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Abstract

Recent years have witnessed an upsurge of interest in employing flexible machine
learning models for instrumental variable (IV) regression, but the development of
uncertainty quantification methodology is still lacking. In this work we present a
scalable quasi-Bayesian procedure for IV regression, building upon the recently
developed kernelized IV models. Contrary to Bayesian modeling for IV, our ap-
proach does not require additional assumptions on the data generating process,
and leads to a scalable approximate inference algorithm with time cost compara-
ble to the corresponding point estimation methods. Our algorithm can be further
extended to work with neural network models. We analyze the theoretical proper-
ties of the proposed quasi-posterior, and demonstrate through empirical evaluation
the competitive performance of our method.

1 Introduction

Instrumental variable (IV) regression is a standard approach for estimating causal effect from con-
founded observational data. In the presence of confounding, any regression method estimating
E(y | x) cannot recover the causal relation fT between the outcome y and the treatment x, since
the residual u = y — f7(x) is correlated with x due to the unobserved confounders. IV regression
enables identification of the causal effect through the introduction of instruments, variables z that
are known to influence y only through x.

IV regression is widely used in economics [1]], epidemiology [2] and clinical research [3]], but mod-
eling nonlinear effect in IV regression can be challenging. Recent years have seen great development
in adopting modern machine learning models for IV regression [4H8]. However, there is still a lack
of uncertainty quantification measures for these flexible IV models. Uncertainty quantification is es-
pecially important for IV analysis, since unlike in standard supervised learning scenarios, we do not
have (unconfounded) validation data, from which we could deduce the error pattern of the estimated
model. Moreover, the instrument of choice may be weak, meaning that it only provides limited
information for x; in such cases point estimators suffer from high variance [9]. This problem is ex-
acerbated in the nonparametric setting, where IV estimation is usually an ill-posed inverse problem,
where instruments provide vanishing information for the higher-order nonlinear effects [[10]].

The IV setting brings unique challenges for uncertainty quantification. For example, while it is
natural to consider a Bayesian approach, specification of the likelihood requires knowledge of the
entire data generating process, which is typically unavailable in IV regression. Consequently, most,
if not all, existing work on Bayesian IV [11H15] assumes the following data generating process:
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x = ¢g(z) + w1, y = f(x) + ug, where (u,uz) are correlated and independent of z. These
methods then conduct posterior inference on g, f as well as the generative model for the unobserved
confounders (uj,uz). However, the additive error in x is an unnecessary assumption for most
point estimation procedures, and is difficult to check in high dimensions. Furthermore, the need to
model the generating process of (uj, us) introduces an extra risk of model misspecification, and
Bayesian inference on the generative model is computationally expensive, especially on complex
high-dimensional datasets. None of these issues present if only point estimation is needed.

For the above reasons, it is appealing to turn to an alternative quasi-Bayesian approach [16-18].
Quasi-Bayesian analysis views IV estimation as a generalized method-of-moments (GMM) proce-
dure, and defines the quasi-posterior as a Gibbs distribution constructed from a chosen prior and
violation of the moment constraints. It does not require full knowledge of the data generating pro-
cess, and thus does not suffer from the aforementioned drawbacks of Bayesian inference. However,
computation of the quasi-posterior is non-trivial, as its density contains a conditional expectation
term E(y — f(x) | z), which itself needs to be estimated from data. This makes both approximate
inference and theoretical analysis difficult. So far, quasi-Bayesian analysis for nonparametric IV is
only developed on classical models such as wavelet basis [[17, [18] or Nadaraya-Watson smoothing
[19], while adoption of flexible machine learning models such as kernel machines or neural net-
works remains an open challenge. Moreover, numerical study has been limited in previous work, so
little is known about the empirical performance of the quasi-Bayesian approach.

In this work, we present a novel quasi-Bayesian procedure for IV regression, building upon the re-
cent development in kernelized IV models [7, [20]. We employ a Gaussian process (GP) prior and
construct a quasi-likelihood using a kernel conditional expectation estimator. We establish theo-
retical properties of the resultant quasi-posterior, proving its consistency and showing that it may
quantify instrument strength. Furthermore, inspired from the minimax formulation of IV estimation
[S,184120L 21]], we design a principled approximate inference algorithm using random feature expan-
sion and a novel adaptation of the “randomized prior trick” [22]. The algorithm has the form of
stochastic gradient descent-ascent and is thus scalable and easy to implement. It can also be adapted
to work with flexible neural network models, in which case its behavior can be formally justified
by analyzing the neural networks in the kernel regime. Empirical evaluation shows that the pro-
posed method produces informative uncertainty estimates, scales to high-dimensional and complex
nonlinear problems, and is especially advantageous when the instrument is weak.

The rest of the paper is organized as follows: In Section [2| we set up the problem. We then derive
the quasi-posterior and analyze its theoretical properties in Section [3| and present the approximate
inference algorithm in Section[d] Section [5|reviews related work, and Section [6] presents numerical
studies. Finally, we discuss conclusion and future work in Section

2 Notations and Setup

Notations We use boldface (x,y, z) to represent random variables on the space X x )} X Z, reg-
ular font (z,y, z) to denote deterministic values. [n] denotes the set {1,2,--- ,n}. {(x;, vy, 2:) :
i € [n]} indicates the training data. We use the notations X := (z1,...,2,) € &A™,
f(X) == (f(x1),..., f(x,)); likewise for Y, Z. For finite-dimensional vectors 6,6’ € R™, we
use [|0]|2, (0, 0")2 to denote the Euclidean norm and inner product, respectively. For any operator
A : Hy — H between Hilbert spaces H; and Hs, we denote its adjoint by A* : Ho — H;. When
H, = Hs and X € R, we use the notation Ay := A + \I for simplicity.

IV regression Denote the treatment and response variables as x,y, the instrument as z, and the
true structural function of interest as fT. Consider the data generating process y = fT(x) + u,
where the unobserved u satisfies E(u | z) = 0, but may correlate with x. Then fT satisfies

E(y — f1(x) | z) = 0 as. [P(dz)], (1

where P denotes the data distribution. This conditional moment restriction (CMR) formulation is
the standard definition in literature [e.g.,123| 18], and is used in the recent work on machine learning
models for IV. It connects to GMM as can be viewed as a continuum of generalized moment
constraints. Note that (I) does not place any structural constraint on the conditional distribution
p(x | z), such as additive noise; hence, it does not require full knowledge of the data generating



process. Also, as discussed in, e.g., Hartford et al. [4], the setup can also be extended to incorporate
observed confounders v, by including v in both x and z.

Kernelized IV and a dual view Let #,Z be suitably chosen function spaces on X, Z, respec-
tively. The generalized moment constraint (I)) motivates the use of the following objective
min  £(f) = d (B, f = b) + 2(f), 2
fer
where E,, : H — T is an empirical approximation to the conditional expectation operator E : f

E(f(x) | z =), bis an estimator of E(y | z = -), {d,, } is a sequence of suitable (semi-)norm on Z,
and € : H — R is a regularization term.

When H, 7 are reproducing kernel Hilbert spaces (RKHS) with corresponding kernels k, k., it is

natural to set (f) = 1| f||%,, and define b as the result of kernel ridge regression on y with respect

to z. In this case E,, can be defined with the empirical kernel conditional expectation operator: let
C.y = E(k(x,) ® k(z,-)), C., = E(k(z,) ® k(z,-)). Assuming E maps all f € Hto Ef € T,
we have [24]]

szEf = szfv Vf eH.

This motivates the use of E,, := CA’z_zl,lf,CA'zx where C,, = %Z;;l k(ziy ) @ k(zi,-), C.. is de-
fined similarly, and ¥ is a regularization hyperparameterﬂ The choice of d,, is flexible; the dual IV

formulation uses d7,(g) := 5 >0, 9(2)* + 5llgll7 = 1(g,C.. »9)z. Introducing the evaluation

operator S, : T — R™, S.g := (g(z1),...,9(z)), we have b = C’;le; Siy, and
1| A1z (A SIYNP A, e
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where @) holds because of the Fenchel duality 2u® = sup,cp (uv — 3v?) and the equality

E(u(x,y)g(z)) = E(E(u(x,y) | z)g(z)); see [25 8 21} 26]. The dual formulation @) circum-
vents the need to compute F,, directly, an operator between the typically infinite-dimensional spaces
‘H and Z, and leads to a scalable estimation procedure based on stochastic gradient descent-ascent
(SGDA). It can also be generalized to work with deep neural networks (DNNs) instead of kernel
machines, by replacing the RKHS regularizer with a suitable regularizer for DNNs, although theo-
retical analysis for the resulted algorithm requires separate effort [8, 26]. As we shall see, (@) will

also enable the construction of a scalable approximate inference algorithm.

3 Quasi-Bayesian Analysis of Dual IV

Introduce the notations S, : H — R™, S, f := (f(z1),..., f(zn)), so that Cp = %S:SQE,CA’ZZ =
%Sj S.. Define \ := n\,v = niv. Now we can re-express (3) in an equivalent form as:

~ n 1 _ 1
L(f) = L) = 5(F(X) =V) T L) (F(X) = Y) + 51 1l (5)
where L := %SZ CA';zl)DSj is a linear map from R” to R”, and thus can be identified with an n X

n matrix. Since the first term above is equivalent to the log density of the multivariate normal
distribution V(Y | f(X),A\L™1), we can view (§) as the objective of a kernel ridge regression
problem, which has a data-dependent noise covariance /\L*IE] The connection between kernel
ridge regression and Gaussian process regression [28]] thus motivates the use of the quasi-posterior

2With an abuse of notation, k refers to the reproducing kernel of the corresponding RKHS (k, for H or k.
for 7) whenever the denotation is clear.

3Here we assume the invertibility of L for brevity. Alternatively, observe that @) defines a linear inverse
problem with the finite-dimensional observation operator f — /L f(X ) and noise variance A~ "I, and we can
follow [27, Chapter 6] to derive the same quasi-posterior.



I(df | D™), defined through the following Radon-Nikodym derivative w.r.t. the standard GP prior
II=GP(0,k;):

dri(- | o™ 1 n o, - .
AL () o exp (- 2 () -1)T O D)) 1)) = exp (22 (Bf D) . ©)
Note that contrary to standard Bayesian modeling, we do not assume Y ~ N (f(X),AL™1) is
part of the true data generating process, nor does the theoretical analysis below rely on it. Instead,
the quasi-posterior (6)) should be interpreted as a Gibbs distribution which trades off between the
properly scaled evidence A‘lnd%(En - 13), which characterizes the estimated violation of the
GMM constraint (), and our prior belief I1(df). This trade-off is most clear from the well-known
variational characterization of the Gibbs distribution [29],

(- | D™) = argmin Egow [\~ nd (B, f — b)) + KL(W || 1), )

Nonetheless, the fictitious data generating process f ~ GP(0,k),Y ~ N(f(X),A\L™1) is useful
for deriving the quasi-posterior, since its conditional distribution pg.(df | Y') coincides with (6) [27.
Chapter 6]. In the probability space of this fictitious data generating process, for any finite set of test

inputs z,, we have
K** K*z
prc(f (@), ¥) ~ N <0’ {Km Koo+ AL—1D )

where K (.) denote the corresponding Gram matrices with subscript * denoting z. and x denoting X
(so, e.g., K.y := k(x, X)). Thus by the Gaussian conditioning formula, we have

I(f(2.) | D™) = psc(f(2.) | Y) = N(m, S), (8)
where m := K,,(\M + LK,,) LY, 9)

S =K — Kuy LN+ Ky L) ' Ky, (10)
L=K. . (K..+uvI)™" (11)

In the above K., := k(Z, Z) denotes the Gram matrix, and (TT)) follows from the definition L =
n~1S,(n"1S:S, + vI)~1S?, the Woodbury identity, and the observation that S,S* = K.

Theoretical Analysis For the quasi-posterior TI(- | D) to be a useful measure of uncertainty, it
needs to satisfy the following informal criteria: as n — oo, we expect

(C1) II(- | ™) will exclude incorrect solutions;

(C2) In cases of non-identification, II(- | D(™)) will not exclude any valid solution in the model.

In the following, we formalize these criteria, and demonstrate that with appropriately chosen hyper-
parameters, the quasi-posterior satisfies both criteria. We will work with the following assumptions:

Assumption 3.1. The restriction of the conditional expectation operator f — E(f(x) | z = -) on
‘H, denoted as E, has its image containedin Z. E : H — T is bounded.

Assumption [3.1]is intuitive, and is also slightly more general than some previous work [20] [26] that
require the conditional expectation operator to be bounded on the entire hypothesis space, which
typically corresponds to the “sample space” of the GP prior in our setting, and is much larger than
H (see Appendix[A). Nonetheless, we note that Hypothesis 4 in Singh et al. [7] may be more general,
although they impose extra smoothness assumptions on E.

Assumption 3.2. The true structural function ' (x) is such that, there exists a sequence {1, : m €
N} satisfying 7, — 0, and

mrp, > inf I£5 03 — log I({f : [ £l < Tm}), (12)
fheH: T —FhlI<Tm

where || - || denotes the sup norm.

Assumptionrequires that fT can be well approximated in #; this is more general than previous
work [e.g., 20, [7] that require fT € %, but is typical in the GP literature [30, 31]. The sequence
{7m} is determined by the complexity of A and its ability for approximating 7, and is usually
the optimal posterior contraction rate for Gaussian process regression on the unconfounded dataset

{(zi, fT(2;) + &) i € [m]} [311.



Assumption 3.3. X and Z are Polish spaces. The kernels k, k. are continuous, sup,¢ y k(x, x) +
sup,cz k(z,2) < k2, and Mercer’s representations [I32] of k. and k., exist. The random variable
y — f1(x) is sub-exponential.

Assumption [3.3] imposes technical conditions frequently assumed in literature [e.g., [33]. The re-
quirements on the kernels can be satisfied by e.g. continuous kernels on compact subsets of R

Given the assumptions above, we characterize ((JI)) by showing that as n — oo, the posterior places
vanishing mass on the region of functions that violates the GMM constraints (T). Concretely,

Theorem 3.1 (Proof in Appendix [B). There exist a constant M > 0 depending on the data distribu-
tion and the kernels of choice, and a sufficiently slowly growing sequence {¥n} — oo (e.g., we can

always have ,, < loglogn) such that when taking A = n~"/?, v = min{T?\/ﬁ] ,n~12,}, it has

Epo ({f : B*(f(x) =y | 2) > M7{ o0} | D)) — 0. (13)

Remark 3.1. The above result should primarily be interpreted as a consistency result, although
it also provides a posterior contraction rate [34] in the order of 71 7 in the semi-norm f

|EfllL,(p(az))> where {7} is defined in Assumption As an example, suppose the regular-

ity of fT is similar to the Matérn-1/2 RKHS; then for suitable kernels we have Ty = O(n=1/8),
see Remark [A3]

The rate is suboptimal, and can be immediately improved if we impose further regularity assumption
on k: if we assume the critical radius of the local Rademacher complexity [35] of the unit-norm ball

118 6, <X T, < niﬁ, a rate of O(niﬁ) for the semi-norm can be established following
similar arguments. This is still worse than [26]], which provides the rate O(max{r,, d,,}) for what
corresponds to our posterior mean estimator. Nonetheless, their result is also generally suboptimal,
because the choice of §,, < 7, is actually suboptimal when the IV regression problem is ill-posed.
To date, minimax optimal rates have only been established under additional assumptions on the
relations between the conditional expectation operator and the model for f. Our extended version
establishes such results, for both this semi-norm and more intuitive norms such as Ly (P(dx)).

Remark 3.2. The use of an increasing A = n is a technical artifact due to our minimal assumptions
on k. It is common to impose extra regularization in nonparametric IV, due to the need to estimate
FE from data [19], and, in the quasi-Bayesian setting, also due to the additional technical challenges
[L8]. However, this is not necessary for our method if additional assumptions are imposed, as we
show in the extended version. In practice, our hyperparameter selection procedure does not produce
A with significant growth.

The following proposition characterizes ((2)):

Proposition 3.1 (Proof in Appendix [B). The scaled log quasi-likelihood estimate C,(f) =
d%(E,f — b) satisfies

I ({vf:v8> 0, lim Poo ([a(f) = Bampi (B(F(x) =y | 2)%)| > 6) =0} ) = 1.

In words, for IT-almost every f, the log quasi-likelihood estimate scaled by n~! converges to

E,p(:)(E(f(x) —y | z)?), which characterizes the violation of (I). While the restriction to
the probability-1 subset can be concerning in the nonparametric setting [34], the proof only depends
on f satisfying similar approximability conditions to f; see @3).

Remark 3.3. To understand why the proposition characterizes ((2), suppose there are multiple f that
satisfy (I)). Then all of them will eventually have significantly higher log likelihood than functions
violating (I): the difference is ©(A~'n). If these functions have a similar level of regularity in
the sense that their concentration functions, which is the right-hand side of (12)), have the same
asymptotics as € — 0, Borell’s inequality [e.g., 34, Proposition 11.17] implies that the posterior
mass of small || - ||-norm balls around them will also have the same asymptotics.

Finally, we provide the following (over-)simplified example, which compares the behavior of the
quasi-posterior and bootstrap in the context of (([2):

Example 3.1. Suppose z is completely non-informative so that E(f(x) | z) = Ef(x) for all f;
and suppose the estimated conditional expectation F,, is sufficiently accurate, so that we replace it



with EE] In this case bootstrap on (3) will always return the point estimator f = 0 due to the non-
zero regularization on || f ||, while the quasi-posterior behaves like the prior, correctly reflecting the
complete lack of evidence in data.

While this example is oversimplified, and in practice the estimation error of E plays an important
role, it is known that bootstrap uncertainty estimates can be problematic given weak IVs [36H38]].
We also observe similar failures for bootstrap in the experiments (see Section [6.1).

4 Scalable Approximate Inference via a Randomized Prior Trick

We now turn to approximate inference with parametric models such as random feature expansion or
wide NNs. Scalable inference for the IV quasi-posterior appears difficult, since for any f, computing
the quasi-likelihood involves computing E, f, which in turn requires either inverting an n X n
Gram matrix, judging from (3)) and (TT)), or solving an optimization problem specific to f from (@).
Nonetheless, we show that it is possible, by extending the “randomized prior” trick for Gaussian
process regression [22]] to work with (quasi-)likelihoods with an optimization formulation as in ().

Our algorithm works with random feature models. A random feature model for k. approximates
ky(2,72) = kym(z,2') = %qﬁz’m(z)—r@}m(z’), where ¢, ,,, takes value in R™. Then the map
0 \/%@Tgbzﬂn(-) =: g(-; ) parameterizes an approximate RKHS #{; and for all ¢ > 0, the
random function g(-; ¢), where ¢ ~ N (0, cI), is distributed as GP(0, ck..,,,). The notations related
to k, are similar and thus omitted. Now we can state the objective function:

Proposition 4.1 (Proof in Appendix [C.1). Let ¢g ~ N(0,\v=11),0p ~ N(0,1), 5; ~ N (yi, \).
Then the optima 0* of

n

Join max 2 ((f(afi; 0) — 9i)g(zi; 0) —

9(zi:9)*\ v A

lT —§||¢—¢0||§+§||9—90||§ (14)
parameterizes a random function which follows the quasi-posterior distribution (), where the ker-
nels are replaced by the random feature approximations.

Given the above proposition, we can sample from the random feature-approximated quasi-posterior
by solving (T4) with stochastic gradient descent-ascent; the approximation errors will be analyzed
in the following. The objective (T4) is closely related to (@); as we show in Appendix [C.1.1} it is
equivalent to

n , 9 I\
minmax 3 () g - 255 ) - Sllg -l + 517 - ol a9
i=1

which differs from (@) only in the regularizers: instead of regularizing the norm of f and g, (I3)
encourages the functions to stay close to randomly sampled anchors [39]]. Alternatively, we can
view (I3) as perturbing the point estimator (4, so that it has a covariance matching that of the
quasi-posterior. A similar relation is also observed in the original randomized prior trick, which
transforms GP regression to the optimization problem min S (f(@) = 3a)* + M| f = foll3
In both cases, the resultant algorithm for approximate inference has the same time complexity as
ensemble training for point estimation.

While the algorithm can be directly applied to neural network models as in [22]], we follow [40]
and modify the objective, to account for the difference between the neural tangent kernel (NTK)
[41] of a wide neural network architecture and the NNGP kernel of the corresponding infinite-width
Bayesian neural network [42144]. Concretely, we modify (T4) as

. .
mmmaxz( — 56 - BB ) Dol + Sl - auli o

where §ig(2) = g(:6) — g(: d0) + Go(2). dolz) = \Fwo, A IO

“This setting could be realistic in the sample splitting setup considered in [7]. Note that as long as we have
finite samples for the estimation of f (the “second stage”), we still need to have A > 0.



and ¢y denotes the initial value of ¢, and ¢g ~ N(0, I) is a set of randomly initialized NN parame-
ters independent of ¢g; and fy is defined similarly.

We only give a formal justification for the modification, under the assumptionﬂ that the NNs remain
in the kernel regime throughout training, so that g(z; ¢) — g(z; ¢0) = (¢ — ¢o, 8&%5;) |60 )2 [47]]. Thus
for the purpose of analyzing g(-; ¢) — g(+; o), we can view g as a random feature model with the

parameterization ¢ — (¢, O%S;) l¢o)2- Thus by the argument in Appendix , we can show that

the weight regularizer || — ¢ol|2 is equivalent to ||g(-; ¢) — g(-;d0)llz = |gs — Gol|7. where Z is

determined by the NTK kg i1 (2, 2') := <6%E;) 60> a%(;/) |0 )2- Similar arguments can be made for

fo and fo. Consequently, (T6) is equivalent to an instance of (T3) with #, Z defined by the NTKs.

Implementation details for the algorithm, including hyperparameter selection, are discussed in Ap-

pendix

Convergence analysis We now complete the analysis of the inference algorithm, by showing that
for any fixed set of test points ., SGDA can approximate the marginal distribution IT(f () | D™)
arbitrarily well given a sufficient computational budget. This implies that the approximate posterior
is good enough for prediction purposes.

We place several mild assumptions on the random feature model, listed in Appendix [C.2} they are
satisfied by common approximations such as the random Fourier features [48]]. The SGDA algorithm
is described in detail in Appendix [C.4] Under this setup, we have

Proposition 4.2 (Proof in Appendix [C.5). Fix D™ and \,v > 0. Then there exist a sequence of
choices of m and SGDA step-size schemes, such that for any | € N, we have
SUPg« ¢ xt MAX([| i — fm |2, ”gm = Smlr) 0.

In the above, [i,,, S, denote the mean and covariance of the approximate marginal posterior for
f(zs), p, S correspond to the true posterior, || - || p denotes the Frobenius norm, and the convergence
in probability is defined with respect to the sampling of random feature basis.

5 Related Work

Quasi-Bayesian analysis for GMM estimation problems was first developed in [49, 150, [16], which
provided theoretical analysis for parametric models. The use of the quasi-posterior is motivated
from the maximum entropy principle, based on which similar ideas have been developed in the
machine learning literature [S1H53]]. Alternatively, it can also be obtained as a non-informative limit
of certain Bayesian posteriors [54)]. [17, 18] first analyzed the use of nonparametric models for
quasi-Bayesian IV; no numerical study was presented. Closer to our work is [19] which constructed

a quasi-posterior using Nadaraya-Watson smoothing as E,,. While similar in form to our method,
the smoothing approach relies on stronger assumptions, especially for high-dimensional data; see
[7, Appendix A.2.1] which compared the corresponding point estimators. Their approach is also
harder to scale to large datasets.

Our quasi-Bayesian procedure builds upon the kernelized IV models [7, [20] and the dual formula-
tion of IV regression [6, 20} 21, 26]. The formulation (3)-(@) is from [201 26]. [[7] proposes a similar
method. Although it was motivated differently as a kernelized two-stage least squares (2SLS) esti-
mator, its objective is asymptotically equivalent to (3); however, the slight difference in regulariza-
tion prevents the use of estimation procedures similar to @), as we discuss in Appendix An
alternative kernel-based estimator is proposed in [55} 56]; in particular, [S5] also includes a Gaussian
process construction, but for the different purpose of computing a leave-one-out validation statistics.
Other recent work on ML models for IV include [4} 57, 58]. It remains interesting future work to
develop scalable quasi-Bayesian procedures for these methods, although the mean estimator derived
from our quasi-posterior implementation has competitive performance.

[S9] studies semi-parametric IV estimation using an exponentially tilted empirical likelihood
(ETEL) estimator. ETEL also connect to Bayesian methods. However, similar to the quasi-Bayesian

The same linearization assumption has been employed in [40,45]]. We refer readers to [46,21] for analysis
of the linearization error in various settings similar to ours.



approach, the need to estimate the conditional moment restrictions complicates the understanding
of its frequentist behavior, as well as the design of scalable inference algorithms; in their case, it is
especially unclear if the empirical likelihood can be computed in sublinear time. Other approaches
for uncertainty quantification include Bayesian inference and bootstrap. We have discussed previ-
ous works on Bayesian IV and their limitations in Section[I} Bootstrap is typically justified in the
asymptotic regime, which does not cover many scenarios where uncertainty is most needed; this is
different from the quasi-Bayesian approach which can always be justified through (7). Moreover,
standard bootstrap inference on 2SLS is known to be unreliable when the instrument strength is
weak [36H38]]; while remedies exist (e.g., [38]]), they heavily rely on the linearity and additive noise
assumptions, and are thus difficult to generalize to the nonlinear setting we are interested in. As the
kernelized IV methods generalize 2SLS, we expect similar issues to exist in our setting.

6 Experiments
Code to reproduce the experiments is available at https://github.com/meta-inf/qbdiv.

6.1 1D Simulation

We first experiment on a variety of 1D synthetic datasets, constructed by modifying the setup in [3]

to incorporate a nonlinear first stage, in a way similar to [7, |60]:

aw + (1 — a)u’
a?+ (1 —a)?

where (u,u’) are normal random variables with unit variance and a correlation of 0.5, w ~ A(0,1)

is independent of (u, u’), v is a parameter controlling the instrument strength, and f; is constructed
from the sine, step, abs or a linear function. We choose N € {200, 1000} and o € {0.05,0.5}.

z = sigmoid(w), z:= sigmoid( ) , Yi ~ N(fo(2z — 1) + 21,0.1),

Our baselines include BayesIV [15]], a state-of-the-art Bayesian model based on B-splines and
Dirichlet process mixture; we also include bootstrap on 2SLS with ridge regularization, either ap-
plied directly to the input features (Linear), on their polynomial expansion (Poly), or on the same
kernelized models (KIV) as oursE| Hyperparameter for the kernelized IV methods are selected by
cross validation based on the observable first-stage and second-stage losses as in previous work
[7, 20]; see Appendix m For kernels we choose the RBF and Matérn kernels, although results for
Matérn kernels are deferred to appendix for brevity. See Appendix [D.3]for the detailed setup.
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Figure 1: Test MSE and CI coverage on the sine dataset. The left two plots correspond to o = 0.05,
while the right two correspond to o = 0.5. bs denotes bootstrap, gb denotes quasi-Bayesian.

Normalized MSE and coverage rate of 95% credible intervals (CI) on the sine datasets are plotted in
Figure[I] We report results on 20 independently generated datasets. As we can see, quasi-Bayesian
inference provides the most reliable uncertainty estimates, and is especially advantageous in the
weak IV setting (o = 0.05). While its CI can be conservative, we note that it is still informative,
and properly reflects the sample size and instrument strength; see Appendix [D.4]for visualizations.
These results connect to previous work showing (in a different setting) that the radius of credible set
produced by a GP posterior can have the correct order of magnitude [61]].

We report the average run time in Table[T} We can see that in addition to the improved flexibility, our
method is also more scalable compared with the standard Bayesian baseline, as it avoids the costly
modeling of the joint residual distribution.

*We do not compare with [19] since their source code is unavailable. Note that their smoothing-based
method does not scale to large datasets, and there is no numerical study on the credible interval in [19].


https://github.com/meta-inf/qbdiv

Table 1: Average run-time (in seconds) in the 1D simulation, for a single set of hyperparameters.
N/A: does not converge after 20 minutes. For the approximate inference algorithm, we report the
average time cost for parallel runs on a single accelerator; see Appendix [D.3|for details.

N 1000 5000 20000

BayesIV (CPU) 655 N/A N/A
QB (closed-form, CPU) 2.37 49.1 1150
QB (approx. inf., GPU) ~10 ~40 ~ 140

Full results on all datasets, visualizations and additional experiments are deferred to Appendix
As a summary, (i) on the abs and linear datasets where all modeling assumptions hold, the results
are qualitatively similar to the sin dataset. Moreover, the over-smoothed RBF kernel appears to have
similar coverage comparing with the optimal kernel, and follow a similar contraction rate, as the pre-
vious work on GP regression [62]] suggests. (ii) On the step dataset which violates Assumption[3.2]
the quasi-posterior still provides more coverage than the baselines. (iii) Uncertainty estimates pro-
duced by the approximate inference algorithm are similar to that from the exact quasi-posterior.

6.2 Airline Demand

We now turn to the more challenging demand simulation first proposed by [4]. The dataset simulates
a scenario where we need to predict the demand of airline tickets y, as a function of the price x, and
two observed confounders: customer type s, and time of year ¢. The data generating process is

z:=(2+3)Y(t) + 25+, y:= fo(z,t,s) +u, folx,t,s):=100+ (10 +z)-s-(t) — 2z

where (u,u') are standard normal variables with correlation p, z ~ N(0,1) is independent of
(u,u’), and v is a nonlinear function whose shape is given in Figure 2| The variable s either
varies across {0, ...,6} (the lower-dimensional setting), or is observed as an MNIST image repre-
senting the corresponding digit; the latter case represents the real-world scenario where only high-
dimensional surrogates of the true confounder is observed. We only report results for p = 0.5,
noting that results using other choices of p have been similar. We use n € {1000, 10000} for the
lower-dimensional setting, and use n = 50000 for the image-based setting.
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Figure 2: Approximate quasi-posteriors in the demand simulation. We plot a cross-section by fixing
s, x to their mean values and varying t.

We compare our method with bootstrap on the same model, BayesIV, and bootstrap on linear or
polynomial models. Performance of other point estimators on this dataset has been reported in
[7, 120, 58], compared with which our method is generally competitive. We implement the dual IV
model using both an RBF kernel and DNN models. See Appendix [D.5|for details.

We report the test MSE and CI coverage for N = 1000 in Table [2| and visualize all approxi-
mate quasi-posteriors for the NN models in Figure As we can see, when implemented with
DNNs, our method produces uncertainty estimates with excellent coverage, which also correctly
reflects the information available in the dataset: the CI is wider when [V is smaller, or in the high-
dimensional experiment where estimation is harder. Bootstrap has a noticeably worse performance
when N = 1000. Still, it performs well in the (arguably less interesting) large-sample setting, with
a CI coverage similar to our method; see Appendix [D.6] This is because on this dataset, the total
instrument strength is stronger due to the presence of observed confounders, and the NN model is a
good fit. Consequently, the asymptotic behavior of bootstrap can be observed when N is large.

Both methods have poorer performances when we switch to the RBF kernel, although the quasi-
posterior is still more reliable. We conjecture that both H and Z are misspecified in this case, and



thus the credible intervals can only reflect the uncertainty within the prior model. These results show
that NN models can be advantageous, which our inference algorithm supports.

The other baselines perform poorly due to their inflexibility; in particular, note that BayesIV uses
additive models for both stages (e.g., f(z,t,s) = f1(x) + f2(t) + f3(s)) which do not approximate
this data generating process well. Full results and visualizations are deferred to Appendix [D.6]

Table 2: Test normalized MSE, average CI coverage and CI width on the demand dataset with
N = 1000. Results averaged over 20 trials.

Method BS-Linear = BS-Poly BayesIlV  BS-RBF  QB-RBF BS-NN QB-NN

NMSE 37+£.01 .31+£.06 .284+.04 .17+.01 .17£.01 .06+.03 .04=+.00
CICvg. .09£.01 .15£.03 .27£.06 45+.02 .77£.02 .86+.02 .94+.01
Clwid. .09+£.01 .16£+.04 .08+£.06 .18+£.02 .37+.01 .14+.01 .26=+.04

7 Conclusion

In this work we propose a scalable quasi-Bayesian procedure for IV regression. We analyze the
theoretical properties of the proposed quasi-posterior, and derive a scalable algorithm for approx-
imate inference. Empirical evaluations show that the proposed method scales to large and high-
dimensional datasets, and can be particularly advantageous when the instrument strength is weak.

Beyond IV regression, formulations like (T)) also appear in various other problems in causal inference
and statistics, as discussed in, e.g., [21]]; our method can be readily applied to these problems. Future
work includes extension to more general conditional moment restriction problems with nonlinear
constraints 63, [17].
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Broader Impact

IV analysis is widely used in social science and clinical research, where it can be highly undesirable
to have a systematic error or increased prediction variance on subpopulations which are underrepre-
sented in the training dataset, or on which the instrument is locally weak. Uncertainty quantification
is an important first step in detecting such issues, and the quasi-Bayesian approach we take can be
preferable since it has a clear interpretation in a non-asymptotic setting, and when the instrument
strength is weak. However, epistemic uncertainty estimates are only as good as the model allows,
and it should not create a false sense of complete security. Caution must be taken when employing
complex models in scenarios with potential fairness implications.
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