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ABSTRACT

High-fidelity, controllable remote sensing layout-to-image generation is highly
valuable for providing high-quality data for downstream object detection tasks.
However, existing methods either rely on additional textual guidance, leading to
geometric distortions, or require extra real-image references, limiting practical
applicability. To address these challenges, we propose Object Fidelity Diffusion
(OF-Diff), which leverages object layouts to extract structural shape priors and
employs an online-distillation strategy to integrate complex image features. This
allows the model to perform highly controllable, high-fidelity image generation
at inference without relying on real-image references. Furthermore, we introduce
DDPO to fine-tune the diffusion process, making the generated remote sensing
images more diverse and semantically consistent. Comprehensive experiments
demonstrate that OF-Diff outperforms state-of-the-art methods in the remote sens-
ing across key quality metrics. Notably, the performance of several polymorphic
and small object classes shows significant improvement. For instance, the mAP
increases by 8.3%, 7.7%, and 4.0% for airplanes, ships, and vehicles, respectively.

Control Leakage: 
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CC-Diff (SOTA)
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resulting in malformed 
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Figure 1: Four critical failure modes in the State-of-the-Art (SOTA) method (CC-Diff): a distribu-
tional drift from real data, visualized by t-SNE; and (a) Control Leakage; (b) Structural Distortion;
(c) Dense Generation Collapse. Our OF-Diff (2nd row) effectively resolves these issues.

1 INTRODUCTION

Synthesizing high-fidelity, spatially-controllable remote sensing (RS) images is a critical frontier
for overcoming the data limitations that hinder downstream perception tasks like object detection
(Yang et al., 2021; Zhang et al., 2020; Yang et al., 2019). Current RS generation methods, however,
typically rely on either ambiguous text prompts (Khanna et al., 2023; Sebaq & ElHelw, 2024) or
auxiliary conditions like semantic maps (Sebaq & ElHelw, 2024; Tang et al., 2024; Gong et al.,
2024; Hu et al., 2025; Jia et al., 2025). While visually plausible, such guidance is fundamentally
disconnected from the instance-level ground truth, failing to provide the precise control necessary
for effective data augmentation.

In contrast, Layout-to-Image (L2I) generation conditioned on object bounding boxes offers a more
robust solution for precise spatial control. This paradigm has been extensively studied in the natural
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Figure 2: Comparison of OF-Diff with mainstream L2I methods. FG/BG stands for fore-
ground/background. (a) Layout-conditioned baseline. (b) Added instance-based module, limited
by quality/quantity of patches from ground truth. (c) OF-Diff enhances fidelity via shape extraction
and DDPO, without patch reliance. (d) Results demonstrate superiority.

image domain—LayoutDiffusion (Zheng et al., 2023) treats it as a multi-modal fusion problem,
GLIGEN (Li et al., 2023) enables open-world generation through additional control signals, and
ODGen (Zhu et al., 2024) improves controllability by decoupling objects—yet its direct application
to remote sensing (RS) imagery remains non-trivial due to expansive backgrounds, arbitrary object
orientations, and densely packed scenes.

In RS layout-to-image generation, existing methods like AeroGen (Tang et al., 2025) and CC-Diff
(Zhang et al., 2024) take different approaches. AeroGen, a coarse layout-conditioned model, suffers
from limited spatial and shape control. In contrast, instance-level methods like CC-Diff achieve
higher controllability and fidelity by referencing real instances, but this creates heavy dependence
on the quality and quantity of real data, limiting generalization and flexibility.The images generated
via CC-Diff diverge more markedly from the real remote sensing data distribution, aligning instead
with the style characteristic of the model’s pre-training corpus. We summarize common failure
modes (see Figure 1), including control leakage, structural distortion, dense generation collapse and
feature-level mismatch.

These deficiencies significantly degrade the performance on object detection tasks, limiting their
practical application in intelligent RS interpretation. In this paper, we introduce Object Fidelity
Diffusion Model (OF-Diff). It is designed to improve the shape fidelity and layout consistency of
object generation in RS images. As shown in Figure 2, the existing L2I methods are mainly di-
vided into two categories. The first is layout-conditioned baseline, as shown in Figure 2(a), like
Aerogen and LayoutDiffusion. The second is the method with instance-based module, as shown in
Figure 2(b), like CC-Diff. However, such methods require real instances and images as references
during the sampling stage in order to generate high-quality synthetic images. In contrast, OF-Diff
generates high-fidelity remote-sensing objects using only the foreground shape, and subsequently
employs online-distillation to further align the outputs with real images, as shown in Figure 2(c).
In addition, it fine-tunes the diffusion with DDPO, effectively enhancing the performance of down-
stream tasks for the generated images. The results in Figure 2(d) demonstrates the superiority of
OF-Diff over other methods. Our contributions are summarized as follows:

• We introduce OF-Diff, an online-distillation controllable diffusion model with prior shape
extraction, which improves generation fidelity while reducing reliance on real images, en-
hancing practical applicability.

• We propose a controllable generation pipeline that fine-tunes diffusion models with DDPO
for remote sensing images, further boosting fidelity and diversity.

• Extensive experiments demonstrate that OF-Diff generates high-fidelity, layout- and shape-
consistent images with dense objects, and serves as an effective enhancement for object
detection tasks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 ADVANCES IN IMAGE GENERATION

Diffusion models (Dhariwal & Nichol, 2021; Ho et al., 2020; Kingma et al., 2021) have increas-
ingly replaced Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Karras et al.,
2021) and Variational Autoencoders (VAEs) (Kingma et al., 2013; Rezende et al., 2014) in image
synthesis tasks due to their training stability and superior output quality. Recent advances in efficient
samplers, such as DDIM (Song et al., 2021), Euler (Karras et al., 2022), and DPM-Solver (Lu et al.,
2022), have further improved the practicality. Latent Diffusion Models (LDMs) (Rombach et al.,
2022b), which operate in low-dimensional latent spaces, significantly reduce computational costs
while preserving visual fidelity. The success of models like DALL·E2 (Ramesh et al., 2022) and Im-
agen (Saharia et al., 2022) demonstrates how this paradigm supports training on vast internet-scale
datasets. As a result, diffusion-based approaches now provide a strong foundation for high-quality
image generation.

2.2 LAYOUT-TO-IMAGE GENERATION

Controllable image synthesis primarily includes text-to-image (T2I) and layout-to-image (L2I) gen-
eration. While T2I models (Nichol et al., 2022; Ramesh et al., 2022) achieve semantic alignment via
textual prompts, L2I methods offer better spatial control. Recent works enhance layout condition-
ing through layout-as-modality designs (Zheng et al., 2023), gated attention (Li et al., 2023), and
instance-wise generation (Wang et al., 2024; Zhou et al., 2024). However, these methods rely solely
on coarse layout inputs (e.g., bounding boxes), which lack fine-grained shape information critical
for synthesizing morphologically complex objects.

2.3 REMOTE SENSING IMAGE SYNTHESIS

Synthesizing high-fidelity training data is crucial for advancing remote sensing (RS) object detec-
tion, a field critical to numerous applications, but often hampered by the scarcity of extensively an-
notated datasets. Despite its necessity, most generative models for RS imagery, such as DiffusionSat
(Khanna et al., 2023) and RSDiff (Sebaq & ElHelw, 2024), still rely on coarse semantic guidance.
While other approaches leverage diverse control signals (Tang et al., 2024) like OpenStreetMaps
(Espinosa & Crowley, 2023), they are generally not optimized for the bounding box format central
to object detection. This naturally motivates L2I approaches including AeroGen (Tang et al., 2025)
and CC-Diff (Zhang et al., 2024), which have improved spatial accuracy and contextual consistency
through layout-mask attention and FG/BG dual re-samplers. However, they suffer from limited
controllability and heavy reliance on real data.

3 METHOD

3.1 PRELIMINARY

Diffusion models (Song et al., 2021) aim to capture the underlying data distribution p(x) by it-
eratively reconstructing data from a noisy representation that is initially sampled from a standard
normal distribution. Denoising Diffusion Probabilistic Models (Ho et al., 2020) parameterize the
model as the function ϵθ(xt, t) to predict the noise component of the sample xt at any time step t.
The training objective is to minimize the mean squared error (MSE) loss between the actual noise ϵ
and the predicted noise ϵθ(xt, t):

L = Ext,t,ϵ∼N (0,I)

[
∥ϵθ (xt, t)− ϵ∥2

]
. (1)

Stable Diffusion (SD) (Rombach et al., 2022b; Qiu et al., 2025) utilizes a pre-trained VQ-VAE Van
Den Oord et al. (2017) to encode images into a lower-dimensional latent space, performing training
on the latent representation z0. In the context of conditional generation, given a text prompt ct and
task-specific conditions cf , the diffusion training loss at time step t can be expressed as:

L = Ezt,t,ct,cf ,ϵ∼N (0,I)

[
∥ϵ− ϵθ (zt, t, ct, cf )∥2

]
. (2)

3
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Figure 3: OF-Diff’s overall architecture. (a) During training, object shape features extracted by
ESGM and image features are processed by ControlNet, and the resulting information is used to
update stable diffusion decoders via online-distillation. (b) During sampling, only the label and the
shape feature stable diffusion decoder are used to generate synthetic images. (c) Architecture of the
Enhanced Shape Generation Module (ESGM).

where L represents the overall learning objective of the complete diffusion model. This objective
function is explicitly applied during the fine-tuning of diffusion models in conjunction with Con-
trolNet (Zhang et al., 2023).

3.2 ARCHITECTURE OF OF-DIFF

As illustrated in Figure 3(a), the training of OF-Diff requires both real images and their correspond-
ing labels. First, for ControlNet, the real image and its label are processed by the Enhanced Shape
Generation Module (ESGM) to extract the object mask. The image and mask are then fed into
ControlNet to obtain the image feature ci and the shape feature cs. To enrich the structural-only
shape prior with richer appearance and contextual cues from the image, we combine them into a
mix-feature cm, which will later serve as a teacher input in online-distillation. Concretely:

cm =
n

N
· ci + sg [cs] , (3)

where n denotes the current iteration number, and N is the total number of iterations. In order to
enable the prediction conditioned on mix-feature to serve as a stable anchor point, to improve the
morphological fidelity of the generation, we adopt a stop-gradient strategy (Chen & He, 2021) for
cs when calculating cm.

Second, for Stable Diffusion, the input image is first compressed into latent space features z0 by
a pre-trained VQ-VAE. Then, it is concatenated with Gaussian noise ϵ to form zt. After passing
through the SD encoder blocks, the feature Zt is fed into a dual-decoder architecture. One branch,
the shape-feature SD decoder, conditions on cs; the other, the mix-feature SD decoder, conditions
on cm. Their reconstruction losses are defined as Ls and LM , respectively:

Ls = E
[
∥ϵsθ − ϵ∥2

]
, ϵsθ = ϵθ (zt, t, ct, cs) , (4)

Lm = E
[
∥ϵmθ − ϵ∥2

]
, ϵmθ = ϵθ (zt, t, ct, cm) , (5)
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Third, for online distillation, the mix-feature SD produces more accurate predictions thanks to its
stronger image prior, but needs real images, limiting diversity. In contrast, the shape-feature SD
supports arbitrary label control but risks converging to low-fidelity local minima. To reconcile these
trade-offs, we propose an online-distillation framework with a consistency loss Lc:

Lc = E
[
∥ϵsθ − sg [ϵmθ′ ]∥2

]
. (6)

Here, the prediction ϵmθ′ from mix-feature SD decoder acts as a stop-gradient teacher signal, serving
as an anchor to guide the prediction ϵsθ from shape-feature SD decoder towards high-fidelity optima
in parameter space.

The overall training objective is therefore:

L = Ls + Lm + λLc, (7)

During the sampling phase, as illustrated in Figure 3(b), only the frozen ControlNet and the shape
feature stable diffusion are utilized with arbitrary label prior control to synthesize RS images.

3.3 ENHANCED SHAPE GENERATION MODULE

In natural imagery, perspective and scale changes prevent a unique geometric model for most ob-
jects. Conversely, remote-sensing objects display quasi-invariant shapes. For instance, courts are
rectangular, chimneys and oil tanks circular, and airplanes bilaterally symmetric with a distinct nose
and tail. This shape consistency enables the use of masks to impose strong controllability on im-
age synthesis for remote sensing. To better leverage category labels for object shape extraction, we
introduce the Enhanced Shape Generation Module (ESGM, see Figure 3(c)). During the training
phase, ESGM uses paired images and labels to generate precise object masks. And at sampling
time, it employs learned shape priors to synthesize diverse masks of object shape.

For the given image xi and its bounding box yji corresponding to category j (j ∈ [1, N ]), we first
utilize the RemoteCLIP (Liu et al., 2024) to generate a textual description of the object enclosed
within the bounding box. With this description and the original image xi, the RemoteSAM (Yao
et al., 2025) then generates the corresponding shape masks {xj

i}.

In the shape augmentation phase, each object mask xj
i is cropped by its bounding box yji , randomly

rotated, and placed back onto a blank canvas to produce a shape-enhanced mask. During training,
ESGM uses real image shapes; at sampling, it selects enhanced shapes from a lightweight mask pool
collected during or after training. In our experiments, we use masks generated during training.

3.4 DDPO FINE-TUNING

To enhance the diversity of the distribution of data generated by the fine-tuned model and maintain
better consistency with the distribution of real images Schulman et al. (2015; 2017), denoising dif-
fusion policy optimization (DDPO) Black et al. (2023) is applied in the post-training of OF-Diff.
DDPO regards the denoising process of the diffusion model as a multi-step Markov decision pro-
cess (MDP) (for a detailed derivation, please refer to the Appendix A.2). To optimize the policy
π(at | st) so as to maximize the cumulative reward Eτ∼p(,·|π)!

[∑T
t=0 R(st,at)

]
, the gradient ĝ is

computed as follows:

ĝ = E
[ T∑
t=0

pθ(xt−1 | c, t, xt)

pθ′(xt−1 | c, t, xt)
· r(x0, c) · ∇θ log pθ(xt−1 | c, t, xt)

]
(8)

r(x0, c) =
(
KNN(x0,x0)− ωKL(x0,x

′
0)
)

(9)

The reward functions based on K-Nearest Neighbor (KNN) and KL divergence are introduced, re-
spectively, to optimize the diversity of generated data and the distribution consistency between gen-
erated data and real data. ω is the weight parameter, and x′

0 is the real image in the dataset. Following
standard practice, we compute the KNN in the low-dimensional embedding space of CLIP’s image
encoder. The implementation details are shown in Appendix A.2.

5
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. DIOR-R (Cheng et al., 2022), the rotated variant of DIOR (Li et al., 2020), contains
20 categories annotated with oriented bounding boxes; we follow the official 1:1:2 split for train-
ing/validation/testing. DOTA-v1.0 (Xia et al., 2018) includes 15 categories featuring dense scenes
and small objects. We crop the images from DOTA to 512× 512 following MMRotate (Zhou et al.,
2022), discarding those without valid objects. HRSC2016 (Liu et al., 2017) is a high-resolution ship
detection dataset with a multi-level hierarchical taxonomy. We use the finest-grained level, consist-
ing of 26 detailed ship categories. The experiments of this dataset are reported in Appendix A.4
Unless otherwise specified, we train the diffusion model on the trainset. For downstream detection,
we use the trainset annotations as layout and mix generated samples with the real trainset, and report
evaluation results on the testset.

Implementation Details. We train OF-Diff separately on each dataset (DIOR/DOTA), based on
the Stable Diffusion 1.5 (Rombach et al., 2022a) pretrained model. Only the ControlNet and shape
feature SD decoder are fine-tuned, while all other modules remain frozen. The weighting coefficient
λ of the consistency loss is set to 1, the k value in KNN is set to 50, and the weight ω of the KL
divergence is set to 2. Training is performed using the AdamW optimizer with a learning rate of
1e-5. The global batch size is set to 64, and training runs for 100 epochs.

Benchmark Methods. We compare our method with state-of-the-art L2I generation models for
both remote sensing (AeroGen (Tang et al., 2025), CC-Diff (Zhang et al., 2024)), and natural images
(LayoutDiffusion (Zheng et al., 2023), GLIGEN (Li et al., 2023)). For a fair comparison, all models
are re-trained using our dataset settings, following their official training details respectively.

Evaluation Metrics. To more comprehensively evaluate the effectiveness of OF-Diff, we adopt a
total of 13 metrics spanning 4 different evaluation aspects.

• Generation Fidelity. We use FID (Heusel et al., 2017) and KID (Bińkowski et al., 2018)
to assess perceptual quality, along with CMMD (Jayasumana et al., 2024), which measures
CLIP feature distances between generated and real images to evaluate layout alignment.

• Layout Consistency. We report CAS (Ravuri & Vinyals, 2019) using a pretrained clas-
sifier to assess object recognizability, and YOLOScore by applying a pretrained Oriented
R-CNN (Xie et al., 2021) (w/. Swin Transformer backbone (Liu et al., 2021), MMRotate)
to generated images for instance-level consistency.

• Shape Fidelity. To assess the geometric quality of generated instances, we perform pair-
wise comparisons with ground-truth shapes. Each instance pair is cropped, resized to
64×64, and converted to edge maps. We compute five metrics: IoU, Dice, Chamfer Dis-
tance (CD), Hausdorff Distance (HD), and SSIM (Wang et al., 2004).

• Downstream Utility. We train a detector on mixed real and generated images and re-
port mAP50, mAP75, and overall mAP on real test data using Oriented R-CNN (Swin
backbone) with a batch size of 24 on 8×NVIDIA 4090 GPUs.

4.2 QUALITATIVE RESULTS

Comparative Results. Figure 4 compares the generation results of OF-Diff with other methods.
OF-Diff not only generates more realistic images but also has the best controllability. For instance,
in the first two cases, OF-Diff successfully controlled the number and layout information of the
generated objects. The third and fourth cases demonstrate the accuracy of OF-Diff in generating
small targets, which other algorithms fail to do accurately. The last case shows the superiority of
OF-Diff over other algorithms when generating objects with complex shapes such as airplane.

Diversity Results. The images generated by OF-Diff consistently present plausible textures and re-
alistic object shapes, as shown in Figure 6 in Appendix. For instance, airplanes rendered at different
orientations maintain coherent semantic relationships with their surrounding environments. Even in
small-object scenes (some of which are grayscale remote-sensing images from the DOTA dataset),
OF-Diff can still generate visually faithful and geometrically accurate results.
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GLIGEN OF-Diff (ours) RealAeroGen CC-DiffLabel LayoutDiffusion

Figure 4: Qualitative results on DIOR, DOTA and HRSC2016. OF-Diff is more realistic and fidelity
compared to other methods.

Table 1: Quantitative comparison with SOTA methods on DIOR and DOTA. We evaluate perfor-
mance on generation fidelity (FID, KID, CMMD), layout consistency (CAS, YOLOScore) and
trainability (mAP). OF-Diff demonstrates superior overall performance.

Method
DIOR Dataset DOTA Dataset

FID↓ KID↓ CMMD↓ CAS↑ YOLOScore↑ mAP50 FID↓ KID↓ CMMD↓ CAS↑ YOLOScore↑ mAP50

LayoutDiff 37.60 0.015 0.447 70.32 7.01 52.14 21.73 0.015 0.288 77.56 21.43 66.75
GLIGEN 35.06 0.010 0.622 76.41 6.51 51.27 39.79 0.026 0.357 76.19 15.58 66.10
AeroGen 27.78 0.013 0.563 81.69 55.38 53.37 26.65 0.017 0.298 81.91 44.85 67.09
CC-Diff 49.62 0.024 0.685 82.61 42.17 53.48 32.40 0.019 0.279 81.63 49.62 66.52
Ours 24.92 0.011 0.312 82.55 58.99 54.44 20.84 0.014 0.271 83.79 55.68 67.89

4.3 QUANTITATIVE RESULTS

Generation Fidelity and Consistency. We compared OF-Diff with state-of-the-art generation
methods in remote sensing, including layoutDiffusion (Zheng et al., 2023), GLIGEN (Li et al.,
2023), AeroGen (Tang et al., 2025), and CC-Diff (Zhang et al., 2024). The performance of these
methods is reported in Table 1. OF-Diff achieved nearly the best performance in both generation fi-
delity metrics (FID, KID, CMMD) and layout consistency metrics, especially on the DOTA dataset.
Additional results are available in the appendix A.4 for the HRSC2016 dataset.

Trainability of Object Detection. Following the data enhancement protocol in (Chen et al., 2023),
we double the training samples using OF-Diff and assess detection results with the expanded dataset.
As shown in Table 9 in Appendix A.7, OF-Diff performs the best on both DIOR and DOTA with
mAP improved by 2.2% and 1.94% compared to baseline,respectively. Notably, the performance of
several polymorphic and small object classes shows significant improvement. According to Figure 5
(a) and (b), the AP50 increases by 8.3%, 7.7%, and 4.0% for airplane, ship, and vehicle on DIOR,
and 7.1%, 5.9% and 4.4% for swimming pool, small vehicle, and large vehicle on DOTA.

7
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Figure 5: AP50 on DIOR and DOTA.

Table 2: Object-Shape Fidelity on Canny Edge Maps. We measure the morphological similarity
between generated and ground-truth instances by computing IoU, DICE, Chamfer Distance (CD),
Hausdorff Distance (HD), and SSIM.

Method
DIOR Dataset DOTA Dataset

IoU↑ Dice↑ CD↓ HD↓ SSIM↑ IoU↑ Dice↑ CD↓ HD↓ SSIM↑
LayoutDiff 0.0497 0.0908 12.037 25.962 0.1667 0.0402 0.0748 15.229 30.202 0.2194

GLIGEN 0.055 0.1002 12.257 25.850 0.1652 0.0645 0.1182 10.432 23.196 0.1967

AeroGen 0.0855 0.153 8.209 20.314 0.2142 0.0863 0.1536 8.1386 20.687 0.2261

CC-Diff 0.0891 0.1582 8.0909 20.066 0.1963 0.0692 0.1255 9.6226 21.247 0.2171

Ours 0.1009 0.1763 7.6579 19.459 0.2691 0.1205 0.2045 6.6317 17.311 0.2938

Object-Shape Fidelity. We measure the morphological similarity between the generated instances
and ground truth by calculating the Intersection over Union (IoU), DICE coefficient, Chamfer dis-
tance (CD), Hausdorff distance (HD), and Structural Similarity Index (SSIM), based on the Canny
Edge Map. As shown in Table 2, the results demonstrate that OF-Diff attains state-of-the-art per-
formance in all evaluation metrics for object-shape fidelity. Specifically, we first convert the rotated
bounding box (R-Box) to a horizontal bounding box (H-Box) and crop the instance with a 20%
padding to ensure the full object is captured. The cropped patches are then resized to 64×64 pixels,
and their shapes are extracted using cv2.Canny. For a detailed qualitative comparison, Figure 11
in Appendix A.8 visualizes the instance patches and their corresponding edge maps from differ-
ent methods. Each image set is ordered as follows: Ground Truth, OF-Diff, AeroGen, CC-Diff,
GLIGEN, and LayoutDiff, demonstrating our method’s superior ability to adhere to object shapes.

Adaptability of Unknown Layout. To evaluate robustness of these methods, we also generate
images based on the unknown layouts during the training phase. According to Table 3, for unknown
layout, OF-Diff performs well in terms of generation fidelity, layout consistency, and trainability. In
downstream tasks, OF-Diff still delivers a 1.54% mAP gain over the second-best method.

The Detailed Results of Downstream. Table 10 and 11 in Appendix A.8 report the average preci-
sion (AP) obtained by the competing generative methods over multiple categories in the downstream
tasks. From Tables 10, it can be observed that OF-Diff (ours) achieves a clear advantage in several
categories. For instance, OF-Diff achieves superior performance on Airplane (71.3%), Golf Field
(75.4%) and Ship (70.5%), with improvements of approximately 5% to 10% over the second-best
method. For a few other categories, OF-Diff does not deliver the top AP, yet the gap to the best
result remains marginal. Table 11 shows that, on the DOTA dataset, OF-Diff obtains the highest AP
in roughly half of all categories and still delivers notable gains in categories such as Small-vehicle
(68.3%), Ship (84.4%) and Swimming-pool (67.9%).

4.4 ABLATION STUDY

We assessed the impact of different modules on image generation semantic consistency and down-
stream trainability by OF-Diff in Table 4. We found that the images generated with captions are
more in line with semantic consistency and human aesthetics, but the fidelity of these images de-
creases. This is equivalent to the data distribution deviating from the real dataset and being more
inclined towards the data distribution during pre-training. We conduct human/GPT assessments and

8
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Table 3: Quantitative comparison on the unknown layout dataset during training (DIOR Val).

Method
Unknown Layout during Training

FID↓ KID↓ CMMD↓ CAS↑ YOLO Score↑ mAP↑ mAP50↑ mAP75↑
LayoutDiff 44.58 0.018 0.539 29.34 10.37 30.41 53.07 32.07

GLIGEN 39.56 0.013 0.444 66.36 2.13 30.06 52.68 31.29

AeroGen 28.62 0.013 0.276 80.78 46.36 32.98 55.11 34.26

CC-Diff 49.92 0.024 0.513 78.01 51.74 32.49 53.72 35.39

Ours 24.18 0.012 0.271 83.34 49.59 33.02 56.65 36.17

Table 4: Ablation study: impact of ESGM, Online-distillation Lc, and DDPO on semantic consis-
tency (CAS) and downstream trainability (YOLOScore and mAP50).

ESGM Lc DDPO FID ↓ KID ↓ CMMD ↓ CAS ↑ YOLOScore ↑ mAP50 ↑
✗ ✗ ✗ 42.59 0.029 0.965 80.27 41.20 52.13
✓ ✗ ✗ 24.87 0.012 0.428 82.16 55.08 52.76
✗ ✓ ✗ 36.25 0.021 0.596 81.57 46.27 53.14
✗ ✗ ✓ 41.26 0.027 0.815 81.06 42.53 53.41
✓ ✓ ✗ 24.98 0.010 0.313 82.30 57.83 54.31
✓ ✗ ✓ 25.78 0.013 0.368 82.37 58.26 54.17
✗ ✓ ✓ 37.98 0.025 0.613 81.91 47.74 53.21
✓ ✓ ✓ 24.92 0.011 0.312 82.55 58.99 54.44

a fine-grained feature analysis in Appendix A.7, which collectively reveal the nature of this trade-
off. Therefore, the ablation experiments for each module were conducted based on the absence of
caption input. The contribution of each module to the enhancement of image generation fidelity is
evaluated by incorporating additional components into the diffusion model with online-distillation.
DDPO indicates whether to fine-tune the trained diffusion model through reinforcement learning.
Results show that Enhanced Shape Generation Module (ESGM), Online-Distillation (Lc) and the
DDPO based on KNN and KL Divergence effectively improve the performance metrics. Notably,
ESGM can substantially improve the YOLOScore by over 10%. In addition, we vary the weighting
coefficient λ in the consistency loss (Eq. 7) to assess its impact on mAP and FID. As shown in
Figure 5 (c) and (d), both metrics are optimal at λ = 1.

4.5 DISCUSSION

As shown in Figure 10 in Appendix A.3, the inclusion of additional captions as input has a signifi-
cant impact on the outcomes of image generation. Specifically, incorporating captions enhances the
aesthetic appeal of the generated images, resulting in richer and more visually pleasing color com-
positions. However, this improvement comes at a cost: similar to CC-Diff, it leads to a deviation of
the generated data distribution from that of the original real data. In contrast, when no additional
captions are provided as input, although the generated images may appear less aesthetically refined,
their data distribution remains closer to that of real images. A user study from both human and
GPT-5 in Table 8 have confirmed this. Further analysis of the generated-image distribution and the
impact of aesthetics on performance is provided in the Appendix A.7.

5 CONCLUSION

Existing image generation methods struggle to precisely generate dense small objects and those
with complex shapes, such as numerous small vehicles and airplanes in remote sensing images. To
address this, we introduce OF-Diff, an online-distillation controllable diffusion model with prior
shapes extraction and DDPO. During the training phase, we extract the prior shape of objects to
enhance controllability and use a online-distillation diffusion with parameter sharing to improve the
model’s learning ability for real images. Therefore, in the sampling phase, OF-Diff can generate
images with high fidelity without real images as references. Finally, we fine-tune the diffusion
by DDPO that combines KNN and KL divergence to make the synthesized images more realistic
and consistent. Extensive experiments demonstrate the effectiveness and superiority of OF-Diff in
generating small and difficult objects with complex structures and dense scenes in remote sensing.

9
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6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study focuses on generating synthetic remote
sensing images using diffusion models, and does not involve human subjects or personally identi-
fiable information. All datasets used are publicly available and appropriately licensed for research
purposes. We have taken care to avoid introducing harmful biases or misrepresentations in the gen-
erated images. While OF-Diff aims to improve object fidelity and controllability in synthetic data
for downstream tasks such as object detection, we acknowledge that misuse of generated images
could have unintended consequences. Researchers using this technology should ensure ethical and
lawful application, and consider potential societal impacts. No conflicts of interest or undisclosed
sponsorship influenced this work.

7 REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our results. The main paper provides detailed
descriptions of the OF-Diff architecture, online-distillation training strategy, and DDPO fine-tuning
process. All datasets used are publicly available, and the data preprocessing and layout-to-image
preparation steps are described in the main text and Appendix. Hyperparameters, training sched-
ules, and evaluation metrics are fully documented in the supplementary materials. Additionally, we
provide anonymized source code and configuration files to facilitate replication of our experiments.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used in this work exclusively for language polishing and
improving the clarity of writing. No LLM was used for generating scientific ideas, experimental
design, or data analysis. All technical content, results, and interpretations presented in this paper
are solely the work of the authors. The authors take full responsibility for the content of this paper,
including any text refined with the assistance of LLMs.
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label Result 1 Result 2 Real Image

Figure 6: The diversity of different results from the same OF-Diff model.

A.2 REINFORCEMENT LEARNING STRATEGY

The mapping relationship is defined as follows:

π(at | st) ≜ pθ(xt−1 | xt, c) (10)

P (st+1 | st, at) ≜ (δc, δt−1, δxt−1
) (11)

ρ0(s0) ≜
(
p(c), δT , N (0, I)

)
(12)

R(st, at) ≜

{
r(x0, c), if t = 0,

0, otherwise.
(13)

where δz denotes the Dirac delta distribution whose probability density is zero everywhere except
at z. The symbols st and at represent the state and action at time t, respectively. Specifically, st is
defined as the tuple composed of the condition c, the time step t, and the noisy image xt at that time,
whereas at is defined as the noisy image xt−1 from the preceding time step. The policy is denoted
by π(at | st), the transition kernel by P (st+1 | st, at), the initial state distribution by ρ0(s0), and
the reward function by R(st, at).

For detailed DDPO policy, we employ a ResNet101 pre-trained on ImageNet-1K as our feature ex-
traction model, and utilize KNN and KL divergence to compute both the diversity among generated
images and their similarity to real images. Let X denote the set of generated images, Y represent
the real images, where xi ∈ X , yj ∈ Y , and M is our feature extraction model.

The KNN reward is calculated as follows: 1) First, we extract features from X using model M :
Fx = M(X). 2) For each feature vector f i

x ∈ Fx, we compute its K-nearest neighbors among
all feature vectors f j

x ∈ Fx. The KNN reward for xi is the average of these K nearest neighbor
distances, denoted as KNN(f i

x, Fx). In our implementation, we set K to 50.

The KL reward is calculated as follows: 1) We extract features from both X and Y using model
M : Fx = M(X) and Fy = M(Y ). 2) For each feature vector f i

x ∈ Fx and f j
y ∈ Fy , we compute

KL(f i
x, f

i
y) for each i, and use −KL(f i

x, f
i
y) as the KL reward for xi.

In summary, the reward for a generated image xi is computed as:

rix ≜ KNN(f i
x, Fx)− wKL(f i

x, f
i
y) (14)
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Training with samples 
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FID:79.26 

FID: 77.91

Figure 7: The results of OF-Diff in handling objects under heavy occlusion. The results indicate that
while severe occlusion does indeed cause a certain degree of degradation in the quality of the target
mask extracted by ESGM, it has little impact on the generated quality FID.

A.3 ANALYSIS AND DISCUSSION

According to the current experimental results, adding the DDPO strategy does not simultaneously
outperform previous results on all metrics. Using reinforcement learning strategies can indeed im-
prove the performance of downstream tasks, but it does not necessarily improve the quality of image
generation simultaneously. In other words, reinforcement learning strategies can also purposefully
improve the quality of image generation, but this may come at the cost of not improving the perfor-
mance of downstream tasks.

The proposed OF-Diff injects object shape masks extracted from the image layout as controllable
conditions into the diffusion model, which effectively enhances object fidelity and improves the
generation of small objects. However, this also makes the model dependent on the quality of the
extracted shape masks. We analyze the impact of a distorted mask on the model’s generated re-
sults. Specifically, we selected cases such as objects under heavy occlusion to examine the model’s
generation performance. Based on the analysis results in Figure7, we found that even under severe
occlusion conditions, ESGM still demonstrates strong object mask extraction and generation capa-
bilities. However, when the generated mask shape exhibits certain anomalies, it does produce objects
matching that distorted shape. Nevertheless, this does not affect the overall FID and trainability of
the generated images. Although the shapes we currently extract may exhibit edge anomalies in the
object mask due to occlusion and other issues, complete errors are extremely rare.

A.4 QUANTITATIVE RESULTS ON HRSC2016 DATASET

Table 5 reports the comparative results on HRSC2016, where our method consistently achieves
strong performance. Although it ranks second on CMMD, CAS, and YOLOScore—which mainly
reflect aesthetic quality or local recognizability—it attains the best results on FID and KID, which
measure distribution fidelity, as well as on the most crucial downstream metric, mAP50, outper-
forming the second-best method by +1.5%. This indicates that our generated data preserves the real
remote-sensing distribution more faithfully and thus provides more effective support for downstream
tasks. A more detailed analysis is provided in Appendix A.7.

Table 5: Fidelity and Downstream Performance on HRSC2016

Method
HRSC216 Dataset

FID↓ KID↓ CMMD↓ CAS↑ YOLOScore↑ mAP50 ↑
LayoutDiff 120.68 0.152 1.763 24.51 2.51 56.97

GLIGEN 92.92 0.037 0.634 35.41 5.03 39.72

AeroGen 97.44 0.055 0.51 39.62 16.4 47.68

CC-Diff 84.55 0.035 0.681 45.27 32.42 62.57

Ours 77.91 0.026 0.573 42.19 30.97 64.1
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Table 6: The impact of real and generated images at different ratios on mAP for downstream tasks.

Data Composition mAP (%)
100% Generated 45.67 (-7.17)
50% Real + 50% Generated 50.74 (-2.10)
100% Real 52.84
100% Real + 50% Generated 53.92 (+1.08)
100% Real + 100% Generated 54.38 (+1.54)
100% Real + 200% Generated 54.74 (+1.90)
100% Real + 300% Generated 54.82 (+1.98)

Table 7: The data on the computational cost of training OF-Diff compared to the key baselines.

Models Train GPU Mean
Memory (MB)

Train GPU
Hours

Inference Mean
Time/Sample (s)

LayoutDiff 29232 41.33 <1s
GLIGEN 14186 57.76 5.18
AeroGen 27634 49.52 1.85
CC-Diff 13668 38.01 3.96
OF-Diff 27340 44.27 3.42

A.5 THE MAP EVOLUTION GIVEN DIFFERENT AMOUNTS OF SYNTHETIC AND REAL DATA

We conduct multiple experiments on trainability using different quantities of real and generated data.
The results are shown in the Table 6. Experimental results indicate that using only 100% synthetic
data struggles to achieve downstream task performance comparable to real data. However, this also
demonstrates that even without a single real image, relying solely on synthetic images can enable
object detection algorithms to achieve a mAP of 45.67%. Furthermore, training with a larger volume
of generated images can effectively enhance the model’s object detection capabilities. However,
when the amount of generated data reaches three times that of real data (based on the generation
setting described in the paper), downstream performance shows little further improvement.

A.6 THE COMPUTATIONAL COST

We provide the data on the computational cost of training OF-Diff compared to the key baselines in
the Table .7. Experimental results indicate that although OF-Diff is not the most optimal in terms of
training costs (GPU memory and GPU hours) and inference time, it remains nearly the second-best
among these methods and does not incur high computational costs.

A.7 AESTHETIC–DOWNSTREAM PERFORMANCE CONFLICT

To further reveal the potential conflict between aesthetic quality and downstream task performance,
we conduct a three-part analysis consisting of questionnaire evaluation, downstream performance
comparison, and feature-level visualization.

(1) Human/GPT questionnaire study. As shown in Fig. 8, we design two targeted questions:

Q1. Which image more closely matches the style of real remote-sensing imagery? (e.g., realistic
noise patterns, texture details, natural illumination, authentic object boundaries)

Q2. Which image looks more aesthetically pleasing? (e.g., clarity, color harmony, contrast, smooth-
ness, visual comfort, overall appearance)

We invite 8 PhD researchers and 8 remote-sensing experts to participate, and additionally perform
3 rounds of GPT-5 evaluation. For each class in DIOR, we randomly sample one pair of images
generated with vs. without captions (from the same ground truth), resulting in 20 image pairs.
Each pair is randomly shuffled to avoid positional bias. The results are shown in Table 8, each
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System prompt:
"You are a strict image evaluation assistant."
"Your entire reply MUST be a valid JSON object with keys 'q1' 
and 'q2'", 
"and values must be either '1' or '2'. No extra text."
"Output JSON: {\"q1\": \"1 or 2\", \"q2\": \"1 or 2\"}"),
User prompt:
'You will be given two images.\n- The FIRST image is image 
1.\n- The SECOND image is image 2.\n\nAnswer the following two 
questions about these images.\nFor each question, you must 
choose either image 1 or image 2.\nReturn your answer ONLY as a 
valid JSON object with this format:\n{"q1":"1 or 2","q2":"1 or 
2"}\n\nQuestions:\nQ1: Which image more closely matches the 
style of real remote sensing imagery?\n(e.g., realistic noise 
patterns, texture details, natural illumination, authentic 
object boundaries)\nAnswer ONLY with 1 or 2.\nQ2: Which image 
looks more aesthetically pleasing to you?\n(e.g., clarity, 
color harmony, contrast, smoothness, visual comfort, overall 
appearance)\nAnswer ONLY with 1 or 2.\n'

(a) (b)

Figure 8: Aesthetic evaluation questionnaire design for generated images: (a) human experts, (b)
GPT-5.

value represents the average frequency with which the corresponding option was selected across all
questionnaires.

Table 8: Single-choice results from human experts and GPT-5 (averaged over multiple annotators or
repeated evaluations).

Option
Human experts GPT-5

Q1 Q2 Q1 Q2
w./ caption 6.57 11.21 2.33 15.33
w./o. caption 13.43 8.79 17.67 4.67

Both human experts and GPT consistently prefer the caption-conditioned images in terms of aesthet-
ics, but find them less similar to real remote-sensing imagery. In contrast, images generated without
captions appear less visually appealing but better preserve the real-world texture and structural char-
acteristics needed for downstream tasks.

(2) Downstream performance comparison. On the DIOR dataset, as shown in the table at the
bottom-right of Fig. 9, adding captions reduces the downstream improvement ∆mAP50 by 1.15
and also leads to a significantly higher FID. Combined with finding (1), this reveals that caption-
guided generation tends to over-beautify images—masking the natural imperfections of remote-
sensing imagery—and consequently harms downstream performance.

(3) Feature-level visualization. We also visualize features using t-SNE in Fig. 9. We observe that
adding captions produces more outliers, whereas samples generated without captions align more
closely with the GT distribution, indicating higher fidelity.

Taken together, these findings suggest that models should remain faithful to the inherent quirks
and imperfections of the original remote-sensing data, rather than generating overly “idealized” or
aesthetically enhanced imagery. Incorporating captions risks amplifying the latter behavior.

Additional examples are provided in Fig. 10.

A.8 MORE QUALITATIVE AND QUANTITATIVE RESULTS
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Caption ∆𝑚𝐴𝑃50↑ ∆𝐹𝑖𝑑 ↓

w./o. 1.47 29.92

w./ 0.52 42.17

: Samples Generated w./ Captions

: Samples Generated w./o. Captions

: Real samples

: Outlier Samples

Figure 9: t-SNE feature analysis of generated samples w./ and w./o. captions. Incorporating cap-
tions produces a large number of outlier samples, lowers fidelity (higher FID), and further degrades
downstream performance (lower ∆mAP50).

More faithful to 
real images 

without caption

More aligned with 
human aesthetics 

with caption

Figure 10: The influence of caption on the generation of images in terms of being more realistic and
more aesthetically pleasing.
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Table 9: Trainability (↑) comparison on DIOR and DOTA. ‘Baseline’ denotes accuracy with the
unaugmented dataset.

Method DIOR Dataset DOTA Dataset
mAP mAP50 mAP75 mAP mAP50 mAP75

Baseline 30.51 52.84 32.10 38.09 66.31 38.44
LayoutDiff 29.81 52.14 30.36 38.91 66.75 40.37
GLIGEN 28.48 51.27 29.21 38.84 66.10 40.24
AeroGen 31.53 53.37 33.60 38.45 67.09 39.07
CC-Diff 31.82 53.48 33.97 38.51 66.52 39.02
Ours 32.71 54.44 34.05 40.03 67.89 42.20
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DIOR
Airplane

Airport

BaseballField

BasketballCourt

Bridge

Chimney

Dam

Expressway-Service-Area

Expressway-Toll-Station

Golffield

GroundTrackField

Harbor

Overpass

Ship

Stadium

Storagetank

Tenniscourt

Trainstation

Vehicle

Windmill

DOTA

Basketball-Court

Harbor

Baseball-Diamond

Helicopter

Large-Vehicle

Small-Vehicle

Storagetank

Swimming-Pool

Roundabout

Ground-Track-Field

Plane

Ship

Bridge

Soccer-Ball-Field

Tennis-Court

Figure 11: Comparison of generated instance patches and their Canny edge maps for the same bbox
on the DIOR and DOTA dataset. Each image set is ordered as follows: Ground Truth, OF-Diff,
AeroGen, CC-Diff, GLIGEN, and LayoutDiff.
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Method
DIOR Dataset

Expressway
Service-area

Expressway
toll-station

Airplane Airport
Baseball

field
Basketball

court
Bridge Chimney Dam

Golf
Field

LayoutDiff 53.1 44.8 62.8 29.4 63.2 79.6 25.9 72.6 22.4 69.3

GLIGEN 52.7 44.8 62.6 26.7 63.0 79.6 25.2 72.6 19.5 67.4

AeroGen 58.1 45.2 63.1 32.7 63.4 81.0 29.5 72.6 21.1 69.1

CC-Diff 53.5 45.1 62.9 38.4 63.3 79.9 29.3 72.7 27.6 70.5

Ours 58.0 44.9 71.3 37.0 63.2 80.2 30.1 72.5 24.9 75.4

Method
DIOR Dataset

Ground
Track-field

Harbor Overpass Ship Stadium
Storage

Tank
Tennis
Court

Trainstation Vehicle Windmill

LayoutDiff 71.2 32.8 43.9 62.9 59.0 52.5 72.4 52.1 26.9 46.0

GLIGEN 70.1 30.3 45.8 62.8 56.8 52.0 72.5 49.0 26.9 45.3

AeroGen 71.0 42.7 50.7 62.9 56.6 44.5 72.5 52.6 31.4 46.7

CC-Diff 64.6 43.1 49.0 63.0 61.7 44.7 72.4 54.4 27.0 46.5

Ours 66.3 43.9 49.4 70.5 52.7 44.4 72.4 54.1 31.0 46.7

Table 10: Detailed downstream trainability results (measured by average precision) on the DIOR
dataset.

Method
DOTA Dataset

Plane Baseball-diamond Bridge
Ground

Track-field
Small-vehicle Large-vehicle Ship Tennis-court

LayoutDiff 80.4 74.2 48.8 59.9 62.9 72.7 82.5 89.6

GLIGEN 87.0 72.9 47.3 56.4 63.7 73.1 82.7 90.1

AeroGen 86.1 77.3 48.6 58.6 64.5 78.1 82.5 83.3

CC-Diff 87.2 73.4 47.1 57.8 64.3 73.9 82.6 89.2

Ours 85.2 75.3 46.5 60.4 68.3 77.2 84.4 90.4

Method
DOTA Dataset

Basketball-court Storage-tank Soccer-ball-field Roundabout Harbor Swimming-pool Helicopter

LayoutDiff 78.9 76.3 46.3 47.6 60.9 62.1 57.9

GLIGEN 79.6 76.5 42.2 43.1 60.7 62.3 53.8

AeroGen 77.3 79.9 44.8 46.6 59.4 62.6 56.4

CC-Diff 79.0 82.7 42.7 43.1 58.9 62.7 52.9

Ours 83.3 77.1 42.1 44.7 62.1 67.9 53.3

Table 11: Detailed downstream trainability results (measured by average precision) on the DOTA
dataset.
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GLIGEN OF-Diff (ours) Real ImageAeroGen CC-DiffLabel LayoutDiffusion

Figure 12: Additional qualitative results on DIOR and DOTA. The results demonstrate that OF-Diff
has certain superiority and accuracy in generating small objects, and it also has an advantage in
generating the shapes of objects. For instance, the aircraft target in the third row is generated more
accurately by OF-Diff, with a more realistic structure. The small vehicles in the fourth and fifth rows
and the large vehicle in the sixth row are also more accurately generated. Additionally, the small
ship in the seventh row is generated with greater accuracy.
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