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Abstract

Human Activity Recognition (HAR) models often struggle with generalization,
meaning they perform poorly when deployed in new, unseen environments or
with different users than those in the training set. This poor generalization occurs
because HAR models often experience variability in sensor data due to differences
in individuals (e.g., age, gender, physical characteristics) and environmental factors
(e.g., sensor placement, lighting conditions, background noise), which cause distri-
bution shift. All mentioned forms of variability can appear in recreational alpine
skiing. However, skiers’ skill is a factor that has been less studied and highlighted
by scholars. In this study, we explain why a model struggles to generalize across
a mixed-skill dataset. We employed an autoencoder-based multi-task learning
model, which, despite achieving state-of-the-art on standard HAR datasets and
promising results on a skiing dataset, failed to generalize in a real-world alpine
skiing setting. We identified and quantified a skill-related distribution shift as the
cause; low-skilled and experienced skiers occupy distinct regions in latent feature
space with Wasserstein-1 distances increasing from 5.39 to 41.85 for the most basic
to the most advanced skiing technique.

1 Introduction

Human Activity Recognition (HAR) is a field of research within pervasive computing and human-
computer interaction with applications in domains such as healthcare Serpush et al|(2022), sports
Hoelzemann et al.| (2023)), and manufacturing Sopidis et al.| (2023). To identify, categorize, and
evaluate human activities, HAR relies on machine learning to analyze data captured by visual and
wearable sensors.

Although HAR models trained on publicly available datasets achieved the state-of-the-art, activity
recognition in real-world scenarios can be demanding due to the variability in the dataset and
uncontrolled factors |Gil-Martin et al.[(2023); Jimale and Mohd Noor| (2023)). In many real-world
scenarios, the test and training sets do not come from the same distribution [Koh et al.|(2021), which
causes a significant performance decline when facing unseen data. This phenomenon, known as
distribution shift, causes models to fail when deployed outside their training distribution. An example
of such a case is when users perform an activity differently Kreil et al.[(2016)). For instance,|Jimale and
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Mohd Noor (2023) reported a noticeable recognition drop for ML and DL models due to age-related
shifts in the dataset.

The other variability in wearable sensor-based HAR is due to sensor placement and orientation,
referred to as wearing variability Min et al.|(2019), which can cause a distribution shift even for the
same subject across distinct recording sessions. Gil-Martin et al. (Gil-Martin et al.| (2023)) and Khaked
et al. Khaked et al|(2023)) examined the impact of orientation change using transformation and real-
world data collection. They reported distribution shifts in the dataset due to rotation transformation
and orientation variation; as a result, model performance drops. Similarly, Ahen et al. |Ahn et al.
(2023)) observed that changing the sensor location in Animal Activity Recognition reduces the model
accuracy.

Najadat et al. trained an activity recognition model on smartphone-based data and tested the model
against a dataset collected by smartwatches, causing a performance drop of 45% due to device and
position variability Najadat et al.|(2021). Khaked et al. reviewed the impact of subject, device,
position, and orientation variability on the HAR task Khaked et al.| (2025). They emphasized the
significant effect of the subject variability, especially when performing complex activities, on the
model performance. Additionally, they highlighted that sensor orientation hurts model accuracy less
than sensor placement and type.

In recreational alpine skiing, any of the mentioned variability can happen, except that a solution
requires a restricted sensor setup, e.g., full body sensor setup via Xsens MVN Technology Debertin
et al.| (2022), to control sensor and device-related shifts or a solution is developed for a particular
group, e.g. only advanced and expert skiers using Connected Boots Neuwirth et al.| (2020). However,
a scalable sensor setup to target a broad range of skiers may rely on smartphones or smartwatches,
which then add device variability. Furthermore, long-term recording of skiers’ data using smartphones
does not guarantee fixed orientation and placement since skiers locate their smartphones arbitrarily
and may change their place and orientation several times during the recording. Azadi et. al. |Azadi
et al.| (2025) have already investigated the effect of sensor placement and orientation and offered a
preprocessing algorithm to mitigate this issue and ease continuous monitoring.

Additionally, recreational skiers perform skiing activities in various locations and seasons, which
introduces environmental-related variability into the recorded skiing patterns, such as differences in
skiing slopes and snow quality. Subject variability also significantly influences turning patterns, not
only because each skier may execute a technique slightly differently, but also because subjects have
different skill mastery Kranzinger et al.| (2024); |Azadi et al.[(2022)). However, it remains unclear how
turning patterns change specifically as a function of skill level. It is reasonable to expect that less
experienced skiers are unable to perform advanced techniques with biomechanical and behavioral
consistency, introducing systematic variability into the dataset.

Studies and approaches in alpine skiing activity monitoring, |Yoshioka et al. (2018)); [Supej and
Holmberg| (2021), and assessment, [Federolf] (2012); |Prochazka and Charvatova (2025)), relying on
wearable sensors especially inertial measurement units (IMU) are still limited to fixed sensor setups,
Connected Boot sensor system [Snyder et al.|(2021); Kranzinger et al.|(2024) or IMUs in combination
with pressure sensors [Matsumura et al.| (2021)), or several IMU sensors [Pawlyta et al.[|(2019);|Zhang
et al.| (2025)), hindering them of being a scalable solutions proper for the wild nature of alpine skiing.
A scalable solution, on the other hand, needs to handle real-world, long-term skiing sessions and
recognize various skiing style patterns.

In this paper, we present a negative result: despite strong performance on benchmark and controlled
subsets, |Azadi et al.|(2024), our models failed to generalize when deployed in the wild. We identify a
previously underexplored cause, skier skill level, as the source of a significant distribution shift that
undermines model performance. Although the skill level is not necessary for performing activities
of daily living, it is crucial in sports, especially alpine skiing, which requires a combination of
physical skills and technical proficiency. The current study discusses how the skill level of skiers can
negatively impact skiing style recognition and model generalization.



2 Methodology

2.1 Dataset

The dataset used in this study consists of two parts. The first part is an alpine skiing dataset
introduced in the |Azadi et al.| (2022)). The dataset comprises IMU signals from skiers who performed
various alpine skiing techniques selected by an expert based on the Austrian Ski Instructor Plan
Osterreichische Skischule|(2021). These techniques are Parallel ski steering - long radii, Parallel
ski steering - short radii, Dynamic parallel ski steering - long radii, Dynamic parallel ski steering -
short radii, Carving - long radii, and Carving - short radii. We further adopted the method presented
in /Azadi et al.|(2022) and conducted several data recordings without supervision, which optimally
simulates a real-world use case, see Table m

The participants in the data collection possess varying skiing abilities, and we have categorized them
into two groups based on their level of expertise: experienced and low-skilled. The experienced
subjects include two alpine skiing instructors and five former ski racers; in total, seven experienced
skiers coded as E in Table[I} The rest of the dataset contains ski enthusiasts who are familiar with all
techniques and frequently go skiing during ski season; in total, eleven low-skilled skiers coded as LS
in Table[T} This study was approved by the Ethics Committee of Johannes Kepler University with the
protocol code JKU EC-24-2024.

The data was collected outside the laboratory in different skiing areas, slopes, and seasons in Austria.
Therefore, the dataset has a high level of complexity, which reaches its maximum in the recordings
without supervision. The IMU data (accelerometer, gyroscope, and magnetometer) were gathered
using personal smartphones with a sampling rate of at least 50 Hz, and all recorded signals were
resampled to 50 Hz, which contains sufficient information for high-frequency activities [Yan et al.
2012). Table|I| summarizes the dataset used in this study, where sessions 6-9 were conducted without
any supervision.

Session Where When Subjects’  Skill>  Self-recorded Glacier
1 Hintertux, Tyrol June 2019 4 2*E,2*LS No Yes
2 Dachstein, Upper Austria November 2019 2 ELS No Yes
3 Galterbergalm, Styria ~ February 2020 1 E No No
4 Hintertux, Tyrol July 2020 3 E, 2*LS Partially Yes
5 Ramsau, Styria February 2021 5 2*E, 3*LS Yes No
6 Obertauern, Salzburg February 2021 3 3*E Yes No
7 Obertauern, Salzburg March 2021 2 2*LS Yes No
8 Obertauern, Salzburg ~ December 2021 4 4*LS Yes No
9 Greifenburg, Carinthia ~ January 2022 1 E Yes No

Table 1: Data collection has been taken place in varied locations and conditions, including snow
quality and slopes. Eighteen subjects recruited in this study have different capabilities ranging from
novice to expert. However, we categorized them into two groups of experienced and low-skilled
skiers. On the first three recordings, data collection was conducted using the provided smartphones
(Galaxy S9). In the other recordings, data collection is done through the developed application on the
subject’s smartphone.

! Some of the skiers participated in the data collection more than one time.

2 The abbreviation in the skill column is as follows: E: experienced, LS: low-skilled

We suggested that users attach their smartphones to their right side around their hip without any
restriction on phone orientation. However, we anticipated that a fixed sensor placement and orientation
would not be guaranteed in the recreational setting. Therefore, we relied on the motion analysis
method, suggested by |Azadi et al.| (2025), to rotate recorded signals from any arbitrary position to
a fixed reference frame as a required step before each learning task. The preprocessing algorithm
fuses the accelerometer, gyroscope, and magnetometer using a two-step complementary filter and



then applies wavelet analysis to detect side motions, exhibiting turning behavior. The outcome of
motion analysis delivers skiing motion in three axes: side, forward, and up.

2.2 Learning Task

We tackle the alpine skiing style recognition using various algorithms to investigate methodological
issues when coping with a dataset, including different types of variability. The methods examined in
this study involve traditional machine learning algorithms, which rely on hand-crafted domain-specific
features, already investigated by Neuwirth et al|(2020), and autoencoder-based multi-task learning,
proposed by |Azadi et al.[(2024). The multi-task learning architecture, formed of a multi-channel
asymmetric autoencoder and a classification head for skiing style recognition, combines unsupervised
(signal reconstruction) and supervised (skiing style recognition) tasks.

Moreover, we build a Variational Autoencoder(VAE), [Kingma and Welling| (2013)), on top of the
proposed autoencoder. VAEs offer several key advantages over traditional Autoencoders, primarily
due to their probabilistic approach to learning the underlying probability distribution of the input
data. Unlike standard autoencoders, which learn fixed latent representations, VAEs model the latent
space as a probability distribution, which allows VAEs to handle uncertainty and variability in the
data more effectively. However, they may perform poorly in reconstructing the input.

The models included an autoencoder-based multi-task learning model (AE-MTL), a variational
autoencoder-based multi-task learning model (VAE-MTL), a single-task baseline (STL), and a
classical Random Forest (RF) classifier, introduced in Figure [T} The diverse selection of models
allowed for a comprehensive comparison between traditional machine learning methods and deep
learning architectures capable of leveraging shared representations across multiple related tasks.
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Figure 1: The figure displays an overview of the recognition models evaluated in this study for the
style recognition task. a. autoencoder-based multi-task learning model (AE-MTL), b. variational
autoencoder-based multi-task learning model (VAE-MTL), c. single-task baseline (STL), and d.
classical Random Forest (RF) classifier

We developed AE-MTL and STL in the same way as introduced by |Azadi et al.|(2024), where the
encoder dedicates a channel to each signal input to compress the signals into a latent space. The
decoder in the AE-MTL, on the other hand, reconstructs the input signal in the output. The loss
functions are cross-entropy, L1 et al.| (2020), for the classification tasks and Huber, [Huber| (1992), for
the signal reconstruction. Additionally, we extended the AE-MTL by adding two dense layers to the
encoder to form a Gaussian distribution characterized by a mean and a variance, thereby creating



VAE-MTL. The loss functions are cross-entropy for the classification tasks and KL divergence,
Kullback and Leibler|(1951), for the signal reconstruction.

The experiment uses Adam optimizer with a learning rate of 0.001 and the default hyperparameter
and sets the batch size to 128 for all the analyses. The model was implemented using Tensorflow and
Keras and ran on Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz 2.90 GHz, Nvidia Quadro M2200,
and 32 GB of installed RAM. An early stop was set to stop training when the validation loss stops
improving by a minimum change of 0.0001 after 10 epochs.

To train the RF model, we extracted several domain-specific features from the skiing motions as
the outcome of the preprocessing step. These features are turning dynamics, including turn cycle
and maximum body inclination, and the range of movements in skiing motions. We employed a
Random Forest Classifier using the Scikit-learn Python library, Pedregosa et al.| (2011). The model
was trained with 150 decision trees. All other hyperparameters were set to their default values. The
same random_state was used for all runs to ensure reproducibility.

Finally, the study evaluates the introduced models against the entire dataset using Leave-One-Subject-
Out Cross-Validation [Bulling et al.| (2014). Therefore, there is no overlap between training and test
sets, i.e., a distinct user’s recordings are used for model training and testing since a user may have
several recordings.

3 Results

The overall model performance, as shown in Table [2] indicates poor generalization across all models.
None of the models consistently achieved a high classification performance, meaning that general-
ization to unseen subjects remains a significant challenge in skiing style recognition based solely
on IMU signals. While AE-MTL exhibited slightly higher scores, resulting in approximately 60%
accuracy, the overall pattern suggests that the models struggled to adapt to the inter-subject variability
inherent in recreational alpine skiing. The high standard deviation further illustrates the general
difficulty of the task since all models exhibited considerable variability across subjects. This high
spread suggests that subject-specific factors such as skiing style, execution quality, sensor placement
variability, and skill level introduced substantial distribution shifts that the models failed to handle
successfully.

Model Accuracy F1-score Precision Recall
Random Forest 54.10 £10.19 48.07 £13.62 52.41+£14.51 52.00+12.35
Single-Task Learning 57.73+£14.86 48.41£13.99 55.824+15.65 53.02+12.71
Multi-Task Learning 60.15£13.60 51.104+13.53 56.22 £ 15.38 55.69 +13.15
Variational Multi-Task Learning  57.60 = 14.61 49.28 £14.14 55.32+£16.12 53.40 + 13.58

Table 2: Overall performance of skiing style recognition models indicate a poor generalization to
unseen skiers. Values (mean =+ std) for the fl-score, precision, and recall are macro average. Among
models, AE-MTL performs slightly better, ensuing about 60% accuracy. However, all models exhibit
high standard deviations, showing unstable recognition behavior.

Figure [2] illustrates classification models’ performance per skiing style. Scanning the box plots
shows that classification performance varied significantly across various skiing styles and exhibited
an apparent drop for the Carving techniques (T5 and T6). All models displayed relatively higher
difficulty distinguishing between biomechanically similar techniques, such as carving turns and
dynamic parallel turns. For instance, the recall for carving - short radii (T6) is dramatically low, and
simultaneously, the recall for dynamic parallel - short radii (T4) is greater than its precision, meaning
models falsely classified other techniques as T4.
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Figure 2: Classification metrics per technique shows a considerable performance drop on the Carving
skiing styles. Since these techniques are the most advanced ones, they can be performed noticeably
differently by low-skilled skiers.

* Abbreviations for techniques: T1: Parallel ski steering - long radii, T2: Parallel ski steering - short
radii, T3: Dynamic parallel ski steering - long radii, T4: Dynamic parallel ski steering - short radii,
T5: Carving - long radii, T6: Carving - short radii

To explain the poor generalization in style recognition, we further investigated skill-related variability
in the dataset. For this reason, we reserved the recordings without supervision as test sets and trained
models on the rest of the data. Then, we tested models against the unseen test sets categorized
into experienced and low-skilled groups. The classification results in Table [3]indicate a significant
difference between the two groups. Considering that all types of variability appears in the two test
sets, the discrepancy can be related to the skill level of skiers.



Accuracy F1-score Precision Recall

Model LS Exp. LS Exp. LS Exp. LS  Exp.
Random Forest 33.94 5846 22.12 52.66 2748 62.15 2490 51.14
Single-Task Learning 3370 53.85 21.86 5394 2459 5647 2379 55.07
Multi-Task Learning 3516 5207 2276 49.76 2698 5743 2440 49.53

Variational Multi-Task Learning 3590 50.30 27.13 5097 30.14 5938 31.23 50.32

Table 3: The classification outcomes show a clear difference between the two skill groups. The
accuracy and macro-averaged metrics for the low-skilled group even falls in a random performance
range. LS: low-skilled and Exp.: experienced

We further examined the AE-MTL model performance when tested against two subjects with varied
skill levels who performed their activities in the same setting. The examination revealed a substantial
discrepancy in model performance and latent space, Figure 3] Figure Bla demonstrates confusion
matrices in which the style recognition result for the experienced skiers is acceptable except on the
carving - short radii (T6). On the other hand, although the recall for the first three techniques (T1-T3)
from the low-skilled skier is within an acceptable range, the model could not recognize the more
advanced techniques performed by the low-skilled skier, Figure [3]b.
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Figure 3: Skiing style classification for the experienced skier, (a.), although acceptable, illustrates
significant confusion among carving and parallel dynamic turns, especially short radius turns. (b.)
shows a noticeable performance drop and confusion for the low-skilled skier. (c.) and (d.) depict the
latent space to compare features from the subjects, indicating a high Wasserstein-1 distance of 9.95,
suggesting a distribution shift due to the skill level difference.

* Abbreviations for techniques: T1: Parallel ski steering - long radii, T2: Parallel ski steering - short
radii, T3: Dynamic parallel ski steering - long radii, T4: Dynamic parallel ski steering - short radii,
T5: Carving - long radii, T6: Carving - short radii

The latent space, Figure[3|c. and d.) visualized using t-SNE [Maaten and Hinton| (2008), explains the
poor generalization, where latent features of short radii turning styles for the low-skilled skier are
far from those for the experienced skier, and more in the center of the density. The Wasserstein-1
distance, Panaretos and Zemel|(2019)), between skill groups is 9.95, and the symmetric KL divergence,
Zhang et al.|(2023), is 0.56, suggesting a moderate distribution shift. The latent representations of
experienced and low-skilled skiers are partially separable but overlapping, specifically, features from
the T4 and T6 from the experienced skier on the right side. Figure 3] thus, indicates that skill level
influences the feature distribution in a noticeable but not dominant way.

The sample in Figure[3]a, an experienced skier, achieved the highest accuracy. Classification metrics
for this sample are 82% accuracy and 78%, 77%, and 76% macro average precision, recall, and
fl-score, respectively. On the other hand, the same metrics for the low-skilled skier are 54%, 36%,
38%, and 32%, respectively, Figure[3]b. However, in the worst-case scenario, metrics can degrade to
the level of random performance.

Figure [ compares the density of latent features per technique. The result shows the Wasserstein-1
distance increases from left to right as styles become more challenging. Also, shorter turns exhibit
a higher distance, where the density overlap is minimum, compared to their long radius version.
The Wasserstein-1 distance of 5.39 and symmetric KL-divergence of 0.52 between experienced
and low-skilled latent distributions indicate a statistically significant distribution shift of moderate
magnitude for Parallel ski steering - long radii (T1): the two cohorts form separable but not entirely



isolated clusters in latent space. The separation reaches maximum for the carving - short radii (T6),
where the latent features are fully dividable into two clusters, including several artifacts from the
low-skilled skier, with Wasserstein-1 distance of 41.85 and symmetric KL-divergence of 10.31,
demonstrating an evident and significant distribution shift.

T-SNE density comparison on technique T1 T-SNE density comparison on technique T3 T-SNE density comparison on technique T5
Wasserstein-1 5.3935 and KL-divergence 0.5207 Wasserstein-1 7.3782 and KL-divergence 0.4391 Wasserstein-1 9.3913 and KL-divergence 0.3855
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Figure 4: Density comparison per technique indicates a distribution shift as skiing style becomes
more challenging, which is more critical for short turn activities. Wasserstein-1 distances are 5.39,
13.8,7.37, 28.53, 9.39, and 41.85. The difference reaches the highest for the Carving - short radii,
where there is now overlap between the two subjects.

* Abbreviations for techniques: T1: Parallel ski steering - long radii, T2: Parallel ski steering - short
radii, T3: Dynamic parallel ski steering - long radii, T4: Dynamic parallel ski steering - short radii,
T5: Carving - long radii, T6: Carving - short radii

4 Discussion

This paper explored skiing style recognition under real-world conditions and the complexity of the
recognition task in recreational alpine skiing, where a wide range of variability exists, including
sensor placement and orientation changes, device differences, location-specific factors, and, most
importantly, skill level variability. The experiment showed that even well-established deep learning
pipelines, here the AE-MTL model, could not generalize to real-world skiing data, even though they
worked well on benchmark datasets. The main reason for this failure was the difference in skill
levels among skiers. Our results showed that low-skilled and experienced skiers produce different
movement patterns, which makes it harder for the model to recognize styles correctly. Yet, having an
accurate style recognition pipeline is crucial when providing direct feedback on a skier’s performance
in a particular turning technique. The current research summarizes activity recognition issues as
follows:

Some turning styles are very similar, e.g., parallel dynamic - short radii and carving - short radii. Even
though an experienced skier can exhibit slightly different turning behavior using any of those two
styles, any change in the skier’s speed or body inclinations may make those techniques identical. The
significant confusion between the carving and dynamic parallel turning techniques raises a question:
Is the captured data on IMUs representative enough to distinguish these techniques? Or is attaching
an IMU somewhere on the upper body suitable? Since having the sensor placed on the leg or boot
may capture more harsh movements due to carvings.

Results show considerable recognition confusion among similar styles, which can be related to how
skiers execute skiing turns. There are two primary explanations for why subjects perform activities
differently; both are related to their skill levels. First, advanced skiers tend to adapt their style after



becoming masters at one level, which adds a few adjustments to their styles and, consequently, their
patterns on the IMU signals. Second, low-skilled skiers struggle to execute advanced turning styles
properly, and as a result, they may modify the style to a similar but less advanced skiing technique.
We observed a significant impact of skier skill level on recorded IMU patterns, suggesting a clear
distribution shift between low-skilled and experienced skiers. Further examination of the model
performance, when testing against both skill groups, demonstrated a poor model generalization when
facing data from the low-skilled group, Table [3] These results support the conclusion that skill level
variability poses a persistent challenge for robust activity recognition.

Additionally, we measured the shift between distributions of latent features for experienced versus
low-skilled skiers using the Wasserstein-1 distance and symmetric KL divergence. Because the
Wasserstein-1 distance quantifies the minimum average displacement needed to transform one
probability mass into the other, larger values directly indicate that the two groups occupy increasingly
distinct regions of latent space. Also, the symmetric KL divergence quantifies how much the feature
density of one skill group fails to explain the other. Low values (e.g., KL = 0.25, the minimum in
Figure) indicate overlap and modest failure, while high values (KL > 5) reflect substantial distribution
mismatch. In the carving-short condition, KL = 10.3 confirms that the low-skilled samples lie almost
entirely outside the expert distribution, which is reduced to 8 after class combination, yet is high.
Additionally, a high Wasserstein-1 distance was constantly observed, which, together with feature
mass separations in the feature space, indicates the skill-related distribution shift.

Although deep-learning architectures such as the AE-MTL model achieve state-of-the-art accuracy on
standard HAR benchmarks, this study shows that the same model suffers from poor generalization in
a domain like recreational alpine skiing since domain-specific variability is broader than generic HAR
variability. Recreational skiing layers sensor placement and orientation change, device heterogeneity,
slope and snow conditions, mixed turn radii, and most critically skill level differences on top of the
usual between-subject variation. Transition from a controlled lab setting to the real world using a
living lab approach, therefore, requires explicitly accommodating the full spectrum of real-world
variability that a domain introduces. This study has detailed the variability forms observed in
recreational alpine skiing, and their impacts on the extent to which they can hurt the data, and offered
solutions to address them, including the Skier Fixed Reference Frame.

Skill level damages both patterns and labels. Low-skilled participants often intend to, for instance,
carve but produce dynamic parallel turns, or switch styles mid-run to regain control, which can also
happen to experienced skiers but less often. This dual effect, although on its own an indication of skill
level, implies that a model trained on clean experienced skiing patterns confronts out-of-distribution
signals and ambiguous ground truth in skiing style recognition at deployment time. A central scientific
insight is the identification and quantification of a skill-related distribution shift in recreational alpine
skiing data. By measuring divergences in the latent representations (e.g., Wasserstein-1 distances up
to 41.85 between experienced and low-skilled latent features), the study indicated that shifts in skier
skill alone generate out-of-distribution signals and label noise that degrade skiing style recognition in
comparison to generic HAR models. This finding underscores the need for future recognition systems
to explicitly detect and adapt to skill-induced distributional changes. This shift helps explain the
observed drop in style recognition accuracy when models are evaluated across diverse user groups.

All participants performed every technique in the same recording session with similar skis. However,
carving turns are normally executed on specialized, short-radius carving skis. Because ski side-cut,
stiffness, and length directly influence dynamics, the inertial patterns captured here combine technique
with equipment constraints. It holds the same for skiing slopes since some of the recordings are
conducted on an identical skiing slope regardless of the underlying skiing style, considering the first
two techniques might fit the best to the blue slopes, parallel dynamic styles to the red, and carvings to
black slopes.

The study reviews short and long radius turns, while in reality, skiers may perform techniques with
medium radius turns, which are not introduced in the teaching plan. Skiers may execute such turns
due to the skiing conditions, such as piste width or the crowd on the way. Furthermore, there are
mixed activities that consist of more than one turning style, which are also due to the conditions on
the slope, most likely to adjust the speed. Additionally, ground-truth labels in recreational skiing
often reflect intended rather than actual execution, meaning that a subject may aim for one skiing
style but ends up executing another technique. If a participant deviated from the instructed style,
even briefly, the corresponding segment was still tagged with the intended label, introducing potential



annotation noise. All these conditions can introduce label noise that degrades supervised learning in
the skiing style recognition.

5 Conclusion and Future Work

In this manuscript, we discussed the results of skiing style recognition in recreational alpine skiing
and explained why the approach failed in the real world. The findings highlighted challenges that
variability in skill level introduced into skiing style recognition. These observations underline the
complexity of training fully generalizable recognition systems for recreational skiing. The result
suggested that more experienced skiers generated more similar patterns. Although the models did not
generalize well, they performed better when tested against more experienced skiers.

The investigation on skiing style recognition suggested a skill-related distribution shift in the dataset.
A subject to investigate in the future is how the skill level of skiers (or users in other domains)
affects the training. Nonetheless, two considerations warrant particular attention. First, the generated
patterns for a particular technique vary among skiers holding various skill levels. Second, subjects
with lower skill levels cannot perform advanced turning styles; therefore, the generated patterns
might be random and invalid. This effect can be regarded as Out-of-Distribution (OOD) and should
be addressed separately. For instance, an OOD detection method can be incorporated into the model
training. Although we documented a clear skill-related distribution shift in recreational skiing data,
the question remains as to how to mitigate the skill level impact on recognition models. Future
work should explore domain-adaptation techniques, such as adversarial training [Bai et al.| (2021)),
to explicitly enforce invariance to skier skill level. By treating skill as a latent “domain”, such
approaches can encourage feature representations that remain stable across various skills.
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