
AdaInfer: Instance-aware Adaptive Inference for LLMs

Anonymous ACL submission

Abstract

Large Language Models (LLMs) inference001
phase is very expensive. An ideal inference-002
LLM should utilize fewer computational re-003
sources while still maintaining its capabilities004
in generalization and in-context learning abil-005
ity. In this paper, we try to answer the question,006
“During LLM inference, can we use shallow lay-007
ers for easy input; deep layers for hard ones?”008
To answer this question, we first indicate that009
Not all Layers are Necessary at inference time010
by statistically analyzing the activated layers011
across tasks. Then, we propose a simple al-012
gorithm named AdaInfer for instance-aware013
adaptive inference, which determines the in-014
ference termination time based on the input015
instance itself. More importantly, AdaInfer016
does not alter LLM parameters and maintains017
generalizability across tasks. Experiments on018
well-known LLMs (i.e., Llama2-7B/13B and019
OPT-13B) show that AdaInfer can save 10% to020
50% of computational resources on mainstream021
tasks (e.g., knowledge-based/common-sense022
QA, text classification). Meanwhile, maintain-023
ing accuracy with average minimal (<1%) loss.024
Additionally, this method is orthogonal to other025
model acceleration techniques (e.g., sparse and026
flash attention), offering the potential for fur-027
ther enhancing inference efficiency. Code and028
data is available at Anomynous Github.029

1 Introduction030

Large Language Models (LLMs) have demon-031

strated impressive performance on various down-032

stream tasks (e.g., text generation, summarization,033

translation, question & answering) using a vari-034

ety of evaluation protocols such as zero-shot, few-035

shot, and fine-tuning (Todd et al., 2024; Chan et al.,036

2022; Kossen et al., 2023; Wang et al., 2023). No-037

tably, their in-context learning ability allows them038

to adapt to tasks using input-output examples with-039

out parameter updates (Kossen et al., 2023; Todd040

et al., 2024). However, their inference phase is041

very expensive (Pope et al., 2023; Liu et al., 2023). 042

For example, the inference time complexity for 043

large models like Llama2 (Touvron et al., 2023) 044

is LSd(d + S) per single inference, where d de- 045

notes the word vector dimension, S is the sequence 046

length, and L represents the number of layers. An 047

ideal inference LLM should utilize fewer compu- 048

tational resources while still maintaining its capa- 049

bilities in generalization and in-context learning 050

ability (Liu et al., 2023). The simplest methods 051

for achieving efficient inference in LLMs include 052

model pruning (Liu et al., 2018) and sparse models 053

(LeCun et al., 1989). The potential drawbacks of 054

the aforementioned methods include the following: 055

(i) Few methods consider dynamically reducing 056

the number of activated neurons as an approach to 057

accelerate LLM inference. (ii) Altering LLM pa- 058

rameters may risk compromising its generalization 059

ability, which is challenging to detect. (iii) Dif- 060

ferent LLM designs pose compatibility challenges 061

with other acceleration methods. 062

Due to the mentioned issues, inspired by the hu- 063

man thinking process, where quick answers are of- 064

ten provided for simple questions while more time 065

is spent on thoughtful reasoning for knowledge- 066

related questions (Salthouse, 1996; Deary et al., 067

2001). Existing studies (Teerapittayanon et al., 068

2016; Huang et al., 2017) show that “Easy” tasks 069

activate at shallower layers while “hard” ones at 070

deeper layers. Motivated by this, we observed that 071

this trend also holds true at LLM inference time, as 072

evidenced by statistics on mainstream LLMs across 073

different tasks. This leads us to hypothesize that 074

Not all Layers are Necessary at Inference time with 075

varying input instances (Section 2.2). Therefore, 076

a natural approach to achieve LLM efficient infer- 077

ence for various tasks is adaptive inference based 078

on input instances. This involves selectively exe- 079

cuting different network layers for different sam- 080

ples. For instance, allocating fewer computational 081

resources for processing “simple” samples to en- 082

1

https://anonymous.4open.science/r/AdaInfer-A60B

hance operational efficiency. This approach trims083

needless computations for “simpler” inputs, im-084

proving efficiency. Additionally, delving into adap-085

tive LLM inference could establish connections086

between LLMs and the brain’s information process-087

ing (Hubel and Wiesel, 1962; Murata et al., 2000),088

facilitating the analysis of activated network mod-089

ules during sample processing (Han et al., 2021)090

and determining the critical input components in-091

fluencing the final prediction.092

In this paper, we introduce a simple and straight-093

forward algorithm, named AdaInfer, for instance-094

aware adaptive inference in LLMs, building on the095

observation that Not all Layers are Necessary at096

Inference time. The core of instance-aware adap-097

tive inference lies in data-driven decision-making.098

There are generally two approaches to getting099

decision-making signals: (1) updating LLM param-100

eters demands training, involves high costs, and101

might decrease the model’s generalizability, and102

(2) keeping parameters unchanged, a more desir-103

able and cost-effective approach that preserves the104

model’s innate ability (Yao et al., 2023; Zhao et al.,105

2023). Our proposed AdaInfer decides when to106

stop inference based on input instance, optimizing107

efficiency without altering the model’s parameters.108

AdaInfer keeps LLM parameters unchanged and109

maintains generalizability across tasks. We adopt110

the early-exit mechanism from dynamic depth for111

instance-aware adaptive inference. Specifically, we112

began by performing statistical analysis on LLM113

for each block feature (e.g., logits, hidden state,114

mlp, and attention activation value). Subsequently,115

we choose logits to construct the feature vector and116

employ a classic statistical classifier to facilitate the117

early exit decision-making strategy (see Section 3).118

To the best of our knowledge, this is the first119

attempt to discover that each block’s logits are cru-120

cial elements for early-exit classifiers in LLMs, and121

we incorporate it as a fundamental design choice in122

AdaInfer. Our experiments on well-known LLMs123

(i.e., OPT-13B and Llama2-7B/13B) demonstrate124

that AdaInfer, without modifying any model pa-125

rameters, can save 10% to 50% of computational126

resources on mainstream tasks (e.g., knowledge-127

based and common-sense question answering, text128

classification) while maintaining accuracy with129

minimal (less than 1%) loss. More importantly,130

AdaInfer is orthogonal to other model acceleration131

techniques (e.g., quantization, sparse models, and132

flash attention), offering the potential for further133

enhancing inference efficiency (Section 4).134

2 LLMs Efficiency at Inference: Not all 135

Layers are Necessary 136

This section aims to prove that Not all Layers are 137

Necessary at inference time by analyzing the num- 138

ber of activated layers across various tasks at LLM 139

inference. We first briefly review LLM’s critical 140

components in Section 2.1. Then, we present our 141

statistical observations and insights in Section 2.2. 142

2.1 Preliminary: LLM Buliding blocks 143

Modern LLMs are rooted in the Transformer archi- 144

tecture (Vaswani et al., 2017), and can be trained 145

with different unsupervised training objectives. For 146

instance, mainstream LLMs (e.g., GPT, Llama) are 147

pretrained with a full language modeling objective 148

with a decoder-only structure, computing loss on 149

all tokens. The key components of LLMs can be 150

broken down into the following blocks: 151

Tokenizer and Embedding Layer. This block is 152

responsible for tokenizing input text into individ- 153

ual tokens and transforming them into numerical 154

vectors. These numerical vectors enable the model 155

to process and analyze textual data effectively. 156

Decoder Block. The decoder block receives 157

numerical vectors, process them through self- 158

attention mechanisms and feedforward neural net- 159

works to understand contextual nuances, and out- 160

puts predictions for the next token in a sequence. 161

Classification Layer. Also known as the LM 162

head layer, it transforms decoder logits into a 163

vocabulary-wide probability distribution using lin- 164

ear transformation and softmax, enabling word pre- 165

diction by selecting the top probability option. 166

These blocks allow LLMs to efficiently execute 167

tasks like text generation and classification in natu- 168

ral language processing. LLMs employ multi-layer 169

Transformers, focusing much of the computation 170

on decoder blocks. For LLMs like Llama2, infer- 171

ence complexity is LSd(d + S) per single infer- 172

ence, where d is the word vector dimension, S is 173

the sequence length, and L represents the number 174

of decoder blocks. Consequently, to explore the 175

possibility of skipping intermediate layers in LLMs 176

during inference, we do following experiments. 177

2.2 Not all Layers are Necessary at Inference 178

time 179

Earlier Transformer models typically comprised 180

6 decoder layers, while current open-source mod- 181

els, such as Llama2-13B (Touvron et al., 2023), 182

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Layers

0.0

0.2

0.4

0.6

0.8
Ac

cu
ra

cy
0-Shot
1-Shot
2-Shot
3-Shot

Figure 1: LLama2-7B model performance across 32
Layers: solid line for sentiment analysis and dashed line
for MMLU tasks.

feature 40 decoder layers. However, during infer-183

ence, each input instance for different tasks passes184

through every block layer by layer until the last185

layer, prompting us to question: “Can we allocate186

fewer computational resources per input instance187

instead of the same substantial budget?” To investi-188

gate this, we statistically analyze the number of ac-189

tivated layers across various tasks during inference.190

Given one task, we examine the relationship be-191

tween accuracy and the number of layers activated.192

The statistical results are depicted in Figure 1.193

Observation 1: Not all Layers are Necessary194

at Inference time: Early Stopping works. In sen-195

timent analysis using the Llama2-13B (40 layers)196

model, the average activated layer count per input197

is 21, with a variance of 5.1. This observation is198

intuitive. For instance, simpler inputs like “I like199

Camera A” activate 16 layers, while more complex200

inputs like “Camera A is better than Camera B in201

picture quality” activate 24 layers. The latter sen-202

tence introduces a comparative sentiment about the203

“quality” aspect between Camera A and Camera B,204

which embodies more complex features, suggest-205

ing deeper layers for such complex instances.206

Observation 2: Varying Task Difficulties, Differ-207

ent Activation Layers: Stop Simpler Tasks Sooner,208

Let Complex Ones Go Deeper. Tasks in the LLM ac-209

tivate different layers, with simpler ones usually at210

shallower layers and more complex ones at deeper211

layers. This is shown in Figure 1, which demon-212

strates the performance of a Llama2-7B model213

across 32 layers in sentiment analysis (Socher et al.,214

2013) and MMLU (Hendrycks et al., 2021). For215

simple tasks like sentiment classification, accuracy216

matches that of the final layer by the 24th layer. 217

Conversely, for complex tasks like MMLU, accu- 218

racy tends to improve with deeper layers. 219

Insight. The observations mentioned above are 220

intuitive. It’s worth noting that similar observations 221

have been made by (Teerapittayanon et al., 2016; 222

Huang et al., 2017) for visual tasks in convolu- 223

tional neural networks. Surprisingly, we have also 224

observed this phenomenon at LLM inference time. 225

By exploiting this phenomenon, we can perform 226

instance-aware adaptive inference for LLMs, dy- 227

namically adjusting their structure/parameters for 228

different test samples, thereby achieving superior 229

advantages in inference efficiency and adaptability. 230

Moving forward, we will leverage this observation 231

to implement adaptive inference. 232

3 AdaInfer 233

To lower inference computational costs, we in- 234

troduced AdaInfer, an instance-aware adaptive 235

inference algorithm for LLMs. The core of 236

instance-aware adaptive inference lies in data- 237

driven decision-making fortified by integrating the 238

early exit strategy from dynamic depth. AdaInfer 239

dynamically computes the stopping signal by eval- 240

uating critical features (i.e., “ga” and “top prob”). 241

AdaInfer consists of a Feature Selection module 242

and a Classifier module, with SVM or CRF being 243

common classifier choices. At each layer, Feature 244

Selection crafts a feature vector for the current in- 245

stance. Then Classifier determines if the stopping 246

signal is strong enough for an early stop. If a stop 247

signal is confirmed, we can discard the remaining 248

layers. Figures 2a and 2b visually depict AdaIn- 249

fer’s workflow and the computational efficiencies 250

gained through this method, respectively. 251

3.1 Feature Selection 252

In the LLM era, there are two typical approaches to 253

obtaining the decision-making signal. The first ap- 254

proach involves modifying LLM parameters, which 255

requires training and incurs high costs. More im- 256

portantly, it may pose a potential risk of compro- 257

mising the model’s generalization capabilities in 258

other aspects and its in-context learning abilities, 259

and detecting these issues can be challenging (Gu 260

et al., 2024; Yao et al., 2023). 261

Hence, we embrace a more desirable and cost- 262

effective approach that preserves the model’s in- 263

nate abilities without altering parameters. This 264

approach is enhanced by an early-exit mechanism 265

3

forward

I like Camera A.

Camera A is better than
Camera B in picture quality.

STOP

STOP

Simplify and write the result
with a rational denominator:

!
729

STOP

statistic
classifier

feature vector embedding
layer

decoder block skipped block classification
layer

Sentiment task

MMLU task

(a) An illustration of AdaInfer processing three input instances,
including two for sentiment analysis and one for a knowledge-
based question answering task. It shows that the early-exit
times differ among the instances.

stop avg. layer:19.25
variance: 1.7
51.2% FLOPs

Sentiment task

MMLU task

Llama2-13B 40 layers, 100% FLOPs

stop avg. layer: 32.39
variance: 16.73
84.10% FLOPs

(b) After implementing AdaInfer, LLMs
can reduce computational costs through
adaptive early-exit strategies.

Figure 2: An illustration of AdaInfer’s processing and
computational savings.

for efficiency. AdaInfer utilizes specially designed266

features such as “gap” and “top prob”, leveraging267

a statistical classifier for evaluation to generate the268

stopping signal. The rationale behind selecting269

these specific features is explained further on.270

Problem: The lack of universal-level features.271

LLMs capture coarse-grained features in their ini-272

tial layers and develop more detailed, fine-grained273

representations in subsequent, deeper layers, facili-274

tated by repeated application of multi-head atten-275

tion mechanisms and the use of residual connec-276

tions. However, there is a lack of universal-level277

features to demonstrate that shallow-level represen-278

tation is sufficient for the current task. Furthermore,279

these features need to be inherently universal to en-280

sure compatibility across various LLMs.281

Solution: Logits reflect mutation. To address282

this, we conducted a visual analysis of diverse fea-283

tures across the layers within each block of LLMs.284

Our examination focused specifically on:285

• gap: Measures the current block’s predic-286

tion confidence for the next token, defined287

as gap = |P (top token) − P (second token)|,288

where P represents the probability distribu-289

tion generated by the current block.290

• top prob: Indicates P (top token), the proba-291

bility estimation by the current block for the 292

most likely next token. 293

• cosine similarity: Calculated to evaluate the 294

similarity between the features of current and 295

previous block, including attention activation 296

value (attn), multi-layer perceptron outputs 297

(mlp), and hidden states. 298

These analyses are showcased in Figure 3. In 299

this figure, we observe the following trends: (1) 300

For Llama2 (13B, 40 layers) (Touvron et al., 2023) 301

across sentiment and MMLU tasks, the gap and top 302

prob gradually increase during the inference phase, 303

stabilizing in the deeper layers. (2) The activation 304

of gap and top prob varies across layers for differ- 305

ent tasks. These phenomenons are also evident in 306

the Llama2-7B (Touvron et al., 2023), OPT-13B 307

(Zhang et al., 2022), and GPT-J (Wang and Komat- 308

suzaki, 2021) (See Appendix D). This demonstrates 309

gap and top prob can serve as universal features, in- 310

dicating the stopping signal. Notably, gap and top 311

probability values remain consistent across diverse 312

tasks, suggesting a versatile classifier applicable 313

to various tasks. We also conduct factor study in 314

subsequent experiments to show that other features 315

exhibit subtle differences across layers. 316

0 5 10 15 20 25 30 35

Layer-index

0.0

0.2

0.4

0.6

0.8

1.0

gap
top prob
hidden state
mlp
attn
probs KL

(a) Llama2 on sentiment

0 5 10 15 20 25 30 35

Layer-index

0.0

0.2

0.4

0.6

0.8

1.0

gap
top prob
hidden state
mlp
attn
probs KL

(b) Llama2 on MMLU

Figure 3: Statistics of features within LLMs that vary
with the forward layer.

3.2 Classifier 317

Problem: A trade-off between performance and 318

computational efficiency. Using confidence- 319

based criteria doesn’t require extra computations 320

during inference but may involve threshold tuning 321

with validation data to balance accuracy and ef- 322

ficiency (Huang et al., 2017; Yang et al., 2020). 323

Conversely, the plug-and-play nature of the gating 324

function (Lin et al., 2017; Bejnordi et al., 2019) 325

provides greater universality. Nonetheless, discrete 326

decision functions, lacking gradient information, 327

often require specialized training methods. 328

4

Solution: Connect Block Features to Decision329

Making via Statistical Classifier. Considering330

the trend in Figure 3, classical statistical classifi-331

cation methods can address issues with discrete332

decision functions. By classifying general features333

like gap and top prob, we simplify decision-making334

into binary classification, enabling early exit deci-335

sions. If the classifier deems the current layer’s336

features stoppable, subsequent layers can halt com-337

putation; otherwise, they proceed to the final layer.338

This process is also illustrated in Figure 2a.339

3.3 Classifier Objective340

Given one instance, we calculate the feature vector341

xd using the feature selection module. This feature342

vector serves as the input for the classifier module.343

If the current layer’s output ŷ provides the correct344

answer y, the associated label yc is a positive ex-345

ample; otherwise, it’s a negative example.346

yc =

{
1 if ŷ = y,

0 otherwise.
(1)347

Thus, for an L−layer LLM, each input instance x348

yields L pairs of < xd, yc >. The details of cre-349

ating training data for classifier are in Appendix350

C. We consider two types of classifiers, Support351

Vector Machines (SVM) (Hearst et al., 1998) and352

Conditional Random Fields (CRF) (Lafferty et al.,353

2001). The first one does not rely on the context of354

sequences, while the second one takes into account355

that the features of layer-by-layer blocks might im-356

plicitly incorporate concepts of sequence modeling.357

SVM objective. SVM aims to find an optimal358

hyperplane that separates classes by minimizing359

classification errors and maximizing the margin360

between support vectors.361

CRF objective. CRF is used to capture sequence362

feature dependencies and make decisions based on363

neighboring element states in sequence labeling364

tasks, with the training objective of maximizing the365

conditional likelihood of the true label sequence366

given the input sequence.367

Table 1: LLMs statistics using AdaInfer.

Model Params Tokens |L|
Meta/OPT 13B 180B 40
Meta/Llama 2 7B 2T 32
Meta/Llama 2 13B 2T 40
Meta/Llama 2 70B 2T 80

4 Experiments 368

Building on the hypothesis Not all Layers are Nec- 369

essary during LLM inference (Section 2.2), we con- 370

duct experiments with algorithm AdaInfer on well- 371

known LLMs across various tasks. 372

4.1 Evaluation Tasks 373

To evaluate the zero/few shot learning capabilities 374

of AdaInfer, we utilize three primary types of tasks. 375

Question Answering Task Group. (1) MMLU 376

(Hendrycks et al., 2021) encompasses 57 tasks 377

across humanities, social sciences, STEM, and 378

more, requiring world knowledge and problem- 379

solving capabilities. (2) CommonsenseQA (Talmor 380

et al., 2019) tests for commonsense knowledge 381

through multiple-choice questions. (3) SQuAD 382

(Rajpurkar et al., 2016) serves as a reading com- 383

prehension benchmark, with questions based on 384

Wikipedia articles and answers are either segments 385

of passage or marked as unanswerable. 386

Text Classification Task Group. (1) SST-2 387

(Socher et al., 2013) involves sentiment analysis of 388

movie reviews with binary “positive” or “negative” 389

labels. (2) AG News (Zhang et al., 2015) classifies 390

news headlines and article sentences into Business, 391

Science/Technology, Sports, and World categories. 392

Rule Understanding Task. GPT-3’s (Brown 393

et al., 2020) few-shot learning capability is tested 394

with tasks requiring pattern recognition, using syn- 395

thetic datasets from (Todd et al., 2024; Hernandez 396

et al., 2024) for tasks like Capitalize/Lowercase 397

Letter, Choose Item/Category from List, and recog- 398

nizing data pairs (e.g.,, Person-Occupation). 399

4.2 Experiment Settings 400

Large Language Models. For AdaInfer’s back- 401

bone, we chose widely recognized LLMs, detailed 402

in Table 1. Our selections encompass OPT (Zhang 403

et al., 2022) and the Llama 2 series (Touvron et al., 404

2023), which display nuanced variations in archi- 405

tectural design and training data size. 406

In-context Learning setting. We evaluate our 407

approach under zero-shot and few-shot scenarios, 408

using sample sizes of 5, 10, 15, and 20. For zero- 409

shot, the input is the test set’s xq. For few-shot, 410

training set examples are added to xq. For in- 411

context learning prompts, we use a default template: 412

Q : {xk} \nA : {yk} \n\n, concatenating random 413

xk and yk samples from task-specific training sets. 414

5

Table 2: Performance and Efficiency in Question Answering Tasks, with Accuracy (%) denoted by ‘acc’. Results
include Few-shot learning with sample sizes of 5, 10, 15, and 20, showcasing the average values.

Setting Model
MMLU CommonsenseQA SQuAD Avg

Acc↑ FLOPs↓ Acc↑ FLOPs↓ Acc↑ FLOPs↓ Acc↑ FLOPs↓

Zero-shot
OPT-13B 7.95 100 8.20 100 20.00 100 12.05 100
AdaInfer 8.67 97.55 2.80 97.55 23.00 97.55 11.49 97.55

Few-shot
OPT-13B 23.60 100 21.45 100 26.12 100 23.72 100
AdaInfer 22.59 83.94 21.62 86.05 25.95 88.31 23.39 86.10

Zero-shot
Llama2-13B 2.54 100 1.00 100 19.20 100 7.58 100

AdaInfer 2.48 98.14 0.70 98.37 25.90 85.34 9.69 93.95

Few-shot
Llama2-13B 53.31 100 64.92 100 52.9 100 57.04 100

AdaInfer 52.44 93.55 62.48 89.10 48.35 80.66 54.42 87.77

Table 3: Performance and Efficiency in classification and rule understanding, with Accuracy (%) denoted by ‘acc’.
Results include Few-shot learning with sample sizes of 5, 10, 15, and 20, showcasing the average values.

Setting Model
Sentiment AG News Avg Rule Understanding

Acc↑ FLOPs↓ Acc ↑ FLOPs↓ Acc↑ FLOPs↓ Acc↑ FLOPs↓

Zero-shot
OPT-13B 0.00 100 0.10 100 0.05 100 3.38 100
AdaInfer 0.00 96.87 0.10 100 0.05 98.44 3.86 92.52

Few-shot
OPT-13B 92.58 100 72.83 100 82.71 100 58.48 100
AdaInfer 92.97 80.28 72.83 100 82.90 90.14 52.83 89.74

Zero-shot
Llama2-13B 0.00 100 0.10 100 0.05 100 2.32 100

AdaInfer 0.00 97.43 0.10 88.37 0.05 92.90 6.14 85.76

Few-shot
Llama2-13B 95.90 100 77.53 100 86.72 100 69.36 100

AdaInfer 92.65 59.70 76.43 87.69 84.54 73.70 61.87 80.61

Metric. For performance evaluation, we report415

the top-1 accuracy score on the test set following416

(Todd et al., 2024). To assess computational cost,417

we determine the early exit layer index for each418

input instance, which can be translated into floating-419

point operations (FLOPs) ratios for comparison420

using the method described in (Narayanan et al.,421

2021). The FLOPs ratio is calculated as:422

2l′(6h+ s) + V

2l(6h+ s) + V
(2)423

Where l′ represents the stop layer index during424

inference in AdaInfer, l is the total number of trans-425

former layers, h denotes the hidden size, s is the426

sequence length, and V stands for vocabulary size.427

Further details on the calculation process can be428

found in Appendix B. Since statistical classifiers429

entail significantly lower computational costs com-430

pared to LLM inference, as detailed in Appendix431

B, we can overlook this aspect in our analysis.432

4.3 AdaInfer: Comparable Performance with 433

Lower Computational Costs 434

The main experimental results of AdaInfer are pre- 435

sented in Tables 2 and 3. These experiments were 436

conducted in zero-shot and few-shot settings, show- 437

casing the Top-1 accuracy and average FLOPs ra- 438

tios (compared to the baseline). From a perspective 439

of performance and computational efficiency, we 440

can draw the following experimental conclusions. 441

Performance is Comparable with Minimal Loss. 442

Tables 2 and 3 show that across both zero-shot and 443

few-shot settings, top-1 average accuracy remains 444

within a narrow margin of <5% for all tasks and 445

<1% for QA and text classification task groups, 446

when compared to baseline models. AdaInfer main- 447

tains mainstream LLM capabilities and in-context 448

learning abilities without modifying model parame- 449

ters. This finding is promising, especially in light of 450

our observation1 in Section 2.2, where we demon- 451

strate the feasibility of implementing early exit 452

6

strategies within LLM middle layers while preserv-453

ing accuracy. For certain tasks, AdaInfer surpasses454

the last layer (baseline) in zero-shot or few-shot455

accuracy. This hints at a tendency for deep layers456

to potentially over-represent certain tasks, which457

could impede performance during LLM inference.458

Reducing FLOPs Savings from 10% to 40%.459

We convert the average and variance of early exit460

layers for each task to FLOPs ratios in Table 2 and461

Table 3. It can be observed that the FLOPs ratios462

vary for different types of tasks, ranging from 90%463

to 60%. This variation is due to the fact that AdaIn-464

fer assesses different early exit layer configurations465

for different task inputs. Even for the same task466

with different inputs, AdaInfer may recommend dif-467

ferent early exit layer settings. For instance, in the468

sentiment analysis task, a 40% reduction in com-469

putational cost can be achieved using Llama2-13B,470

while for the knowledge-based question answer-471

ing MMLU and Commonsense question answering472

CommonSenseQA, the savings range from 10% to473

20%. This aligns with our observation2 outlined in474

Section 2.2, where we argue that at LLM inference475

scenario, Not all Layers are Necessary, and allo-476

cating fewer computational resources for “simple”477

samples can improve computational efficiency.478

Table 4: Comparative Analysis of GAP and CRF on
Performance and Computational Efficiency.

Task Setting
AdaInfer w. GAP AdaInfer w. CRF

Acc↑ FLOPs↓ Acc↑ FLOPs↓

MMLU
Zero-shot 5.35 90.84 4.77 97.40
Few-shot 47.09 84.10 52.72 97.15

CommonsenseQA
Zero-shot 1.10 92.78 1.40 97.28
Few-shot 55.33 79.57 65.72 96.40

SQuAD
Zero-shot 24.60 73.17 23.10 93.03
Few-shot 43.43 71.19 51.75 89.94

Sentiment
Zero-shot 0.00 88.25 0.00 97.27
Few-shot 91.45 51.25 95.60 73.07

AG News
Zero-shot 0.10 77.82 0.10 94.04
Few-shot 69.17 70.65 76.77 93.08

Rule Understanding
Zero-shot 9.90 74.80 3.43 90.29
Few-shot 53.78 70.38 65.82 90.29

4.4 GAP vs. CRF: A Comparative Study479

In the main experiments Table 2 and Table 3, we480

employed SVM as the classifier for AdaInfer. To481

explore the impact of different classification strate-482

gies, Table 4 compares the effects of implementing483

an early-exit strategy with a GAP threshold set at484

0.8 (stopping computation when the current block’s485

GAP feature exceeds 0.8) against using CRF as a486

classifier. The results indicate that both GAP and487

CRF can reduce computational costs without sacri- 488

ficing LLM performance. Notably, in the zero-shot 489

setting, GAP outperforms CRF, suggesting a rela- 490

tively weak dependency between block features. 491

4.5 AdaInfer Performance Across Scales: 7B 492

and 70B Insights 493

In our main experiments, we employed 13B-sized 494

Llama and OPT models. To explore the effects 495

of AdaInfer on models of different sizes, we con- 496

ducted experiments on the 7B and 70B versions of 497

Llama. The results for the 7B model, presented in 498

Table 5, show that AdaInfer either maintains accu- 499

racy with minimal (<1%) loss or exceeds the base- 500

line in certain tasks, and achieves a computational 501

reduction ranging from 10% to 50%. However, in 502

experiments with the 70B model, we observed that 503

in a zero-shot setting, AdaInfer matches or slightly 504

exceeds the baseline model while reducing com- 505

putational costs by 30% to 60%. Notably, in the 506

few-shot setting, despite similar reductions in com- 507

putation, AdaInfer’s accuracy shows a 1% to 25% 508

gap across different tasks compared to the baseline. 509

This suggests that for larger models, such as the 510

70B or even larger scales, AdaInfer may need to 511

more precisely identify and utilize features at dif- 512

ferent levels. Improving AdaInfer to adapt to these 513

larger models is a direction for our future research. 514

Table 5: AdaInfer on Llama2-7B Across Tasks for Per-
formance and Computational Efficiency.

Task Setting
Llama2-7B AdaInfer

Acc↑ FLOPs↓ Acc↑ FLOPs↓

MMLU
Zero-shot 4.19 100 4.63 96.13
Few-shot 43.05 100 43.73 93.76

CommonsenseQA
Zero-shot 5.30 100 4.80 95.26
Few-shot 53.50 100 53.00 90.46

SQuAD
Zero-shot 20.40 100 23.80 89.98
Few-shot 48.08 100 45.82 87.06

Sentiment
Zero-shot 0.00 100 0.00 96.37
Few-shot 95.20 100 95.30 68.05

AG News
Zero-shot 0.10 100 0.10 91.36
Few-shot 79.65 100 79.72 94.51

Rule Understanding
Zero-shot 5.47 100 5.32 91.55
Few-shot 66.80 100 66.92 88.41

The results of all LLMs using different classi- 515

fiers are summarized in Table 8 and Table 9 in 516

the Appendix E and we have highlighted the best 517

results for each task in the current setting. 518

4.6 Generalization effect on Mainstream 519

Classifier 520

In Table 2 and Table 3, we randomly selected 6 to 521

9 training datasets from all task training sets (note: 522

7

Table 6: Generalization Performance of statistic clas-
sifier on Sentiment Task on Llama2-7B (32 Layers),
Inter-Model refer to Llama2-13B(40 layers).

Classifier Generalization Acc Layers Varience FLOPs

SVM
Intra-Task

94.90 18.15 0.45 60.58
CRF 0.00 0.00 0.00 100

SVM
Inter-Task

95.5 19.2 4.40 63.80
CRF 94.9 20.2 4.55 66.87

SVM
Inter-Model

90.70 20.60 3.70 54.55
CRF 87.75 19.20 2.75 51.09

there are 71 subdatasets in total). Furthermore, to523

assess the generalization performance of the statis-524

tical classifiers, we conducted the following tests.525

• Intra-Task Generalization. Evaluating the526

sentiment task using a classifier trained on the527

sentiment training dataset.528

• Inter-Task Generalization. Testing senti-529

ment using a classifier trained on the knowl-530

edge question-answering task’s dataset.531

• Inter-Model Generalization. Assessing the532

sentiment task on Llama2-13B using a classi-533

fier trained on Llama2-7B.534

The results are presented in Table 6. The SVM535

classifier exhibits satisfactory intra-task and inter-536

task generalization capabilities, consistent with the537

results presented in the main results. However, for538

the CRF classifier, training in an intra-task manner539

leads to premature termination of the LLM at very540

shallow layers, resulting in subpar performance.541

This could be attributed to insufficient feature se-542

lection, causing the CRF to overfit noise or local543

features in the training data. Additionally, due to544

variations in the logits distribution characteristics545

among different models, the inter-model classifier’s546

performance shows moderate accuracy. In conclu-547

sion, based on the results from Table 2 and Table 3548

and Table 6, when using AdaInfer, we recommend549

utilizing SVM as the classifier.550

4.7 Factor Study551

In response to the features mentioned in Section552

3.1, we conducted cross-validation. Given that the553

classifiers in the main results utilized basic features554

(i.e., gap, top prob), we explored the impact of555

features such as the cosine similarity between the556

current block and the previous block, which en-557

compasses the attention values (attn), multi-layer558

perceptron (mlp), and hidden states. The experi-559

mental results are presented in Table 7. It is evident560

that attn has no discernible impact on the results, 561

while other features like mlp and hidden states have 562

an adverse effect. This result is consistent with 563

the trend shown in Figure 3, indicating that logits 564

can measure whether the model’s current forward 565

progress is sufficient, while changes in attention, 566

hidden state, and mlp involve various factors. 567

Table 7: Comparative Analysis of SVM Performance
with Incremental Feature Addition in Sentiment and
MMLU/Anatomy Tasks.

Feature Sentiment MMLU

Base Features (gap, top prob) 94.90 41.13
+attn 94.90 41.13

+hidden state 67.53 41.13
+mlp 67.88 41.93

5 Related Work 568

For decades, various systems have been developed 569

to enhance machine learning model inference effi- 570

ciency, incorporating techniques such as instance- 571

wise dynamic networks (Han et al., 2021; Huang 572

et al., 2017; Teerapittayanon et al., 2016; Bolukbasi 573

et al., 2017) and quantization (Xiao et al., 2023; 574

Frantar et al., 2022), sparsity (Liu et al., 2023) or 575

distillation (Touvron et al., 2021). They are orthog- 576

onal areas and usually excel in different settings. 577

Our work AdaInfer is aligns more closely dynamic 578

networks with further elaboration in Appendix A. 579

6 Conclusion 580

In this paper, we first hypothesize that Not all Lay- 581

ers are Necessary at inference time and provide 582

statistical evidence to support this. Building on 583

this hypothesis, we present AdaInfer, a simple and 584

straightforward algorithm. This algorithm deter- 585

mines the appropriate moment to cease inference 586

based on the input instance, thus enhancing infer- 587

ence efficiency and adaptability without modify- 588

ing the model’s parameters. Experiments on main- 589

stream LLMs show that AdaInfer can reduce com- 590

putational usage by 10% to 50% across various 591

tasks all while maintain comparable performance 592

with minimal loss. More importantly, AdaInfer 593

is compatible with other model acceleration tech- 594

niques, potentially offering further improvements 595

in inference efficiency. We argue that AdaInfer, as 596

a simple yet effective algorithm, establishes a new 597

paradigm for efficient inference in LLMs. 598

8

Limitations599

In this paper, we make a first attempt to discover600

that the logits of each block are critical for early-601

exit classifiers in LLMs, incorporating this insight602

as a key design choice in AdaInfer. However, since603

AdaInfer relies on a single forward pass, it has not604

yet been extended to sequential generative tasks ,605

offering significant avenues for future research.606

Ethics Statement607

Our research aims to optimize large-scale model in-608

ference without modifying parameters, promising609

efficiency gains and reduced energy consumption.610

However, we must address potential misuse con-611

cerns, as enhanced inference capabilities may also612

enable malicious actors to exploit large neural lan-613

guage systems by injecting or amplifying logits as614

features, leading to undesirable behavior.615

References616

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor617
Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria Lin,618
Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru,619
et al. 2021. Efficient large scale language mod-620
eling with mixtures of experts. arXiv preprint621
arXiv:2112.10684.622

Babak Ehteshami Bejnordi, Tijmen Blankevoort, and623
Max Welling. 2019. Batch-shaping for learning624
conditional channel gated networks. arXiv preprint625
arXiv:1907.06627.626

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and627
Venkatesh Saligrama. 2017. Adaptive neural net-628
works for efficient inference. In International629
Conference on Machine Learning, pages 527–536.630
PMLR.631

Tom Brown, Benjamin Mann, Nick Ryder, Melanie632
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind633
Neelakantan, Pranav Shyam, Girish Sastry, Amanda634
Askell, et al. 2020. Language models are few-shot635
learners. Advances in neural information processing636
systems, 33:1877–1901.637

Stephanie Chan, Adam Santoro, Andrew Lampinen,638
Jane Wang, Aaditya Singh, Pierre Richemond, James639
McClelland, and Felix Hill. 2022. Data distribu-640
tional properties drive emergent in-context learning641
in transformers. Advances in Neural Information642
Processing Systems, 35:18878–18891.643

Ian J Deary, Geoff Der, and Graeme Ford. 2001. Reac-644
tion times and intelligence differences: A population-645
based cohort study. Intelligence, 29(5):389–399.646

William Fedus, Barret Zoph, and Noam Shazeer. 2022.647
Switch transformers: Scaling to trillion parame-648
ter models with simple and efficient sparsity. The649

Journal of Machine Learning Research, 23(1):5232– 650
5270. 651

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 652
sive language models can be accurately pruned in 653
one-shot. In International Conference on Machine 654
Learning, pages 10323–10337. PMLR. 655

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 656
Dan Alistarh. 2022. Gptq: Accurate post-training 657
quantization for generative pre-trained transformers. 658
arXiv preprint arXiv:2210.17323. 659

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen- 660
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024. 661
Model editing can hurt general abilities of large lan- 662
guage models. arXiv preprint arXiv:2401.04700. 663

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui 664
Wang, and Yulin Wang. 2021. Dynamic neural net- 665
works: A survey. IEEE Transactions on Pattern 666
Analysis and Machine Intelligence, 44(11):7436– 667
7456. 668

Marti A. Hearst, Susan T Dumais, Edgar Osuna, John 669
Platt, and Bernhard Scholkopf. 1998. Support vec- 670
tor machines. IEEE Intelligent Systems and their 671
applications, 13(4):18–28. 672

Dan Hendrycks, Collin Burns, Steven Basart, Andy 673
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein- 674
hardt. 2021. Measuring massive multitask language 675
understanding. Proceedings of the International 676
Conference on Learning Representations (ICLR). 677

Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin 678
Meng, Martin Wattenberg, Jacob Andreas, Yonatan 679
Belinkov, and David Bau. 2024. Linearity of rela- 680
tion decoding in transformer language models. In 681
Proceedings of the 2024 International Conference on 682
Learning Representations. 683

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli 684
Dryden, and Alexandra Peste. 2021. Sparsity in 685
deep learning: Pruning and growth for efficient infer- 686
ence and training in neural networks. The Journal of 687
Machine Learning Research, 22(1):10882–11005. 688

Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru 689
Zhang, and G Edward Suh. 2019. Channel gating 690
neural networks. Advances in Neural Information 691
Processing Systems, 32. 692

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Lau- 693
rens Van Der Maaten, and Kilian Q Weinberger. 2017. 694
Multi-scale dense networks for resource efficient im- 695
age classification. arXiv preprint arXiv:1703.09844. 696

David H Hubel and Torsten N Wiesel. 1962. Recep- 697
tive fields, binocular interaction and functional ar- 698
chitecture in the cat’s visual cortex. The Journal of 699
physiology, 160(1):106. 700

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, 701
and Geoffrey E Hinton. 1991. Adaptive mixtures of 702
local experts. Neural computation, 3(1):79–87. 703

9

Jannik Kossen, Tom Rainforth, and Yarin Gal. 2023.704
In-context learning in large language models learns705
label relationships but is not conventional learning.706
arXiv preprint arXiv:2307.12375.707

John Lafferty, Andrew McCallum, and Fernando CN708
Pereira. 2001. Conditional random fields: Proba-709
bilistic models for segmenting and labeling sequence710
data.711

Yann LeCun, John Denker, and Sara Solla. 1989. Op-712
timal brain damage. Advances in neural information713
processing systems, 2.714

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou.715
2017. Runtime neural pruning. Advances in neural716
information processing systems, 30.717

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang,718
and Trevor Darrell. 2018. Rethinking the value of719
network pruning. arXiv preprint arXiv:1810.05270.720

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang721
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,722
Yuandong Tian, Christopher Re, et al. 2023. Deja723
vu: Contextual sparsity for efficient llms at infer-724
ence time. In International Conference on Machine725
Learning, pages 22137–22176. PMLR.726

Akira Murata, Vittorio Gallese, Giuseppe Luppino,727
Masakazu Kaseda, and Hideo Sakata. 2000. Selec-728
tivity for the shape, size, and orientation of objects729
for grasping in neurons of monkey parietal area aip.730
Journal of neurophysiology, 83(5):2580–2601.731

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,732
Patrick LeGresley, Mostofa Patwary, Vijay Kor-733
thikanti, Dmitri Vainbrand, Prethvi Kashinkunti,734
Julie Bernauer, Bryan Catanzaro, Amar Phanishayee,735
and Matei Zaharia. 2021. Efficient large-scale736
language model training on GPU clusters using737
megatron-lm. In International Conference for High738
Performance Computing, Networking, Storage and739
Analysis, SC 2021, St. Louis, Missouri, USA,740
November 14-19, 2021, page 58. ACM.741

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,742
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan743
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-744
ciently scaling transformer inference. Proceedings745
of Machine Learning and Systems, 5.746

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and747
Percy Liang. 2016. SQuAD: 100,000+ Questions748
for Machine Comprehension of Text. arXiv e-prints,749
page arXiv:1606.05250.750

Timothy A Salthouse. 1996. The processing-751
speed theory of adult age differences in cognition.752
Psychological review, 103(3):403.753

Richard Socher, Alex Perelygin, Jean Wu, Jason754
Chuang, Christopher D. Manning, Andrew Ng, and755
Christopher Potts. 2013. Recursive deep models756
for semantic compositionality over a sentiment tree-757
bank. In Proceedings of the 2013 Conference on758

Empirical Methods in Natural Language Processing, 759
pages 1631–1642, Seattle, Washington, USA. Asso- 760
ciation for Computational Linguistics. 761

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 762
Jonathan Berant. 2019. CommonsenseQA: A ques- 763
tion answering challenge targeting commonsense 764
knowledge. In Proceedings of the 2019 Conference 765
of the North American Chapter of the Association 766
for Computational Linguistics: Human Language 767
Technologies, Volume 1 (Long and Short Papers), 768
pages 4149–4158, Minneapolis, Minnesota. Asso- 769
ciation for Computational Linguistics. 770

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga 771
Vechtomova, and Jimmy Lin. 2019. Distilling task- 772
specific knowledge from bert into simple neural net- 773
works. arXiv preprint arXiv:1903.12136. 774

Surat Teerapittayanon, Bradley McDanel, and Hsiang- 775
Tsung Kung. 2016. Branchynet: Fast inference via 776
early exiting from deep neural networks. In 2016 777
23rd international conference on pattern recognition 778
(ICPR), pages 2464–2469. IEEE. 779

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron 780
Mueller, Byron C. Wallace, and David Bau. 2024. 781
Function vectors in large language models. In 782
Proceedings of the 2024 International Conference on 783
Learning Representations. 784

Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran- 785
cisco Massa, Alexandre Sablayrolles, and Hervé Jé- 786
gou. 2021. Training data-efficient image transform- 787
ers & distillation through attention. In International 788
conference on machine learning, pages 10347– 789
10357. PMLR. 790

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 791
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 792
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 793
Bhosale, et al. 2023. Llama 2: Open founda- 794
tion and fine-tuned chat models. arXiv preprint 795
arXiv:2307.09288. 796

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 797
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 798
Kaiser, and Illia Polosukhin. 2017. Attention is 799
all you need. In Advances in Neural Information 800
Processing Systems 30: Annual Conference on 801
Neural Information Processing Systems 2017, 802
December 4-9, 2017, Long Beach, CA, USA, pages 803
5998–6008. 804

Paul Viola and Michael J Jones. 2004. Robust real-time 805
face detection. International journal of computer 806
vision, 57:137–154. 807

Ben Wang and Aran Komatsuzaki. 2021. GPT-J- 808
6B: A 6 Billion Parameter Autoregressive Lan- 809
guage Model. https://github.com/kingoflolz/ 810
mesh-transformer-jax. 811

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, 812
Fandong Meng, Jie Zhou, and Xu Sun. 2023. Label 813
words are anchors: An information flow perspective 814

10

https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

for understanding in-context learning. arXiv preprint815
arXiv:2305.14160.816

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell,817
and Joseph E Gonzalez. 2018. Skipnet: Learn-818
ing dynamic routing in convolutional networks.819
In Proceedings of the European Conference on820
Computer Vision (ECCV), pages 409–424.821

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,822
Julien Demouth, and Song Han. 2023. Smoothquant:823
Accurate and efficient post-training quantization for824
large language models. In International Conference825
on Machine Learning, pages 38087–38099. PMLR.826

Xingrun Xing, Li Du, Xinyuan Wang, Xianlin Zeng,827
Yequan Wang, Zheng Zhang, and Jiajun Zhang. 2023.828
Bipft: Binary pre-trained foundation transformer829
with low-rank estimation of binarization residual830
polynomials. arXiv preprint arXiv:2312.08937.831

Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng832
Dai, and Gao Huang. 2020. Resolution adaptive833
networks for efficient inference. In Proceedings of834
the IEEE/CVF conference on computer vision and835
pattern recognition, pages 2369–2378.836

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,837
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu838
Zhang. 2023. Editing large language models: Prob-839
lems, methods, and opportunities. arXiv preprint840
arXiv:2305.13172.841

Dewen Zeng, Nan Du, Tao Wang, Yuanzhong Xu, Tao842
Lei, Zhifeng Chen, and Claire Cui. 2023. Learn-843
ing to skip for language modeling. arXiv preprint844
arXiv:2311.15436.845

Susan Zhang, Stephen Roller, Naman Goyal, Mikel846
Artetxe, Moya Chen, Shuohui Chen, Christopher De-847
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.848
Opt: Open pre-trained transformer language models.849
arXiv preprint arXiv:2205.01068.850

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.851
Character-level convolutional networks for text classi-852
fication. Advances in neural information processing853
systems, 28.854

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu855
Lin, Yong-Jin Liu, and Gao Huang. 2023. Expel:856
Llm agents are experiential learners. arXiv preprint857
arXiv:2308.10144.858

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yan-859
ping Huang, Vincent Zhao, Andrew M Dai, Quoc V860
Le, James Laudon, et al. 2022. Mixture-of-experts861
with expert choice routing. Advances in Neural862
Information Processing Systems, 35:7103–7114.863

A Related Work864

Dynamic Inference. A straightforward approach865

to address the hypothesis outlined in Section 2 in-866

volves the utilization of dynamic neural networks867

(Han et al., 2021). The core idea of dynamic net- 868

works—adaptive inference—has been explored by 869

some researchers before the prevalence of deep net- 870

works today (Jacobs et al., 1991; Viola and Jones, 871

2004). In the context of LLM inference, LLMs dy- 872

namically adjusts its own structure and parameters 873

when dealing with diverse test instance. Popular 874

deep network architectures often encompass two 875

dimensions: depth (number of network layers) and 876

width (number of channels, parallel subnetworks, 877

etc.). Consequently, networks with dynamic struc- 878

tures can be classified into two types: dynamic 879

depth and dynamic width. Dynamic width in the 880

context of Mixture of Experts (MOE) (Fedus et al., 881

2022; Zhou et al., 2022; Artetxe et al., 2021), CNN 882

channel pruning (Hua et al., 2019; Hoefler et al., 883

2021), when applied to the LLM inference scenario, 884

poses a potential risk. This risk is associated with 885

the possibility that modifying model parameters 886

may compromise the model’s generalization and 887

detecting these issues can be challenging. Dynamic 888

depth techniques often encompass early-exit and 889

skip-layer mechanisms. The core idea of the early- 890

exit strategy is to set exits at intermediate layers of 891

the model and adaptively decide whether a sample 892

should exit early based on its output at these mid- 893

exits. Inspired by works that integrate classifiers 894

into intermediate layers of CNN/DNN networks for 895

visual tasks to handle early exits (Bolukbasi et al., 896

2017; Huang et al., 2017; Teerapittayanon et al., 897

2016), our proposed AdaInfer closely aligns with 898

this concept. The early-exit mechanism effectively 899

bypasses the computation of all layers following a 900

certain classifier. Meanwhile, skip-layer function- 901

ality dynamically omits the execution of a layer 902

(or module) for any input token, facilitated by a 903

gate function (Wang et al., 2018) or a binary router 904

(Zeng et al., 2023). 905

Quantization, Sparsity, Distillation for LLM in- 906

ference. For decades, various system adaptations 907

for enhancing model inference in machine learning 908

have been under continuous exploration. Among 909

these, techniques like quantization (Xiao et al., 910

2023; Frantar et al., 2022; Xing et al., 2023) have 911

been employed to accelerate inference by repre- 912

senting floating-point data with fewer bits, thus 913

reducing memory usage during inference. Spar- 914

sity (Liu et al., 2023; Frantar and Alistarh, 2023) 915

employs predictors or sparse regression solvers to 916

facilitate sparsity in LLM inference, further opti- 917

mizing performance. Distillation (Touvron et al., 918

11

2021; Tang et al., 2019) reduces computational and919

storage costs by training a smaller model to mimic920

the performance of the original model, optimizing921

efficiency.922

B Computation cost.923

Classifier Computation cost. We utilized the924

sklearn library for training SVM* and CRF†, adher-925

ing to default configurations. For SVM and CRF926

training, we used the sklearn library with default927

settings. Given a training dataset with N training928

examples, the time complexity for SVM training929

typically ranges from O(N2 × d) to O(N3 × d),930

where d is the feature dimension. SVM prediction931

time complexity is O(d) per single inference. For932

standard linear-chain CRF, the training time com-933

plexity is approximately O(N × S ×M), where934

S is the average sequence length, M is the label935

count. The prediction time complexity for CRF936

is O(S × M) per single inference. In contrast,937

the inference time complexity for large models938

like llama2 is LSd(d + S) per single inference,939

where d is the word vector dimension, S is the940

sequence length, and L represents the number of941

layers. Comparatively, the computational load of942

SVM and CRF is negligible when compared to943

large models.944

Transformer Computation cost. Given a lan-945

guage model with l transformer layers, hidden946

size h, sequence length s, vocabulary size V ,947

and batch size B. Each transformer block needs948

24Bsh2 + 4Bs2h FLOPs for the forward pass.949

The other main contributor to the FLOPs count950

is the classification layer in the language model951

head, which transforms features of dimension h952

to the vocabulary dimension V . The required953

FLOPs for this operation is 2BshV in the for-954

ward pass. Summing these together, a transformer955

model with l transformer layers, the total num-956

ber of floating-point operations for inference is957

4Bshl(6h+ s) + 2BshV . Thus, the ratio of infer-958

ence cost in FLOPs is959

2l′(6h+ s) + V

2l(6h+ s) + V
(3)960

where l′ is the AdaInfer stop layer index during961

inference.962

*https://scikit-learn.org/stable/modules/svm.html
†https://sklearn-crfsuite.readthedocs.io/en/latest/

C Details of Creating Training Data for 963

Classifier 964

Considering a training input instance x and its cor- 965

responding label y from Dtrain. Once x is pro- 966

cessed through a decoder layer of LLM, we can 967

extract a general feature vector xd (d is the number 968

of features). Additionally, we obtain the probability 969

distribution P over the vocabulary V of the current 970

layer’s hidden state after passing through the clas- 971

sification layer (as depicted in Section 2.1). This 972

can be represented as: P = softmax(WH + b), 973

where H is the hidden state of the current layer, W 974

and b are the weights and bias of the classification 975

layer, respectively. softmax is the softmax func- 976

tion applied to convert logits to probabilities. Let 977

the highest-ranked token in this distribution be de- 978

noted as ŷ = argmax(P), where argmax(P) finds 979

the token with the highest probability. If ŷ matches 980

the label y, the associated label yc for the feature 981

vector xd is designated as positive; otherwise, it is 982

labeled as negative. 983

yc =

{
1 if ŷ = y,

0 otherwise.
(4) 984

Thus, for an L−layer LLM, each input instance x 985

yields L pairs of < xd, yc >. 986

D Observation of other LLMs 987

Figure 4 represents visual analysis of diverse fea- 988

tures across the layers within each block of main- 989

stream LLMs. 990

E Comprehensive Summary of Results 991

The results of all LLMs using different classifiers 992

are summarized in Table 8 and 9. We have high- 993

lighted the best results for each task in the current 994

setting. 995

12

0 5 10 15 20 25

Layer-index

0.0

0.2

0.4

0.6

0.8

1.0

gap
top prob
hidden state
mlp
attn
probs KL

(a) GPT-J 6B on sentiment

0 5 10 15 20 25

Layer-index

0.0

0.2

0.4

0.6

0.8

1.0

gap
top prob
hidden state
mlp
attn
probs KL

(b) GPT-J 6B on MMLU

0 5 10 15 20 25 30

Layer-index

0.0

0.2

0.4

0.6

0.8

1.0

gap
top prob
hidden state
mlp
attn
probs KL

(c) Llama2-7B on sentiment

0 5 10 15 20 25 30

Layer-index

0.0

0.2

0.4

0.6

0.8

1.0

gap
top prob
hidden state
mlp
attn
probs KL

(d) Llama2-7B on MMLU

0 5 10 15 20 25 30 35

Layer-index

0.0

0.2

0.4

0.6

0.8

1.0

gap
top prob
hidden state
mlp
attn
probs KL

(e) OPT-13B on sentiment

0 5 10 15 20 25 30 35

Layer-index

0.0

0.2

0.4

0.6

0.8

1.0

gap
top prob
hidden state
mlp
attn
probs KL

(f) OPT-13B on MMLU

Figure 4: visual analysis of diverse features across mainstream LLMs.

13

Table 8: Performance and Computational Efficiency in Question Answering Tasks, with Accuracy (%) denoted by
‘acc’. Results include Few-shot learning with sample sizes of 5, 10, 15, and 20, showcasing the average values.

Setting Model
MMLU CommonsenseQA SQuAD Avg

Acc↑ FLOPs↓ Acc↑ FLOPs↓ Acc↑ FLOPs↓ Acc↑ FLOPs↓

Zero-shot

OPT-13B 7.95 100 8.20 100 20.00 100 12.05 100
AdaInfer w. GAP 3.21 89.58 0.60 85.17 20.72 87.98 8.18 87.58
AdaInfer w. CRF 7.14 96.57 4.60 93.26 24.36 93.22 12.03 94.35

AdaInfer 8.67 97.55 2.80 97.55 23.00 97.55 11.49 97.55

Few-shot

OPT-13B 23.60 100 21.45 100 26.12 100 23.72 100
AdaInfer w. GAP 20.99 79.54 20.72 80.00 24.20 82.93 21.97 80.82
AdaInfer w. CRF 24.44 97.43 21.18 97.55 25.98 97.11 24.81 97.37

AdaInfer 22.59 83.94 21.62 86.05 25.95 88.31 23.39 86.10

Zero-shot

Llama2-7B 4.19 100 5.30 100 20.40 100 9.96 100
AdaInfer w. GAP 4.69 95.69 4.60 94.90 23.90 89.48 11.06 93.36
AdaInfer w. CRF 4.86 95.32 2.00 95.01 18.80 91.17 8.55 93.83

AdaInfer 4.63 96.13 4.80 95.26 23.80 89.98 11.08 93.79

Few-shot

Llama-2-7B 43.05 100 53.50 100 48.08 100 48.21 100
AdaInfer w. GAP 44.03 93.69 52.83 90.23 45.68 86.72 47.51 90.21
AdaInfer w. CRF 41.38 94.23 53.6 91.61 43.62 88.10 46.20 91.31

AdaInfer 43.73 93.76 53.00 90.46 45.82 87.06 47.52 90.43

Zero-shot

Llama2-13B 2.54 100 1.00 100 19.20 100 7.58 100
AdaInfer w.GAP 5.35 90.84 1.10 92.78 24.60 73.17 10.35 85.60
AdaInfer w.CRF 4.77 97.40 1.40 97.28 23.10 93.03 9.76 95.90

AdaInfer 2.48 98.14 0.70 98.37 25.90 85.34 9.69 93.95

Few-shot

Llama-2-13B 53.31 100 64.92 100 52.9 100 57.04 100
AdaInfer w. GAP 47.09 84.10 55.33 79.57 43.43 71.19 48.62 78.29
AdaInfer w.CRF 52.72 97.15 65.72 96.40 51.75 89.94 56.73 94.50

AdaInfer 52.44 93.55 62.48 89.10 48.35 80.66 54.42 87.77

Table 9: Performance and Computational Efficiency in text classification and rule understanding tasks, with Accuracy
(%) denoted by ’acc’. Results include Few-shot learning with sample sizes of 5, 10, 15, and 20, showcasing the
average values.

Setting Model
Sentiment AG News Avg Rule Understanding

Acc↑ FLOPs↓ Acc ↑ FLOPs↓ Acc↑ FLOPs↓ Acc↑ FLOPs↓

Zero-shot

OPT-13B 0.00 100 0.10 100 0.05 100 3.38 100
AdaInfer w. GAP 0.00 90.61 0.10 92.03 0.05 91.32 3.64 87.55
AdaInfer w. CRF 0.00 97.55 0.10 97.55 0.05 97.55 4.11 97.55

AdaInfer 0.00 96.87 0.10 100 0.05 98.44 3.86 92.52

Few-shot

OPT-13B 92.58 100 72.83 100 82.71 100 58.48 100
AdaInfer w.GAP 94.20 78.30 12.95 82.54 53.58 80.42 48.20 85.50
AdaInfer w. CRF 92.88 97.50 71.27 97.55 82.08 97.53 55.33 97.50

AdaInfer 92.97 80.28 72.83 100 82.90 90.14 52.83 89.74

Zero-shot

Llama2-7B 0.00 100 0.10 100 0.05 100 5.47 100
AdaInfer w.GAP 0.00 96.08 0.10 91.05 0.05 93.57 5.41 91.20
AdaInfer w. CRF 0.00 96.07 0.10 92.20 0.05 94.14 3.62 92.08

AdaInfer 0.00 96.37 0.10 91.36 0.05 93.87 5.32 91.55

Few-shot

Llama-2-7B 95.20 100 79.65 100 87.43 100 66.80 100
AdaInfer w. GAP 95.30 67.78 79.72 94.38 87.51 81.08 66.80 87.99
AdaInfer w. CRF 94.90 69.91 61.62 96.38 78.26 83.15 62.36 89.60

AdaInfer 95.30 68.05 79.72 94.51 87.51 81.28 66.92 88.41

Zero-shot

Llama2-13B 0.00 100 0.10 100 0.05 100 2.32 100
AdaInfer w. GAP 0.00 88.25 0.10 77.82 0.05 83.04 9.9 74.80
AdaInfer w. CRF 0.00 97.27 0.10 94.04 0.05 95.66 3.43 90.29

AdaInfer 0.00 97.43 0.10 88.37 0.05 92.90 6.14 85.76

Few-shot

Llama-2-13B 95.90 100 77.53 100 86.72 100 69.36 100
AdaInfer w. GAP 91.45 51.25 69.17 70.65 80.31 60.95 53.78 70.38
AdaInfer w. CRF 95.60 73.07 76.77 93.08 86.19 83.08 65.82 90.29

AdaInfer 92.65 59.70 76.43 87.69 84.54 73.70 61.87 80.61

14

