Adalnfer: Instance-aware Adaptive Inference for LLMs

Anonymous ACL submission

Abstract

Large Language Models (LLMs) inference
phase is very expensive. An ideal inference-
LLM should utilize fewer computational re-
sources while still maintaining its capabilities
in generalization and in-context learning abil-
ity. In this paper, we try to answer the question,
“During LLM inference, can we use shallow lay-
ers for easy input; deep layers for hard ones?”
To answer this question, we first indicate that
Not all Layers are Necessary at inference time
by statistically analyzing the activated layers
across tasks. Then, we propose a simple al-
gorithm named Adalnfer for instance-aware
adaptive inference, which determines the in-
ference termination time based on the input
instance itself. More importantly, Adalnfer
does not alter LLM parameters and maintains
generalizability across tasks. Experiments on
well-known LLMs (i.e., Llama2-7B/13B and
OPT-13B) show that Adalnfer can save 10% to
50% of computational resources on mainstream
tasks (e.g., knowledge-based/common-sense
QA, text classification). Meanwhile, maintain-
ing accuracy with average minimal (<1%) loss.
Additionally, this method is orthogonal to other
model acceleration techniques (e.g., sparse and
flash attention), offering the potential for fur-
ther enhancing inference efficiency. Code and
data is available at Anomynous Github.

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive performance on various down-
stream tasks (e.g., text generation, summarization,
translation, question & answering) using a vari-
ety of evaluation protocols such as zero-shot, few-
shot, and fine-tuning (Todd et al., 2024; Chan et al.,
2022; Kossen et al., 2023; Wang et al., 2023). No-
tably, their in-context learning ability allows them
to adapt to tasks using input-output examples with-
out parameter updates (Kossen et al., 2023; Todd
et al., 2024). However, their inference phase is

very expensive (Pope et al., 2023; Liu et al., 2023).
For example, the inference time complexity for
large models like Llama2 (Touvron et al., 2023)
is LSd(d + S) per single inference, where d de-
notes the word vector dimension, S is the sequence
length, and L represents the number of layers. An
ideal inference LLM should utilize fewer compu-
tational resources while still maintaining its capa-
bilities in generalization and in-context learning
ability (Liu et al., 2023). The simplest methods
for achieving efficient inference in LLMs include
model pruning (Liu et al., 2018) and sparse models
(LeCun et al., 1989). The potential drawbacks of
the aforementioned methods include the following:
(i) Few methods consider dynamically reducing
the number of activated neurons as an approach to
accelerate LLM inference. (ii) Altering LLM pa-
rameters may risk compromising its generalization
ability, which is challenging to detect. (iii) Dif-
ferent LLM designs pose compatibility challenges
with other acceleration methods.

Due to the mentioned issues, inspired by the hu-
man thinking process, where quick answers are of-
ten provided for simple questions while more time
is spent on thoughtful reasoning for knowledge-
related questions (Salthouse, 1996; Deary et al.,
2001). Existing studies (Teerapittayanon et al.,
2016; Huang et al., 2017) show that “Easy” tasks
activate at shallower layers while “hard” ones at
deeper layers. Motivated by this, we observed that
this trend also holds true at LLM inference time, as
evidenced by statistics on mainstream LLMs across
different tasks. This leads us to hypothesize that
Not all Layers are Necessary at Inference time with
varying input instances (Section 2.2). Therefore,
a natural approach to achieve LLM efficient infer-
ence for various tasks is adaptive inference based
on input instances. This involves selectively exe-
cuting different network layers for different sam-
ples. For instance, allocating fewer computational
resources for processing “simple” samples to en-

https://anonymous.4open.science/r/AdaInfer-A60B

hance operational efficiency. This approach trims
needless computations for “simpler” inputs, im-
proving efficiency. Additionally, delving into adap-
tive LLM inference could establish connections
between LLMs and the brain’s information process-
ing (Hubel and Wiesel, 1962; Murata et al., 2000),
facilitating the analysis of activated network mod-
ules during sample processing (Han et al., 2021)
and determining the critical input components in-
fluencing the final prediction.

In this paper, we introduce a simple and straight-
forward algorithm, named Adalnfer, for instance-
aware adaptive inference in LLMs, building on the
observation that Not all Layers are Necessary at
Inference time. The core of instance-aware adap-
tive inference lies in data-driven decision-making.
There are generally two approaches to getting
decision-making signals: (1) updating LLM param-
eters demands training, involves high costs, and
might decrease the model’s generalizability, and
(2) keeping parameters unchanged, a more desir-
able and cost-effective approach that preserves the
model’s innate ability (Yao et al., 2023; Zhao et al.,
2023). Our proposed Adalnfer decides when to
stop inference based on input instance, optimizing
efficiency without altering the model’s parameters.

Adalnfer keeps LLM parameters unchanged and
maintains generalizability across tasks. We adopt
the early-exit mechanism from dynamic depth for
instance-aware adaptive inference. Specifically, we
began by performing statistical analysis on LLM
for each block feature (e.g., logits, hidden state,
mlp, and attention activation value). Subsequently,
we choose logits to construct the feature vector and
employ a classic statistical classifier to facilitate the
early exit decision-making strategy (see Section 3).

To the best of our knowledge, this is the first
attempt to discover that each block’s logits are cru-
cial elements for early-exit classifiers in LLMs, and
we incorporate it as a fundamental design choice in
Adalnfer. Our experiments on well-known LLMs
(i.e., OPT-13B and Llama2-7B/13B) demonstrate
that Adalnfer, without modifying any model pa-
rameters, can save 10% to 50% of computational
resources on mainstream tasks (e.g., knowledge-
based and common-sense question answering, text
classification) while maintaining accuracy with
minimal (less than 1%) loss. More importantly,
Adalnfer is orthogonal to other model acceleration
techniques (e.g., quantization, sparse models, and
flash attention), offering the potential for further
enhancing inference efficiency (Section 4).

2 LLMs Efficiency at Inference: Not all
Layers are Necessary

This section aims to prove that Not all Layers are
Necessary at inference time by analyzing the num-
ber of activated layers across various tasks at LLM
inference. We first briefly review LLM’s critical
components in Section 2.1. Then, we present our
statistical observations and insights in Section 2.2.

2.1 Preliminary: LLM Buliding blocks

Modern LLMs are rooted in the Transformer archi-
tecture (Vaswani et al., 2017), and can be trained
with different unsupervised training objectives. For
instance, mainstream LLMs (e.g., GPT, Llama) are
pretrained with a full language modeling objective
with a decoder-only structure, computing loss on
all tokens. The key components of LLMs can be
broken down into the following blocks:

Tokenizer and Embedding Layer. This block is
responsible for tokenizing input text into individ-
ual tokens and transforming them into numerical
vectors. These numerical vectors enable the model
to process and analyze textual data effectively.

Decoder Block. The decoder block receives
numerical vectors, process them through self-
attention mechanisms and feedforward neural net-
works to understand contextual nuances, and out-
puts predictions for the next token in a sequence.

Classification Layer. Also known as the LM
head layer, it transforms decoder logits into a
vocabulary-wide probability distribution using lin-
ear transformation and softmax, enabling word pre-
diction by selecting the top probability option.
These blocks allow LLMs to efficiently execute
tasks like text generation and classification in natu-
ral language processing. LLMs employ multi-layer
Transformers, focusing much of the computation
on decoder blocks. For LLMs like Llama?2, infer-
ence complexity is LSd(d 4 S) per single infer-
ence, where d is the word vector dimension, S is
the sequence length, and L represents the number
of decoder blocks. Consequently, to explore the
possibility of skipping intermediate layers in LLMs
during inference, we do following experiments.

2.2 Not all Layers are Necessary at Inference
time
Earlier Transformer models typically comprised

6 decoder layers, while current open-source mod-
els, such as Llama2-13B (Touvron et al., 2023),

—— 0-Shot
0.8 1-Shot
—— 2-Shot
| —— 3-Shot

o
o

Accuracy
>

o
N

0.0+

YA SO0 9D P DD

Layers

Figure 1: LLama2-7B model performance across 32
Layers: solid line for sentiment analysis and dashed line
for MMLU tasks.

feature 40 decoder layers. However, during infer-
ence, each input instance for different tasks passes
through every block layer by layer until the last
layer, prompting us to question: “Can we allocate
fewer computational resources per input instance
instead of the same substantial budget?” To investi-
gate this, we statistically analyze the number of ac-
tivated layers across various tasks during inference.
Given one task, we examine the relationship be-
tween accuracy and the number of layers activated.
The statistical results are depicted in Figure 1.

Observation 1: Not all Layers are Necessary
at Inference time: Early Stopping works. In sen-
timent analysis using the Llama2-13B (40 layers)
model, the average activated layer count per input
is 21, with a variance of 5.1. This observation is
intuitive. For instance, simpler inputs like “I like
Camera A” activate 16 layers, while more complex
inputs like “Camera A is better than Camera B in
picture quality” activate 24 layers. The latter sen-
tence introduces a comparative sentiment about the
“quality” aspect between Camera A and Camera B,
which embodies more complex features, suggest-
ing deeper layers for such complex instances.

Observation 2: Varying Task Difficulties, Differ-

ent Activation Layers: Stop Simpler Tasks Sooner,

Let Complex Ones Go Deeper. Tasks in the LLM ac-
tivate different layers, with simpler ones usually at
shallower layers and more complex ones at deeper
layers. This is shown in Figure 1, which demon-
strates the performance of a Llama2-7B model
across 32 layers in sentiment analysis (Socher et al.,
2013) and MMLU (Hendrycks et al., 2021). For
simple tasks like sentiment classification, accuracy

matches that of the final layer by the 24th layer.
Conversely, for complex tasks like MMLU, accu-
racy tends to improve with deeper layers.

Insight. The observations mentioned above are
intuitive. It’s worth noting that similar observations
have been made by (Teerapittayanon et al., 2016;
Huang et al., 2017) for visual tasks in convolu-
tional neural networks. Surprisingly, we have also
observed this phenomenon at LLM inference time.
By exploiting this phenomenon, we can perform
instance-aware adaptive inference for LLMs, dy-
namically adjusting their structure/parameters for
different test samples, thereby achieving superior
advantages in inference efficiency and adaptability.
Moving forward, we will leverage this observation
to implement adaptive inference.

3 Adalnfer

To lower inference computational costs, we in-
troduced Adalnfer, an instance-aware adaptive
inference algorithm for LLMs. The core of
instance-aware adaptive inference lies in data-
driven decision-making fortified by integrating the
early exit strategy from dynamic depth. Adalnfer
dynamically computes the stopping signal by eval-
uating critical features (i.e., “ga” and “top prob”).
Adalnfer consists of a Feature Selection module
and a Classifier module, with SVM or CRF being
common classifier choices. At each layer, Feature
Selection crafts a feature vector for the current in-
stance. Then Classifier determines if the stopping
signal is strong enough for an early stop. If a stop
signal is confirmed, we can discard the remaining
layers. Figures 2a and 2b visually depict Adaln-
fer’s workflow and the computational efficiencies
gained through this method, respectively.

3.1 Feature Selection

In the LLM era, there are two typical approaches to
obtaining the decision-making signal. The first ap-
proach involves modifying LLM parameters, which
requires training and incurs high costs. More im-
portantly, it may pose a potential risk of compro-
mising the model’s generalization capabilities in
other aspects and its in-context learning abilities,
and detecting these issues can be challenging (Gu
et al., 2024; Yao et al., 2023).

Hence, we embrace a more desirable and cost-
effective approach that preserves the model’s in-
nate abilities without altering parameters. This
approach is enhanced by an early-exit mechanism

Sentiment task
Ilike Camera A. ———> > > [-—————-
STOP
Camera A is better than i T
Camera B in picture quality.—>» > > P> [-——---
P d i STOP

MMLU task

Simplify and write the result ﬂwm
with a rational denominator: STOP
W25

- = = (| O

forward statistic ~feature vector embedding decoder block skipped block classification
classifier layer layer

(a) An illustration of Adalnfer processing three input instances,
including two for sentiment analysis and one for a knowledge-
based question answering task. It shows that the early-exit
times differ among the instances.

’ Llama2-13B 40 layers, 100% FLOPs
stop avg. layer:19.25
Sentiment task variance: 1.7
51.2% FLOPs
stop avg. layer: 32.39
’ MMLU task variance: 16.73
84.10% FLOPs

(b) After implementing Adalnfer, LLMs
can reduce computational costs through
adaptive early-exit strategies.

Figure 2: An illustration of Adalnfer’s processing and
computational savings.

for efficiency. Adalnfer utilizes specially designed
features such as “gap” and “top prob”, leveraging
a statistical classifier for evaluation to generate the
stopping signal. The rationale behind selecting
these specific features is explained further on.

Problem: The lack of universal-level features.
LLMs capture coarse-grained features in their ini-
tial layers and develop more detailed, fine-grained
representations in subsequent, deeper layers, facili-
tated by repeated application of multi-head atten-
tion mechanisms and the use of residual connec-
tions. However, there is a lack of universal-level
features to demonstrate that shallow-level represen-
tation is sufficient for the current task. Furthermore,
these features need to be inherently universal to en-
sure compatibility across various LLMs.

Solution: Logits reflect mutation. To address
this, we conducted a visual analysis of diverse fea-
tures across the layers within each block of LLMs.
Our examination focused specifically on:

e gap: Measures the current block’s predic-
tion confidence for the next token, defined
as gap = | P(top token) — P(second token)|,
where P represents the probability distribu-
tion generated by the current block.

* top prob: Indicates P(top token), the proba-

bility estimation by the current block for the
most likely next token.

* cosine similarity: Calculated to evaluate the
similarity between the features of current and
previous block, including attention activation
value (attn), multi-layer perceptron outputs
(mlp), and hidden states.

These analyses are showcased in Figure 3. In
this figure, we observe the following trends: (1)
For Llama2 (13B, 40 layers) (Touvron et al., 2023)
across sentiment and MMLU tasks, the gap and top
prob gradually increase during the inference phase,
stabilizing in the deeper layers. (2) The activation
of gap and top prob varies across layers for differ-
ent tasks. These phenomenons are also evident in
the Llama2-7B (Touvron et al., 2023), OPT-13B
(Zhang et al., 2022), and GPT-J (Wang and Komat-
suzaki, 2021) (See Appendix D). This demonstrates
gap and top prob can serve as universal features, in-
dicating the stopping signal. Notably, gap and top
probability values remain consistent across diverse
tasks, suggesting a versatile classifier applicable
to various tasks. We also conduct factor study in
subsequent experiments to show that other features
exhibit subtle differences across layers.

— gap
06 top prob 06
—— hidden state

— gap
top prob
—— hidden state

° 5 0 15 20 2 % 3 o 5 T 15 20 2 0 3
Layer-index Layer-index

(a) Llama2 on sentiment (b) Llama2 on MMLU

Figure 3: Statistics of features within LLMs that vary
with the forward layer.

3.2 Classifier

Problem: A trade-off between performance and
computational efficiency. Using confidence-
based criteria doesn’t require extra computations
during inference but may involve threshold tuning
with validation data to balance accuracy and ef-
ficiency (Huang et al., 2017; Yang et al., 2020).
Conversely, the plug-and-play nature of the gating
function (Lin et al., 2017; Bejnordi et al., 2019)
provides greater universality. Nonetheless, discrete
decision functions, lacking gradient information,
often require specialized training methods.

Solution: Connect Block Features to Decision
Making via Statistical Classifier. Considering
the trend in Figure 3, classical statistical classifi-
cation methods can address issues with discrete
decision functions. By classifying general features
like gap and top prob, we simplify decision-making
into binary classification, enabling early exit deci-
sions. If the classifier deems the current layer’s
features stoppable, subsequent layers can halt com-
putation; otherwise, they proceed to the final layer.
This process is also illustrated in Figure 2a.

3.3 Classifier Objective

Given one instance, we calculate the feature vector
x4 using the feature selection module. This feature
vector serves as the input for the classifier module.
If the current layer’s output ¢ provides the correct
answer y, the associated label y. is a positive ex-
ample; otherwise, it’s a negative example.

ity =y,
Ye = { (1)

0 otherwise.

Thus, for an L—layer LLM, each input instance x
yields L pairs of < x% y. >. The details of cre-
ating training data for classifier are in Appendix
C. We consider two types of classifiers, Support
Vector Machines (SVM) (Hearst et al., 1998) and
Conditional Random Fields (CRF) (Lafferty et al.,
2001). The first one does not rely on the context of
sequences, while the second one takes into account
that the features of layer-by-layer blocks might im-
plicitly incorporate concepts of sequence modeling.

SVM objective. SVM aims to find an optimal
hyperplane that separates classes by minimizing
classification errors and maximizing the margin
between support vectors.

CREF objective. CRF is used to capture sequence
feature dependencies and make decisions based on
neighboring element states in sequence labeling
tasks, with the training objective of maximizing the
conditional likelihood of the true label sequence
given the input sequence.

Table 1: LLMs statistics using Adalnfer.

Model Params Tokens |L|
Meta/OPT 13B 180B 40
Meta/Llama?2 7B 2T 32
Meta/LLlama 2 13B 2T 40
Meta/Llama2 70B 2T 80

4 Experiments

Building on the hypothesis Not all Layers are Nec-
essary during LLM inference (Section 2.2), we con-
duct experiments with algorithm Adalnfer on well-
known LLMs across various tasks.

4.1 Evaluation Tasks

To evaluate the zero/few shot learning capabilities
of Adalnfer, we utilize three primary types of tasks.

Question Answering Task Group. (1) MMLU
(Hendrycks et al., 2021) encompasses 57 tasks
across humanities, social sciences, STEM, and
more, requiring world knowledge and problem-
solving capabilities. (2) CommonsenseQA (Talmor
et al., 2019) tests for commonsense knowledge
through multiple-choice questions. (3) SQuAD
(Rajpurkar et al., 2016) serves as a reading com-
prehension benchmark, with questions based on
Wikipedia articles and answers are either segments
of passage or marked as unanswerable.

Text Classification Task Group. (1) SST-2
(Socher et al., 2013) involves sentiment analysis of
movie reviews with binary “positive” or “negative”
labels. (2) AG News (Zhang et al., 2015) classifies
news headlines and article sentences into Business,
Science/Technology, Sports, and World categories.

Rule Understanding Task. GPT-3’s (Brown
et al., 2020) few-shot learning capability is tested
with tasks requiring pattern recognition, using syn-
thetic datasets from (Todd et al., 2024; Hernandez
et al., 2024) for tasks like Capitalize/Lowercase
Letter, Choose Item/Category from List, and recog-
nizing data pairs (e.g.,, Person-Occupation).

4.2 Experiment Settings

Large Language Models. For Adalnfer’s back-
bone, we chose widely recognized LLMs, detailed
in Table 1. Our selections encompass OPT (Zhang
et al., 2022) and the Llama 2 series (Touvron et al.,
2023), which display nuanced variations in archi-
tectural design and training data size.

In-context Learning setting. We evaluate our
approach under zero-shot and few-shot scenarios,
using sample sizes of 5, 10, 15, and 20. For zero-
shot, the input is the test set’s x,. For few-shot,
training set examples are added to x,. For in-
context learning prompts, we use a default template:
Q : {zx} \nA : {yx} \n\n, concatenating random
x), and vy, samples from task-specific training sets.

Table 2: Performance and Efficiency in Question Answering Tasks, with Accuracy (%) denoted by ‘acc’. Results
include Few-shot learning with sample sizes of 5, 10, 15, and 20, showcasing the average values.

Setting Model MMLU CommonsenseQA SQuAD Avg

Acct FLOPs] Acct FLOPs] Acct FLOPs| Acct FLOPs|

Jeroshot OPT13B 795 100 820 100 2000 100 1205 100
Adalnfer 867 9755 280 9755 2300 9755 1149 97.55

Fewspot OPTI3B 2360 100 2145 100 2612 100 2372 100
CWSSIOL - Adalnfer 2259 8394 2162 8605 2595 8831 2339 86.10
Joronhor Llama2-13B 254 100 1.00 100 1920 100 758 100
Adalnfer 248 98.14 070 9837 2590 8534 969 93.95

Few.po Llama2-13B 5331 100 6492 100 529 100 57.04 100
W Adalnfer 5244 9355 6248 89.10 4835 80.66 5442 8777

Table 3: Performance and Efficiency in classification and rule understanding, with Accuracy (%) denoted by ‘acc’.

Results include Few-shot learning with sample sizes of 5, 10, 15, and 20, showcasing the average values.

. Sentiment AG News Avg Rule Understanding
Setting Model
Acct FLOPs| Acct FLOPs] Acct FLOPs| Acct FLOPs]
Zero-shot OPT-13B 0.00 100 0.10 100 0.05 100 3.38 100
OO Adalnfer 000 9687 010 100 005 9844 386 9252
Few-shot OPT-13B 92.58 100 72.83 100 82.71 100 58.48 100
Adalnfer 9297 80.28 72.83 100 8290 90.14 52.83 89.74
Zero-shot Llama2-13B 0.00 100 0.10 100 0.05 100 2.32 100
i Adalnfer 0.00 9743 0.10 8837 0.05 9290 6.14 85.76
Few-shot Llama2-13B 95.90 100 77.53 100 86.72 100 69.36 100
Adalnfer 92.65 59.70 7643 87.69 8454 73770 61.87 80.61
Metric. For performance evaluation, we report 4.3 Adalnfer: Comparable Performance with

the top-1 accuracy score on the test set following
(Todd et al., 2024). To assess computational cost,
we determine the early exit layer index for each
input instance, which can be translated into floating-
point operations (FLOPs) ratios for comparison
using the method described in (Narayanan et al.,
2021). The FLOPs ratio is calculated as:

20 (6h + s) + V
21(6h +s)+V

2

Where I’ represents the stop layer index during
inference in Adalnfer, [is the total number of trans-
former layers, h denotes the hidden size, s is the
sequence length, and V' stands for vocabulary size.
Further details on the calculation process can be
found in Appendix B. Since statistical classifiers
entail significantly lower computational costs com-
pared to LLM inference, as detailed in Appendix
B, we can overlook this aspect in our analysis.

Lower Computational Costs

The main experimental results of Adalnfer are pre-
sented in Tables 2 and 3. These experiments were
conducted in zero-shot and few-shot settings, show-
casing the Top-1 accuracy and average FLOPs ra-
tios (compared to the baseline). From a perspective
of performance and computational efficiency, we
can draw the following experimental conclusions.

Performance is Comparable with Minimal Loss.
Tables 2 and 3 show that across both zero-shot and
few-shot settings, top-1 average accuracy remains
within a narrow margin of <5% for all tasks and
<1% for QA and text classification task groups,
when compared to baseline models. Adalnfer main-
tains mainstream LLM capabilities and in-context
learning abilities without modifying model parame-
ters. This finding is promising, especially in light of
our observationl in Section 2.2, where we demon-
strate the feasibility of implementing early exit

strategies within LLM middle layers while preserv-
ing accuracy. For certain tasks, Adalnfer surpasses
the last layer (baseline) in zero-shot or few-shot
accuracy. This hints at a tendency for deep layers
to potentially over-represent certain tasks, which
could impede performance during LLM inference.

Reducing FLOPs Savings from 10% to 40%.
We convert the average and variance of early exit
layers for each task to FLOPs ratios in Table 2 and
Table 3. It can be observed that the FLOPs ratios
vary for different types of tasks, ranging from 90%
to 60%. This variation is due to the fact that Adaln-
fer assesses different early exit layer configurations
for different task inputs. Even for the same task
with different inputs, Adalnfer may recommend dif-
ferent early exit layer settings. For instance, in the
sentiment analysis task, a 40% reduction in com-
putational cost can be achieved using Llama2-13B,
while for the knowledge-based question answer-
ing MMLU and Commonsense question answering
CommonSenseQA, the savings range from 10% to
20%. This aligns with our observation2 outlined in
Section 2.2, where we argue that at LLM inference
scenario, Not all Layers are Necessary, and allo-
cating fewer computational resources for “simple”
samples can improve computational efficiency.

Table 4: Comparative Analysis of GAP and CRF on
Performance and Computational Efficiency.

‘ Adalnfer w. GAP ‘ Adalnfer w. CRF

Task ‘ Setting

| Acet FLOPs| | Acct FLOPs|

Zeroshot | 535 9084 | 477 9740

MMLU ‘ Few-shot | 47.00 8410 ‘ 272 915
CommonsenseQa | Zeroshot | 110 9278 | 140 978

Few-shot | 55.33 79.57 6572 96.40
Zero-shot | 24.60 73.17 23.10 93.03

SQuAD Few-shot | 43.43 71.19 | 51.75 89.94
Sentiment Zero-shot | 0.00 88.25 0.00 97.27
Few-shot | 91.45 51.25 95.60 73.07

AG News Zero-shot | 0.10 77.82 0.10 94.04
Few-shot | 69.17 70.65 76.77 93.08

Zero-shot | 9.90 74.80 3.43 90.29

Rule Understanding | o ¢ | 5378 7038 | 6582 90.29

4.4 GAP vs. CRF: A Comparative Study

In the main experiments Table 2 and Table 3, we
employed SVM as the classifier for Adalnfer. To
explore the impact of different classification strate-
gies, Table 4 compares the effects of implementing
an early-exit strategy with a GAP threshold set at
0.8 (stopping computation when the current block’s
GAP feature exceeds 0.8) against using CRF as a
classifier. The results indicate that both GAP and

CREF can reduce computational costs without sacri-
ficing LLM performance. Notably, in the zero-shot
setting, GAP outperforms CRF, suggesting a rela-
tively weak dependency between block features.

4.5 Adalnfer Performance Across Scales: 7B
and 70B Insights

In our main experiments, we employed 13B-sized
Llama and OPT models. To explore the effects
of Adalnfer on models of different sizes, we con-
ducted experiments on the 7B and 70B versions of
Llama. The results for the 7B model, presented in
Table 5, show that Adalnfer either maintains accu-
racy with minimal (<1%) loss or exceeds the base-
line in certain tasks, and achieves a computational
reduction ranging from 10% to 50%. However, in
experiments with the 70B model, we observed that
in a zero-shot setting, Adalnfer matches or slightly
exceeds the baseline model while reducing com-
putational costs by 30% to 60%. Notably, in the
few-shot setting, despite similar reductions in com-
putation, Adalnfer’s accuracy shows a 1% to 25%
gap across different tasks compared to the baseline.
This suggests that for larger models, such as the
70B or even larger scales, Adalnfer may need to
more precisely identify and utilize features at dif-
ferent levels. Improving Adalnfer to adapt to these
larger models is a direction for our future research.

Table 5: Adalnfer on Llama2-7B Across Tasks for Per-
formance and Computational Efficiency.

Task | Setting | Llama2-7B | Adalnfer
| | Acct FLOPs| | Acct FLOPs|
Zeroshot | 419 100 | 463 96.13
MMLU ‘ Few-shot | 43.05 100 ‘ 43.73 93.76
CommonsenscQa | Zer0shot | 530100 | 480 9526
sens Few-shot | 53.50 100 | 53.00 90.46
Zero-shot | 20.40 100 23.80 89.98
SQuAD ‘ Few-shot ‘ 4808 100 ‘ 4582 87.06
Sentiment Zero-shot | 0.00 100 | 0.00 96.37
entimen Few-shot | 9520 100 | 9530 68.05
Zeroshot | 0.10 100 | 0.10 91.36
AG News ‘ Few-shot ‘ 7965 100 ‘ 7972 9451
. Zero-shot | 5.47 100 5.32 91.55
Rule Understanding | oo hor 16680 100 | 6692 88.41

The results of all LLMs using different classi-
fiers are summarized in Table 8 and Table 9 in
the Appendix E and we have highlighted the best
results for each task in the current setting.

4.6 Generalization effect on Mainstream
Classifier

In Table 2 and Table 3, we randomly selected 6 to
9 training datasets from all task training sets (note:

Table 6: Generalization Performance of statistic clas-
sifier on Sentiment Task on Llama2-7B (32 Layers),
Inter-Model refer to Llama2-13B(40 layers).

Classifier Generalization Acc Layers Varience FLOPs
SVM Intra-Task 9490 18.15 045 60.58
CRF 0.00 0.00 0.00 100
SVM Inter-Task 955 192 4.40 63.80
CRF 949 202 4.55 66.87
SVM Inter-Model 90.70 20.60 3.70 54.55
CRF 87.75 1920 275 51.09

there are 71 subdatasets in total). Furthermore, to
assess the generalization performance of the statis-
tical classifiers, we conducted the following tests.

* Intra-Task Generalization. Evaluating the
sentiment task using a classifier trained on the
sentiment training dataset.

 Inter-Task Generalization. Testing senti-
ment using a classifier trained on the knowl-
edge question-answering task’s dataset.

* Inter-Model Generalization. Assessing the
sentiment task on Llama2-13B using a classi-
fier trained on Llama2-7B.

The results are presented in Table 6. The SVM
classifier exhibits satisfactory intra-task and inter-
task generalization capabilities, consistent with the
results presented in the main results. However, for
the CREF classifier, training in an intra-task manner
leads to premature termination of the LLM at very
shallow layers, resulting in subpar performance.
This could be attributed to insufficient feature se-
lection, causing the CRF to overfit noise or local
features in the training data. Additionally, due to
variations in the logits distribution characteristics
among different models, the inter-model classifier’s
performance shows moderate accuracy. In conclu-
sion, based on the results from Table 2 and Table 3
and Table 6, when using Adalnfer, we recommend
utilizing SVM as the classifier.

4.7 Factor Study

In response to the features mentioned in Section
3.1, we conducted cross-validation. Given that the
classifiers in the main results utilized basic features
(i.e., gap, top prob), we explored the impact of
features such as the cosine similarity between the
current block and the previous block, which en-
compasses the attention values (attn), multi-layer
perceptron (mlp), and hidden states. The experi-
mental results are presented in Table 7. It is evident

that attn has no discernible impact on the results,
while other features like mlp and hidden states have
an adverse effect. This result is consistent with
the trend shown in Figure 3, indicating that logits
can measure whether the model’s current forward
progress is sufficient, while changes in attention,
hidden state, and mlp involve various factors.

Table 7: Comparative Analysis of SVM Performance
with Incremental Feature Addition in Sentiment and
MMLU/Anatomy Tasks.

Feature Sentiment MMLU

Base Features (gap, top prob) 94.90 41.13
+attn 94.90 41.13

+hidden state 67.53 41.13

+mlp 67.88 41.93

5 Related Work

For decades, various systems have been developed
to enhance machine learning model inference effi-
ciency, incorporating techniques such as instance-
wise dynamic networks (Han et al., 2021; Huang
et al., 2017; Teerapittayanon et al., 2016; Bolukbasi
et al., 2017) and quantization (Xiao et al., 2023;
Frantar et al., 2022), sparsity (Liu et al., 2023) or
distillation (Touvron et al., 2021). They are orthog-
onal areas and usually excel in different settings.
Our work Adalnfer is aligns more closely dynamic
networks with further elaboration in Appendix A.

6 Conclusion

In this paper, we first hypothesize that Not all Lay-
ers are Necessary at inference time and provide
statistical evidence to support this. Building on
this hypothesis, we present Adalnfer, a simple and
straightforward algorithm. This algorithm deter-
mines the appropriate moment to cease inference
based on the input instance, thus enhancing infer-
ence efficiency and adaptability without modify-
ing the model’s parameters. Experiments on main-
stream LL.Ms show that Adalnfer can reduce com-
putational usage by 10% to 50% across various
tasks all while maintain comparable performance
with minimal loss. More importantly, Adalnfer
is compatible with other model acceleration tech-
niques, potentially offering further improvements
in inference efficiency. We argue that Adalnfer, as
a simple yet effective algorithm, establishes a new
paradigm for efficient inference in LLMs.

Limitations

In this paper, we make a first attempt to discover
that the logits of each block are critical for early-
exit classifiers in LLMs, incorporating this insight
as a key design choice in Adalnfer. However, since
Adalnfer relies on a single forward pass, it has not
yet been extended to sequential generative tasks ,
offering significant avenues for future research.

Ethics Statement

Our research aims to optimize large-scale model in-
ference without modifying parameters, promising
efficiency gains and reduced energy consumption.
However, we must address potential misuse con-
cerns, as enhanced inference capabilities may also
enable malicious actors to exploit large neural lan-
guage systems by injecting or amplifying logits as
features, leading to undesirable behavior.

References

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor
Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria Lin,
Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru,
et al. 2021. Efficient large scale language mod-
eling with mixtures of experts. arXiv preprint
arXiv:2112.10684.

Babak Ehteshami Bejnordi, Tijmen Blankevoort, and
Max Welling. 2019. Batch-shaping for learning
conditional channel gated networks. arXiv preprint
arXiv:1907.06627.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and
Venkatesh Saligrama. 2017. Adaptive neural net-
works for efficient inference. In International
Conference on Machine Learning, pages 527-536.
PMLR.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Stephanie Chan, Adam Santoro, Andrew Lampinen,
Jane Wang, Aaditya Singh, Pierre Richemond, James
McClelland, and Felix Hill. 2022. Data distribu-
tional properties drive emergent in-context learning
in transformers. Advances in Neural Information
Processing Systems, 35:18878-18891.

Ian J Deary, Geoff Der, and Graeme Ford. 2001. Reac-
tion times and intelligence differences: A population-
based cohort study. Intelligence, 29(5):389-399.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parame-
ter models with simple and efficient sparsity. The

Journal of Machine Learning Research, 23(1):5232—
5270.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, pages 10323-10337. PMLR.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024.
Model editing can hurt general abilities of large lan-
guage models. arXiv preprint arXiv:2401.04700.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui
Wang, and Yulin Wang. 2021. Dynamic neural net-
works: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(11):7436-
7456.

Marti A. Hearst, Susan T Dumais, Edgar Osuna, John
Platt, and Bernhard Scholkopf. 1998. Support vec-
tor machines. IEEE Intelligent Systems and their

applications, 13(4):18-28.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International
Conference on Learning Representations (ICLR).

Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin
Meng, Martin Wattenberg, Jacob Andreas, Yonatan
Belinkov, and David Bau. 2024. Linearity of rela-
tion decoding in transformer language models. In
Proceedings of the 2024 International Conference on
Learning Representations.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli
Dryden, and Alexandra Peste. 2021. Sparsity in
deep learning: Pruning and growth for efficient infer-
ence and training in neural networks. The Journal of
Machine Learning Research, 22(1):10882—-11005.

Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru
Zhang, and G Edward Suh. 2019. Channel gating
neural networks. Advances in Neural Information
Processing Systems, 32.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Lau-
rens Van Der Maaten, and Kilian Q Weinberger. 2017.
Multi-scale dense networks for resource efficient im-
age classification. arXiv preprint arXiv:1703.09844.

David H Hubel and Torsten N Wiesel. 1962. Recep-
tive fields, binocular interaction and functional ar-
chitecture in the cat’s visual cortex. The Journal of

physiology, 160(1):106.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87.

Jannik Kossen, Tom Rainforth, and Yarin Gal. 2023.
In-context learning in large language models learns
label relationships but is not conventional learning.
arXiv preprint arXiv:2307.12375.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data.

Yann LeCun, John Denker, and Sara Solla. 1989. Op-
timal brain damage. Advances in neural information
processing systems, 2.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou.
2017. Runtime neural pruning. Advances in neural
information processing systems, 30.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang,
and Trevor Darrell. 2018. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. 2023. Deja
vu: Contextual sparsity for efficient llms at infer-
ence time. In International Conference on Machine
Learning, pages 22137-22176. PMLR.

Akira Murata, Vittorio Gallese, Giuseppe Luppino,
Masakazu Kaseda, and Hideo Sakata. 2000. Selec-
tivity for the shape, size, and orientation of objects
for grasping in neurons of monkey parietal area aip.
Journal of neurophysiology, 83(5):2580-2601.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Kor-
thikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, Amar Phanishayee,
and Matei Zaharia. 2021. Efficient large-scale
language model training on GPU clusters using
megatron-lm. In International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 2021, St. Louis, Missouri, USA,

Empirical Methods in Natural Language Processing,
pages 1631-1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4149-4158, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Raphael Tang, Yao Lu, Linqging Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works. arXiv preprint arXiv:1903.12136.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-
Tsung Kung. 2016. Branchynet: Fast inference via
early exiting from deep neural networks. In 2016
23rd international conference on pattern recognition
(ICPR), pages 2464-2469. IEEE.

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron
Mueller, Byron C. Wallace, and David Bau. 2024.
Function vectors in large language models. In
Proceedings of the 2024 International Conference on
Learning Representations.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-
cisco Massa, Alexandre Sablayrolles, and Hervé Jé-
gou. 2021. Training data-efficient image transform-
ers & distillation through attention. In International
conference on machine learning, pages 10347-
10357. PMLR.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

November 14-19, 2021, page 58. ACM.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-
ciently scaling transformer inference. Proceedings
of Machine Learning and Systems, 5.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions
for Machine Comprehension of Text. arXiv e-prints,
page arXiv:1606.05250.

Timothy A Salthouse. 1996. The processing-
speed theory of adult age differences in cognition.
Psychological review, 103(3):403.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on

10

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in Neural Information
Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages
5998-6008.

Paul Viola and Michael J Jones. 2004. Robust real-time
face detection. International journal of computer
vision, 57:137-154.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023. Label
words are anchors: An information flow perspective

https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

for understanding in-context learning. arXiv preprint
arXiv:2305.14160.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell,
and Joseph E Gonzalez. 2018. Skipnet: Learn-
ing dynamic routing in convolutional networks.
In Proceedings of the European Conference on
Computer Vision (ECCV), pages 409-424.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087-38099. PMLR.

Xingrun Xing, Li Du, Xinyuan Wang, Xianlin Zeng,
Yequan Wang, Zheng Zhang, and Jiajun Zhang. 2023.
Bipft: Binary pre-trained foundation transformer
with low-rank estimation of binarization residual
polynomials. arXiv preprint arXiv:2312.08937.

Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng
Dai, and Gao Huang. 2020. Resolution adaptive
networks for efficient inference. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 2369-2378.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. arXiv preprint
arXiv:2305.13172.

Dewen Zeng, Nan Du, Tao Wang, Yuanzhong Xu, Tao
Lei, Zhifeng Chen, and Claire Cui. 2023. Learn-
ing to skip for language modeling. arXiv preprint
arXiv:2311.15436.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing

systems, 28.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu
Lin, Yong-Jin Liu, and Gao Huang. 2023. Expel:
Llm agents are experiential learners. arXiv preprint
arXiv:2308.10144.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yan-
ping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. 2022. Mixture-of-experts
with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103-7114.

A Related Work

Dynamic Inference. A straightforward approach
to address the hypothesis outlined in Section 2 in-
volves the utilization of dynamic neural networks

11

(Han et al., 2021). The core idea of dynamic net-
works—adaptive inference—has been explored by
some researchers before the prevalence of deep net-
works today (Jacobs et al., 1991; Viola and Jones,
2004). In the context of LLM inference, LLMs dy-
namically adjusts its own structure and parameters
when dealing with diverse test instance. Popular
deep network architectures often encompass two
dimensions: depth (number of network layers) and
width (number of channels, parallel subnetworks,
etc.). Consequently, networks with dynamic struc-
tures can be classified into two types: dynamic
depth and dynamic width. Dynamic width in the
context of Mixture of Experts (MOE) (Fedus et al.,
2022; Zhou et al., 2022; Artetxe et al., 2021), CNN
channel pruning (Hua et al., 2019; Hoefler et al.,
2021), when applied to the LLM inference scenario,
poses a potential risk. This risk is associated with
the possibility that modifying model parameters
may compromise the model’s generalization and
detecting these issues can be challenging. Dynamic
depth techniques often encompass early-exit and
skip-layer mechanisms. The core idea of the early-
exit strategy is to set exits at intermediate layers of
the model and adaptively decide whether a sample
should exit early based on its output at these mid-
exits. Inspired by works that integrate classifiers
into intermediate layers of CNN/DNN networks for
visual tasks to handle early exits (Bolukbasi et al.,
2017; Huang et al., 2017; Teerapittayanon et al.,
2016), our proposed Adalnfer closely aligns with
this concept. The early-exit mechanism effectively
bypasses the computation of all layers following a
certain classifier. Meanwhile, skip-layer function-
ality dynamically omits the execution of a layer
(or module) for any input token, facilitated by a
gate function (Wang et al., 2018) or a binary router
(Zeng et al., 2023).

Quantization, Sparsity, Distillation for LLM in-
ference. For decades, various system adaptations
for enhancing model inference in machine learning
have been under continuous exploration. Among
these, techniques like quantization (Xiao et al.,
2023; Frantar et al., 2022; Xing et al., 2023) have
been employed to accelerate inference by repre-
senting floating-point data with fewer bits, thus
reducing memory usage during inference. Spar-
sity (Liu et al., 2023; Frantar and Alistarh, 2023)
employs predictors or sparse regression solvers to
facilitate sparsity in LLM inference, further opti-
mizing performance. Distillation (Touvron et al.,

2021; Tang et al., 2019) reduces computational and
storage costs by training a smaller model to mimic
the performance of the original model, optimizing
efficiency.

B Computation cost.

Classifier Computation cost. We utilized the
sklearn library for training SVM* and CRF', adher-
ing to default configurations. For SVM and CRF
training, we used the sklearn library with default
settings. Given a training dataset with N training
examples, the time complexity for SVM training
typically ranges from O(N? x d) to O(N?3 x d),
where d is the feature dimension. SVM prediction
time complexity is O(d) per single inference. For
standard linear-chain CRF, the training time com-
plexity is approximately O(N x S x M), where
S is the average sequence length, M is the label
count. The prediction time complexity for CRF
is O(S x M) per single inference. In contrast,
the inference time complexity for large models
like llama2 is LSd(d + S) per single inference,
where d is the word vector dimension, S is the
sequence length, and L represents the number of
layers. Comparatively, the computational load of
SVM and CREF is negligible when compared to
large models.

Transformer Computation cost. Given a lan-
guage model with [transformer layers, hidden
size h, sequence length s, vocabulary size V,
and batch size B. Each transformer block needs
24Bsh? + 4Bs*h FLOPs for the forward pass.
The other main contributor to the FLOPs count
is the classification layer in the language model
head, which transforms features of dimension h
to the vocabulary dimension V. The required
FLOPs for this operation is 2BshV in the for-
ward pass. Summing these together, a transformer
model with [transformer layers, the total num-
ber of floating-point operations for inference is
4Bshl(6h + s) + 2BshV . Thus, the ratio of infer-
ence cost in FLOPs is

20'(6h+5) +V

2(6h +5) +V ©)

where [’ is the Adalnfer stop layer index during
inference.

“https://scikit-learn.org/stable/modules/svm.html
"https://sklearn-crfsuite.readthedocs.io/en/latest/

12

C Details of Creating Training Data for
Classifier

Considering a training input instance x and its cor-
responding label y from Dyq;rn. Once x is pro-
cessed through a decoder layer of LLM, we can
extract a general feature vector z¢ (d is the number
of features). Additionally, we obtain the probability
distribution P over the vocabulary V' of the current
layer’s hidden state after passing through the clas-
sification layer (as depicted in Section 2.1). This
can be represented as: P = softmax(WH + b),
where H is the hidden state of the current layer, W
and b are the weights and bias of the classification
layer, respectively. softmax is the softmax func-
tion applied to convert logits to probabilities. Let
the highest-ranked token in this distribution be de-
noted as § = argmax(P), where argmax(P) finds
the token with the highest probability. If j matches
the label ¥, the associated label g, for the feature
vector x4 is designated as positive; otherwise, it is
labeled as negative.

-

Thus, for an L—layer LLM, each input instance x
yields L pairs of < 29,7, >.

L ify =y,

0 otherwise.

“)

D Observation of other LLMs

Figure 4 represents visual analysis of diverse fea-
tures across the layers within each block of main-
stream LLMs.

E Comprehensive Summary of Results

The results of all LLMs using different classifiers
are summarized in Table 8 and 9. We have high-
lighted the best results for each task in the current
setting.

1.0 1.01
0.8 0.8
— gap gap
064 — top prob 064 top prob
—— hidden state hidden state
oad T mlip 04l mip
— attn attn
—— probs KL probs KL
" \/\/\iy " /\/\/
0.0 0.0
6 _'; 1‘0 1‘5 Zb 2‘5 é 1‘0 1‘5 Zb 2‘5
Layer-index Layer-index
(a) GPT-J 6B on sentiment (b) GPT-J 6B on MMLU
1.0 1.0
0.8 0.8
— gap gap
064 —— top prob 0.6 top prob
—— hidden state hidden state
04{ —— mlp 041 mip
— attn attn
021 — probs KL 02 probs KL
0.0 \—\‘Q' > ~ \/
6 % 1‘0 1‘5 Zb 2‘5 3‘0 é lb 1‘5 2‘0 2‘5 3‘0
Layer-index Layer-index
(c) Llama2-7B on sentiment (d) Llama2-7B on MMLU
1.0 1.0 T
0.8 0.8
gap — gap
0.6 top prob 0.61 —— top prob
—— hidden state —— hidden state
0.4 — mbp 0.44 — mip
— attn — attn
—— probs KL —— probs KL
0.2 v 0.24 -
0.0 0.04

0 5 10 15 20 25 30 35
Layer-index

(e) OPT-13B on sentiment

5 10 15 20 25 30 35
Layer-index

(f) OPT-13B on MMLU

Figure 4: visual analysis of diverse features across mainstream LLMs.

13

Table 8: Performance and Computational Efficiency in Question Answering Tasks, with Accuracy (%) denoted by
‘acc’. Results include Few-shot learning with sample sizes of 5, 10, 15, and 20, showcasing the average values.

Setting Model MMLU CommonsenseQA SQuAD Avg

Acct FLOPs| Acct FLOPs| Acct FLOPs| Acct FLOPs]

OPT-13B 7.95 100 8.20 100 20.00 100 12.05 100

Zero-shot Adalnfer w. GAP 3.21 89.58 0.60 85.17 20.72 8798 8.18 87.58

) Adalnfer w. CRF 7.14 96.57 4.60 93.26 2436 9322 12.03 9435

Adalnfer 8.67 97.55 2.80 97.55 23.00 9755 1149 9755

OPT-13B 23.60 100 21.45 100 26.12 100 23.72 100

Few-shot Adalnfer w. GAP 20.99 = 79.54 20.72 80.00 2420 8293 2197 80.82

W Adalnfer w. CRF 24.44 9743 21.18 97.55 2598 97.11 2481 97.37

Adalnfer 2259 8394 | 21.62 86.05 2595 8831 2339 86.10

Llama2-7B 4.19 100 5.30 100 20.40 100 9.96 100

Zero-shot Adalnfer w. GAP 4.69 95.69 4.60 94.90 2390 8948 11.06 93.36

Adalnfer w. CRF ~ 4.86 95.32 2.00 95.01 18.80 91.17 8.55 93.83

Adalnfer 4.63 96.13 4.80 95.26 2380 8998 11.08 93.79

Llama-2-7B 43.05 100 53.50 100 48.08 100 48.21 100

Few-shot Adalnfer w. GAP 44.03 93.69 52.83 90.23 45.68 @ 86.72 47.51 @ 90.21

W Adalnfer w. CRF 41.38 94.23 53.6 91.61 4362 88.10 4620 9131

Adalnfer 4373 93.76 53.00 90.46 4582 87.06 47.52 9043

Llama2-13B 2.54 100 1.00 100 19.20 100 7.58 100

Zero-shot Adalnfer w.GAP ~ 5.35 90.84 1.10 92.78 2460 73.17 1035 85.60

) Adalnfer w.CRF 4.77 97.40 1.40 97.28 23.10 93.03 9.76 95.90

Adalnfer 2.48 98.14 0.70 98.37 2590 85.34 9.69 93.95

Llama-2-13B 53.31 100 64.92 100 52.9 100 57.04 100

Few-shot Adalnfer w. GAP 47.09 84.10 5533 79.57 4343 71.19 48.62 78.29

Adalnfer w.CRF 5272 97.15 65.72 96.40 5175 89.94 5673 94.50
Adalnfer 5244 9355 62.48 89.10 4835 80.66 5442 87.77

Table 9: Performance and Computational Efficiency in text classification and rule understanding tasks, with Accuracy
(%) denoted by "acc’. Results include Few-shot learning with sample sizes of 5, 10, 15, and 20, showcasing the
average values.

. Sentiment AG News Avg Rule Understanding

Setting Model

Acct FLOPs| Acc?T FLOPs| Acct FLOPs| Acct FLOPs|

OPT-13B 000 100 0.10 100 005 100 338 100

Jeroshor Adalnferw: GAP0.00 ~ 90.61 0.0 9203 005 9132 364 87.55

Adalnfer w. CRF 000 9755 0.0 9755 005 97.55 4.1 97.55

Adalnfer 0.00 9687 0.10 100 005 9844 386 92.52

OPT-13B 9258 100 | 72.83 100 8271 100 | 58.48 100

Fow.ho Adalnfer wGAP 9420 7830 1295 | 8254 5358 | 8042 4820 | 8550

W Adalnfer w. CRF 92.88 97.50 7127 97.55 8208 9753 5533 97.50

Adalnfer 9297 8028 | 72.83 100 | 8290 90.14 5283 89.74

Llama2-7B 000 100 0.10 100 005 100 547 100

Jeroshor AdalnferwGAP 000 9608 0.10 9105 005 9357 54l 91.20

Adalnfer w. CRF 0.00 9607 0.10 9220 005 9414 3.62 92.08

Adalnfer 000 9637 0.0 9136 005 93.87 532 91.55

Llama-2-7B 9520 100 79.65 100 8743 100 66.80 100

Fow.cpo Adalnferw. GAP (9530 67.78 7972 9438 8751 8108 6680 | 87.99

CWSIOL - Adalnfer w. CRF 9490 6991 61.62 9638 7826 83.15 6236 89.60

Adalnfer 9530 68.05 79.72 9451 8751 8128 6692 884l

Llama2-13B 000 100 0.10 100 0.05 100 2.32 100

Jeroshor Adalnferw GAP 000 8825 0.0 7782 005 8304 99 74.80

Adalnfer w. CRE 0.00 9727 0.10 9404 005 9566 3.43 90.29

Adalnfer 0.00 9743 0.0 8837 005 9290 6.14 85.76

Llama-2-13B | 9590 100 77.53 100 8672 100 | 69.36 100

Fow.cho Adalnferw. GAP 9145 | /5125 69.17 | 7065 80.31 6095 5378 | 70.38

Adalnfer w. CRF 95.60 73.07 76.77 93.08 86.19 83.08 65.82 90.29
Adalnfer 9265 59.70 76.43 87.69 8454 7370 61.87 80.61

14

