
A query engine for L1-L2 parallel dependency treebanks

Arianna Masciolini
Språkbanken Text

Department of Swedish, Multilingualism, Language Technology
University of Gothenburg

arianna.masciolini@gu.se

Abstract
L1-L2 parallel dependency treebanks are
learner corpora with interoperability as
their main design goal. They consist of
sentences produced by learners of a sec-
ond language (L2) paired with native-like
(L1) correction hypotheses. Rather than
explicitly labelled for errors, these are an-
notated following the Universal Depen-
dencies standard. This implies relying on
tree queries for error retrieval. Work in this
direction is, however, limited. We present
a query engine for L1-L2 treebanks and
evaluate it on two corpora, one manually
validated and one automatically parsed.

1 Introduction

L1-L2 parallel dependency treebanks are learner
corpora where sentences produced by learners of
a second language (L2) are paired with correction
hypotheses, assumed to be native-like and there-
fore referred to as L1 sentences. Both the learner
originals and the corresponding corrections are an-
notated following the cross-lingual Universal De-
pendencies (UD) standard (Nivre et al., 2020).
The idea is that such morphosyntactical informa-
tion makes explicit error labelling unnecessary
and allows errors to instead be retrieved via tree
queries. This format, proposed by Lee et al.
(2017a), was in fact designed to address the inter-
operability issues arising from the coexistence of
the different markup styles and error taxonomies
normally employed for the annotation of learner
corpora. These tend not only to be language-
specific, but also to vary widely across different
same-language projects. An additional advantage
of using UD is the availability of several increas-
ingly fast and reliable parsers (Straka, 2018; Qi
et al., 2020). While not yet very robust to learner
errors (Huang et al., 2018), they can already speed
up the annotation process significantly.

L1-L2 UD treebanks exist for English (Berzak
et al., 2016), Chinese (Lee et al., 2017b) and Ital-
ian (Di Nuovo et al., 2022). Work on error re-
trieval tools, on the other hand, has been limited.
Only one of these corpora, the ESL (English as
a Second Language) treebank, is equipped with a
query engine.1 This tool, however, presents sev-
eral limitations, a major one being its reliance on
a pre-existing error taxonomy, in contrast with Lee
et al. (2017a)’s idea.2 Closer in spirit to the latter,
Choshen et al. (2020) have developed a method
to automatically derive dynamic syntactical error
taxonomies from L1-L2 treebanks, but do not pro-
vide a way to look for specific error patterns.

In this paper, we present a language- and er-
ror taxonomy-agnostic query engine for L1-L2
parallel dependency treebanks. The tool allows
searching for morphosyntactical errors by describ-
ing them in a pre-existing pattern matching lan-
guage for UD trees, which we extend to facilitate
comparing L2 sentences to their corrections, re-
sulting in what we call L1-L2 patterns. Our main
contribution is a sentence retrieval algorithm that
matches the L1 and L2 portions of a query pattern
on the corresponding treebanks in parallel, ensur-
ing that correspondences are found between seg-
ments that align with each other. Addressing an-
other limitation of the existing tools, we also make
it possible to extract the specific portions of an L1-
L2 sentence that match a given pattern. The engine
is part of L2-UD, a larger open source toolkit for
UD-annotated L2 data, available for download at
github.com/harisont/L2-UD.3

1As of 05.04.2023, the ESL treebank’s homepage,
esltreebank.org, seems to be no longer reachable,
but the user interface of the query engine can be inspected
at the Internet Archive: web.archive.org/web/
20220120204838/http://esltreebank.org.

2Note, however, that the ESL treebank actually predates
Lee et al.’s paper.

3The results reported in this paper were obtained with ver-
sion 0 of the engine: github.com/harisont/L2-UD/
releases/tag/v0 (last access 05.04.2023).

github.com/harisont/L2-UD
esltreebank.org
web.archive.org/web/20220120204838/http://esltreebank.org
web.archive.org/web/20220120204838/http://esltreebank.org
github.com/harisont/L2-UD/releases/tag/v0
github.com/harisont/L2-UD/releases/tag/v0

Sono andato da entrambi
AUX VERB ADP PRON

Sing Sing Masc Plur Masc

� �
?

aux ��
?

case

' $
?

obl

?

root

Sono andata da entrambi*
AUX VERB ADP PRON

Sing Sing Fem Plur Masc

� �
?

aux ��
?

case

' $
?

obl

?

root

Figure 1: UD trees for the Italian sentence Sono andat{o→a*} da entrambi (“I have been to both”), discrepancies highlighted
in bold. In the L2 sentence, displayed on the right, the gender of the participle andato, referring to the implicit subject of the
sentence, is incorrect, but without further context we have no way to infer the author’s gender. As a consequence, the error can
only be described in terms of its correction. Example adapted from the VALICO-UD treebank.

2 Related work

As mentioned in the introduction, learner corpora
exist in a variety of formats. Lee et al. (2017a)’s
proposal to use L1-L2 parallel dependency tree-
banks is not the only one aimed at overcoming the
interoperability issues that follow. Bryant et al.
(2017), for instance, introduced ERRANT, an ER-
Ror ANnotation Toolkit operating in the frame-
work of a taxonomy that exclusively relies on
dataset-agnostic information such as the POS (Part
Of Speech) tag and morphological features of the
tokens involved. In a sense, this can be seen as an
attempt to solve the problem by developing a “uni-
versal” error taxonomy. While ERRANT has be-
come dominant in Grammatical Error Correction
research, it still coexists with several other tagsets
which differ significantly both in their underlying
assumptions, often language-specific, and in the
granularity of the annotation, which varies accord-
ing to the intended use of each individual corpus.

Lee et al.’s idea, while only concerned with
morphosyntactical errors, is more radical, as UD-
annotated parallel treebanks have the potential
to remove the need for any explicit error pre-
categorization and instead allow to infer error tax-
onomies automatically and dynamically. Choshen
et al.’s work on syntactical error classification,
showing promising results even on automatically
parsed L1-L2 treebanks, goes in this direction.

While there is a wide variety of tools and lan-
guage to choose from for extracting information
from (monolingual) UD treebanks,4 not many op-
tions are available when it comes to retrieving ex-
ample sentences matching specific patterns of er-
ror from L1-L2 treebanks. To the best of our
knowledge, the above mentioned ESL treebank
query engine is the only tool specifically meant
for this task. While it is reasonable to assume
that the latter could easily be generalized to work

4PML-TQ (Pajas and Štěpánek, 2009), GREW-MATCH
(Guillaume, 2021), SETS (Luotolahti et al., 2015) and TÜN-
DRA (Martens, 2013), just to name a few.

with any L1-L2 treebank, it presents several limi-
tations from the perspective of the tree queries en-
visioned by Lee et al. (2017a). First and foremost,
searching for errors is primarily done by select-
ing an error label from a pre-defined set. A sim-
ple query language is also available, but it only al-
lows searching for sequences of word forms, POS
tags and dependency labels. In other words, UD
sentences are treated as lists of tokens rather than
trees. This can be restrictive since, for the pur-
poses of grammatical error retrieval, dependency
structure is often more relevant than linear or-
der. Furthermore, there is no coupling, other than
sentence-level alignment, between the L1 and L2
parts of the treebank. Patterns are therefore only
matched against L2 sentences, making it impossi-
ble to search for errors whose description requires
a comparison with the correction (cf. Figure 1 for
an example) or locate the relevant portions of their
L1 counterparts. A final, related limitation is that
the tool always returns complete sentences, while
it is sometimes useful to isolate the segments that
match the query.

3 Design and implementation

Addressing these limitations, we aim for a query
engine with the following characteristics:

1. no underlying error taxonomy: errors are
described in a pattern matching language
which allows treating UD sentences both as
sequences of tokens and as tree structures;

2. parallel L1-L2 matching: queries consist in
an L1 pattern, that has to be matched by a
correction hypothesis, and an L2 pattern to
be matched in the corresponding learner sen-
tence. This also allows formulating queries
by comparing learner sentences with their
corrections;

3. subsentence extraction: besides retrieving
full sentence pairs, it is also possible to ex-
tract the specific portions of an L1-L2 pair
actually matching the query.

Därför vill jag inte flytta
ADV AUX PRON PART VERB

' $
?

advmod' $
?

aux#
?

nsubj� �
?
advmod

?

root

Därför jag vill inte flytta*
ADV PRON AUX PART VERB

' $
?

advmod' $
?

nsubj#
?

aux� �
?
advmod

?

root

Figure 2: UD trees for the L1-L2 Swedish sentence Därför {vill jag → jag vill*} inte flytta (“Therefore I don’t want to move”),
discrepancies highlighted in bold. The L2 sentence, on the right, violates V2 word order. Example adapted from the DaLAJ
corpus.

3.1 Query language

A central part of the engine is its query language.
We start with an overview of the pre-existing pat-
tern matching language our system makes use
of. After that, we present the extensions through
which we adapt it to querying L1-L2 treebanks.

3.1.1 UD patterns

To describe morphosyntactical structures, we use
the Haskell-embedded pattern matching language
available as part of the GF-UD toolset for depen-
dency trees and interlingual syntax (Kolachina and
Ranta, 2016; Ranta and Kolachina, 2017).5 Al-
though not as widespread as some of the above
mentioned alternatives, it allows to express a wide
range of queries with an intuitive syntax, and it
was selected due to its ease of integration with the
other components of the project.

In essence, the language provides three types of
patterns:

• single-token patterns, e.g. POS "VERB",
matching all (sub)trees rooted in a verb. With
a similar syntax, it is possible to pattern
match based on the token’s XPOS, DEPREL,
FEATS, FORM or LEMMA, all of which corre-
spond to homonymous CoNNL-U fields;6

• tree patterns, in the form TREE p [ps],
where p is a pattern to be matched by the
root node and [ps] an ordered list of pat-
terns denoting its dependents. For instance,
the pattern TREE (POS "VERB") [DEPREL

"nsubj", DEPREL "obj"] matches all sub-
trees rooted in a verb having exactly two sub-
trees: a nominal subject nsubj and a direct
object obj, in this order;

5For an exhaustive description of the pattern match-
ing language, see the relevant GF-UD documentation:
github.com/GrammaticalFramework/gf-ud/
blob/master/doc/patterns.md (last access
05.04.2023).

6For an overview of the CoNNL-U format and a complete
list of the abbreviations used in this text, see Appendix A.

• sequence patterns, matching subtrees where
a certain sequence of patterns occurs with no
intervening words. For instance, in Subject-
Verb-Object (SVO) languages we might want
to write SEQUENCE [POS "VERB", DEPREL

"nsubj", DEPREL "obj"].

More liberal versions of some of these patterns,
using the original name followed by an under-
score, also exists. Namely, DEPREL_ d ignores
relation subtypes, FEATS_ fs matches all tokens
whose morphological features include (rather than
conicide with) fs, TREE_ p [ps] allows other de-
pendents to appear before, between and/or after
the explicitly listed ones and SEQUENCE_ ps does
not require the listed patterns to occur contigu-
ously. In addition, the language allows to combine
patterns with the logical operators AND, OR and NOT

and provides a TRUE pattern matching any subtree.
As a slightly more complex example, consider

TREE_
(POS "VERB")
[DEPREL_ "nsubj",
OR [DEPREL "obj", DEPREL "obl"]]

The above pattern matches any subtree rooted in
a verb which has at least two dependents: a nom-
inal subject (ignoring any subtyping) and a direct
object obj or oblique obl (not subtyped).

3.1.2 L1-L2 patterns
In some cases, errors can be described by a single
UD pattern to be looked for in the L2 treebank.
Often, however, it is more convenient and concise
(if not even necessary, as illustrated in Figure 1)
to describe errors by comparing an L2 sentence
to its correction. For this reason, queries in our
system are defined as pairs of UD patterns. This,
however, does not prevent writing queries as L2-
only patterns: any single-pattern query q is simply
expanded to a pair ⟨TRUE, q⟩.

As an example of the usefulness of L1-L2 pat-
terns, consider the sentence displayed in Figure 2:
in the L2 text displayed on the right, the learner is

github.com/GrammaticalFramework/gf-ud/blob/master/doc/patterns.md
github.com/GrammaticalFramework/gf-ud/blob/master/doc/patterns.md

using Swedish’s default SVO order, with the pro-
noun jag preceding the auxiliary verb vill. The
sentence, however, starts with the adverb därför.
Being Swedish a language with verb-second (V2)
word order, the correction, displayed on the left,
moves the auxiliary in the second position, right
after the adverb itself. A way to find L2 sentences
presenting the same problem is to use a single se-
quence pattern, for instance:

SEQUENCE [
POS "ADV",
OR [POS "VERB", POS "AUX"],
DEPREL_ "nsubj"]

This does match sentences like the one above, but
does not cover all cases in which V2 order is vi-
olated: rather than with an adverb, the sentence
might for example start with a prepositional phrase
(cf. På grund av detta vill jag inte flytta, with the
similar meaning of “Because of this I don’t want
to move”). Rather than enumerating all possible
patterns of V2 order violation, it can be more con-
venient to express the error in terms of its correc-
tion, for instance with the following pair of pat-
terns, which disregards the opening phrase:

L1 : SEQUENCE [
OR [POS "VERB", POS "AUX"],
DEPREL "nsubj"]

L2 : SEQUENCE [
DEPREL "nsubj",
OR [POS "VERB", POS "AUX"]]

For the sake of conciseness, rather than writing
two separate patterns, we enclose the discrepant
portion in curly brackets and divide the L1 and L2
segments with an arrow:

SEQUENCE [
{OR [POS "VERB", POS "AUX"],
DEPREL "nsubj" →
DEPREL "nsubj",
OR [POS "VERB", POS "AUX"]}]

This is our first extension to the pattern matching
language described in Section 3.1.1.

To avoid repetition, we also introduce variables.
As an example use case, consider gender agree-
ment, a source af confusion for learners of many
languages. In a dependency tree, most errors of
this kind can be identified by checking whether the
gender of certain dependents matches the gender
of the token they are referred to. In Italian, for in-
stance, adjectives should agree with the nouns they
modify. This is not the case in the sentences like
Indossava una maglietta nero (“(S)he was wear-
ing a black t-shirt”), where the noun, maglietta,
is feminine, while the adjective is incorrectly in-

flected in its masculine form nero. This particular
sentence therefore matches the pattern

TREE_
(FEATS_ "Gender=Fem")
[AND [DEPREL "amod",

FEATS_ "Gender=Masc"]]

With the syntax presented until now, however,
looking for all noun-adjective gender agreement
errors requires a separate query for each possible
combination of genders.7 With variables, syntac-
tically characterized by capital letters preceded by
a $ sign, we can instead simply write

TREE_
(FEATS_ "Gender=$A")
[AND [DEPREL "amod",

FEATS_ "Gender=$B"]]

where $A is assumed to be different from $B. Vari-
ables are currently supported for morphological
features, Universal POS tags and dependency rela-
tions, all of which have a finite number of possible
values.

3.2 Sentence retrieval algorithm

Alongside the pattern matching language, GF-UD

provides a function that, given a pattern and a UD
tree, recursively checks if the former matches the
latter itself or any of its subtrees. One might be
prone to think that performing an L1-L2 query can
simply consist in applying this function to all trees
in the treebank, looking for L1 sentences match-
ing the L1 portion of the pattern and L2 sentences
matching its L2 portion. Doing that, however, gen-
erally leads to a significant amount of false posi-
tives. Consider, for instance, the following query,
intended for searching number agreement errors
between a head and its direct dependents:

TREE_
(FEATS_ "Number=$A")
[FEATS_ "Number={$A → $B}"]

Following this naïve approach, the sentence in
Figure 1 would match the pattern even if it does
not contain a number agreement error. This hap-
pens because the L1 sentence matches the L1 pat-
tern at sono andato (“(I) have been”, two singular
verb forms), while the L2 sentence matches the
L2 pattern at andata da entrambi (“been to both”),
where the head andata is again a singular but the
dependent entrambi is a pronoun in its masculine
plural form. In this case, in fact, both the original

7Two in Italian, whose only genders are masculine and
feminine, but already six for languages with neuter!

sentence and its correction match both portions of
the pattern.

A key observation here is that sono andato and
andata da entrambi do not semantically corre-
spond to each other: to solve the problem, we
need to further align our L1-L2 treebank, re-
cursively putting L1 subtrees in correspondence
with their L2 counterparts. To do that, we use
the CONCEPT-ALIGNMENT Haskell library (Mas-
ciolini and Ranta, 2021). While originally de-
signed for extracting translation equivalents from
multilingual parallel treebanks, its alignment cri-
teria, i.e. the set of rules to decide whether two
subtrees correspond to each other, are configurable
and easy to adapt to the L1-L2 domain. Actu-
ally, accuracy on L1-L2 corpora tends to be better
than it is for multilingual treebanks. Learner sen-
tences and their corrections, in fact, usually share
the vast majority of the lemmas, something that
can be taken into account when defining custom
alignment criteria.

As a first step, then, we extract phrase- and
word alignments, in the form of pairs of L1-L2
UD trees, for each L1-L2 sentence pair. After that,
to decide whether a sentence pair matches a given
L1-L2 pattern, we apply a nonrecursive version
of GF-UD’s pattern matching function to check if
there is a pair of aligned subtrees whose L1 (resp.
L2) component matches the L1 (resp. L2) por-
tion of the pattern. Matching nonrecursively, only
on complete UD trees (altough extracted from full
sentences), is crucial here, as it is, in most cases,
what prevents L1-L2 patterns from being matched
in structurally similar but semantically unrelated
subtrees of the L1-L2 sentence pair.

The careful reader, however, will have noticed
that this does not solve the issue for the specific
example mentioned, where the subtrees matching
the L1-L2 pattern, sono andata and andata da en-
trambi, share the same head andata. The false pos-
itive is due to the fact that its dependents, sono and
da entrambi, do not correspond to each other. For
TREE and TREE_ patterns, then, we recursively per-
form the additional check that all dependents in-
volved in the match are aligned with each other.
A similar mechanism is in place for SEQUENCE

and SEQUENCE_ patterns, to avoid matching sub-
sequences that, while part of the same subtree, are
not semantically equivalent.

3.3 Subsentence extraction
By default, the output of the program is the list
of IDs of the sentences matching the given query.
Nontheless, extracting relevant subsentences can
be useful both for futher processing of the error-
correction pair and to more easily visualize dis-
crepancies in the context in which they occur.

The fact that our sentence retreival algo-
rithm applies patterns on sub-sentence alignments
makes it straightforward to locate the specific L1
and L2 subtrees where the match is found. Doing
so, however, is of very limited usefulness when the
root (or the head of a large subtree) is involved in
the error, resulting in too big subtree pairs. For this
reason, we prune the extracted subtrees by only
keeping the portions explicitly described by the
pattern: individual heads for single-token queries,
heads and their dependents that match a pattern in
ts for TREE_ ts patterns and, for sequence pat-
terns, rather than the whole subtree including the
given sequence, only subtrees matching one of
patterns explicitly listed in it. Implementation-
wise, this is done by converting the query’s UD
patterns into replacement patterns in GF-UD’s tree
manipulation language.8

The engine has options to either extract such
pairs of matching subsentences and write them to
CoNNL-U files or to output a Markdown report
where they are highlighted in the sentences where
they occur. Example reports obtained with the lat-
ter method can be found in Appendix C.

4 Evaluation

Aiming at assessing the performance of the query
engine, we tested it on two L1-L2 error-tagged
corpora in two different languages, one that comes
with manually validated UD annotation and one
that was only parsed automatically. In both cases,
we randomly selected 100 sentences to be used
during development and set the rest aside for test-
ing. Carrying out a systematic evaluation was not
possible: more often than not, an error tag maps
not to a single L1-L2 query, but to a potentially
rather large set of queries whose exhaustiveness
is hard to verify. As a consequence, we opted
for computing the sentence-level precision and re-
call obtained upon running, for each corpus, a

8The pattern replacement language is, in many
ways, analogous to the pattern replacement lan-
guage and documented alongside it: github.com/
GrammaticalFramework/gf-ud/blob/master/
doc/patterns.md (last access: 05.04.2023).

github.com/GrammaticalFramework/gf-ud/blob/master/doc/patterns.md
github.com/GrammaticalFramework/gf-ud/blob/master/doc/patterns.md
github.com/GrammaticalFramework/gf-ud/blob/master/doc/patterns.md

single-token, a tree and a sequence example query,
all chosen to be descriptive of an error typical
of the language at hand. To automate evaluation
as much as possible, we also tried to make each
query match one of the error labels of the dataset
at hand. In this way, performance for a given query
can be assessed by simply comparing the sentence
IDs returned by the engine with those of the sen-
tences marked with the corresponding error label.
Finding exact correspondences was feasible for
single-token queries, but challenging for tree and
sequence patterns, which tend to be finer-grained.
In such cases, we formulated queries describing a
subset of the error cases denoted by a certain label
and manually inspected sentences marked with it
to select the relevant items. By comparing the re-
sults obtained on the two corpora, we also aim at
getting insights about the ways in which automatic
annotation affects the performance of the engine,
even though we cannot quantify its impact.

4.1 Experiments on manually validated data

4.1.1 Data

Our first treebank of choice is the 398-sentence
manually validated subset of the VALICO-UD
corpus (Di Nuovo et al., 2022), consisting of texts
written by Italian L2 learners with various L1
backgrounds. While much smaller than the above
mentioned ESL treebank, it was deemed prefer-
able due to its more complete UD annotation.9

Error tagging, present as sentence metadata, is
XML-like and based on Nicholls (2003), where
each label consists of a two-letter code, with the
first character representing the general class of er-
ror (inflection, omission etc.), and the second gen-
erally specifying the POS tag of the word(s) in-
volved. In some cases, VALICO-UD labels also
present a third letter, usually denoting an incorrect
inflectional feature.10 In the error tag IDG, for in-
stance, the three letters stand for "Inflection", "De-
terminer" and "Gender" and are meant to enclose
determiners incorrectly inflected for gender.

9Due to licensing issues, the UD annotation of the ESL
corpus is released separately from the learner essays them-
selves. Consequently, in order to prevent the text from being
reconstructed from the annotation, the LEMMA and FEATS
fields are left blank.

10An exhaustive description of the error annotation
guidelines is given at raw.githubusercontent.com/
ElisaDiNuovo/VALICO-UD_guidelines/main/
Error_Annotation_Guidelines_v.1.1.pdf (last
access: 05.04.2023).

Precision Recall
V1 43% (40%) 100%
V ′
1 100% (90%) 100% (64%)

V2 100% 40%
V3 - 0%
V ′
3 100% 100%

Table 1: Precision and recall of the example queries run on
the VALICO-UD corpus. Values in parentheses do not take
error annotation issues into account.

4.1.2 Queries
Gender being a notorious source of confusion for
learners of Italian, we chose the set of two L1-L2
patterns equivalent to IDG as our first test query:

V1: AND [
POS "DET",
FEATS_ "Gender={$A → $B}"]

A second, more complex query is
V2: TREE

(POS "NOUN")
[{DEPREL "det", → }

DEPREL "det:poss"]

which denotes a subclass of the MD (Missing De-
terminer) VALICO category describing the com-
mon error pattern for which the definite article that
should precede a possessive modifying a noun is
omitted (consider, for instance, the nominal phrase
{il → _*} suo naso - “his nose”).

Word order is relatively free in Italian, and find-
ing recurrent patterns in such a small corpus is not
easy. Instead, we use a sequence pattern to find
particular occurrences of RD (Replacement of De-
terminer) errors:11

V3: SEQUENCE [
LEMMA "non",
LEMMA "ci",
LEMMA "essere",
LEMMA {"nessun*" − > "un*"}]

This pattern matches phrases that translate to
“there is/are no x”. In Italian, this is usually ex-
pressed with a double negation: not only is there
an initial negation, non, but the determiner intro-
ducing x (nessuno or nessuna, depending on x’s
gender) also has negative polarity. However, since
this is not the case in most other languages, it is
common for L2 speakers to simply use the indefi-
nite article (un/un’/uno/una).

4.1.3 Results
As displayed in Table 1, recall is perfect for the
first query. The low precision should not mis-

11Even though UD patterns do not support general regular
expressions, an asterisk at the beginning or end of a string can
be used as a wildcard.

raw.githubusercontent.com/ElisaDiNuovo/VALICO-UD_guidelines/main/Error_Annotation_Guidelines_v.1.1.pdf
raw.githubusercontent.com/ElisaDiNuovo/VALICO-UD_guidelines/main/Error_Annotation_Guidelines_v.1.1.pdf
raw.githubusercontent.com/ElisaDiNuovo/VALICO-UD_guidelines/main/Error_Annotation_Guidelines_v.1.1.pdf

lead: one of the false positives is due to an in-
consistency in the error annotation and 8 of the
remaining 20 false positives are due to cascading
errors. It is often the case, in fact, that the gender
of the noun the determiner is referred to is wrong,
and the incorrect inflection of the determiner in-
troducing it is merely a consequence of that. In
this case, the incorrect noun is marked with the RN
(Replace Noun) label in case of a lexical error (cf.
la panca → il banco*, “the bench → the desk”) or
with the ING (Incorrect Noun Gender) label if the
noun is incorrectly inflected (cf. gli uccelli → le
uccelle*”, “the birds”), while the determiner gets
the IDGcascade tag. To avoid matching cascading
errors, we can turn V1 into a TREE query and check
whether the determiner’s gender agrees with the
noun’s:

V ′
1: TREE_

(AND [POS "NOUN",
FEATS_ "Gender=$A"])

[AND [POS "DET",
FEATS_ "Gender={$A → $B}"]]

As Table 1 shows, the precision for V ′
1 is signifi-

cantly higher. While recall appears to decline, all
of the false negatives can be traced back to errors,
inconsistencies or incompletenesses in either UD
annotation or error tagging (see Appendix B for a
complete list of issues found in the VALICO-UD
corpus).

When it comes to V2, there are no false posi-
tives, while the 3 false negatives are due to align-
ment errors. In every case, the sentence at hand
presents several errors, so that the L1 and L2 trees
differ significantly, increasing the difficulty of the
alignment task.

V3, on the other hand, only has one expected hit,
the sentence -Non c’è {nessun bacio → una baci-
ata*} per me,- ha pensato tristemente. (-There’s
no kiss for me,- (s)he thought sadly.”), but no
matches. Again, the problem seems to be an align-
ment error, since the expected sentence id is in-
deed returned if we use a similar L2-only query:

V ′
3: SEQUENCE [

LEMMA "non",
LEMMA "ci",
LEMMA "essere",
LEMMA "un*"]

4.2 Experiments on parsed data

4.2.1 Data
To evaluate the tool on automatically annotated
data, we used a 2087-sentence subset of the

DaLAJ corpus (Volodina et al., 2021).12 Such cor-
pus is composed of L1-L2 sentence pairs auto-
matically derived from the error-annotated learner
corpus of anonymized L2 Swedish essays SweLL
(Volodina et al., 2019). More specifically, SweLL
essays are processed so that the L2 component of
each sentence pair in the DaLAJ corpus contains
exactly one morphological or syntactical error. Ar-
guably, this makes automatically parsing the L2
sentences and aligning them to their L1 counter-
parts significantly easier than it would be if multi-
ple, possibly cascading and/or overlapping errors
coexisted. Evaluating the tool on the SweLL cor-
pus itself, however, would have been extremely
impractical, as the original versions of the essays
are not sentence-aligned.

In terms of error-annotation, since DaLAJ en-
tries only contain one error each, sentence pairs
are simply assigned a SweLL error label. SweLL’s
error taxonomy, thorughly described by Rudebeck
and Sundberg (2021), is a two-level classifica-
tion: error labels are composed of a capital let-
ter, indicating the error’s macro-category (Ortog-
raphy, Lexicon, Morphology, Syntax or Punctua-
tion), followed by a secondary label giving addi-
tional information about the type of error and/or
the POS involved. The M-Case label, for instance,
indicates the presence of a morphological error
that has to do with the case inflection of a noun
or pronoun.

DaLAJ sentences were parsed with UD-
Pipe 1 (Straka et al., 2016) using the
swedish-talbanken-2.5 model. While
not state-of-the-art, UDPipe 1 was preferred
over alternatives with higher reported per-
formance due to its speed and ease of
use. The resulting dataset is available at
github.com/harisont/L1-L2-DaLAJ.13

4.2.2 Queries
We mentioned the M-Case label, used to mark in-
correctly inflected nouns and pronouns. Such a
label can be mapped to a rather straightforward
single-token query:

D1: FEATS_ "Case={$A → $B}"

In Swedish, nouns have a definite and an indef-
inite form. The correct use of these two forms is

12The preliminary version of the corpus presented in the
paper is exclusively composed of sentences presenting lexi-
cal errors. In this work, we used a more recent, soon-to-be-
released one also covering morphosyntactical errors.

13Last access 05.04.2023.

github.com/harisont/L1-L2-DaLAJ

Precision Recall
D1 77% (76%) 58%
D2 75% 90%
D3 89% 62%

Table 2: Precision and recall of the three example queries run
on the DaLAJ corpus. Values in parentheses do not take error
annotation issues into account.

typically difficult to aquire for L2 learners. As an
example of tree query, we therefore use

D2: TREE_
(FEATS_ "Definite={Def → Ind}")
[AND [DEPREL_ "det",

FEATS_ "Definite=Def"]]

This denotes sentences where a nominal (typically
a noun) is in its indefinite form despite being in-
troduced by a definite determiner (typically an ar-
ticle). In terms of SweLL error labels, these cases
are a fraction of those marked as M-Def, which is
used to indicate a wide variety of errors concern-
ing definiteness (adjective-noun agreement, miss-
ing determiners etc.).

Finally, along the lines of the sequence patterns
discussed in Section 3.1.2, we use

D3: SEQUENCE [
DEPREL_ "advmod",
{OR [POS "VERB", POS "AUX"],
DEPREL_ "nsubj" →
DEPREL_ "nsubj",
OR [POS "VERB", POS "AUX"]}]

to look for sentences where the V2 order is vio-
lated following an adverb or an adverbial clause.14

With this pattern, we cover some of the errors la-
belled as S-FinV, namely those involving the mis-
placement of a finite verb.

4.2.3 Results
As Table 2 suggests, precision is reasonably good
even on our automatically annotated data, while
recall fluctuates depending on the query.

When it comes to D1, false negatives are in
the almost totality of cases due to the fact that
the parser, as it is to be expected, asssigns to-
kens different dependency labels based on their
case (typically, subjects incorrectly inflected in
their accusative form are labelled as direct ob-
jects and objects in the nominative form become
obliques). The vast majority of the false posi-
tives is also due not to the query engine itself,
but to incorrect alignments deriving from parse
errors. In 11 out of 13 such cases, false posi-
tives are sentences containing a syntactical error,

14Note that, for simplicity, we are only looking for se-
quences where the verb is contiguous to the subject.

which seems to confirm the intuition that nonstan-
dard syntax causes the parser to annotate the sen-
tences incorrectly. In only one case a false posi-
tive is due to a wrongly assigned error label. More
interesting are the cases in which tokens are cor-
rectly aligned, but the correction of a syntax error
consists in a rephrasing that happens to also al-
ter the case of one of the words involved, such as
in the L2 phrase Rollerna för barn (literally “The
roles for the children”), corrected as Barnens roller
(“The children’s roles”), transforming the nomina-
tive barn into a genitive barnens.

The tree query, more specific, has only 10 ex-
pected matches, allowing for a thorough error
analysis. The only false negative seems to be due
to an alignment error whose cause is hard to pin-
point. Of three false positives, one derives from
incorrect morphological annotation, one from a
rephrasing that creates problems at the alignment
stage and one from the presence, in the L2 sen-
tence De ligger på första plats i den ligan! (“They
are in first place in that league!”), of the English
word “league”, annotated (arguably correctly) as
an indefinite but translated, in the correction, to
the definite ligan.

The relatively low recall for D3 is easily ex-
plained by the fact that, as we already discussed,
sentences containing syntactical errors are espe-
cially challenging for the parser.

5 Conclusions and future work

We presented a query engine for L1-L2 parallel
UD treebanks, the first in a larger collection of
tools for L2 UD treebanks. The tool, which does
not rely on an underlying error taxonomy, allows
to search for error-correction pairs via L1-L2 pat-
terns, i.e. pairs of morphosyntactical structures
expressed in a pattern matching language for de-
pendency trees, which we extended in order to
simplify its use on parallel treebanks. Our novel
retrieval algorithm allows searching for full sen-
tences as well as extracting their specific query-
matching portions.

Our first, small-scale evaluation of the tool gives
promising results, but also shows that the align-
ment component is often the bottleneck. This
propmts us to investigate alignment techniques
specifically meant for parallel learner corpora,
such as Felice et al. (2016)’s for L2 English. The
fact that, for automatically annotated data, many
alignment issues derive from parse errors also

seems to confirm the scarce robustness of standard
tools to learner errors, pointing to a need to train
ad hoc models or explore new, more specific ap-
proaches.

In future versions of the tool, we plan to op-
timize variables and generalize them to all UD
fields, thus increasing expressive power of the
query language. Furthermore, while the tool is
designed with L1-L2 treebanks in mind, nothing
prevents us from testing it on multilingual paral-
lel UD treebanks, for example to find instances of
known translation divergences.

As for the future of L2-UD, our efforts in the
near future will be focused on extracting error pat-
terns from L1-L2 treebanks. Eventually, we hope
it will also be possible to integrate the two and en-
able using error-correction pairs to retrieve simi-
lar examples. This would help making the engine
more user-friendly, replacing explicit queries, but
could also be a strategy to provide L2 learners with
feedback, along the lines of Arai et al. (2019).

References
Mio Arai, Masahiro Kaneko, and Mamoru Komachi.

2019. Grammatical-error-aware incorrect example
retrieval system for learners of Japanese as a second
language. In Proceedings of the Fourteenth Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications, pages 296–305, Florence, Italy.
Association for Computational Linguistics.

Yevgeni Berzak, Jessica Kenney, Carolyn Spadine,
Jing Xian Wang, Lucia Lam, Keiko Sophie Mori,
Sebastian Garza, and Boris Katz. 2016. Universal
Dependencies for learner English. arXiv preprint
arXiv:1605.04278.

Christopher Bryant, Mariano Felice, and Edward
Briscoe. 2017. Automatic annotation and evaluation
of error types for Grammatical Error Correction. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics, Vancouver,
Canada. Association for Computational Linguistics.

Leshem Choshen, Dmitry Nikolaev, Yevgeni Berzak,
and Omri Abend. 2020. Classifying syntac-
tic errors in learner language. arXiv preprint
arXiv:2010.11032.

Elisa Di Nuovo, Manuela Sanguinetti, Alessandro
Mazzei, Elisa Corino, and Cristina Bosco. 2022.
VALICO-UD: Treebanking an Italian learner corpus
in Universal Dependencies. IJCoL. Italian Journal
of Computational Linguistics, 8(8-1).

Mariano Felice, Christopher Bryant, and Ted Briscoe.
2016. Automatic extraction of learner errors in ESL
sentences using linguistically enhanced alignments.

In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 825–835, Osaka, Japan.
The COLING 2016 Organizing Committee.

Bruno Guillaume. 2021. Graph matching and graph
rewriting: GREW tools for corpus exploration,
maintenance and conversion. In Proceedings of the
16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 168–175, Online. Associa-
tion for Computational Linguistics.

Yan Huang, Akira Murakami, Theodora Alexopoulou,
and Anna Korhonen. 2018. Dependency parsing of
learner English. International Journal of Corpus
Linguistics, 23(1):28–54.

Prasanth Kolachina and Aarnte Ranta. 2016. From ab-
stract syntax to Universal Dependencies. In Linguis-
tic Issues in Language Technology, Volume 13, 2016.

John Lee, Keying Li, and Herman Leung. 2017a. L1-
L2 parallel dependency treebank as learner corpus.
In Proceedings of the 15th International Conference
on Parsing Technologies, pages 44–49, Pisa, Italy.
Association for Computational Linguistics.

John SY Lee, Herman Leung, and Keying Li. 2017b.
Towards Universal Dependencies for learner Chi-
nese. In Proceedings of the NoDaLiDa 2017
Workshop on Universal Dependencies (UDW 2017),
pages 67–71, Gothenburg, Sweden.

Juhani Luotolahti, Jenna Kanerva, Sampo Pyysalo, and
Filip Ginter. 2015. SETS: Scalable and efficient tree
search in dependency graphs. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Demonstrations, pages 51–55, Denver, Col-
orado. Association for Computational Linguistics.

Scott Martens. 2013. TüNDRA: A web application for
treebank search and visualization. In The Twelfth
Workshop on Treebanks and Linguistic Theories
(TLT12), volume 133, Sofia, Bulgaria.

Arianna Masciolini and Aarne Ranta. 2021. Grammar-
based concept alignment for domain-specific Ma-
chine Translation. In Proceedings of the Seventh
International Workshop on Controlled Natural Lan-
guage (CNL 2020/21), Amsterdam, Netherlands.
Special Interest Group on Controlled Natural Lan-
guage.

Diane Nicholls. 2003. The Cambridge Learner Corpus:
Error coding and analysis for lexicography and ELT.
In Proceedings of the Corpus Linguistics 2003 con-
ference, volume 16, pages 572–581, Lancaster, UK.
Cambridge University Press Cambridge.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Hajič, Christopher D Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection.
arXiv preprint arXiv:2004.10643.

https://doi.org/10.18653/v1/W19-4431
https://doi.org/10.18653/v1/W19-4431
https://doi.org/10.18653/v1/W19-4431
https://aclanthology.org/C16-1079
https://aclanthology.org/C16-1079
https://doi.org/10.18653/v1/2021.eacl-demos.21
https://doi.org/10.18653/v1/2021.eacl-demos.21
https://doi.org/10.18653/v1/2021.eacl-demos.21
https://aclanthology.org/W17-6306
https://aclanthology.org/W17-6306
https://doi.org/10.3115/v1/N15-3011
https://doi.org/10.3115/v1/N15-3011
https://aclanthology.org/2021.cnl-1.2
https://aclanthology.org/2021.cnl-1.2
https://aclanthology.org/2021.cnl-1.2

Petr Pajas and Jan Štěpánek. 2009. System for query-
ing syntactically annotated corpora. In Proceed-
ings of the ACL-IJCNLP 2009 Software Demonstra-
tions, pages 33–36, Suntec, Singapore. Association
for Computational Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D Manning. 2020. Stanza:
A Python natural language processing toolkit
for many human languages. arXiv preprint
arXiv:2003.07082.

Aarne Ranta and Prasanth Kolachina. 2017. From
Universal Dependencies to abstract syntax. In
Proceedings of the NoDaLiDa 2017 Workshop on
Universal Dependencies (UDW 2017), pages 107–
116, Gothenburg, Sweden. Association for Compu-
tational Linguistics.

Lisa Rudebeck and Gunlög Sundberg. 2021. SweLL
correction annotation guidelines. In The SweLL
guideline series nr 4, Gothenburg, Sweden. Institu-
tionen för svenska, Göteborgs universitet.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207,
Brussels, Belgium. Association for Computational
Linguistics.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: Trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 4290–
4297, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Elena Volodina, Lena Granstedt, Arild Matsson, Beáta
Megyesi, Ildikó Pilán, Julia Prentice, Dan Rosén,
Lisa Rudebeck, Carl-Johan Schenström, Gunlög
Sundberg, et al. 2019. The SweLL language learner
corpus: From design to annotation. Northern Euro-
pean Journal of Language Technology, 6:67–104.

Elena Volodina, Yousuf Ali Mohammed, and Julia
Klezl. 2021. DaLAJ-a dataset for linguistic accept-
ability judgments for Swedish: Format, baseline,
sharing. arXiv preprint arXiv:2105.06681.

Appendix A Abbreviations

A.1 UD standard

A.2 CoNNL-U fields
• DEPREL: dependency label;
• FEATS: list of morphological features;
• FORM: word form or punctuation symbol;
• LEMMA: lemma/stem of the word form;
• POS: Universal POS tag;
• XPOS: language-specific POS tag.

For the full specification of the CoNNL-U for-
mat, see universaldependencies.org/
format.html (last access 05.04.2023).

A.2.1 Universal POS tags
• ADP: adposition (pre- or postposition);
• ADV: adverb;
• AUX: auxiliary;
• DET: determiner;
• PRON: pronoun;
• VERB: non-auxiliary verb.

For a comprehensive list of UD POS tags, see
universaldependencies.org/u/pos
(last access 05.04.2023).

A.2.2 Universal dependency relations
• advmod: adverbial modifier of a predicate or

modifier word;
• amod: adjectival modifier of a nominal;
• aux: auxiliary;
• case: case-marking element treated as a sep-

arate word;
• det: determiner. The subtype poss indicates

a possessive;
• nsubj: nominal subject;
• obj: direct object;
• obl: oblique nominal, i.e. non-core verb ar-

gument or adjunct;
• root: root of the sentence, usually its main

(non-auxiliary) verb and, in general, a con-
tent word.

For a comprehensive list of UD relations, see
universaldependencies.org/u/dep
(last access 05.04.2023).

A.3 VALICO-UD error labels
• IDG: Determiner incorrectly Inflected for

Gender. The IDGcascade label is used in cases
where the incorrect inflection depends on an-
other error, typically ING or RN;

• ING: Noun incorrectly Inflected for Gender;
• RD: Determiner Replacement (wrong choice

of determiner);
• RN: Noun Replacement (lexical error involv-

ing a noun);
• SEU: Spelling error - Unnecessary apostro-

phE.

The complete error annotation guidelines
for the VALICO-UD treebank are avail-
able at raw.githubusercontent.

https://aclanthology.org/W17-0414
https://aclanthology.org/W17-0414
https://doi.org/10.18653/v1/K18-2020
https://doi.org/10.18653/v1/K18-2020
https://aclanthology.org/L16-1680
https://aclanthology.org/L16-1680
https://aclanthology.org/L16-1680
https://aclanthology.org/L16-1680
universaldependencies.org/format.html
universaldependencies.org/format.html
universaldependencies.org/u/pos
universaldependencies.org/u/dep
raw.githubusercontent.com/ElisaDiNuovo/VALICO-UD_guidelines/main/Error_Annotation_Guidelines_v.1.1.pdf

com/ElisaDiNuovo/VALICO-UD_
guidelines/main/Error_Annotation_
Guidelines_v.1.1.pdf (last access
05.04.2023).

A.4 SweLL error labels
• M-Case: noun or pronoun incorrectly in-

flected for case;
• M-Def: definiteness-related error, namely ei-

ther:
– noun, pronoun, adjective or participle

incorrectly inflected for definiteness;
– incorrect, missing or redundant article;

• S-FinV: incorrect placement of a finite verb.

See Rudebeck and Sundberg (2021) for the full
SweLL correction annotation guidelines.

Appendix B Annotation inconsistencies

B.1 VALICO-UD corpus
• Sentence 34-12_en-3: {un → un’*} cor-

rectly labelled as SEU, but not as IDG15

• sentence 19-06_en-3 un in {un uomo →
un’uoma*} labelled as IDG rather than IDG-
cascade

• sentence 18-10_en-1 la in {sul braccio →
sul+la braccia*} labelled as IDG rather than
IDGcascade

• sentence 18-05_en-1 token sedile lacking
gender annotation in both the L1 and the L2
files

• sentece 17-07_en-2 token amante lacking
gender annotation in both the L1 and the L2
files

• sentece 3-13_fr-3 le in {gli uccelli → le
uccele*} labelled as IDG rather than IDGcas-
cade.

This list of error annotation issues refers to the
14.05.2022 version of the treebank.16 At the time
of writing, these observations have been discussed

15The sentence in question is Ho voltato la pagina e ho
iniziato a leggere {un → un’*} altro titolo. (“I turned the
page and started reading another title.”). This is an interesting
case: the UD annotation correctly states that the indefinite
article un is masculine while its L2 counterpart un’ (mind
the apostrophe) is feminine, but the manually assigned error
tag, rather than the expected IDG, is SEU, which indicates,
also correctly, a spelling error (unnecessary apostrophe). All
the more reasons not to rely on explicit error labelling!

16Available for download at github.com/
UniversalDependencies/UD_Italian-Valico
(last access 05.04.2023), with commit SHA
7c4fae4f1e6491ca9e648cfb902e1c675c179a42.

with the authors of the treebank and the annota-
tions in question, excepts for two cases in which
they were the result of a deliberate choice, are in
the process of being fixed.

B.2 DaLAJ corpus
• Sentence 1811 labelled as S-Clause rather

than M-Case.

This annotation error refers to the 04.02.2023 ver-
sion of the treebank and was corrected in a subse-
quent update.17

17Available for download at github.com/harisont/
L1-L2-DaLAJ (last access 05.04.2023), with commit SHA
94e133aa083e487cfb28a7c22dda4e1c240bcaf5.

raw.githubusercontent.com/ElisaDiNuovo/VALICO-UD_guidelines/main/Error_Annotation_Guidelines_v.1.1.pdf
raw.githubusercontent.com/ElisaDiNuovo/VALICO-UD_guidelines/main/Error_Annotation_Guidelines_v.1.1.pdf
raw.githubusercontent.com/ElisaDiNuovo/VALICO-UD_guidelines/main/Error_Annotation_Guidelines_v.1.1.pdf
github.com/UniversalDependencies/UD_Italian-Valico
github.com/UniversalDependencies/UD_Italian-Valico
github.com/harisont/L1-L2-DaLAJ
github.com/harisont/L1-L2-DaLAJ

Appendix C Example program output: Markdown reports

The following reports, as well as all results presented in this paper, were obtained with L2-UD v0.18

C.1 TREE_ (AND [POS "NOUN", FEATS_ "Gender=$A"]) [AND [POS "DET",
FEATS_ "Gender=$A → $B"]] (V ′

1)
Sentence 30-09_de-2:

L1 sentece L2 sentece

Poi , lei si è arrabbiata e mi ha detto che questo
uomo con i grandi muscoli che si è sdraiato a terra
era il suo fidanzato e il suo grande amore .

Poi , lei si è arrabbiata e mi ha detto che questo
uomo con i grandi muscoli che si è sdraiato sulla
terra era il suo fidanzato e la sua grande amore .

Sentence 3-11_fr-3:

L1 sentece L2 sentece

La donna ringraziava il suo salvatore con un
abbraccio e chiudeva gli occhi .

La dona ringraziava suo salvatore con un braccio e
chiusa le occhi .

Sentence 10-07_es-1:

L1 sentece L2 sentece

Gli ho gridato alcune parolacce . L’ ho gridato alquini parolace .

Sentence 4-04_fr-2:

L1 sentece L2 sentece

Un altro uomo si trovava lì , seduto su una
panchina del di il parco , leggendo un giornale con
i suoi occhiali .

Un altra uomo , si trova li , seduto sul su il un
panchino del di il parco , leggendo un giornale con
i suoi occhiali .

Sentence 34-12_en-3:

L1 sentece L2 sentece

Ho voltato la pagina e ho iniziato a leggere un
altro titolo .

Ho voltato la pagina e ho iniziato a leggere un’
altro titolo .

Sentence 19-01_en-3:

L1 sentece L2 sentece

Ieri al a il parco , un uomo brutto è arrivato e ha
detto delle parole cattive a una donna .

Ieri al a il parco , un’ uomo brutto è arrivata e ha
detto le parole cattive a una donna .

Sentence 27-02_de-3:

18Download link: github.com/harisont/L2-UD/releases/tag/v0 (last access 05.04.2023).

github.com/harisont/L2-UD/releases/tag/v0

L1 sentece L2 sentece

Subito guarda come un altro uomo con grande
forza fisica e con malumore porta sulle sue spalle
una ragazza che grida .

Subito guarda come un altro uomo con grande
forza fisica e con malumore porta una ragazza
sulle sui spalle che grida .

Sentence 3-12_fr-3:

L1 sentece L2 sentece

Era un vero momento di benessere . Era una vero momento di benessere .

Sentence 27-08_de-3:

L1 sentece L2 sentece

« Il mio amore non dipende dal suo
comportamento . »

« Il mia amore non dipende dal suo
comportamento . »

Sentence 32-06_de-2:

L1 sentece L2 sentece

Un uomo molto forte , intelligente , sportivo e
carino mi ha salvato da questa ignorante persona
, Marco .

Un’ uomo molto forte , intelligente , sportivo e
carino mi ha salvato di questo ignorante persona
Marco .

Un uomo molto forte , intelligente , sportivo e
carino mi ha salvato da questa ignorante persona ,
Marco .

Un’ uomo molto forte , intelligente , sportivo e
carino mi ha salvato di questo ignorante persona
Marco .

C.2 SEQUENCE [DEPREL_ "advmod", OR [POS "VERB", POS "AUX"], DEPREL_
"nsubj" -> DEPREL_ "nsubj", OR [POS "VERB", POS "AUX"]] (D3)

Sentence 1958:

L1 sentece L2 sentece

Därför tycker jag om havet . Därför jag tycker om havet .

Sentence 1943:

L1 sentece L2 sentece

Tyvärr har någonting hänt som gör att jag inte
kan gå på kursen och jag önskar att få pengarna
tillbaka .

Tyvärr någonting har hänt som gör att jag inte
kan gå på kursen och jag önskar att få pengarna
tillbaka .

Sentence 1950:

L1 sentece L2 sentece

Därför vill jag inte flytta . Därför jag vill inte flytta .

Sentence 1965:

L1 sentece L2 sentece

Där bodde jag i Göteborg med min mamma och
hennes hundar i hennes hus .

Där jag bodde i Göteborg med min mamma och
hennes hundar i hennes hus .

Sentence 1936:

L1 sentece L2 sentece

Ibland kan vi titta och lyssna på hur det funkar . Ibland vi kan titta och lyssna på hur det funkar .

Sentence 1139:

L1 sentece L2 sentece

Därför har man kommit med förslaget att ha en
kurs angående arbetslivet i gymnasiet .

Därför man kommit med förslaget att ha en kurs
angående arbetslivet i gymnasiet .

Sentence 1942:

L1 sentece L2 sentece

Lyckligtvis kan du spela piano , och där kan du
lära känna nya vänner .

Lyckligtvis kan du spela piano , och där du kan
lära känna nya vänner .

Sentence 1976:

L1 sentece L2 sentece

Ibland brukar man säga att kärleken har ingen
gräns och det är sant .

Ibland man brukar säga att kärleken har ingen
gräns och det är sant .

Sentence 1939:

L1 sentece L2 sentece

Men nu är jag inte intresserad av den längre . Men nu jag är inte intresserad av den längre .

	Introduction
	Related work
	Design and implementation
	Query language
	UD patterns
	L1-L2 patterns

	Sentence retrieval algorithm
	Subsentence extraction

	Evaluation
	Experiments on manually validated data
	Data
	Queries
	Results

	Experiments on parsed data
	Data
	Queries
	Results

	Conclusions and future work
	Appendix Abbreviations
	UD standard
	CoNNL-U fields
	Universal POS tags
	Universal dependency relations

	VALICO-UD error labels
	SweLL error labels

	Appendix Annotation inconsistencies
	VALICO-UD corpus
	DaLAJ corpus

	Appendix Example program output: Markdown reports
	TREE_ (AND [POS "NOUN", FEATS_ "Gender=$A"]) [AND [POS "DET", FEATS_ "Gender=$A $B"]] (V1')
	SEQUENCE [DEPREL_ "advmod", OR [POS "VERB", POS "AUX"], DEPREL_ "nsubj" -> DEPREL_ "nsubj", OR [POS "VERB", POS "AUX"]] (D3)

