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Figure 1: Given a single RGB image of an object, we present Zero-1-to-3, a method to synthesize an image from a specified
camera viewpoint. Our approach synthesizes views that contain rich details consistent with the input view for large relative
transformations. It also achieves strong zero-shot performance on objects with complex geometry and artistic styles.

Abstract

We introduce Zero-1-to-3, a framework for changing the
camera viewpoint of an object given just a single RGB
image. To perform novel view synthesis in this under-
constrained setting, we capitalize on the geometric priors
that large-scale diffusion models learn about natural im-
ages. Our conditional diffusion model uses a synthetic
dataset to learn controls of the relative camera viewpoint,
which allow new images to be generated of the same ob-
ject under a specified camera transformation. Even though
it is trained on a synthetic dataset, our model retains a
strong zero-shot generalization ability to out-of-distribution
datasets as well as in-the-wild images, including impres-
sionist paintings. Our viewpoint-conditioned diffusion ap-
proach can further be used for the task of 3D reconstruction
from a single image. Qualitative and quantitative experi-
ments show that our method significantly outperforms state-
of-the-art single-view 3D reconstruction and novel view
synthesis models by leveraging Internet-scale pre-training.

1. Introduction

From just a single camera view, humans are often able to
imagine an object’s 3D shape and appearance. This ability
is important for everyday tasks, such as object manipula-
tion [17] and navigation in complex environments [7], but
is also key for visual creativity, such as painting [32]. While
this ability can be partially explained by reliance on geomet-
ric priors like symmetry, we seem to be able to generalize
to much more challenging objects that break physical and
geometric constraints with ease. In fact, we can predict the
3D shape of objects that do not (or even cannot) exist in the
physical world (see third column in Figure 1). To achieve
this degree of generalization, humans rely on prior knowl-
edge accumulated through a lifetime of visual exploration.

In contrast, most existing approaches for 3D image re-
construction operate in a closed-world setting due to their
reliance on expensive 3D annotations (e.g. CAD models) or
category-specific priors [37, 21, 36, 67, 68, 66, 25, 24]. Very
recently, several methods have made major strides in the di-
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rection of open-world 3D reconstruction by pre-training on
large-scale, diverse datasets such as CO3D [43, 30, 36, 15].
However, these approaches often still require geometry-
related information for training, such as stereo views or
camera poses. As a result, the scale and diversity of the
data they use remain insignificant compared to the recent
Internet-scale text-image collections [47] that enable the
success of large diffusion models [45, 44, 33]. It has been
shown that Internet-scale pre-training endows these models
with rich semantic priors, but the extent to which they cap-
ture geometric information remains largely unexplored.

In this paper, we demonstrate that we are able to learn
control mechanisms that manipulate the camera viewpoint
in large-scale diffusion models, such as Stable Diffusion
[44], in order to perform zero-shot novel view synthesis and
3D shape reconstruction. Given a single RGB image, both
of these tasks are severely under-constrained. However, due
to the scale of training data available to modern generative
models (over 5 billion images), diffusion models are state-
of-the-art representations for the natural image distribution,
with support that covers a vast number of objects from many
viewpoints. Although they are trained on 2D monocular im-
ages without any camera correspondences, we can fine-tune
the model to learn controls for relative camera rotation and
translation during the generation process. These controls
allow us to encode arbitrary images that are decoded to a
different camera viewpoint of our choosing. Figure 1 shows
several examples of our results.

The primary contribution of this paper is to demonstrate
that large diffusion models have learned rich 3D priors
about the visual world, even though they are only trained
on 2D images. We also demonstrate state-of-the-art results
for novel view synthesis and state-of-the-art results for zero-
shot 3D reconstruction of objects, both from a single RGB
image. We begin by briefly reviewing related work in Sec-
tion 2. In Section 3, we describe our approach to learn
controls for camera extrinsics by fine-tuning large diffusion
models. Finally, in Section 4, we present several quantita-
tive and qualitative experiments to evaluate zero-shot view
synthesis and 3D reconstruction of geometry and appear-
ance from a single image. We will release all code and
models as well as an online demo.

2. Related Work
3D generative models. Recent advancements in gener-

ative image architectures combined with large scale image-
text datasets [47] have made it possible to synthesize high-
fidelity of diverse scenes and objects [33, 40, 45]. In par-
ticular, diffusion models have shown to be very effective
at learning scalable image generators using a denoising ob-
jective [6, 48]. However, scaling them to the 3D domain
would require large amounts of expensive annotated 3D
data. Instead, recent approaches rely on transferring pre-

Dalle-2 Stable Diffusion v2

Figure 2: Viewpoint bias in text-to-image models. We
show samples from both Dall-E-2 and Stable Diffusion v2
from the prompt “a chair”. Most samples show a chair in a
forward-facing canonical pose.

trained large-scale 2D diffusion models to 3D without us-
ing any ground truth 3D data. Neural Radiance Fields or
NeRFs [31] have emerged as a powerful representation,
thanks to their ability to encode scenes with high fidelity.
Typically, NeRF is used for single-scene reconstruction,
where many posed images covering the entire scene are pro-
vided. The task is then to predict novel views from un-
observed angles. DreamFields [22] has shown that NeRF
is a more versatile tool that can also be used as the main
component in a 3D generative system. Various follow-up
works [38, 26, 53] substitute CLIP for a distillation loss
from a 2D diffusion model that is repurposed to generate
high-fidelity 3D objects and scenes from text inputs.

Our work explores an unconventional approach to novel-
view synthesis, modeling it as a viewpoint-conditioned
image-to-image translation task with diffusion models. The
learned model can also be combined with 3D distillation to
reconstruct 3D shape from a single image. Prior work [56]
adopted a similar pipeline but did not demonstrate zero-shot
generalization capability. Concurrent approaches [9, 29, 61]
proposed similar techniques to perform image-to-3D gen-
eration using language-guided priors and textual inver-
sion [14]. In comparison, our method learns control of
viewpoints through a synthetic dataset and demonstrates
zero-shot generalization to in-the-wild images.

Single-view object reconstruction. Reconstructing 3D
objects from a single view is a highly challenging problem
that requires strong priors. One line of work builds priors
from relying on collections of 3D primitives represented as
meshes [58, 62], voxels [16, 60], or point clouds [12, 30],
and use image encoders for conditioning. These models are
constrained by the variety of the used 3D data collection
and show poor generalization capabilities due to the global
nature of this type of conditioning. Moreover, they require
an additional pose estimation step to ensure alignment be-
tween the estimated shape and the input. On the other
hand, locally conditioned models [46, 63, 54, 51, 52] aim
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Figure 3: Zero-1-to-3 is a viewpoint-conditioned image
translation model using a conditional latent diffusion archi-
tecture. Both the input view and a relative viewpoint trans-
formation are used as conditional information.

to use local image features directly for scene reconstruction
and show greater cross-domain generalization capabilities,
though are generally limited to close-by view reconstruc-
tions. Recently, MCC [59] learns a general-purpose repre-
sentation for 3D reconstruction from RGB-D views and is
trained on large-scale dataset of object-centric videos.

In our work, we demonstrate that rich geometric infor-
mation can be extracted directly from a pre-trained Stable
Diffusion model, alleviating the need for additional depth
information.

3. Method
Given a single RGB image x ∈ RH×W×3 of an object,

our goal is to synthesize an image of the object from a dif-
ferent camera viewpoint. Let R ∈ R3×3 and T ∈ R3 be
the relative camera rotation and translation of the desired
viewpoint, respectively. We aim to learn a model f that
synthesizes a new image under this camera transformation:

x̂R,T = f(x,R, T ) (1)

where we denote x̂R,T as the synthesized image. We want
our estimated x̂R,T to be perceptually similar to the true but
unobserved novel view xR,T .

Novel view synthesis from monocular RGB image is
severely under-constrained. Our approach will capitalize on
large diffusion models, such as Stable Diffusion, in order to
perform this task, since they show extraordinary zero-shot
abilities when generating diverse images from text descrip-
tions. Due to the scale of their training data [47], pre-trained
diffusion models are state-of-the-art representations for the
natural image distribution today.

However, there are two challenges that we must over-
come to create f . Firstly, although large-scale generative

∇ℒSJC

ℒMSE

Input ViewRendering

∇ℒSJC

∇ℒSJC

Neural Field

Volumetric Rendering

(Ri, Ti) Relative Viewpoint Transform 
from Input View

[      , ](R1, T1)

[       , ](R2, T2)

[       , ](R3, T3)Zero-1-to-3

Zero-1-to-3

Zero-1-to-3

Figure 4: 3D reconstruction with Zero-1-to-3. Zero-1-
to-3 can be used to optimize a neural field for the task of
3D reconstruction from a single image. During training, we
randomly sample viewpoints and use Zero-1-to-3 to super-
vise the 3D reconstruction.

models are trained on a large variety of objects in different
viewpoints, the representations do not explicitly encode the
correspondences between viewpoints. Secondly, generative
models inherit viewpoint biases reflected on the Internet.
As shown in Figure 2, Stable Diffusion tends to generate
images of forward-facing chairs in canonical poses. These
two problems greatly hinder the ability to extract 3D knowl-
edge from large-scale diffusion models.

3.1. Learning to Control Camera Viewpoint

Since diffusion models have been trained on internet-
scale data, their support of the natural image distribution
likely covers most viewpoints for most objects, but these
viewpoints cannot be controlled in the pre-trained models.
Once we are able to teach the model a mechanism to control
the camera extrinsics with which a photo is captured, then
we unlock the ability to perform novel view synthesis.

To this end, given a dataset of paired images and their rel-
ative camera extrinsics {

(
x, x(R,T ), R, T

)
}, our approach,

shown in Figure 3, fine-tunes a pre-trained diffusion model
in order to learn controls over the camera parameters with-
out destroying the rest of the representation. Following
[44], we use a latent diffusion architecture with an encoder
E , a denoiser U-Net εθ, and a decoder D. At the diffusion
time step t ∼ [1, 1000], let c(x,R, T ) be the embedding of
the input view and relative camera extrinsics. We then solve
for the following objective to fine-tune the model:

min
θ

Ez∼E(x),t,ε∼N (0,1)||ε− εθ(zt, t, c(x,R, T ))||22. (2)

After the model εθ is trained, the inference model f can
generate an image by performing iterative denoising from a
Gaussian noise image [44] conditioned on c(x,R, T ).

The main result of this paper is that fine-tuning pre-
trained diffusion models in this way enables them to learn a

3
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Figure 5: Novel view synthesis on Google Scanned Objects [10]. The input view shown on the left is used to synthesize
two randomly sampled novel views. Corresponding ground truth views are shown on the right. Compared to the baselines,
our synthesized novel view contain rich textual and geometric details that are highly consistent with the ground truth, while
baseline methods display a significant loss of high-frequency details.

generic mechanism for controlling the camera viewpoints,
which extrapolates outside of the objects seen in the fine-
tuning dataset. In other words, this fine-tuning allows con-
trols to be “bolted on” and the diffusion model can retain
the ability to generate photorealistic images, except now
with control of viewpoints. This compositionality estab-
lishes zero-shot capabilities in the model, where the final
model can synthesize new views for object classes that lack
3D assets and never appear in the fine-tuning set.

3.2. View-Conditioned Diffusion

3D reconstruction from a single image requires both low-
level perception (depth, shading, texture, etc.) and high-
level understanding (type, function, structure, etc.). There-
fore, we adopt a hybrid conditioning mechanism. On one
stream, a CLIP [39] embedding of the input image is con-
catenated with (R, T ) to form a “posed CLIP” embedding
c(x,R, T ). We apply cross-attention to condition the de-
noising U-Net, which provides high-level semantic infor-
mation of the input image. On the other stream, the in-
put image is channel-concatenated with the image being
denoised, assisting the model in keeping the identity and
details of the object being synthesized. To be able to ap-
ply classifier-free guidance [19], we follow a similar mech-
anism proposed in [3], setting the input image and the posed

CLIP embedding to a null vector randomly, and scaling the
conditional information during inference.

3.3. 3D Reconstruction

In many applications, synthesizing novel views of an ob-
ject is not enough. A full 3D reconstruction capturing both
the appearance and geometry of an object is desired. We
adopt a recently open-sourced framework, Score Jacobian
Chaining (SJC) [53], to optimize a 3D representation with
priors from text-to-image diffusion models. However, due
to the probabilistic nature of diffusion models, gradient up-
dates are highly stochastic. A crucial technique used in SJC,
inspired by DreamFusion [38], is to set the classifier-free
guidance value to be significantly higher than usual. This
methodology decreases the diversity of each sample but im-
proves the fidelity of the reconstruction.

As shown in Figure 4, similarly to SJC, we randomly
sample viewpoints and perform volumetric rendering. We
then perturb the resulting images with Gaussian noise ε ∼
N (0, 1), and denoise them by applying the U-Net εθ con-
ditioned on the input image x, posed CLIP embedding
c(x,R, T ), and timestep t, in order to approximate the score
toward the non-noisy input xπ:

∇LSJC = ∇Iπ log p√2ε(xπ) (3)

where∇LSJC is the PAAS score introduced by [53].
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Figure 6: Novel view synthesis on RTMV [50]. The input view shown on the left is used to synthesize 2 randomly sampled
novel views. Corresponding ground truth views are shown on the right. Our synthesized view maintains a high fidelity even
under big camera viewpoint changes, while most other methods deteriorate in quality drastically.

In addition, we optimize the input view with an MSE
loss. To further regularize the NeRF representation, we also
apply a depth smoothness loss to every sampled viewpoint,
and a near-view consistency loss to regularize the change in
appearance between nearby views.

3.4. Dataset

We use the recently released Objaverse [8] dataset for
fine-tuning, which is a large-scale open-source dataset con-
taining 800K+ 3D models created by 100K+ artists. While
it has no explicit class labels like ShapeNet [4], Objaverse
embodies a large diversity of high-quality 3D models with
rich geometry, many of them with fine-grained details and
material properties. For each object in the dataset, we ran-
domly sample 12 camera extrinsics matrices Me pointing
at the center of the object and render 12 views with a ray-
tracing engine. At training time, two views can be sampled
for each object to form an image pair (x, xR,T ). The corre-
sponding relative viewpoint transformation (R, T ) that de-
fines the mapping between both perspectives can easily be
derived from the two extrinsic matrices.

4. Experiments
We assess our model’s performance on zero-shot novel

view synthesis and 3D reconstruction. As confirmed by the
authors of Objaverse, the datasets and images we used in

this paper are outside of the Objaverse dataset, and can thus
be considered zero-shot results. We quantitatively compare
our model to the state-of-the-art on synthetic objects and
scenes with different levels of complexity. We also report
qualitative results using diverse in-the-wild images, ranging
from pictures we took of daily objects to paintings.

4.1. Tasks

We describe two closely related tasks that take single-
view RGB images as input, and we apply them zero-shot.

Novel view synthesis. Novel view synthesis is a long-
standing 3D problem in computer vision that requires a
model to learn the depth, texture, and shape of an object im-
plicitly. The extremely limited input information of only a
single view requires a novel view synthesis method to lever-
age prior knowledge. Recent popular methods have relied
on optimizing implicit neural fields with CLIP consistency
objectives from randomly sampled views [23]. Our ap-
proach for view-conditional image generation is orthogonal,
however, because we invert the order of 3D reconstruction
and novel view synthesis, while still retaining the identity
of the object depicted in the input image. This way, the
aleatoric uncertainty due to self-occlusion can be modeled
by a probabilistic generative model when rotating around
objects, and the semantic and geometric priors learned by
large diffusion models can be leveraged effectively.
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Input View Randomly Sampled Novel Views

Figure 7: Novel view synthesis on in-the-wild images. The 1st, 3rd, and 4th rows show results on images taken by an
iPhone, and the 2nd row shows results on an image downloaded from the Internet. Our method works are robust to objects
with different surface materials and geometry. We randomly sampled 5 different viewpoints and directly showcase the results
without cherry-picking. We include more uncurated results in the supplementary materials.

3D Reconstruction. We can also adapt a stochastic 3D
reconstruction framework such as SJC [53] or DreamFu-
sion [38] to create a most likely 3D representation. We
parameterize this as a voxel radiance field [5, 49, 13],
and subsequently extract a mesh by performing marching
cubes on the density field. The application of our view-
conditioned diffusion model for 3D reconstruction provides
a viable path to channel the rich 2D appearance priors
learned by our diffusion model toward 3D geometry.

4.2. Baselines

To be consistent with the scope of our method, we com-
pare only to methods that operate in a zero-shot setting and
use single-view RGB images as input.

For novel view synthesis, we compare against several
state-of-the-art, single-image algorithms. In particular, we
benchmark DietNeRF [23], which regularizes NeRF with a
CLIP image-to-image consistency loss across viewpoints.
In addition, we compare with Image Variations (IV) [1],

which is a Stable Diffusion model fine-tuned to be condi-
tioned on images instead of text prompts and could be seen
as a semantic nearest-neighbor search engine with Stable
Diffusion. Finally, we adapted SJC [53], a diffusion-based
text-to-3D model where the original text-conditioned diffu-
sion model is replaced with an image-conditioned diffusion
model, which we termed SJC-I.

For 3D reconstruction, we use two state-of-the-art,
single-view algorithms as baselines: (1) Multiview Com-
pressive Coding (MCC) [59], which is a neural field-based
approach that completes RGB-D observations into a 3D rep-
resentation, as well as (2) Point-E [34], which is a diffu-
sion model over colorized point clouds. MCC is trained on
CO3Dv2 [43], while Point-E is notably trained on a signif-
icantly bigger OpenAI’s internal 3D dataset. We also com-
pare against SJC-I.

Since MCC requires depth input, we use MiDaS [42, 41]
off-the-shelf for depth estimation. We convert the obtained
relative disparity map to an absolute pseudo-metric depth

6
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Figure 8: Diversity of novel view synthesis. With an input view, we fix another viewpoint and randomly generate multiple
conditional samples. The different results reflect a range of diversity in terms of both geometry and appearance information
that is missing in the input view.

DietNeRF [23]
Image

Variation [1] SJC-I [53] Ours

PSNR ↑ 8.933 5.914 6.573 18.378
SSIM ↑ 0.645 0.540 0.552 0.877
LPIPS ↓ 0.412 0.545 0.484 0.088
FID ↓ 12.919 22.533 19.783 0.027

Table 1: Results for novel view synthesis on Google
Scanned Objects. All metrics demonstrate that our method
is able to outperform the baselines by a significant margin.

map by assuming standard scale and shift values that look
reasonable across the entire test set.

4.3. Benchmarks and Metrics

We evaluate both tasks on Google Scanned Objects
(GSO) [10], which is a dataset of high-quality scanned
household items, as well as RTMV [50], which consists of
complex scenes, each composed of 20 random objects. In
all experiments, the respective ground truth 3D models are
used for evaluating 3D reconstruction.

For novel view synthesis, we numerically evaluate our
method and baselines extensively with four metrics cover-
ing different aspects of image similarity: PSNR, SSIM [55],
LPIPS [64], and FID [18]. For 3D reconstruction, we mea-
sure Chamfer Distance and volumetric IoU.

4.4. Novel View Synthesis Results

We show the numerical results in Tables 1 and 2. Fig-
ure 5 shows that our method, as compared to all baselines on
GSO, is able to generate highly photorealistic images that
are closely consistent with the ground truth. Such a trend
can also be found on RTMV in Figure 6, even though the
scenes are out-of-distribution compared to the Objaverse

DietNeRF [23]
Image

Variation [1] SJC-I [53] Ours

PSNR ↑ 7.130 6.561 7.953 10.405
SSIM ↑ 0.406 0.442 0.456 0.606
LPIPS ↓ 0.507 0.564 0.545 0.323
FID ↓ 5.143 10.218 10.202 0.319

Table 2: Results for novel view synthesis on RTMV.
Scenes in RTMV are out-of-distribution from Objaverse
training data, yet our model still outperforms the baselines
by a significant margin.

dataset. Among our baselines, we observed that Point-E
tends to achieve much better results than other baselines,
maintaining impressive zero-shot generalizability. How-
ever, the small size of the generated point clouds greatly
limits the applicability of Point-E for novel view synthesis.

In Figure 7, we further demonstrate the generalization
performance of our model to objects with challenging ge-
ometry and texture as well as its ability to synthesize high-
fidelity viewpoints while maintaining the object type, iden-
tity and low-level details.

Diversity across samples. Novel view synthesis from
a single image is a severely under-constrained task, which
makes diffusion models a particularly apt choice of archi-
tecture compared to NeRF in terms of capturing the under-
lying uncertainty. Because input images are 2D, they al-
ways depict only a partial view of the object, leaving many
parts unobserved. Figure 8 exemplifies the diversity of plau-
sible, high-quality images sampled from novel viewpoints.

4.5. 3D Reconstruction Results

We show numerical results in Tables 3 and 4. Figure 9
qualitatively shows our method reconstructs high-fidelity

7
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Figure 9: Qualitative examples of 3D reconstruction. The input view images are shown on the left. For each method, we
show a rendered view from a different angle and the reconstructed 3D mesh. The ground truth meshes are shown on the right.

MCC [59] SJC-I [53] Point-E [34] Ours

CD ↓ 0.1230 0.2245 0.0804 0.0717
IoU ↑ 0.2343 0.1332 0.2944 0.5052

Table 3: Results for single view 3D reconstruction on
GSO. Note that our volumetric IoU is better than the com-
pared methods by a large margin.

3D meshes that are consistent with the ground truth. MCC
tends to give a good estimation of surfaces that are visible
from the input view, but often fails to correctly infer the ge-
ometry at the back of the object.

SJC-I is also frequently unable to reconstruct a mean-
ingful geometry. On the other hand, Point-E has an im-
pressive zero-shot generalization ability, and is able to
predict a reasonable estimate of object geometry. How-
ever, it generates non-uniform sparse point clouds of only
4,096 points, which sometimes leads to holes in the recon-
structed surfaces (according to their provided mesh conver-
sion method). Therefore, it obtains a good CD score but
falls short of the volumetric IoU. Our method leverages the
learned multi-view priors from our view-conditioned dif-
fusion model and combines them with the advantages of a
NeRF-style representation. Both factors provide improve-
ments in terms of CD and volumetric IoU over prior works,
as indicated by Tables 3 and 4.

4.6. Text to Image to 3D

In addition to in-the-wild images, we also tested our
method on images generated by txt2img models such as
Dall-E-2 [40]. As shown in Figure 10, our model is able

MCC [59] SJC-I [53] Point-E [34] Ours

CD ↓ 0.1578 0.1554 0.1565 0.1352
IoU ↑ 0.1550 0.1380 0.0784 0.2196

Table 4: Results for single view 3D reconstruction on
RTMV. Because RTMV consists of cluttered scenes with
many objects in them, none of the studied approaches seem
to perform very well. Our method is still the best one how-
ever, despite not being explicitly trained for the 3D recon-
struction task.

to generate novel views of these images while preserving
the identity of the objects. We believe this could be very
useful in many text-to-3D generation applications.

5. Discussion
In this work, we have proposed a novel approach, Zero-

1-to-3, for zero-shot, single-image novel-view synthesis
and 3D reconstruction. Our method capitalizes on the Sta-
ble Diffusion model, which is pre-trained on internet-scaled
data and captures rich semantic and geometric priors. To
extract this information, we have fine-tuned the model on
synthetic data to learn control over the camera viewpoint.
The resulting method demonstrated state-of-the-art results
on several benchmarks due to its ability to leverage strong
object shape priors learned by Stable Diffusion.

5.1. Future Work

From objects to scenes. Our approach is trained on
a dataset of single objects on a plain background. While
we have demonstrated a strong degree of generalizations to
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“A computer from 
the 90s in the style 
of vaporwave”

Text

“3D render of a pink 
balloon dog”

Zero-1-to-3Image Novel Views

Figure 10: Novel View Synthesis from Dall-E-2 Generated Images. The composition of multiple objects (1st row) and the
lighting details (2nd row) are preserved in our synthesized novel views.

scenes with several objects on RTMV dataset, the quality
still degrades compared to the in-distribution samples from
GSO. Generalization to scenes with complex backgrounds
thus remains an important challenge for our method.

From scenes to videos. Being able to reason about
geometry of dynamic scenes from a single view would
open novel research directions, such as understanding oc-
clusions [52, 27] and dynamic object manipulation. A few
approaches for diffusion-based video generation have been
proposed recently [20, 11], and extending them to 3D would
be key to opening up these opportunities.

Combining graphics pipelines with Stable Diffusion.
In this paper, we demonstrate a framework to extract 3D
knowledge of objects from Stable Diffusion. A powerful
natural image generative model like Stable Diffusion con-
tains other implicit knowledge about lighting, shading, tex-
ture, etc. Future work can explore similar mechanisms to
perform traditional graphics tasks, such as scene relighting.
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Appendix

A. Coordinate System & Camera Model

Figure 11: Spherical Coordinate System [57].
We use a spherical coordinate system to represent cam-

era locations and their relative transformations. As shown
in Figure 11, assuming the center of the object is the ori-
gin of the coordinate system, we can use θ, φ, and r to
represent the polar angle, azimuth angle, and radius (dis-
tance away from the center) respectively. For the creation
of the dataset, we normalize all assets to be contained inside
the XYZ unit cube [−0.5, 0.5]3. Then, we sample camera
viewpoints such that θ ∈ [0, π], φ ∈ [0, 2π] uniformly cover
the unit sphere, and r is sampled uniformly in the interval
[1.5, 2.2]. During training, when two images from differ-
ent viewpoints are sampled, let their camera locations be
(θ1, φ1, r1) and (θ2, φ2, r2). We denote their relative cam-
era transformation as (θ2 − θ1, φ2 − φ1, r2 − r1). Since
the camera is always pointed at the center of the coordi-
nate system, the extrinsics matrices are uniquely defined by
the location of the camera in a spherical coordinate system.
We assume the horizontal field of view of the camera to be
49.1◦, and follow a pinhole camera model.

Due to the incontinuity of the azimuth angle, we encode
it with φ 7→ [sin(φ), cos(φ)]. Subsequently, at both train-
ing and inference time, four values representing the relative
camera viewpoint change, [θ, sin(φ), cos(φ), r] are fed to
the model, along with an input image, in order to generate
the novel view.

B. Dataset Creation
We use Blender [2] to render training images of the fine-

tuning dataset. The specific rendering code is inherited from
a publicly released repository1 by authors of Objaverse [8].
For each object in Objaverse, we randomly sample 12 views
and use the Cycles engine in Blender with 128 samples per
ray along with a denoising step to render each image. We
render all images in 512×512 resolution and pad transpar-
ent backgrounds with white color. We also apply random-
ized area lighting. In total, we rendered a dataset of around
10M images for finetuning.

1https://github.com/allenai/objaverse-rendering

C. Finetuning Stable Diffusion
We use the rendered dataset to finetune a pretrained Sta-

ble Diffusion model for performing novel view synthesis.
Since the original Stable Diffusion network is not condi-
tioned on multimodal text embeddings, the original Stable
Diffusion architecture needs to be tweaked and finetuned to
be able to take conditional information from an image. This
is done in [1], and we use their released checkpoints. To fur-
ther adapt the model to accept conditional information from
an image along with a relative camera pose, we concatenate
the image CLIP embedding (dimension 768) and the pose
vector (dimension 4) and initialize another fully-connected
layer (772 7→ 768) to ensure compatibility with the diffu-
sion model architecture. The learning rate of this layer is
scaled up to be 10× larger than the other layers. The rest
of the network architecture is kept the same as the original
Stable Diffusion.

C.1. Training Details

We use AdamW [28] with a learning rate of 10−4 for
training. First, we attempted a batch size of 192 while main-
taining the original resolution (image dimension 512×512,
latent dimension 64×64) for training. However, we discov-
ered that this led to a slower convergence rate and higher
variance across batches. Because the original Stable Diffu-
sion training procedure used a batch size of 3072, we sub-
sequently reduce the image size to 256× 256 (and thus the
corresponding latent dimension to 32 × 32), in order to be
able to increase the batch size to 1536. This increase in
batch size has led to better training stability and a signifi-
cantly improved convergence rate. We finetuned our model
on an 8×A100-80GB machine for 7 days.

C.2. Inference Details

To generate a novel view, Zero-1-to-3 takes only 2 sec-
onds on an RTX A6000 GPU. Note that in prior works,
typically a NeRF is trained in order to render novel views,
which takes significantly longer. In comparison, our ap-
proach inverts the order of 3D reconstruction and novel
view synthesis, causing the novel view synthesis process to
be fast and contain diversity under uncertainty. Since this
paper addresses the problem of a single image to a 3D ob-
ject, when an in-the-wild image is used during inference,
we apply an off-the-shelf background removal tool [35] to
every image before using it as input to Zero-1-to-3.

D. 3D Reconstruction
Different from the original Score Jacobian Chaining

(SJC) implementation, we removed the “emptiness loss”
and “center loss”. To regularize the VoxelRF representation,
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we differentiably render a depth map, and apply a smooth-
ness loss to the depth map. This is based on the prior knowl-
edge that the geometry of an object typically contains less
high-frequency information than its texture. It is particu-
larly helpful in removing holes in the object representation.
We also apply a near-view consistency loss to regularize the
difference between an image rendered from one view and
another image rendered from a nearby randomly sampled
view. We found this to be very helpful in improving the
cross-view consistency of an object’s texture. All imple-
mentation details can be found in the code that is submitted
as part of the appendix. Running a full 3D reconstruction on
an image takes around 30 minutes on an RTX A6000 GPU.

Mesh extraction. We extract the 3D mesh from the Vox-
elRF representation as follows. We first query the density
grids at resolution 2003. Then we smooth the density grids
using a mean filter of size (7, 7, 7), followed by an erosion
operator of size (5, 5, 5). Finally, we run marching cubes on
the resulting density grids. Let d̄ denote the average value
of the density grids. For the GSO dataset, we use a density
threshold of 8d̄. For the RTMV dataset, we use a density
threshold of 4d̄.

Evaluation. The ground truth 3D shape and the predicted
3D shape are first normalized within the unit cube. To com-
pute the chamfer distance (CD), we randomly sample 2000
points. For Point-E and MCC, we sample from their pre-
dicted point clouds directly. For our method and SJC-I, we
sample points from the reconstructed 3D mesh. We com-
pute the volumetric IoU at resolution 643. For our method,
Point-E and SJC-I, we vocalize the reconstructed 3D sur-
face meshes using marching cubes. For MCC, we directly
voxelize the predicted dense point clouds by occupancy.

E. Baselines

To be consistent with the scope of our method, we com-
pare only to methods that (1) operate in a zero-shot setting,
(2) use single-view RGB images as input, and (3) have offi-
cial reference implementations available online that can be
adapted in a reasonable timeframe. In the following sec-
tions, we describe the implementation details of our base-
lines.

E.1. DietNeRF

We use the official implementation located on GitHub2,
which, at the time of writing, has code for low-view NeRF
optimization from scratch with a joint MSE and consistency
loss, though provides no functionality related to finetuning
PixelNeRF. For fairness, we use the same hyperparame-
ters as the experiments performed with the NeRF synthetic

2https://github.com/ajayjain/DietNeRF

dataset in [23]. For the evaluation of novel view synthesis,
we render the resulting NeRF from the designated camera
poses in the test set.

E.2. Point-E

We use the official implementation and pretrained mod-
els located on GitHub3. We keep all the hyperparameters
and follow their demo example to do 3D reconstruction
from single input image. The prediction is already normal-
ized, so we do not need to perform any rescaling to match
the ground truth. For surface mesh extraction, we use their
default method with a grid size of 128.

E.3. MCC

We use the official implementation located on GitHub4.
Since this approach requires a colorized point cloud as in-
put rather than an RGB image, we first apply an online off-
the-self foreground segmentation method [35] as well as a
state-of-the-art depth estimation method [42, 41] for pre-
processing. For fairness, we keep all hyperparameters the
same as the zero-shot, in-the-wild experiments described
in [59]. For the evaluation of 3D reconstruction, we normal-
ize the prediction, rotate it according to camera extrinsics,
and compare it with the 3D ground truth.

3https://github.com/openai/point-e
4https://github.com/facebookresearch/MCC
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