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ABSTRACT

Contrastive learning (CL) with large-scale image-text paired data has made great
strides in open-world image recognition. The progress raises attraction to open-
world semantic segmentation—aiming at learning to segment arbitrary visual con-
cepts in images. Existing open-world segmentation methods adopt CL to learn di-
verse visual concepts and adapt its image-level understanding to the segmentation
task. However, while CL-based existing methods have shown impressive results,
conventional CL is limited in considering image-text level alignment without ex-
plicit optimization of region-text level alignment, thus leading to a sub-optimal
solution for the segmentation task. In this paper, we propose a novel Grounded
Contrastive Learning (GCL) framework to directly align a text and regions de-
scribed by the text. Our method generates a segmentation mask associated with
a given text, extracts grounded image embedding from the masked image region,
and aligns it with text embedding via GCL. The framework encourages a model to
directly improve the quality of generated segmentation masks. In addition, for a
rigorous and fair comparison, we present a unified evaluation protocol with widely
used 8 semantic segmentation datasets. GCL achieves state-of-the-art zero-shot
segmentation performance with large margins in all datasets. The code will be
released publicly available.

1 INTRODUCTION

Semantic segmentation aims to identify the class of every pixel in an image. This task has been
studied extensively over decades and has shown impressive improvements (Chen et al., 2017; Strudel
et al., 2021; Xie et al., 2021). However, the existing methods are inherently limited in segmenting
a small number of object categories presented in the training dataset. Such limitation mainly comes
from the difficulty in collecting costly pixel-level annotations for diverse categories.

The recent emergence of large-scale image-text paired data (Changpinyo et al., 2021; Schuhmann
et al., 2021; Byeon et al., 2022) from the web paves the way for open-world recognition which aims
to learn a capability of identifying arbitrary semantic categories in the open world. Since the texts
contain a global semantic description for the paired images, the large-scale image-text paired data
can provide knowledge for diverse semantic categories. For instance, CLIP (Radford et al., 2021)
learns visual and language representations using contrastive learning with the large-scale image-text
data, and shows its open-world image classification capability to identify arbitrary image class labels
by a simple image-text matching strategy.

Inspired by such success of open-world image classification, a few works (Zhou et al., 2022; Shin
et al., 2022; Xu et al., 2022; Liu et al., 2022) for the open-world semantic segmentation have
been suggested based on image-text contrastive learning. However, the absence of pixel-level
dense annotations in the image-text data still makes the open-world segmentation task challenging.
Thus, the existing methods mainly rely on the transferability of the image-text alignment capability
learned during the training to perform region-text alignment at inference time. More specifically,
MaskCLIP (Zhou et al., 2022) leverages a pre-trained model such as CLIP, simply modifies its last
layer to extract more precise patch-level visual features, and finally generates segmentation masks
by patch-text matching. GroupViT (Xu et al., 2022) and ViL-Seg (Liu et al., 2022) propose to cluster
region-level visual features into distinct groups and perform matching between clustered regions and
text to generate segmentation mask. While the existing methods have shown impressive results even
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(b) Performance comparison in 8 datasets.

Figure 1: (a) A conceptual comparison between conventional contrastive learning (CL) and grounded con-
trastive learning (GCL). CL-based methods learn image-level alignment and implicitly learn a grounding ca-
pability, which facilitates generating segmentation masks. In contrast, in GCL, the grounder is incorporated to
learn region-text alignment from image-text data, which is trained in an end-to-end manner. (b) As a result, the
proposed method significantly outperforms existing methods in all 8 segmentation benchmark datasets.

from the training with image-text alignment, they are still limited in that no explicit optimization for
region-text alignment is considered as depicted in Figure 1a.

To tackle such limitation, we propose Grounded Contrastive Learning (GCL) framework, which
directly learns to align text and region of interest from the image-text data. Our key idea is to incor-
porate a text grounding capability within contrastive learning as shown in Figure 1a. To be specific,
given a pair of image and text, we first obtain a segmentation mask indicating text-grounded regions
using a grounder, compute grounded region embeddings using the segmentation mask and finally
perform contrastive learning between the text and the grounded region. By making the contrastive
loss be affected from the quality of segmentation, GCL enables to train the grounder and directly
improves the quality of text-region level alignment. In addition, we present a unified evaluation pro-
tocol with widely used 8 semantic segmentation datasets and compare existing methods—evaluated
with their own protocol—in the same setting using the protocol. GCL achieves state-of-the-art zero-
shot segmentation performance with large margins in all datasets as presented in Figure 1b.

The main contribution of this paper is summarized as follows:

• We introduce a novel framework for the open-world semantic segmentation, named Grounded
Contrastive Learning, which directly optimizes alignment between text and region of interest,
thus learning to generate more precise segmentation masks even from image-text paired data.

• We present a unified evaluation protocol and re-evaluate recent open-world segmentation mod-
els for a fair and direct comparison.

• We achieve the new state-of-the-art zero-shot segmentation performance on 8 segmentation
datasets with large margins compared to existing methods.

2 RELATED WORKS

Semantic Segmentation In recent years, we have witnessed the dramatic advancement and the
success of semantic segmentation in deep learning, including FCN (Long et al., 2015), U-Net (Ron-
neberger et al., 2015), DeepLab (Chen et al., 2017), and the very recent transformer-based meth-
ods (Strudel et al., 2021; Xie et al., 2021). However, these conventional segmentation models are
constrained to fixed-label sets defined by the labels specified in the training dataset, for example,
Cityscapes (Cordts et al., 2016), PASCAL VOC (Everingham et al., 2010), Context59 (Mottaghi
et al., 2014) of 19/20/59 classes, and they are incompetent to segment any categories beyond the
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predefined ones. In natural images, segmentation targets vary more than predefined categories (typ-
ically under 100) in terms of categories, attributes (e.g., colors, materials, etc.), geometric locations
(e.g., “car on the left”), and relation to the environment (“baby is sitting on the bench”), etc. The
traditional semantic segmentation methods are incapable of dealing with these problems. To al-
leviate discrepancy between training and test categories, zero-shot segmentation methods (Bucher
et al., 2019; Li et al., 2020) have been proposed that handle unseen categories at test time. As an-
other line of research, weakly supervised semantic segmentation methods (Ahn & Kwak, 2018; Lee
et al., 2019; Chang et al., 2020) are proposed to train the model using image-level category supervi-
sion instead of pixel-level supervision. However, these segmentation models are still suffering from
addressing many concepts. In contrast, our method tries to endow the segmentation model with
open-world recognition capability, which can segment any category by learning a wide range of
concepts via large-scale image-text pairs (Sharma et al., 2018; Changpinyo et al., 2021; Schuhmann
et al., 2021; Byeon et al., 2022).

Open-world Semantic Segmentation Open-world models have recently gained popularity since
traditional fully supervised models cannot handle classes that are not defined during testing. The
pioneering work Contrastive Language-Image Pre-training (CLIP, Radford et al. 2021) ushered in
the era of open-world image recognition using large-scale image-text pairs. It learns the alignment
between an image and a text at training time, then transfers it to the zero-shot classification by
aligning the image and given set of classes at inference time. The advent of CLIP enables open-
world setting in various fields such as image captioning (Hessel et al., 2021), object detection (Gu
et al., 2022; Zhong et al., 2022), and semantic segmentation.

However, while contrastive learning (CL) allows zero-shot image classification by learning image-
text level alignment, semantic segmentation needs additional consideration since segmentation tasks
require capturing specific regions of the image corresponding to the target class. In order to transfer
the pre-trained model with image-text alignment into the segmentation task, the model needs to learn
region-text level alignment (i.e., capturing which region in the image is aligned with the text).

Existing open-world semantic segmentation studies have taken a strategy to overlook this issue.
Instead of learning region-level alignment directly in pre-training stage, they transfer image-level
alignment to region-level by heuristic modification (Zhou et al., 2022; Shin et al., 2022) or cluster-
ing (Xu et al., 2022; Liu et al., 2022). MaskCLIP (Zhou et al., 2022) proposes to obtain a dense
image embedding from CLIP image encoder through heuristic modification of the last attention
layer. Even though it has several limitations, such as low output resolution or noisy segmentation
results, they show it is a simple yet effective way to obtain an initial segmentation map for refine-
ment. ReCo (Shin et al., 2022) proposes an advanced refinement method based on MaskCLIP, by
retrieval and co-segmentation. Clustering-based methods (Xu et al., 2022; Liu et al., 2022) learn
representations using CL with image-text pairs. They compute region-level image embedding by
clustering sub-region embeddings. These approaches also have shown impressive results but have
several limitations: 1) the learning objective is still image-level alignment, 2) clustering sub-region
image embeddings is independent of query text, and has compelling difficulties in handling arbi-
trary concepts. In summary, existing methods indirectly use CL as a training objective to address
region-level alignment problems. To tackle this problem, we propose a novel region-level alignment
objective named Grounded Contrastive Learning (GCL), which provides an objective for region-
level alignment. By solving the problem explicitly, we achieve state-of-the-art performance with
large margins on all evaluation benchmarks.

3 METHODS

3.1 FROM CONTRASTIVE LEARNING TO GROUNDED CONTRASTIVE LEARNING

Open-world semantic segmentation is a task that aims to learn a model having zero-shot segmenta-
tion capability for arbitrary visual concepts. Our main goal is to develop an open-world segmentation
algorithm using image-text paired data only. This objective is hard to achieve particularly because
there are no explicit learning signals (i.e., pixel-level dense annotations) for the segmentation of
texts (or objects included in the texts). Therefore, for random image xV and text xT , existing meth-
ods typically learn models parametrized by θ to maximize the mutual information between paired
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Figure 2: Overall training pipeline of GCL. CLIPT and CLIPI indicate CLIP text and image encoders,
respectively. The proposed GCL framework provides an objective to learn region-text level alignment. CLIP
encoders are frozen and we train the adapter network only. After the training, GCL block is discarded, and only
Grounder block is used to generate the text-grounded segmentation mask.

images and texts (Oord et al., 2018; Radford et al., 2021) as follows:

argmax
θ

Iθ(x
V ;xT ). (1)

This objective encourages the model to learn the alignment between texts and images, however,
at inference time, the learned model requires generating segmentation masks for texts of arbitrary
visual concepts by computing region-text alignments. Such alignment-level discrepancy between
training and inference time may lead the model to sub-optimal solution. With this in consideration,
to bridge the gap between the objective of conventional contrastive learning and requirement in the
segmentation process, we propose Grounded Contrastive Learning (GCL) which incorporates a text
grounding process to directly align text and regions of interest; for the text grounding we introduce
a grounder that is in charge of generating segmentation masks for the given texts. In a nutshell, GCL
learns a model to maximize mutual information between texts and text-grounded regions as follows:

argmax
θ

Iθ(m · xV ;xT ), (2)

where m is a text-grounded mask of random variable indicating the regions described by a given text.
Compared to the contrastive learning (CL) that implicitly learns a grounding capability, GCL has a
clear advantage of explicit learning grounding capability from the end-to-end trainable grounder.

In the rest of this section, we first explain the overall pipeline of GCL including model architecture
of the grounder and the mask generation process. Then, we describe how we define losses using the
generated mask to train our open-world grounder.

3.2 OVERALL PIPELINE

Figure 2 illustrates our overall training pipeline. For an input batch of paired texts XT and images
XV , GCL first performs a grounding process to identify text-grounded regions for a text via a
grounder. The grounder consists of two encoders: 1) image encoder is in charge of providing a single
(L2-normalized) global feature as well as dense patch-level features and 2) text encoder provides a
(L2-normalized) text embedding feature. In practice, as shown in Figure 2, we adopt CLIP (Radford
et al., 2021) to initialize two encoders. To preserve and exploit the CLIP’s useful knowledge learned
during large-scale pre-training, we freeze the pre-trained CLIP and introduce an adapter network
for dense patch-level features. To be specific, given features computed using CLIP text encoder
Et, CLIP image encoder Ev , and the adapter network F , segmentation masks are computed via
position-wise dot product between text embedding and dense patch-level features as follows:

T = Et

(
XT
)

and Vg,Vd = Ev

(
XV
)
, (3)

Vs = F (Vd), (4)

Mi,j = σ
(
w · t⊤j Vs

i + b
)
, (5)
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1 # x_t[B, L] - minibatch of texts
2 # x_v[B, 3, H, W] - minibatch of images
3 # text_encoder - return text emb (t)
4 # image_encoder - return global image emb and dense feature (v_g, v_d)
5 # adapter - convert v_d into dense image emb (v_s)
6 # proj - scalar projection and sigmoid layer
7

8 t = text_encoder(x_t) # t[B, C]
9 _, v_d = image_encoder(x_v) # v_d[B, L, C]

10 v_s = adapter(v_d) # v_s[B, C, H, W]
11 mask = proj(einsum("ichw,jc->ijhw", v_s, t)) # [B, B, H, W]
12

13 pos_mask = mask[arange(B), arange(B)].unsqueeze(1) # [B, 1, H, W]
14 pos_mask_b = gumbel_sigmoid(pos_mask) # binarized positive mask
15 v_g, _ = image_encoder(pos_mask_b * x_v) # v_g[B, C]
16 s = v_g @ t.T
17 gcl_v = info_nce(s) # InfoNCE loss
18

19 w = mask / mask.sum((2, 3), keepdim=True)
20 grounded_embedding = einsum("ichw,ijhw->ijc", v_s, w)
21 s = einsum("ijc,ic->ij", grounded_embedding, t)
22 gcl_f = info_nce(s) # InfoNCE loss
23

24 gcl_loss = gcl_v + gcl_f

Figure 3: PyTorch-like pseudo code for the core implementation of GCL.

where T ∈ RB×C , Vg ∈ RB×C and V d ∈ RB×L×C are a normalized text embedding, a nor-
malized global image embedding and dense image features from CLIP, Vs ∈ RB×C×H×W is a
normalized dense image embedding by the adapter network, and M ∈ RB×B×H×W is segmenta-
tion masks between images and texts in the batch. B, C and L mean a batch size, the embedding
dimension size and the number of patches, respectively. σ is a sigmoid function, and w, b are learned
scalar projection parameters.

Then, the segmentation masks are used to extract grounded-image features. Replacing the global
image embedding in conventional contrastive learning with grounded-image embedding makes our
model become to learn text-region level alignment in end-to-end manner. In the following sections,
we describe how the generated mask M is used in the GCL framework.

3.3 TRAINING OBJECTIVES

Recall that the main idea of GCL is to define positive pairs for contrastive learning as grounded
regions and texts. For this purpose, we define GCL losses in two different levels—image-level and
feature-level—using the generated masks M for all pairs of images and texts in a batch; the detailed
pseudo code to compute GCL losses is provided in Figure 3. In addition, we employ area prior loss
and smooth prior loss to further improve the quality of generated masks.

Image-level GCL loss. Given a pair of image XV
i and text XT

i , one intuitive way to obtain a fea-
ture for grounded regions is directly inferring a masked image given by a generated segmentation
mask. To make the whole process end-to-end trainable, we first compute a binarized mask Mb

i,i from
the generated mask Mi,i using Gumbel-Softmax (Jang et al., 2017) technique and obtain a differ-
entiable masked image via element-wise multiplication of the given image and the binarized mask.
Then, we feed the masked image into the image encoder, ṽg

i , ṽ
d
i = Ev

(
Mb

i,i ·XV
i

)
, and use the

extracted global vector ṽg
i as the text-grounded image embedding. We compute a cosine similarity

matrix between text-grounded image embeddings and text embeddings in a batch by Sm
i,j = ṽg

i
⊤
tj .

Finally, based on the similarity matrix, we define the image-level GCL loss LGCLv to make the rep-
resentations of positive image-text pairs similar to each other while the representations of negative
pairs dissimilar using the symmetric version of InfoNCE (Oord et al., 2018; Radford et al., 2021):

LGCLv
= InfoNCE (Sm) , (6)

InfoNCE (S) = −1

2

(
1

B

B∑
i

log
exp(Si,i/τ)∑B
j exp(Si,j/τ)

+
1

B

B∑
i

log
exp(Si,i/τ)∑B
j exp(Sj,i/τ)

)
, (7)

where τ is a learnable temperature.
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Feature-level GCL loss. While the image-level GCL loss drives a model to generate segmenta-
tion masks for the associated texts (i.e., text of positive pairs in the batch), we observe that it is not
enough to suppress a segmentation mask for the region that is not described in text, especially for
the salient region. This raises the need to optimize negative masks obtained from the unrelated text
(i.e., text of negative pairs in the batch). However, it is infeasible to compute the image-level GCL
loss for negative masks due to the high computational cost of inferring grounded image embeddings.
Motivated by Girshick (2015), we introduce the feature-level GCL loss to effectively compute fea-
tures of the negative masks. Specifically, for dense image embeddings Vs

i ∈ RC×H×W and a text
embedding vector tj , we compute feature-level grounded image embedding vf

i,j ∈ RC by

vf
i,j =

∑
h,w Mi,j,h,w · vs

i,:,h,w∑
h,w Mi,j,h,w

. (8)

Then, we compute a cosine similarity Sf
i,j = vf

i,j

⊤
tj between all pairs of text embeddings and

feature-level text-grounded image embeddings in the batch. Finally, we define the feature-level
GCL loss to suppress the grounding of negative texts using the similarity matrix as follows:

LGCLf
= InfoNCE

(
Sf
)
. (9)

Area prior loss. We observe that a model trained with the two above losses sometimes converges
to a trivial solution—generating a segmentation mask where the whole region is activated—as CL.
To address the issue, we leverage priors for segmentation area into our GCL framework. To be
specific, for the positive masks (masks from positive pairs) M+ and the negative masks (masks from
negative pair) M−, we denote the area of positive and negative masks by M+ and M−, respectively.
The area prior loss is defined by setting a prior to each area:

Larea =
∥∥∥p+ − E

[
M+

]∥∥∥
1
+
∥∥∥p− − E

[
M−

]∥∥∥
1
, (10)

where p+ and p− are positive and negative area priors. For the area prior of negative masks, intu-
itively, we can expect the area of the negative masks to be 0.0 (=p−). Choosing the positive area
prior is a bit more tricky, since it may vary depending on the training dataset. We measure the av-
erage positive area in CC3M dataset (Sharma et al., 2018) using previous open-world segmentation
model, MaskCLIP (Zhou et al., 2022). As a result, we set p+ to 0.4.

Smooth prior loss. In the image-text dataset, a text generally describes the salient object or se-
mantic in the paired image. Based on the observation, we assume that most of the text-described
region is smooth rather than noisy (like including holes). We employ total variation (TV) regular-
ization loss (Rudin et al., 1992) for the smooth prior. We apply total variation loss to both mask and
dense image embedding:

Ltv = ∥M∥TV + ∥Vs∥TV, (11)

where ∥ · ∥TV is the anisotropic TV norm.

Final loss. Our final loss function is defined by:

L = λGCLLGCL + λareaLarea + λtvLtv, (12)

where LGCL = LGCLv + LGCLf
, and λGCL, λarea, λtv are hyperparameters to balance three losses.

3.4 REFINEMENT

Another important component for semantic segmentation under limited supervision is the refine-
ment process. Some previous works propose their own refinement methods (Zhou et al., 2022;
Shin et al., 2022), but we simply adopt existing method, pixel-adaptive mask refinement (PAMR,
Araslanov & Roth (2020)). We do not use dense CRF (Krähenbühl & Koltun, 2011) due to its heavy
computational burden, despite its widely known effectiveness.
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4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Unified evaluation protocol. In the open-world semantic segmentation field, there is no standard
evaluation protocol yet. Thus, existing methods conduct evaluation using their own protocols such
as different data processing strategies on different datasets; surprisingly, even for the same dataset,
the target classes are sometimes different across methods. Inspired by this, we present a unified
evaluation protocol for a fair and direct comparison of algorithms. We design the protocol following
open-world scenario, where prior access to the target data before evaluation is not allowed. Un-
der this scenario, the proposed protocol prohibits dataset-specific hyperparameters (HPs) or tricks,
e.g., class name expansion or rephrase, leading to performance overestimation. For example, we
observe that the if target class of “person” can be expanded (or rephrased) to its sub-concepts (e.g.,
man, woman, worker, rider, etc.) depending on dataset, GCL can get significant performance gains.
With this in consideration, we evaluate models using unified class names from default version of
MMSegmentation (Contributors, 2020) without class name expansion or rephrase. All other eval-
uation settings follow Xu et al. (2022), where the input image is resized to have a shorter side of
448. Additionally, dense CRF (Krähenbühl & Koltun, 2011) is not used identically due to its expen-
sive computational cost. We employ mean intersection-over-union (mIoU) as a performance metric,
which is a standard metric in semantic segmentation field.

Benchmark datasets and comparison methods. To provide extensive evaluation, we first col-
lect all previously used benchmark datasets in the existing methods and add widely used ADE20K
dataset for segmentation, resulting in total 8 benchmark datasets—categorized into 2 groups: (i)
w/ background class: PASCAL VOC (21 classes), PASCAL Context (60 classes), COCO-Object
(80 thing and 1 background classes, Xu et al. (2022)) and (ii) w/o background class: PASCAL
VOC20 (20 classes, Everingham et al. (2010)), PASCAL Context59 (59 classes, Mottaghi et al.
(2014)), COCO-Stuff (171 classes, Caesar et al. (2018)), Cityscapes (19 evaluation classes, Cordts
et al. (2016)), and ADE20k (150 classes, Zhou et al. (2019)). Note that open-world segmentation
methods perform segmentation based on class name. Thus, the background class, which does not
sufficiently describe the semantic itself, needs additional considerations, e.g., probability threshold-
ing instead of use of “background” text itself. The datasets with background class evaluate this
aspect. We compare GCL with all existing open-sourced methods: GroupViT (Xu et al., 2022),
MaskCLIP (Zhou et al., 2022), and ReCo (Shin et al., 2022) using the unified protocol. Additional
comparison with non-open sourced methods is given in Appendix.

Implementation details. For the grounder, we use CLIP ViT-B/16 model where the size of input
images is 224 × 224 and the patch size is 16 × 16. Following MaskCLIP (Zhou et al., 2022), we
modify the last attention layer of CLIP image encoder to acquire the dense embedding representing
local semantics. The adapter network consists of four gated convolution blocks with two upsampling
interpolation, where the output of convolution is gated by learned gating parameter and added to the
skip connection; the process of gated convolution can be written as: x′ = x + tanh(g) · Conv(x)
where x is input. The detailed architecture of the adapter is provided in Appendix. We use
CC3M (Sharma et al., 2018) and CC12M datasets (Changpinyo et al., 2021) for training. The loss
weights of λGCL = 0.1, λarea = 0.4, λtv = 1.0 are used. We train a model with a batch size of 1024
and learning rate of 7.5 × 10−5 for total 50, 000 iterations with 15, 000 warmup steps and cosine
schedule. AdamW optimizer (Loshchilov & Hutter, 2018) is used with a weight decay of 0.05.

4.2 MAIN EXPERIMENTS

In Table 1, we first compare the existing methods based on the proposed unified protocol. We com-
pare two checkpoints of GroupViT and two methods of MaskCLIP, due to the performance varying
according to the dataset. Between the existing methods, GroupViT (Xu et al., 2022) achieves the
best on average, but the best method varies according to each dataset. Interestingly, GroupViT
shows the best performance on the object-oriented datasets (VOC, VOC20, and COCO-Object), but
the performance tends to decrease as the stuff classes are dominated in the target dataset. For exam-
ple, GroupViT (RedCaps) presents the worst or second worst performance in Context, Cityscapes,
and ADE20K. In contrast, MaskCLIP shows the best performance in stuff-oriented datasets such
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Table 1: Zero-shot segmentation performance comparison on 8 semantic segmentation datasets. mIoU
metric is used in every experiment. We highlight the best and second-best results. Object, Stuff, City, ADE
indicates COCO-Object, COCO-Stuff, Cityscapes, ADE20K datasets, respectively. MaskCLIP† indicates their
baseline method without additional refinement techniques (key smoothing and prompt denoising). The YFCC
and RedCaps of GroupViT indicate their training dataset in addition to CC12M.

with background class without background class
Methods VOC Context Object VOC20 Context59 Stuff City ADE Avg.

GroupViT (YFCC) 49.5 19.0 24.3 74.1 20.8 12.6 6.9 8.7 27.0
GroupViT (RedCaps) 50.4 18.7 27.5 79.7 23.4 15.3 11.1 9.2 29.4
MaskCLIP† 29.3 21.1 15.5 53.7 23.3 14.7 21.6 10.8 23.7
MaskCLIP 38.8 23.6 20.6 74.9 26.4 16.4 12.6 9.8 27.9
ReCo 25.1 19.9 15.7 57.7 22.3 14.8 21.1 11.2 23.5

GCL (Ours)
55.0 30.4 31.6 83.2 33.9 22.4 24.0 17.1 37.2

(+4.6) (+6.8) (+4.1) (+3.5) (+7.5) (+6.0) (+2.4) (+5.9) (+7.8)

as Context, Context59, COCO-Stuff. We conjecture it is benefited from the leveraging a large-
scale pre-trained CLIP. Furthermore, their refinement techniques, key smoothing and prompt de-
noising, improve the average performance +4.2 mIoU, but significantly degrade the performance
in Cityscapes dataset (21.6 → 12.6). It may suggest a limitation of the heuristic refinement and
the need for data-driven approach. The signficant performance degradation of MaskCLIP between
VOC20 and VOC may imply the need of consideration for background class.

Even though the performance gap varies according to the characteristics of the evaluation dataset,
GCL achieves state-of-the-art performance with a large margin in all datasets. Since region-level
alignment learning of GCL lets the model learn the capability to distinguish the background region
in a data-driven manner, GCL achieves remarkably outperforms the CL-based existing methods in
datasets without background class also, without any heuristical consideration. These results sup-
port that our proposed GCL framework eliminates the train-test discrepancy in the alignment level
existing in CL and successfully learns the region-level alignment.

4.3 QUALITATIVE RESULTS

We compare the proposed method qualitatively in Figure 4. At examples on VOC20 in Figure 4a,
we observe that CL-based competing methods suffer from mis-alignment issue of regions and target
classes, where clustering-based method (GroupViT) shows less-noisy segmentation masks com-
pared to MaskCLIP and ReCo. In contrast, GCL provides more accurate segmentation masks
through the direct region-text alignment learning. In addition, we present examples in the wild
to show open-world segmentation capability in Figure 4b. For this purpose, we obtain segmentation
masks for visual concepts not included in segmentation datasets (e.g., moon, sunset) or free-form
texts (e.g., “two women and one man with a smiling snowman” and “a boatman standing on a boat”).
GroupViT tends to focus on the main object of the image and regard the other objects as background,
which is consistent with its good performance in object-oriented datasets. Interestingly, in contrast to
the quantitative evaluation, we observe ReCo consistently outperforms MaskCLIP qualitatively. We
conjecture that this is due to their different refinement approaches; the refinement approach of ReCo,
retrieval and co-segmentation, is data-driven method while the refinement approach of MaskCLIP
depends on heuristic post-processing which does not guarantee the general improvement. Finally,
our method GCL consistently shows better results than other methods.

4.4 ABLATION STUDY

We perform several ablation studies on PASCAL VOC and PASCAL Context to investigate the
contributions of individual loss terms. For the ablation, we use a short learning schedule with a
batch size of 512 and learning rate of 7.5 × 10−5. for total 40, 000 iterations including 10, 000
warmup steps. Table 2a shows that the proposed GCL loss remarkably improves the segmentation
performance (26.9 → 37.7). Image-level or feature-level GCL loss solely improves the performance
significantly, while using both losses together provides further performance gain. Also, we observe
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(b) Examples in the wild.

Figure 4: Qualitative examples. (a) The comparison shows the error types of each method in VOC dataset.
The results only show a foreground region following the evaluation protocol. GroupViT clusters similar seman-
tics well, but it occasionally causes incorrect segmentation of a large region. MaskCLIP tends to generate noisy
mask. ReCo is less noisy, but still noisier than GroupViT or GCL. (b) shows results on the wild web images
and free-form texts. Texts used as target classes are shown in the bottom of the images. This setting is more
pertinent than evaluating on datasets of fixed classes for showing the open-world segmentation capability.

Table 2: Ablation studies on GCL and prior losses. We use short learning schedule for this ablation and
refinement techniques are not applied to reveal the effect of each loss function clearly.

(a) GCL loss improves performance remarkably.

GCLv GCLf CL VOC Context Avg.

CL ✔ 39.6 14.2 26.9
GCLv ✔ 50.8 19.1 34.9
GCLf ✔ 48.2 20.2 34.2
GCL ✔ ✔ 52.1 23.2 37.7
CL+GCL ✔ ✔ ✔ 51.0 23.6 37.3

(b) Prior losses.

Larea Ltv VOC Context Avg.

GCL ✔ ✔ 52.1 23.2 37.7
GCL−Ltv ✔ 47.5 21.5 34.5
GCL−Larea ✔ 28.7 22.1 25.4
GCL−Ltv−Larea 25.7 21.2 23.4

that incorporating CL with GCL is not effective. Table 2b shows the importance of prior losses. As
described in the method section, area prior loss plays important role to prevent the model falling into
a trivial solution.

5 CONCLUSION

We propose a novel framework for open-world semantic segmentation, which mainly tackles an
issue in contrastive learning based methods—the discrepancy of the alignment level in training (i.e.,
image-text) and inference (i.e., region-text) time. In the framework, we incorporate the grounding
process within contrastive learning, thus allowing explicit learning alignment between text and text-
grounded regions (i.e., segmentation result). We also present a unified evaluation protocol for a fair
and direct comparison of existing methods. Finally, our GCL achieves state-of-the-art zero-shot
segmentation performance on 8 datasets with large margins using the proposed protocol.
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tion. Advances in Neural Information Processing Systems, 32, 2019.

Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, and Saehoon Kim.
Coyo-700m: Image-text pair dataset, 2022.

Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and stuff classes in context.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1209–
1218, 2018.

Yu-Ting Chang, Qiaosong Wang, Wei-Chih Hung, Robinson Piramuthu, Yi-Hsuan Tsai, and Ming-
Hsuan Yang. Weakly-supervised semantic segmentation via sub-category exploration. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8991–
9000, 2020.

Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12m: Pushing
web-scale image-text pre-training to recognize long-tail visual concepts. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3558–3568, 2021.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):
834–848, 2017.

MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox
and benchmark. https://github.com/open-mmlab/mmsegmentation, 2020.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3213–3223, 2016.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303–338, 2010.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pp. 1440–1448, 2015.

Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vision
and language knowledge distillation. ICLR, 2022.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. EMNLP, 2021.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017.
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A ARCHITECTURE DETAILS

Our core design principle is to preserve and exploit the diverse knowledge of pre-trained CLIP.
Therefore, we freeze the pre-trained CLIP and train the adapter network for the adaptation from the
image-text alignment to the region-text alignment. We follow the simple modification of MaskCLIP
(Zhou et al., 2022) to the image encoder. They modify the last attention of the CLIP image encoder
to acquire the dense embedding representing local semantics. This dense image embedding is fed
to the adapter. As shown in Fig 2, the adapter consists of four gated convolution blocks, where
the output of convolution is gated by learned gating parameter and added to the skip connection.
Concretely, the process of gated convolution can be written as:

x′ = x+ tanh(g) · Conv(x) (13)

where x is input feature and g is a learned gating parameter. Furthermore, we employ two branch
strategy. In addition to the main adapter branch, we use one more branch, named knowledge preser-
vation branch. There are no learnable parameters in this branch and just mixed with the output of
the adapter branch as following:

M′ = (1− wkp) ·M+ wkp ·MKP (14)

where MKP is the generated masks of knowledge preservation branch, M′ is the final output mask,
and wkp is a mixing hyperparameter. We use the wkp of 0.3. To fully leverage the pre-trained
knowledge, this branch is only used in the inference stage.

B COMPARISON WITH ZERO-SHOT SEGMENTATION METHODS

Table 3: Zero-shot segmentation results for partial classes.

VOC20 Context59 COCO-Stuff Avg.

ViL-Seg 34.4 16.3 16.4 22.4
ReCo 57.9 32.0 18.4 36.1
GroupViT (RedCaps) 79.0 49.2 16.1 48.1
MaskCLIP 73.0 56.5 21.9 50.5

GCL (Ours) 84.5 62.0 27.6 58.0

We provide an extensive and unified comparison in Section 4, but the comparison cannot include a
method that is not open-sourced, e.g., ViL-Seg (Liu et al., 2022). They show the comparison in the
conventional zero-shot segmentation protocol, where only partial classes are used for evaluation: 5
classes (potted plant, sheep, sofa, train, tv-monitor) for PASCAL VOC20, 4 classes (cow, motorbike,
sofa, cat) for PASCAL Context59, and 15 classes (frisbee, skateboard, cardboard, carrot, scissors,
suitcase, giraffe, cow, road, wall concrete, tree, grass, river, clouds, playingfield) for COCO-Stuff
datasets. Therefore, we additionally provide the comparison results under the partial classes proto-
col. As shown in Table 3, GCL achieves state-of-the-art performance with a large margin in every
dataset again.
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