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Abstract:
We consider the task of automatically sorting previously unseen objects into ar-
bitrary categories. We aim to sort into general, high-level categories in contrast
to traditional methods that sort on visually discernible features or by other sensor
measurements. This paper explores a method where we divide the categorization
into two sub-tasks: object detection and categorization. In a set of experiments,
it is shown that splitting the categorization task into a two-stage process removes
highly important information for robust categorization and performs less robustly
than an open vocabulary object detector. We hope these results are helpful for
exploring the limits of Language Models for robotic tasks.
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1 Introduction

We recognize the ubiquity of sorting tasks. From industrial settings, second-hand stores, and house-
hold services, sorting objects provides value. So far, however, many sorting tasks have been re-
stricted to human execution. Considering this, we consider the question: Can we devise a robotic
system that can sort objects efficiently and in a highly general manner?

A usual approach to sorting systems is training on a fixed set of categories, such as color, material,
or other features measurable with sensors or cameras. Compared to humans, these methods suf-
fer from two significant distinctions that hinder their flexibility: (i) they need to be retrained when
presented with new categories, and (ii) the categories must be discernible from sensor input. These
characteristics limit the use of robotics in cases where categories might change often and are pro-
vided as high-level expressions. Consider a service robot in a specific household where the pots and
pans are stored in one drawer and children’s toys in another. Reprogramming the sorting system
to recognize these two specific categories is limiting. Another application is second-hand stores,
such as Goodwill, which might have specific categories they sort after, determined by factors such
as target groups, seasons, or campaigns. These categories might change rapidly, and to compete
with humans, the sorting systems should allow rapid switching between categories. From an en-
vironmental perspective, improving the throughput of the reuse industry will positively impact the
circular economy and lower the demand for production.

An apparent challenge is that the categories are previously unseen, separating this from traditional
classification in computer vision. We must capture the relation between an arbitrary object and an
arbitrary category. A challenging aspect of this task is the wide range of objects and categories we
can encounter. For many categories, modeling the relationship between the sensor observation and
category membership relies on a complex semantic understanding. Consider the class of children’s
toys, a category containing objects of all shapes, weights, colors, and sizes.
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Several works have recently shown that combining Language Models (LMs) with robotics systems
allows for understanding natural language and complex reasoning for long-horizon planning. [1, 2]
An emerging challenge is ensuring that the proposed actions are executable in practice. Given the
problem of flexible and high-level sorting and the advancements of LMs for robotics, we want to
answer the pertinent question: Can we incorporate the semantic understanding of LMs into a robotic
system to achieve efficient yet flexible sorting behavior?

The sorting task can be separated into the following tasks: (i) Detect a single object in the scene
and determine its category and subsequently (ii) determine pick-and-place positions, and lastly (iii)
execute the pick-and-place action with the robot. We recognize that detection and categorization is
the primary limiting factor for allowing a more extensive set of classes and objects. Responding to
this challenge, we explore an approach for categorization by separating the task into two steps. First,
perform classification, namely assigning the membership to a specific class, and categorization,
assigning this class to a higher-level category. Figure 2 shows a schematic view of this approach.

We conduct experiments on images to measure the method’s performance compared to directly using
open-vocabulary classifiers. We present and discuss failure modes and promising tactics to improve
the method. In general, the results show that it is beneficial to predict the category directly from
the image, pointing to the fact that visual appearance provides essential cues for determining the
category of the object.

Section 2 will provide an overview of the related work, Section 3 will describe the approach of our
method, Section 4 will present experimental results, and Section 5 will conclude and point to further
research.

2 Related work

Robotic sorting Several systems perform sorting of objects into predefined categories; however, to
the best of our knowledge, no previous work has considered the problem of open vocabulary robotic
object sorting. Several works have investigated the sorting of objects based on specific properties
such as color, shape, and material. [3, 4, 5] An application for these methods is waste sorting, where
Lukka et al. [6] performs sorting by material properties. Similarly, Kujala et al. [7] sorts objects by
color off a conveyor belt.

Automatic sorting Guérin et al. [8] explore the problem of sorting objects without specified cate-
gories. They use a convolutional neural network in combination with a clustering algorithm to group
objects into a given set of bins. Their method is, however, restricted to sorting objects of similar ap-
pearance. The sorting system is also unaware of the semantic meaning of the different classes, and
the system does not allow the operator to specify categories.

Language models for robotics Zeng et al. [2] show that combining LMs with Visual Language
Models (VLMs), allowing them to communicate through language, results in an overall system with
a high understanding of the scene. Specifically, they use VLMs to inform the system what objects are
in the scene, and a prompt format guides the LM to output code-like responses, e.g., pick-and-place
actions. Ahn et al. [1] compares the predictions from the LM to affordance functions, predicting the
most relevant action given the robot’s surroundings and the given task description.

Object retrieval Nguyen et al. [9] focus on the problem of retrieving the most relevant object given
a command containing a verb, imbuing the robot with semantic understanding. Their approach is
limited to retrieval given an action that can be done with the object, whereas our approach considers
a free space of categories.
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Figure 1: Schematic for the approach of direct categorization.
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Figure 2: Schematic for the approach of separating classification and categorization.

3 Proposed method

We will discuss two approaches to performing object categorization:

1. Categorizing directly using an open vocabulary object detector.

2. First, detect objects using a large vocabulary and then categorize them using a language
model.

These will be described in detail in Section 3.1 and Section 3.2.

3.1 Categorization directly

As shown in Figure 1, we aim to categorize the objects directly, meaning we find the associated
category without classifying the objects first. This aligns with the task of an open-language object
detector, which can detect objects using an arbitrary vocabulary.

We hypothesize that this method will work well for categories within its training distribution. This
includes categories on the same level of abstraction. Perhaps classes such as “cat,” “poodle,” and
“bicycle” are more straightforward to recognize than “travel-related,” “furniture,” and “kids toys”?

3.2 Separating detection and categorization

An overview of this approach is shown in Figure 2. In the spirit of Ahn et al. [1], we incorporate an
LM in the task of assigning the object to a category. We achieve this by splitting the task into classi-
fication and categorization. In short, we use an object classification model to obtain P (class|image),
where “class” is an class in the vocabulary of the classification model (e.g. “apple”). Subsequently,
we query an LM to obtain P (category|class), where “category” is one of the given categories (e.g.
“food”).

We can express the original task of estimating the category C from an image I as finding:

C∗ = argmax
C

P (C|I).

Incorporating an LM, we reformulate the categorization problem to depend purely on the object’s
class. This implies assigning two attributes to the object in the image I , namely the class of the
object O and its corresponding category C. We are then interested in maximizing the following:

(C∗, O∗) = argmax
C,O

P (C ∩O|I).
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We write the above expression as the two conditional probabilities:

(C∗, O∗) = argmax
C,O

P (C|O ∩ I)P (O|I).

We now make two assumptions to allow the separation of concerns. First, we assume that
P (O∗|I) = 1, meaning that we have a perfect object classifier predicting only one relevant class.
The maximization is then only over the categories. Secondly, we assume that information about
the object’s class is sufficient to estimate the category, meaning that the category C is conditionally
independent of the image I . We simplify the expression to:

Ĉ∗ = argmax
C

P (C|O). (1)

Here, classification means detecting the objects in the scene and classifying them into a set of classes.
The classes can be fixed, and the classifier can be trained specifically for them. Therefore, this task
can be performed by an object detector for separate objects or an image classifier for the whole
image. The instance masks from the former help predict grasps downstream. For categorization,
we can use an LM to get the probability that an object class is assigned to a given class by careful
prompt engineering. The details are provided in Section 4.

We hypothesize that this two-stage approach is beneficial when it is challenging to determine the
category given the detected object class. This might be the case when reasoning is required to
determine the category. For example, it might be easier for an LM to capture that and “apple”
should be in the “food” category than it is for an object detector to detect something as “food” in the
image directly.

4 Experiments

Here, we present experimental results from each of the presented methods in Section 3 for catego-
rizing objects. We benchmark the methods for classifying images of singular objects into a set of
given categories.

We use an open-vocabulary object detector and an open-vocabulary image classifier for the direct
categorization approach. Specifically, we choose ViLD [10] and CLIP [11], both representing state
of the art on several datasets. Pre-trained models are publicly available for both algorithms.

For the two-step approach, we conduct experiments with ViLD and CLIP using a fixed vocabulary
for object detection. GPT-3 [12] is used as the LM predicting the category given the detected class.
As we want the object detector to be as specific as possible, we use the class labels from the Tencent-
ML Images Database [13] as this vocabulary. It combines the categories from both ImageNet11k
[14] and Open Images [15], resulting in 11 166 categories. We do not evaluate a fixed vocabulary
object detector, nor do any fine-tuning of the object detector on the Tencent-ML dataset. This might
help improve this approach.

We use GPT-3 with the following prompt:

prompt = "Classify each of the following objects as either "

prompt += ", ".join(category_list[:-1])

prompt += " or " + category_list[-1] + ". "

prompt += "Object: " + detected_object + " Label:"

where detected_object is the detected object class, and category_list is the each of the pro-
vided categories. We make a prompt for each category, where the relevant category is appended to
the prompt. The resulting category is associated with the prompt with the highest probability from
the language model.

4.1 Images in the wild

To indicate the robustness of the two methods, we sample 23 images from the web and measure the
categorization accuracy for each method.
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Table 1: The different sets of categories used in the experiments.

Narrow categories Broad categories YBC categories

newer books eating related food items
LP records entertainment kitchen items
CDs and DVDs decorative tools
small interior items
crockery
mugs and glasses
serving bowls
cutlery
vases
ornaments
candlesticks
tablecloths
decorative pillows
wool blankets
pictures and paintings
kitchen utensils
small furniture
toys and games
working electrical items
working kitchen equipment

Table 2: The accuracy of all methods for the the different sets of categories

Method Narrow categories Broad categories YCB images

ViLD 45.5% 40.9% 63.8%

CLIP 86.3% 57.1% 91.5%
ViLD+GPT-3 4.55% 36.4% 55.3%

CLIP+GPT-3 45.5% 76.2% 63.8%

Motivated by the second-hand industry, we sort the images into categories that might be used when
receiving second-hand goods. These are listed in the first column of Table 1. We label each image
by the most suitable category.

4.2 Results

The accuracy for categorization into the narrow categories for each method is listed in the first
column of Table 2. For both CLIP and ViLD, the unified one-step approach achieves a higher result,
an order of magnitude in the case of ViLD, at 45% compared to 4.5%. Figure 3 and Figure 4 show
the result on a sample of images using the one-step and the two-step approach, respectively. Here
too, we see that the direct approach yields higher accuracy.

4.3 Categorization into broader categories.

Motivated by the hypothesis in Section 3.2 that the two-step approach might be more robust with
more abstract categories, we test the methods on fewer and broader categories. These are listed in
the second column of Table 1.

The second column of Table 2 lists the performance of all the approaches. In the case of ViLD, the
direct method outperforms the two-stage approach. Note that, due to only having three categories, a
random categorization method would yield an accuracy of 33%. For CLIP, however, we see that the
two-step approach outperforms the one-step approach.
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Figure 3: One-step categorization using ViLD

Figure 4: Categorization results using a two-step approach with ViLD.

4.4 Categorization of YCB-objects

We apply both approaches to images of objects in the YCB-dataset [16], which amounts to 47
images. The categories are listed in the third column of Table 1. The images of YCB objects
typically include a single object against a neutral background, whereas the In-the-wild images have
varying backgrounds and distracting objects.

The results are summarized by their accuracy in Table 2. The one-step approach shows superior
performance for both CLIP and ViLD. The results of the two-step approach for a set of images are
shown in Figure 5.

4.5 Classification and categorization evaluation

We evaluate the two parts of the two-step system in the following way. For classification, we note
how frequently the main object in the image belongs to the predicted class. The results are sum-
marized in Table 3. CLIP classifies substantially more robustly compared to ViLD, indicating the
additional challenge of predicting instance masks and relevant bounding boxes.

For the classification by the LM, we count how many of the categories predicted by the LM include
the given class. On average, over all experiments, GPT-3 achieves a categorization accuracy of
87.4%.

Figure 5: Categorization results using two-stage approach (ViLD+GPT-3) on the YCB objects.
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Table 3: Classification accuracy for different VLMs, using the vocabulary of the Tencent-ML
Database [13].

Classifier In-the-wild images YCB images

CLIP 45.5% 53.2%
ViLD 9.09% 29.8%

Figure 6: The flow of images through the 2-step approach with CLIP and GPT-3, with the In-the-
wild images categorized into narrow categories.

4.6 Discussion

In the case of ViLD, a significant failure mode is inappropriate bounding boxes. It can capture
an irrelevant part of the image or just part of the object of interest. When the bounding box is
too small, the categorization is challenging due to the lack of context. For example, consider the
children’s toy in Figure 3, where only a small part of the object is included in the bounding box.
This provides limited context for object categorization downstream. Among the tactics to improve
this is fine-tuning hyperparameters for the bounding box prediction in ViLD.

While the one-step method either fails or succeeds in categorizing correctly, the two-stage can fail
or succeed in several ways. This is illustrated in Figure 6, showing the flow of images through the
two-step system. Here, there are two ways in which an image can end up miscategorized. The first is
an initial misclassification, leading to a miscategorization by the LM. The other is when a correctly
classified image is still incorrectly categorized.

Table 3 reveals that there is room for improvement in the classification step. Aside from a standard
classification error where the detector chooses the wrong class, another cause for misclassification
can be a lacking vocabulary. An example is the Christmas ball present in the rightmost image in
Figure 4. The Tencent-ML Image Database does not include the class “Christmas ball”, and the
detector predicts a visually similar, but wrong, class. Improving the classifier or extending the
vocabulary are tactics to reduce the number of classification errors.

The miscategorization of an already correctly classified image can be split into two cases. The first
is an incorrect category prediction from the LM. We see empirically that this is relatively rare, as
the LM correctly categorizes the class 87.4% of the time in our experiments. The other case is due
to the predicted class lacking specificity, such as the class prediction for the mustard bottle in Figure
5. Here, the predicted class “bottle” is too vague for the LM to determine that this is a food-related
bottle. A more specific classification, such as “mustard bottle” would improve the categorization
accuracy. Again, simply improving the vocabulary is a promising approach to alleviate such errors.
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On the other hand, the two-step approach can also succeed in two ways. As shown in Figure 6, some
of the previously misclassified images are still correctly categorized by the LM. An example picture
is shown in the rightmost subfigure in Figure 5, where a peach is incorrectly classified as an apple,
which is also a member of the overall category “food”.

Empirically, we see that the assumptions made to satisfy Equation 1 are not valid. Firstly, the clas-
sifier is imperfect, and propagating its uncertainty to the classification stage could be an exciting
extension. Secondly, the conditional independence P (category|class ∪ image) ≈ P (category|class)
is a faulty assumption, as a textual description of the object might lack sufficient information for
downstream decisions. Specifically, the textual description might be too vague to provide the rele-
vant information to categorize the object correctly.

5 Conclusion

In this paper, we compare two approaches for sorting objects in RGB images motivated by improving
robotic sorting. We implement an approach where the task of determining the class of an object
(e.g., “apple”) is separated from categorizing the object into categories (e.g., “food”). In a set of
experiments, we measure the accuracy of previously unseen images and categories. Additionally,
we present insights into where the different methods fail and succeed. The results indicate that
access to visual information is relevant to determining the category and that describing the object
sufficiently by its class is restrictive. Therefore, a direct approach behaves more robustly in our
experiments.

As directions for further work, improving direct, open-vocabulary categorization methods emerges
as a promising direction. A study of the effect of prompt engineering could provide some interesting
hints on how to improve VLMs in general. Additionally, in the case of second-hand stores, it is not
only crucial to group objects into categories but also evaluate whether the object is in good condition
and applicable for reselling. This new dimension is helpful to consider in further work to progress
towards more effective second-hand sorting systems. Another point of further work is investigating
the gain of using RGB-D images for classification, as such observations are typically available on
modern robotic platforms. This might help increase the detection, classification, and categorization
robustness.
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