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Abstract

The remarkable ability of transformers to learn new concepts solely by reading examples within the input prompt,
termed in-context learning (ICL), is a crucial aspect of intelligent behavior. Here, we focus on understanding the
learning algorithm transformers use to learn from context. Existing theoretical work, often based on simplifying
assumptions, has primarily focused on linear self-attention and continuous regression tasks, finding transformers
can learn in-context by gradient descent. Given that transformers are typically trained on discrete and complex
tasks, we bridge the gap from this existing work to the setting of classification, with non-linear (importantly,
softmax) activation. We find that transformers still learn to do gradient descent in-context, though on functionals
in the kernel feature space and with a context-adaptive learning rate in the case of softmax transformer.

1. Introduction

In-context-learning (ICL) is a critical ability often exhibited by transformers whereby they can adapt to context (i.e. input
prompt) and solve tasks not present during training. After its initial emergence when training transformers at scale on natural
language (Brown et al., 2020), much empirical and theoretical work has gone into studying this phenomena. Following prior
work (Garg et al., 2022; Akyiirek et al., 2022; Von Oswald et al., 2023; Ahn et al., 2023), this paper aims to contribute to
answering the question: ‘What learning algorithms do transformers use to perform ICL?’

Prior theoretical work suggests that transformers may implement in-context learning by taking a step of (preconditioned)
gradient descent (GD) (Von Oswald et al., 2023; Garg et al., 2022; Akyiirek et al., 2022; Ahn et al., 2023; Mahankali et al.,
2023). However, much of this work has been restricted to linear regression tasks and transformers with a linear activation
function, both of which are departures from standard settings (Vaswani et al., 2017). Here, we emphasize our key departures
from prior work, and how they are bridging the gaps between theoretical results and the transformers used in practice:

1. Switching to classification task: Learning a continuous task with mean squared error (MSE) loss and learning a
discrete task with cross-entropy (CE) loss are fundamentally different. Minimizing MSE corresponds to maximizing
likelihood under a Gaussian noise assumption, whereas minimizing CE loss requires only the assumption of i.i.d.
samples, without any additional noise model. From a practical standpoint, many transformers are trained to predict a
probability distribution over a discrete set of tokens—most notably, large language models (LLMs) predicting the next
token in a sequence—making the classification setup more representative of real-world applications. We show that
transformers are expressive enough to implement a step of GD, even in classification setup, with CE loss.

2. Using softmax attention: From the original introduction of transformers (Vaswani et al., 2017) to today’s LLMs and
vision transformers, the softmax activation in self-attention has remained the standard choice. On the other hand, the
mathematical convenience of linear attention (i.e., attention without any activation function) has attracted much of the
existing theoretical analysis. We show that, while linear self-attention still implements the usual step of GD on context
data, softmax self-attention implements a step of functional gradient descent in the Radial Basis Function (RBF) kernel
feature space (kernel GD); furthermore, it benefits from having a context-adaptive learning rate.
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Figure 1. a) Two example contexts transformer gets from our classification task (see Section 2.1). For Context 1, the correct class for
query is Class 1, as Xquery lays between the first and the third context vector. With Context 2, we emphasize how: 1) context vectors x; and
query input Xquery differ between contexts; 2) class assignment differs between contexts—if the first context vector was in Context 1, its
label would be Class 1, not Class 2. Right: Two full contexts, with C' = 5,n = 100 and b) d = 2, ¢) d = 3. The arrows are representing
class vectors, and the points context vectors; different colors correspond to different class labels.

2. Setup
2.1. Classification Task

We follow the usual, controlled setting in theoretical ICL work: given a context of n input-label pairs {(x;,y;)}!, and a
query input Xquery, the model is expected to predict its label yquery. In our classification task, we first sample C' prototype
class vectors z, . . . , z¢ uniformly from the unit sphere S?~!. These class vectors define the labeling rule but are hidden
from the model. Each context vector x; € S9! is assigned the label of its nearest class vector, and we sample & such
vectors per class using rejection sampling. The query is sampled from the same distribution, by first choosing a class Yquery
uniformly and then sampling Xquery uniformly from its region.! The illustrations of the task are shown in Figure 1.

2.2. Model Setup

Following the setup of (Von Oswald et al., 2023), we use a simplified one layer transformer with a single head, and
concatenated input-output pairs as tokens: [x;,y;] € R, where y; is one-hot encoding of ;. The query token
is concatenated with 0 € R® vector as its y-entry. These tokens form rows of the input matrix X (Figure 2). Let
Wo, Wk, Wy and Wy are the (d + C) x (d + C) query, key, value and projection/output weight matrices. We theoretically
analyze three different models, differing in activation function on the attention: linear, kernel, and softmax self-attention.

Linear self-attention. Given Xy, linear self-attention makes the following prediction for yquery:
Vauery = softmax{ [(Bequery, O] W Wi X ) XWJ W5 | }.2

Subscript y refers to taking the y-entry of a token, as seen is Figure 2.

Kernel self-attention. In the case of kernel self-attention, the activation function on the attention originates from a kernel
k:R4HC x RH*C — R (symmetric and positive semi-definite). Specifically, those activation functions f = act,, satisfy
the following: for two matrices A = [ay,...a,], B = [b1, ..., bp], applying kernel activation gives a a x b-sized matrix
acty([aq, ..., aq], [b1, ..., bp]) = {k(a;,b;) }i=1,.. a;j=1,...». With this, the prediction for yquery is

Yauery = softmax{ [actk (WQ [Xquery O]T, WKXT) XWJWg]y }

Softmax self-attention. The most commonly used activation function is softmax, giving the prediction

X u 70 WTW XT
yquery = softmax [SOftmaX <[ adery \/]CHiQC K ) XWJ Wg‘| .3

Y

'We make this choice to avoid models learning pathological strategies such as picking the most common label from context.

Note that the softmax in the formula has nothing to do with activation on the attention; it is used as we’re training on a classification
task, and matches what is commonly done in practice with cross-entropy loss.

3Softmax self-attention is not a form of kernel SA, due to the normalization inherent to the softmax function.
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Figure 2. Tllustration of a transformer forward pass. We only make use of the update of the last token to get the final prediction ¥ query-

3. Transformers can implement kernel gradient descent on classification tasks

To build up to our main theoretical result, namely that softmax transformers can implement adaptive learning rate kernel
gradient descent, we iteratively relax assumptions made in prior work (Von Oswald et al., 2023), which showed that linear
transformers can implement GD on linear regression tasks.

3.1. Linear transformer on linear classification task
First, we bridge the gap from regression tasks with MSE loss to classification tasks with CE loss; see the proof in Appendix B.

Linear classification task: For consistency, here we introduce what we call linear classification, and is also referred to by
names softmax regression or multinomial logistic regression. We are given data {(x;,y;)}" ;, where y; € R” are one-hot
encoded labels. For a new data point Xquery € R?, we give prediction P[Xquery 18 in class j] = (softmax(Wquuery)) ; (for
j €{1,...,C}), where W € R%*C are the parameters we optimize for, using the data.

Proposition 3.1. Linear self-attention is expressive enough to implement one step of gradient descent on cross-entropy loss
in the linear classification setup, using the samples from context and assuming we start from Wy = 0.*

3.2. Any kernel activation transformer on linear classification task

Next, we consider a kernel activation transformer, to bridge the gap between linear and softmax SA. We build upon Cheng
et al. (2023) to show that kernel SA can implement one step of GD in the kernel feature space on this classification task; for
the full proof, see Appendix C.

Proposition 3.2. Kernel activation self-attention is expressive enough to implement one step of gradient descent in the
kernel feature space, on cross-entropy loss in the linear classification setup, assuming we start from Wy = 0.3

3.3. Softmax transformer on linear classification task

Finally, we show that softmax self-attention implements a step of kernel gradient descent, using the RBF kernel, but with
a context-adaptive learning rate. We assume that all input vectors have norm one,® that is ||x;|| = 1. In the case of RBF
Clx=xi2 . . . . .
kernel k(x,x’) = e~ 2.2  with kernel width o, the equation for one step of kernel GD with learning rate 7 (Equation 3)
T
) ) X; Xquery . . .
gives Yquery = softmaxq —L— Y"1 | ye” o2 } If we let 02 = Liw and define an adaptive learning rate (as a function
2

o
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. . 1/02
of X - sample points): 7(X) = —2“—"—for some constants ¢, ¢,, > 0, we get

Z;l—1 ex;rx(]uery/ff

Co x;l' Xquery

R n e Vd+C

Yquery = softmax Cp E yl'm . (1)
i=1 n NoE=o
! dima€ +

Equation 1 can be implemented by softmax self-attention; for details, see Appendix D. Our main departure here from
standard kernel gradient descent is variable step size n(X), which we term context-adaptive learning rate. An important
property is that 7(X') depends on the points in the dataset/context, and also on the position of Xquery relative to them. If there
are many points near Xquery, 77(X ) will be relatively smaller, evoking some of the flavor of non-parametric algorithms.

“Note that the realistic assumption of starting from Wy = 0 corresponds to no prior knowledge on the classes.

SFor infinite dimensional kernel feature spaces, what we mean by Wy = 0 is that we're starting a step of functional GD from the zero
functional (see Appendix C.1).

®Such an assumption is reasonable given the use of LayerNorm (Ba et al., 2016) in most transformers.



Transformers May Learn to Classify In-Context by Context-Adaptive Kernel Gradient Descent

Loss P correct token Entropy
1.0 1 ‘,'
—— Preds diff c i
£0.10 Model diff % 1.0 :
2 052 3 :
~N 0.05 —— Cos sim § 0.5 +---- o]
‘ i
0.00 1 —————————— 10.0 . 0.0 H
0 1000 2000 0 2 4 0.0 0.5 1.0 0 1

a) Training steps b) Linear SA c) Linear SA d) Linear SA

Figure 3. Similarity between a trained linear SA and a step of GD, in the setup C' = 5,n = 100,d = 5. a) Models alignment metrics
through transformer training. Right: Metrics similarity per context sample: b) loss, c) probability of the correct class and d) entropy of
Yquery: €ach point represents the value on one context. Dotted line corresponds to the mean value of a metric.
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Figure 4. Similarity between a trained softmax SA and a context-adaptive step of kernel GD, in the setup C' = 5,n = 100,d = 5.
a) Models alignment metrics through transformer training. Right: Metrics similarity per context sample: b) loss, c¢) probability of the
correct class and d) entropy achieved by both algorithms.

4. Transformers do learn kernel gradient descent to solve classification tasks

Knowing theoretically that self-attention is expressive enough to do an (adaptive) step of (kernel) gradient descent in the
classification setup, the key question becomes if this solution is present in trained transformers, i.e. does a trained transformer
actually implement GD on the data in context? In this section, we present empirical evidence towards a positive answer by
training transformers using the setup from Section 2. To show the similarity between the two algorithms—trained SA and a
vanilla step of GD—we make use of two different approaches. All implementation details can be found in Appendix G.

Metrics similarity per context sample. Firstly, we observe per-sequence metrics in both models. Concretely, metrics we
observe are loss, entropy, and probability of the correct class. For each metric, we plot different contexts as points: z-axis
being the metric value (of predicting y query) obtained from a trained transformer, and the y-axis is metric value obtained with
a step of gradient descent. The indicator two algorithms are similar is all the points concentrating around the y = x line.

Models alignment. Following the alignment metrics introduced by Von Oswald et al. (2023), we investigate the similarity
of the two models by capturing three quantities throughout training, for each averaging the values over N = 100 contexts:

* Prediction differences (Preds diff): the norm of the differences in the predictions by the two models ||y x, — ¥5o ||

* Cosine similarity (Cos sim): the cosine similarity between the sensitivities of the two models
averaged over classes j = 1, ...,C'

2 (9I§ery )i and 3(95:.2,y );
G- Dxqur

~ TR &GD
* Sensitivity differences (Model diff): the difference in sensitivities of the two models & Z]C:l I Bg;’q:y)] - aggq:))] l
The results show high similarity between a trained linear SA and a GD step with 1 found through linear search, as illustrated
by Figure 3 in the setting n = 100, C' = 5, d = 5. For more results on linear attention, see Appendix E). Furthermore, there
is a significant similarity between a trained softmax SA and a context adaptive kernel GD step (Equation 1), where ¢,), ¢,
are found in a grid-search. The setting n = 100, C' = 5, d = 5 results in Figure 4, and the other settings can be found in
Appendix F. However, there was another algorithm softmax transformer learns (less common but present), that we term
‘elimination‘. For further details about it, refer to Appendix J.
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5. Conclusion

The remarkable ICL ability of transformers is a key reason behind their success in generalizing to never-before-seen
sequences, both in controlled small-scale settings like ours and at a much larger scales of models such as LLMs. Approaching
ICL from a theoretical perspective, prior theoretical work (Garg et al., 2022; Von Oswald et al., 2023) demonstrated that
self-attention can implement a step of gradient descent, but under simplifying assumptions—specifically, using linear
attention and MSE loss on a regression task. We bridge these gaps to more practical transformer settings by investigating
softmax self-attention on a classification task with CE loss. we demonstrate that softmax self-attention is expressive enough
to implement a single context-adaptive step of kernel gradient descent. Furthermore, we design a synthetic classification
task and use it to show that softmax self-attention learns to implement this theoretical solution in practice.

Altogether, we hope this paper lays theoretical foundations for exploring ICL in settings that are closer to practical
applications. While important challenges remain—such as understanding multi-layer architectures and the role of MLPs—
we believe progress will come by systematically relaxing simplifying assumptions, one step at a time. Foundational
understanding is not only important for theoretical clarity, but also essential for driving meaningful, lasting progress.
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A. Extended Related Work

The concept of emergent in-context learning was first observed in (Brown et al., 2020), where it was noted that the trained
GPT-3 language model could perform well on few-shot tasks presented in the prompt, without any parameter updates. Since
then, ICL has been compared to meta-learning (Andrychowicz et al., 2016; Finn et al., 2017) and so-called mesa-learning
(Hubinger et al., 2019), where trained models are interpreted as performing optimization at inference time.

Staying close to practice, there has been extensive empirical analysis of ICL, with several works investigating how well
LLMs perform in in-context learning settings, as well as their capabilities and limitations (Liu et al., 2021; Zhang et al.,
2022; Wei et al., 2023; Bhattamishra et al., 2023; Li et al., 2024b; Zhao et al., 2024). To further investigate the phenomenon,
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researchers have begun designing carefully crafted experimental setups, usually involving smaller transformers and non-
language datasets, such as Omniglot (Chan et al., 2022; Singh et al., 2024), boolean function classes (Bhattamishra et al.,
2023), modular arithmetic (He et al., 2024) or Markov chains (Edelman et al., 2024; Park et al., 2024). An important
component of transformers’ ability to perform ICL has been attributed to the formation of so-called induction heads (Olsson
et al., 2022; Reddy, 2023; Singh et al., 2024; Edelman et al., 2024). Additionally, ICL has been shown to be a transient
phenomenon (Singh et al., 2023; Anand et al., 2024; Chan et al., 2024; Yin & Steinhardt, 2025; Carroll et al., 2025; Singh
et al., 2025), where, if a task can be solved through both in-context and in-weights learning, the model eventually transitions
to solving it via in-weights learning—that is, by memorizing the example-label pairs in its parameters. In this case, data
properties also play a significant role in the emergence and persistence of ICL (Chan et al., 2022).

From a more theoretical perspective, prior work has typically focused on small transformers (1-2 layers), often combined
with additional simplifications for mathematical convenience. The prior work referenced in this paragraph adopts the
controlled ICL setting, where the context consists of input-output pairs drawn from a task—each context corresponding to a
different task.

Linear self-attention. Another commonly used simplification of self-attention is the variant without the softmax activation,
often referred to as linear self-attention. Linear self-attention is expressive enough to solve linear regression task by
performing one step of GD, and it also does learn it when trained on ICL linear regression (each context corresponds to
different linear regression task), as shown by prior work (Von Oswald et al., 2023; Garg et al., 2022; Akylirek et al., 2022;
Ahn et al., 2023; Mahankali et al., 2023). The mathematical simplicity of linear attention has facilitated further theoretical
research on ICL, revealing additional properties and learning dynamics (Wu et al., 2023; Zhang et al., 2024a; Lu et al., 2024;
Vladymyrov et al., 2024; Zhang et al., 2024b; 2025).

Self-attention with non-linear activation. Due to the analytical complexity, there haven’t been as many theoretical results
on attention mechanisms with non-linearities. Ahn et al. (2023); Bai et al. (2023) have provided expressivity results (weight
constructions) for ReLU-activated self-attention, demonstrating its ability to implement various algorithms for solving
various tasks. Softmax attention has been explored in combination with continuous tasks, using MSE loss (Cheng et al.,
2023; Huang et al., 2023; Collins et al., 2024; Chen et al., 2024; Yang et al., 2024; Wang et al., 2024b). Collins et al. (2024)
shows that softmax self-attention adapts to function Lipschitzness; however, this result isn’t applicable in our setting, as
classification tasks aren’t continuous (i.e. have infinite Lipschitzness). Cheng et al. (2023) mention the similarity between
softmax transformer and a step of gradient descent in the kernel space; some preliminary results left indicate that there are
cases of our classification setup where the two algorithms perform differently. Moving closer to the matter in this paper,
there have been studies on in-context binary classification using softmax self-attention, but together with hinge loss (Li
et al., 2024a), and MSE loss (Li et al., 2024c). Our goal is to take a step further to understanding softmax self-attention in
the ICL classification setting with cross-entropy loss, as this is the setup used with transformers in practice (e.g., in LLMs).

Importantly, we emphasize how our work differs from the concurrent study of Wang et al. (2024a). While they also aim to
bridge toward the ICL classification setting, they introduce a distinct synthetic task and construct a specific transformer
block—featuring two softmax attention layers—that performs functional gradient descent on a parameterized prediction
model. In contrast, our setting is simpler and arguably more natural. We provide a rigorous proof, grounded in RKHS theory,
that transformers can implement functional GD. Moreover, we offer stronger, per-context empirical evidence that trained
transformers actually learn this behavior. Finally, we introduce the notion of a context-adaptive learning rate, whose impact
we leave to future work.

B. Proof of Proposition 3.1

In this section we provide the proof of Proposition 3.1, which demonstrates that a linear transformer can perform one step of
gradient descent in a linear classification setting.

Proof outline. Cross-entropy loss on one sample (x,y) is given by formula
L(W) = —y " logsoftmax(z), where z = W ' x.

To calculate Vy L(x), let W = [w1, ..., w¢] and z; = w, x. Then V,L = sfmx(z) —y. As Viyz1 = [x,0,...,0], we
have

c c

oL

VwL(x) = g . Vwz = g (pi —v:)[0,...,0,%,0,...], where p = softmax(z).
i=1 "

i=1
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Recognizing the outer product, this leads us to
Vw L(x) = x(softmax(z) —y) .

This means one step of gradient descent on the whole dataset gives:

n - T T
WW:W—fg 1 (soft Wy xi) —yi)
e 0 ”i:1X(SO max(W, x;) — y:)

and assuming W, = 0, this makes a new prediction on Xquery:

A _ T
Yaquery = softmax{ W, Xquery }

n - 1 T
softmax{ — E (Ol - Yi> X; Xquery}

i=1
n - T
ft - [ uer ) 2
SO max{n ;:1 YiX; Xq y} )

where crucially we use the fact that softmax is shift invariant. Intuitively, Equation 2 can be implemented with linear
self-attention because x?xquery can be obtained in the product of key and query matrices, and multiplier y; can be extracted
using the value matrix. We provide a simple set of weights that achieve this. Namely, setting

Iy Oaxc T T { 0d dec}
WAWx = JWIW =
QMK [Ocm 00] VO T 0oxa e

enables extracting x;s from the merged tokens in the attention, and y;s in the value and projection matrix. [

C. Proof of Proposition 3.2

Here we provide the proof of Proposition 3.2, showing that kernel self-attention is expressive enough to implement a step of
gradient descent in kernel feature space. We first provide a sketch of the proof for kernels with finite dimensional feature
spaces, and then separately showing that Equation 3 also holds for general kernels.

Proof sketch for finite dimensional feature spaces. We provide intuition here for finite dimensional kernel feature spaces,
with a fully general proof (extending to functionals in RKHS) in Section C.1. Let k be a kernel with finite dimensional
kernel space and ¢ be its feature map, i.e. k(x,x") = (©(x), ¢(x’)). Using kernel feature expansion, on input x, we predict
y = softmax (W T ¢(x)). All the equations from Section 3.1 hold through, with x replaced by ((x). Hence we end up with

Vauery = softmax{z z; yigp(xi)Tgo(xquery)} = softmax{z Z; vik(x;, xquery)}. 3)
1= 1=

Equation 3 holds for any kernel, even if the kernel feature space is infinite-dimensional, see the full proof in Appendix C.1.
Similarly to the linear transformer case, Equation 3 can be implemented with a kernel activation SA, as k(X;, Xquery) can be
obtained from the attention with activation acty, and y; can be extracted using the value matrix. A simple set of weights
implementing it is given by:

I;  Ogxc Is  Ogxc
Wo = Wy =
Q@ [Ode OC ] K |:0C><d OC :|

Od dec Od deC
Wy = Wo =
v [Ocm Ic ] © [Ocm ]\],Ic] ’

which recover the Equation 3 in the transformer’s forward pass. [

C.1. Functional gradient descent leads to Equation 3

Let X = R? be the space of inputs, and k£ : X x X — R akernel. Let # be the reproducing kernel Hilbert space (RKHS)
associated with k. We do a functional gradient descent in #, making use of chain rule. Corresponding to the Wy = 0

9
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assumption of Proposition 3.2, we start from f1, ..., fc € H being the zero functions, where softmax ( f; (x))JC:1 gives the
predicted probabilities of x being of classes j = 1, ..., C'. Now, we lay out similar equations as in the case of normal gradient
descent:
L(f1, ..., f¢) = =y " log(softmax(z)) [where z = (f1(x), ..., fo(x)) "]
C
oL
Vil = 92 —Vnz [by chain rule]
i=1
oL
= th 21
oL . . g
= 5‘7V 1 Ex(f1) [where Ey : H — R is the evaluation functional ']
1
oL
=—k VEy = k(x,-
= Sok(x) [as (x,)]
= (p1 — y1)k(x,") [where p = softmax(z), using V(L) = softmax(z) — y]

where the functional gradient with respect to other functionals f;, j = 2, ..., C is computed similarly. Given a sample set of
points (x;,y;)" ,, the updated fi, ..., fc become

fl,new fl "
f2new f2 77
’ = - ft i)k i "
. 2:: softmax(z;) — y;)k(x, )
fC,new fC

Now assuming f; = 0, and applying these updated functions to Xquery gives:

fl new(x uer )
) query

yquery = softmax f2ﬁﬂeW (Xquery)

anew(X ue )
query

= softmax{ - = E k(x;, Xquery)}
n
= ft - 1k ‘) uer .
SO max{ - ;:1 yik(xi, Xq y)}

This concludes the proof that Equation 3 holds for all kernels. [J

D. Softmax self-attention can do one context-adaptive step of kernel GD on classification task

First, we give a more detailed derivation of Equation 1, from Equation 3 with RBF kernel:

R ||x —xquery H
Yquery = softmax{ Z yie 202 }
2x Xqumy —2
= softmax{ Z yie 202 }
xl Xquery
Y oveE)

neU i=1

= softmax{

Now setting o and introducing n(X) as stated in the main paper leads to Equation 1.

®Le. Ex(f) = f(x), forall f € H.

10



Transformers May Learn to Classify In-Context by Context-Adaptive Kernel Gradient Descent

Loss P correct token Entropy
0.15 1.0 7517 o 1.0 ! !
. i ” 1.0 i
—— Preds diff £ ] i
I ]
£ 0.10 Model diff @ ! i
2 052 | i
N 0.05 —— Cos sim é: | oo
] ]
) I
0.00 0.0 . . H
0 1000 2000 0 5 0.0 0.5 1.0 0.0 0.5 1.0
a) Training steps Linear SA Linear SA Linear SA
Loss P correct token Entropy
1.0 : s 10 ; ; -
—— Preds diff e 4l : |
[ A N DL DL DL L LY Sl | 1
£0.10 Model diff @ ! ,/ : 10 i
2 s 8 |1 Gos S
N 0.05 —— Cos sim 2 21 | 051 ____fF |
O : : ]
\ T A — ] ]
000 —r—————— 017, 0.0 H 0.0 H
0 1000 2000 0 2 4 0.0 0.5 1.0 0.0 05 1.0
b) Training steps Linear SA Linear SA Linear SA
Loss P correct token Entropy
1'0 6 T T *
0.15 - ! 1.5 ! ’
—— Preds diff € i i
) 1
€ 010 Model diff w o My b 1.0 !
2 052 § i 8 | s
N 0.05 —— Cos sim ] 2 i 0.5 d
(@) 1 1
] 1
0.00 { = 0.0 0 i 0.0 |
0 1000 2000 0.0 2.5 5.0 0.0 0.5 1.0 0 1
c) Training steps Linear SA Linear SA Linear SA

Figure 5. Similarity between the two algorithms—trained linear SA and a GD step—in the setup with C' = 5,n = 100 and a) d = 2, b)
d = 3,c)d = 10. Left: Alignment metrics through transformer training. Right: Similarity per context sample of loss, probability of the
correct class and entropy of ¥query, respectively.

Here is a simple set of self-attention weights giving raise to the Equation 1 in the transformer’s forward pass, hence showing
that softmax transformer is expressive enough to implement one context-adaptive step of GD:

I; 0 0 0
WTW — Cold dxC ,WTWT — d dxC .
QK [Ude Oc Vo Ocxa cplc

E. Linear transformer does learn to do GD

To test whether trained linear SA actually learns the solution provided in Proposition 3.1, we compare its performance with
one step gradient descent (starting from W = 0), whose learning rate value is found through a linear search. In Figure 5, we
show the results for C = 5,n = 100 and varying d. The low values of the prediction and sensitivity differences, the cosine
similarity converging to 1, and the similar per-sample metrics suggest that a single-layer linear transformer does learn to
solve linear classification task by doing one step of GD.

F. Softmax transformer does learn to do context-adaptive step of kernel GD

Here, we provide more results analogous to Figure 4, varying different dimensions of the space d. For the vanilla context-
adaptive step of kernel GD (Equation 1), we pick ¢; and ¢, that minimize CE loss in a grid-search. We compare this to a
softmax SA trained on our toy classification task contexts. Figure 6 shows the results for d = 2,3, 10. We note that for

. o ATR‘ .
d = 2, the gradient W
Xquery

cosine similarity and sensitivity differences. The numerical instability comes from highly saturated softmax attention. In the
case of d = 10, softmax attention and context-adaptive kernel GD are slightly different, and we believe that is due to the fact
that the training of the transformer, in terms of the values of ¢, and c,, hasn’t converged yet (see Appendix I).

is numerically unstable to compute in our setup, so we couldn’t provide the results on the

11
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Figure 6. Similarity between a trained softmax self-attention and a context-adaptive step of kernel GD—in the setup with C' = 5,n = 100
and: a)d = 2,b)d = 3,¢)d = 10.

G. Implementation details

Training. For our empirical experiments, we train transformers in JAX (Bradbury et al., 2018) using a modified version of
the open-sourced code from (Singh et al., 2024). The use of JAX ensures full reproducibility of our experiments, while also
enabling efficient training via just-in-time compilation and automatic vectorization. We use Adam optimizer (Kingma & Ba,
2014) with the default parameters. In all the experiments, we use single-headed self attention, without the causal mask.
In all experiments, model training had 2048 batch size, meaning 2048 linear classification task contexts. All evaluation
sets contained 512 context samples. We emphasize again that we don’t use positional encoding, token embedding nor

unembedding, MLPs nor layer norm?.

Linear transformer hyper-parameters. For linear transformer, we mostly follow the setup in (Von Oswald et al., 2023),
with learning rate 0.00005. On initialization, we rescale the weights by 0.002 and perform gradient clipping with value
0.001. We train the transformer for 200,000 iterations (batches). We evaluate every 100 iterations, hence our results are
showing training steps in the range 0-2,000.

Softmax transformer hyper-parameters. For softmax transformer, we also rescaled the initial weights by 0.002, and we
set the gradient clipping value to 1.0. Transformer training was done over 2,000,000 iterations and (as linear) evaluated
every 100 iterations, therefore shown in range 0-20,000. Learning rate was dimension dependent: d = 2 - 0.0006; d = 3 -
0.00003; d = 5 - 0.0001; d = 10 - 0.0005.

Gradient descent grid search. For a GD step, we did a grid search for learning rate over n € [10°, 10%-%], trying out 100
examples chosen from a logarithmic range. For a kernel GD step, we did search for 2 hyper-parameter values, 1 and o2, We
tested 100 values of 7 € [10°,10%] (log scale), times 100 values of 02 € [10~3,10?] (log scale). In both cases, the search
was done using N = 10, 000 different contexts from the classification task described in 2.1.

Grid search for ¢, and c,,. For context-adaptive kernel GD, we did grid search to find ¢, and c,,. These are shown in Figures

8As we have only one layer, it doesn’t really make a difference.
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Figure 7. The weights through training: Wg Wi (top row) and Wo Wy (bottom row) for the setup n = 100, C' = 5,d = 3. Observing
they look similar to the construction in Section D, we found a way to extract the effective values c,;, ¢, that softmax self-attention uses,
described in Section H.

4 and 6. We used different scan ranges depending on the dimension. For ¢,, we tried 100 values from log range [vmin, vmax],
where vmin and vmax are: d = 2 - vmin = IOO,Vmax = 10%35;d = 3,5 - vmin = 10~!, vmax = 10%; d = 10 -
vmin = 1073, vmax = 10'. For ¢, the 100 values were from log range with: d = 2,3,5 - vmin = 10!, vmax = 10%
d = 10 - vmin = 10", vmax = 10%. To perform the search, we used N = 10, 000 different contexts from the classification
task in Section 2.1.

H. Extracting c, and c, from a trained transformer; Dynamics

As demonstrated empirically, a transformer learns to implement Equation 1, corresponding to a single step of GD in kernel
space with a context-adaptive learning rate. This suggests that a trained softmax SA—with parameters Wq, Wg, Wy, Wo—
can be effectively characterized by just two parameters: ¢, and c¢,. Observing that the learned weights WQT Wi and Wy Wg
resemble those from our construction in Appendix D, we found a method to extract the effective values of ¢, and ¢, from
the trained model. For example, the weight matrices WC; Wi and Wo Wy, through training can be seen in Figure 7 for the
case n = 100, C' = 5, d = 3. To extract the effective c,, we take the average value at the diagonal of x-entry submatrix of
Wc—gr Wi . Extracting c,, goes as follows: we first note that adding a constant to a column in y-entry submatrix of Wo W+
mathematically doesn’t change anything—due to softmax activation being shift invariant. Thus to get to the form of our
construction in Appendix D, we add to each column of y-entry the average value of the off-diagonal entries in that column.
This results in the off-diagonal entries being approximately 0, so we take the average of the diagonal entries to be the
effective value c,,. Our experiments show that this method indeed extracts the correct effective values—in Figure 8 we can
see that in the setting n = 100, C = 5 and d = 3, transformer’s similarity metrics align well with the implementation of the
Equation 1 with the effective values of ¢,), ¢, we extracted. For reference, we also included an example with ¢, ¢, slightly
off from the extracted values—we see that differences are large, strengthening correctness of our extraction method.

Figure 9 shows the how the two effective values evolve through training, for fixed n = 100, C' = 5, and varying d. General
dynamics involves the initial spike—the time that weights of the transformer align to do kernel GD, followed by scaling
of ¢, and ¢,. For d = 2 softmax transformer learns to pay attention only to points very close to the query point (high c,).
However, this isn’t the case in general, as we can see for higher dimensional spaces. As the dimension gets higher, less
and less points are in a close neighborhood of Xgyery, With many more being approximately orthogonal to it. This leads to
larger attention window (made possible with lower ¢,,), and higher saturation/confidence in the samples that are captured in
that window (higher c,)). In the case of d = 10, we see that the values haven’t converged yet—see Appendix I for more
experiments and discussions on this setup.

L. Finding c, and ¢, in the case d = 10

After plotting the effective value evolution for the case d = 10 (and C = 5,n = 100), we’ve noticed that the growth of
¢y hasn’t finished yet. Trying out different (model training) learning rates, we plot the dynamics over 60,000 evaluation
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Figure 8. a) The differences between a trained self-attention and Equation 1 with ¢,, ¢, values extracted with our method from the
transformer. The similarities observed indicate that our method works. b) The differences between a trained self-attention and Equation 1
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Figure 10. Evolution of the effective values of the constants c,, and ¢, through training, for different values of the (transformer’s training)
learning rate: 0.00005, 0.0001, 0.0008 and 0.003, respectively.
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Figure 11. Proportion of runs where selection algorithm is learned, over 20 random seeds, varying number of classes, dimension and
context length, from left to right.

iterations, seen in Figure 10. Interestingly, for higher learning rate, the growth of ¢, flattens earlier and around a smaller
value, as seen from the right two plots. Observation that no value of ¢, converged yet, together with the fact that grid search
finds the optimal ¢,, to be ~8,000, we realized that this case of d = 10 has a more complicated loss landscape. This evidence
suggests that a learning rate scheduler may be needed to fully successfully train a softmax SA in this case. Since this is not
the primary focus of the paper, as well as our compute power restriction, we leave further investigations for future work. A
lesson learned from these experiments is that seemingly flat loss and accuracy curves can be misleading, and the model may
still be developing.

J. Softmax attention selecting vs eliminating

Softmax transformer learns (at least) two different algorithms through training. In the more common case, our results match
the context-adaptive kernel GD solution (Figures 4, 6). This strategy can be viewed as predicting query class logits as
a weighted average of y;s, weighted based on how close Xquery 18 to different x;s. Intuitively, the model is selecting the
context points from which to copy the labels, similar to the mechanism of induction heads (Olsson et al., 2022; Reddy,
2023; Singh et al., 2024), with the radius of selection controlled by the kernel width o2 > 0. More rarely, we observe a
different algorithm—elimination—whereby softmax self-attention learns to attend to the tokens furthest from the query and
then subtract those out.” Throughout this paper, we focused on the selection algorithm, because it is the one learned in
majority of cases. However, especially when C' is low, the elimination algorithm is appearing as well. In Figure 11, we
provide the proportion of times the selection algorithm is learned, across different seeds (20 different combinations in total).
The base setting is d = 2, C' = 5,n = 100. For each of the plots, we make number of classes, dimension and context length,
respectively, vary and observe how does the percentage of selection algorithm leaned change. These experiments affirm that
selection algorithm is the one leaned in majority of runs, especially in our default settings. We leave further studies of the
elimination algorithm and the conditions it appears in for future work.

“Such a mechanism was more frequent when C' was small, indicating possible connections to the anti-induction heads noted by Singh
et al. (2024).
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