barriers to SCE are

• No local relation P =M E: In the self–adjoint cases, P depends on E by multiplication.
Here, P depends on the potential u, not on its gradient E. There is no local matrix M(x)
so that b(x)u(x) =M(x)E(x) for all admissible u.
Lemma 3 (No local polarizability). Suppose there exists a (measurable) matrix field M(x)
with P (x) =M(x)E(x) for all solutions u. Then b ≡ 0.

Proof. Fix x0 and choose a test solution u that is locally constant near x0 (e.g., a smooth
bump function flattened near x0). Then E(x0) = 0 but u(x0) can be nonzero, hence
P (x0) = b(x0)u(x0). The assumed relation gives P (x0) = M(x0)E(x0) = 0, forcing
b(x0) = 0. Since x0 is arbitrary, b ≡ 0.

• The q–term has no δ to renormalize: The last term in (37) involves the kernel ∇G0, which
has no δ part (36). Thus, unlike the K0 term, there is no local singularity to “absorb” into a
pointwise transform. Any attempt to eliminate q would be nonlocal (via L−1

0 ), defeating the
SCE philosophy.

• Interface distributions pollute the microstructure coefficients: In many microstructure mod-
els, properties are piecewise constant by phase. If b(x) =

∑M
p=1 Ip(x) bp with phase

indicators Ip ∈ {0, 1} and constant vectors bp, then

∇· b =

M∑
p=1

bp ·∇Ip.

Distributionally, ∇Ip is a surface measure concentrated on the phase boundaries:

∇Ip = −n δ∂Ωp
,

where n is the unit normal and δ∂Ωp is a Dirac mass on the interface. Consequently
q = (∇· b)u is supported on surfaces, and ensemble averages of the form ⟨(∇G0) ∗ q⟩
depend on surface–surface statistics (geometry of interfaces), not on the usual volume
N -point correlation functions {Sn} that power SCE. This is a structural mismatch.

• No symmetric energy (variational) structure: Self–adjoint randomness leads to a positive
energy form

∫
(∇u)·A(x)∇u +

∫
c(x)u2, from which bounds and renormalized series

follow. The drift contribution satisfies∫
ϕ (b·∇u) = −

∫
u
(
b·∇ϕ+ (∇· b)ϕ

)
,

which is not sign–definite and provides no coercive variational principle. This removes the
key positivity used in SCE resummations.

A narrow exception: potential drift can be removed. There is one structurally important excep-
tion:
Theorem 1 (Self–adjointization by similarity transform). If b(x) = A0 ∇ψ(x) for some scalar ψ,
and A0 is constant SPD, then the change of variables u = eψ/2v converts L into a self–adjoint
operator with a random zeroth–order potential:

Lu = eψ/2
[
−∇· (A0∇v) +

(
c0 + 1

4 ∇ψ ·A0∇ψ − 1
2 ∇· (A0∇ψ)

)
v
]
. (38)

Proof sketch. Compute ∇u = eψ/2
(
∇v + 1

2v∇ψ
)

and use the product rule with A0 constant:

∇· (A0∇u) = ∇·
(
eψ/2A0

(
∇v + 1

2v∇ψ
))

= eψ/2
[
∇· (A0∇v) + (∇v)·A0∇ψ + 1

2v∇· (A0∇ψ) + 1
4v∇ψ ·A0∇ψ

]
.

Also b·∇u = eψ/2
(
(A0∇ψ)·∇v+ 1

2v∇ψ·A0∇ψ
)
. Substituting in Lu = −∇·(A0∇u)+b·∇u+c0u

cancels the (∇v)·A0∇ψ terms and yields (38).
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Figure 6: Sensitivity analysis of the real and imaginary parts of the directional effective dielectric
constant with respect to 2PCF is shown for both the SCE and NCE approaches across different
orientation angles. The color scale (yellow to dark blue) indicates regions of strong positive influence
versus negligible influence.

Remark 2. In one spatial dimension (d = 1), every scalar drift is a gradient; therefore the transform
always exists and reduces the problem to one with zeroth–order randomness, where SCE applies.
In d ≥ 2, a generic stationary random drift is not a gradient (∇ × b ̸= 0 ), so the transform is
unavailable.

A.3 NCE–LLM Integration: Extracting Physical Insights

In this section, we present a blinded study with the GPT-5 Thinking model: memory and prior-
conversation referencing were disabled, the model was shown only the sensitivity maps (without
disclosing the underlying physical property), and it was tasked with proposing designs that meet a
specified engineering objective under a fixed volume fraction. Screenshots of the conversation are
provided below.
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Figure 7: The primary engineering goal is to optimize the effective property in the x-direction by
simultaneously maximizing its real component while minimizing its imaginary component, subject to
a constant volume fraction.
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Figure 8: The primary engineering goal is to optimize the effective property in all directions by
simultaneously maximizing its real component while minimizing its imaginary component, subject to
a constant volume fraction.
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Figure 9: The primary engineering goal is to optimize the effective property in all directions by
simultaneously minimizing its real component while maximizing its imaginary component, subject to
a constant volume fraction.
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