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Abstract

VRPs with complex real-world constraints remain challenging for both traditional1

OR solvers and neural methods. Despite leveraging GPU acceleration and re-2

duced domain knowledge, neural solvers have largely been limited to simplified3

VRP variants, but struggle with complex constrained ones. We first rethink the4

existing popular single-paradigm neural solvers and identify paradigm-inherent5

limitations: construction solvers suffer from inflexible stepwise feasibility, and6

improvement solvers easily get stuck in infeasible searches with long runtimes.7

However, these paradigms are naturally complementary: construction efficiently8

provides strong initial solutions that help improvement rapidly reach feasible, high-9

quality solutions. Motivated by this, we propose Construct-and-Refine (CaR), the10

first generic neural framework for efficient constraint handling, compatible with11

existing construction and improvement solvers. To promote synergistic paradigm12

integration, we introduce a joint training framework with bespoke losses to gen-13

erate diverse, high-quality, (near)-feasible solutions that are refined by a light14

improvement process (e.g., only 10 steps down from 5k). We also present the first15

study of a shared encoder for cross-paradigm representation learning in handling16

complex constraints. We evaluate CaR on two challenging VRP variants, TSP with17

Time Windows (TSPTW), where feasibility masking is intractable, and CVRP with18

Backhaul, Time Windows, and Duration Limit (CVRPBLTW), where masking is19

tractable but overly restrictive. Our experiments, as shown in Table 1, demonstrate20

that CaR achieves superior feasibility, solution quality, and efficiency compared to21

both traditional and neural state-of-the-art solvers.22

Table 1: Results on constrained VRPs. Best are bolded. L2C: Learning to Construct; L2I: Learning to Improve.

Method #Params Paradigm §
n=50 n=100

Obj. ↓ Gap ↓ Infsb% ↓ Time Obj. ↓ Gap ↓ Infsb% ↓ Time

T
SP

T
W

LKH3 / I 25.611 ⋄ 0.12% 7h 46.858 ⋄ 0.13% 1.4d
OR-Tools† / I 25.763 -0.001% 65.72% 2.4h 46.424 0.026% 97.45% 12m
Greedy-C / C 26.394 1.534% 72.55% 4.5s 51.945 9.651% 99.85% 11.4s

POMO 1.25M L2C / / 100.00% 4s / / 100.00% 14s
POMO* 1.25M L2C 26.222 1.635% 37.27% 4s 47.249 1.959% 38.22% 14s

POMO* + PIP (greedy) 1.25M L2C 25.657 0.177% 2.67% 7s 47.372 1.223% 6.96% 32s
NeuOpt-GIRE ∗‡ (T = 5k) 0.69M L2I 25.617 0.028% 0.02% 11.6m 46.913 0.123% 0.02% 30m

CaR-POMO (TR = 20) 1.64M L2(C+I) 25.614 0.014% 0.01% 51s 47.001 0.406% 2.34% 2.1m
CaR-PIP (TR = 20) 1.64M L2(C+I) 25.612 0.005% 0.00% 52s 46.923 0.146% 0.02% 2.4m

C
V

R
PB

LT
W

OR-Tools / I 14.677 ⋄ 0.00% 1.7h 25.342 ⋄ 0.00% 3.5h

POMO 1.25M L2C 15.999 9.169% 0.00% 2s 27.046 7.004% 0.00% 4s
POMO+EAS+SGBS* 1.25M L2C 15.156 3.263% 0.00% 10.3m 25.558 0.854% 0.00% 1h

NeuOpt-GIRE ∗‡ (T = 5k) 0.69M L2I 14.201 -1.163% 27.30% 5.5m 24.237 -0.533% 41.20% 15m

POMO* 1.25M L2C 14.873 2.310% 0.00% 2s 24.592 -1.645% 0.00% 4s
CaR (k-opt) (TR = 20) 1.64M L2(C+I) 14.844 2.114% 0.00% 8s 24.585 -1.724% 0.00% 17s
CaR (R&R) (TR = 20) 1.72M L2(C+I) 14.601 0.463% 0.00% 10s 24.400 -2.448% 0.00% 19s
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