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Abstract

Random splitting of datasets in image segmentation often leads to unrepresentative
test sets, resulting in biased evaluations and poor model generalization. While
stratified sampling has proven effective for addressing label distribution imbalance
in classification tasks, extending these ideas to segmentation remains challeng-
ing due to the multi-label structure and class imbalance typically present in such
data. Building on existing stratification concepts, we introduce Iterative Pixel
Stratification (IPS), a straightforward, label-aware sampling method tailored for
segmentation tasks. Additionally, we present Wasserstein-Driven Evolutionary
Stratification (WDES), a novel genetic algorithm designed to minimize the Wasser-
stein distance, thereby optimizing the similarity of label distributions across dataset
splits. We prove that WDES is globally optimal given enough generations. Using
newly proposed statistical heterogeneity metrics, we evaluate both methods against
random sampling and find that WDES consistently produces more representative
splits. Applying WDES across diverse segmentation tasks, including street scenes,
medical imaging, and satellite imagery, leads to lower performance variance and im-
proved model evaluation. Our results also highlight the particular value of WDES
in handling small, imbalanced, and low-diversity datasets, where conventional
splitting strategies are most prone to bias.

1 Introduction

Image segmentation involves the assignment of a label to each pixel in an image, with applications in
diverse fields such as autonomous driving [1H5]], medical imaging [6H10], and satellite image analysis
[L1H15]. In a supervised learning setting, splitting the dataset into disjoint subsets for training and
validation is common practice. However, following a random splitting strategy can result in class
distribution shifts across subsets compared to the original dataset. This can lead to biased evaluations,
as the test set is typically smaller than the training set and more affected by this phenomenon.
Typically, such issues are addressed through stratification to guarantee a consistent distribution
of class labels across subsets [[16] but this is not straightforward for image segmentation datasets
[L7H21]. The fundamental unit, an image, is not a sample with a single class but a sample with pixels
belonging to many classes. Stratification strategies for similarly complex multi-label datasets [22]]
could provide interesting solutions that can be applied to segmentation datasets. Strategies relevant
to multi-label datasets have been proposed and investigated in various forms ranging from iterative
strategies [23H25]], greedy search [26] 27]], and genetic algorithms [28]]. These methods do not directly
apply to the problem of segmentation, as multi-label datasets have the complexity of multiple positive
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Figure 1: Representative examples of Plane images from PascalVOC [17]. The illustration shows
an ideal split with balanced class distribution across folds which is not ensured by random splitting.
Such balance is essential to avoid bias and ensure reliable model evaluation.

classes for each sample but do not have the added complexity of proportional representation of these
classes in the sample. Segmentation datasets present a unique challenge in this regard, complicating
the task of stratification.

Segmentation datasets are often small due to high annotation costs and exhibit imbalanced class
distributions due to label diversity. As dataset size decreases, inconsistent class distributions in subsets
increase, hindering generalization [29]. This issue is critical in imbalanced datasets, where some
classes may be absent from splits, making performance metrics like F1-score and IoU unmeasurable.
Such missing data undermines the reliability of model evaluation, especially in K-fold cross-validation
[30], where unrepresentative subsets affect performance variance.

Motivated by these challenges, we propose and investigate two stratification strategies: Iterative Pixel
Stratification (IPS) and Wasserstein-Driven Evolutionary Stratification (WDES ﬂ These methods
are designed to assign samples to subsets, or folds, for a train-test split scenario (two folds) or a
K-fold cross-validation scenario (K folds), taking into account the label composition of the sample.
IPS extends the Iterative Stratification (IS) algorithm proposed in literature [23], assigning samples
to folds using a greedy approach to meet predefined class presence requirements measured by the
number of pixels in each fold. It prioritizes assigning samples containing rare classes to folds,
progressively addressing those with increasing ubiquity. In contrast, WDES employs an evolutionary
algorithm akin to Evosplit [28]], where a population of potential fold assignments (individuals) is
evaluated simultaneously. The fittest individuals undergo selective crossover and mutations for further
refinement. The fundamental distinction between these two methods lies in their approach to fold
assignment and evaluation. The iterative nature of IPS confines it to a sequential decision-making
process and is limited to a single chain of iterations. Conversely, the genetic algorithm in WDES
evaluates multiple solutions independently by maintaining a population, enabling it to explore a
broader solution space. The flexibility of WDES allows us to choose a better objective function to
be minimized. We choose the Wasserstein distance between the class distribution in the fold and
the overall dataset as it indicates the similarity between these distributions. Hence, minimizing the
distance reduces dissimilarity between the subsets and the dataset.

We evaluate IPS, WDES, and random splitting across five benchmark segmentation datasets. Our
evaluation begins by analyzing the consistency of folds generated through repeated experiments. We
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further assess the impact of targeted stratification versus random splitting by examining the standard
deviation of accuracy, F1-score, and Intersection over Union (IoU) across 10-fold cross-validation. A
lower deviation indicates a more reliable assessment of model performance. Empirical results show
that WDES consistently achieves the highest quality splits. In contrast, IPS under-performs relative
to WDES, suggesting that a sequential strategy may be suboptimal for segmentation tasks. Notably,
WDES also demonstrates better consistency over the other two for evaluating model performance on
low-entropy datasets, where class distributions are highly imbalanced or concentrated. Overall, our
findings highlight the importance of stratification tailored to structured outputs and advocate for the
adoption of principled splitting methods in segmentation tasks.

2 Related Work

Existing methodologies for stratifying complex datasets trace their origins to Iterative Stratification
(IS) by [23]]. In their work, the authors addressed the intricacies of multi-label datasets, proposing a
greedy algorithm that iteratively assigns samples to folds based on the required frequency of positive
labels within each fold. Fold quality is evaluated by comparing the Label Distribution (LD) metric.
LD is the difference between the proportion of samples belonging to a given class within a fold and
the corresponding proportion in the overall dataset

The partitioning method based on stratified random sampling (PMBSRS) by [24] employs a similar
iterative approach but incorporates a pre-sorting step. This method clusters samples with similar label
sets before assigning them equally to folds, thereby enhancing the homogeneity of label distribution
across folds. Building upon the work of [23]], authors of [25] introduced Second Order Iterative
Stratification (SOIS), which considers second-order label relationships. Instead of focusing on
individual labels, SOIS accounts for label pairs to determine the demand within each fold, thereby
capturing more complex interactions between labels.

Other strategies approach stratification by starting from an initial assignment and iteratively refining
it. The Stratified Sampling (SS) method proposed by [26] pre-assigns samples to folds and evaluates
them based on deviations from the ideal label distribution. Samples contributing to the highest
deviation subset are shuffled between folds to minimize discrepancies. This approach was designed
with large-scale XML datasets in mind [31]. A similar split-and-shuffle approach was adopted by
[27] but from a label-centric perspective. They developed a scoring mechanism to assess fold quality
relative to each class, shuffling samples associated with the class exhibiting the poorest quality before
recalculating scores. This method demonstrated effectiveness on large Gene Ontology datasets.

Finally, Evosplit, proposed by [28], leverages a genetic algorithm to address the challenges outlined
by [23] and [25]. This method generates a population of fold assignments, evaluates their fitness,
performs crossover and mutation, and iterates over generations to arrive at an optimal solution. Fitness
is determined using Label Distribution (LD) from [23] and Label Pair Distribution (LPD) from [235].

While these methods offer valuable strategies for stratifying multi-label datasets, they do not directly
extend to image segmentation. In segmentation, each sample contains a dense array of pixel-wise
labels rather than a simple set of associated classes, and the proportion of pixels per class varies
significantly across images. This makes stratification more complex: it is not enough to ensure
the presence of a class in a fold; one must also consider how extensively each class is represented
at the pixel level. Therefore, segmentation-specific stratification requires reformulating both the
problem and the evaluation criteria. In the next section, we formalize the segmentation stratification
task and introduce two new approaches, Iterative Pixel Stratification (IPS) and Wasserstein-Driven
Evolutionary Stratification (WDES), which aim to create representative folds by explicitly accounting
for pixel-level label distributions.

3 Stratification algorithms

Consider an image segmentation dataset D = {x,,,y, }N_, with N samples, where x,, denotes the
input images and y,, the corresponding label masks. Let the total number of pixels across all samples
be P, and the number of semantic classes be C'. The objective is to partition D into K disjoint
subsets, denoted S = (S1, ..., S%), according to a target proportion vector r = (r1, ... %), where

r* specifies the desired proportion of samples in fold k.



Finding such a partition that preserves the global class distribution across folds is NP-Hard because
it can be reduced to a multi-way partition problem [32]]. It is analogous to dividing a multi-set of
weighted elements into K subsets with balanced sums; except here, the "weights" are pixel counts
per class and the balance is across multiple classes simultaneously

Let N, be the number of samples in the dataset that contain class ¢, and N(’f the required number
of such samples in fold k. Similarly, let P™ be the total number of pixels in sample n, and P the
number of pixels of class c in sample n. The total number of pixels of class c in the dataset is P, and
the desired number in fold & is P*. These quantities are central to the evaluation of fold quality and
to guiding the stratification process.

3.1 Similarity measures

We first introduce similarity measures calculated on the subsets to assess the quality of the stratified
folds S. These statistical properties of the subsets aim to quantify: (1) how well each fold adhere to
the target sample proportions defined by r; (2) how closely the class-wise pixel proportions in each
subset match those in the full dataset; (3) the overall similarity between fold-level and global label
distributions using distributional distance.

Sample Distribution (SD) With this measure, we aim to assess the deviation of the number of
samples in each subset from the required number of samples as defined by the proportion vector
r. For example, if a dataset of 10 samples is to be equally divided but the subsets contain 4 and 6
samples respectively, the value SD is 1. It is calculated as the average across folds of the deviations
from the desired number of samples in each subset. A low SD indicates that the number of samples
per fold closely matches the intended proportions.

K
1 k k
SD = = > (18" = N* M
k=1
where N* = 7* . N is the expected number of samples in fold .

Pixel Label Distribution (PLD) This measure evaluates how closely the proportion of pixels of
each class within each subset matches the proportion of that class in the entire dataset. For each
class ¢, it calculates the absolute difference between the ratio of pixels of that label in each subset
k and the ratio of pixels of that label in the whole dataset D. It then averages these results across
all labels. This measure is inspired by Label Distribution (LD) in [23]]. Lower PLD values indicate

better preservation of class proportions at the pixel level.
1 (1 &
PLD = — — 2
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An additional similarity measure examining class co-occurrence relationships is provided in Ap-
pendix [H] where we extend this evaluation to capture second-order interactions between classes using
the Pixel Label Pair Distribution (PLPD).

Pk P,
P,—PF P-P,

Label Wasserstein Distance (LWD) This measure uses the Wasserstein Distance to quantify the
dissimilarity between the cumulative class distributions in each fold and that of the entire dataset.
By calculating this distance for each subset and averaging the results, LWD provides an indication
of how closely the pixel-level class distributions in the subsets resemble that of the original dataset.
Let F,. and F* denote the cumulative pixel distributions up to class c in the dataset and in fold k,
respectively:

m:Zav_Mziﬁc
i i=1



Then the Label Wasserstein Distance is defined as:

K C
LWD = — |F. — FY| 3)
k=1c=1

To complement the Wasserstein-based similarity assessment, Appendix [H]presents further similarity
assessments using alternative distributional measures, namely the Linear-kernel Maximum Mean
Discrepancy (L-MMD) and the Linear Energy Distance (L-ED).

3.2 Iterative Pixel Stratification (IPS)

The motivation behind Iterative Pixel Stratification (IPS) stems from Iterative Stratification (IS)
[23], which aims to distribute samples with specific positive labels proportionally across folds. This
distribution is guided by two key properties within each fold: the number of samples required and
the number of positive label instances required. To achieve this, IS starts by identifying the rarest
label among the unassigned samples, determines which fold most requires positive instances of it
and assigns samples that have positive instances of this label to that fold. In cases where multiple
folds have equal demand, the fold with the fewest total samples is prioritized. Once a sample is
assigned to a fold, it is removed from the pool of unassigned samples, and the demand for all positive
labels associated with that sample is reduced in the fold. This iterative process continues, with the
demand for specific positive labels decreasing as samples are assigned. The process concludes once
all samples have been allocated, typically after C iterations.

IPS differs from IS in one key way: the label demand in folds is determined by the number of pixels
required, not by the positive instances of that label. This also means that when a sample is assigned
to a fold, the desire for all labels is reduced by the number of pixels of every label in that sample. As
aresult, IPS emphasizes achieving pixel-level balance over maintaining sample count proportionality.
Note that IPS is implemented by adapting Iterative Stratification without additional optimizations
thereby serving as a straightforward baseline. The pseudo-code for IPS algorithm is presented in
Appendix [B] An alternative iterative stratification approach is presented in Appendix [G|

3.3 Wasserstein-Driven Evolutionary Stratification (WDES)

WDES formulates the stratification problem as an optimization task and solves it using a genetic
algorithm. Each candidate solution, or individual, represents an assignment of samples to folds.
Initially, a population of individuals is generated by randomly assigning samples to folds according
to the target proportion vector r. Each gene (element) in an individual encodes the fold assignment of
a specific sample.

The evolution of individuals is driven by crossover and mutation. First, we evaluate fitness using LWD
(Eq. B) and perform tournament selection [33]]. Crossover occurs with a fixed probability, exchanging
gene segments between individuals. A correction step follows to maintain target proportions across
folds, reassigning samples if necessary. Mutation swaps assignments of randomly selected pairs,
preserving fold proportions and adding diversity. This cycle repeats for a set number of generations,
with the fittest individual (i.e., with the lowest LWD) selected as the final stratification.

We use the LWD as the fitness function to measure class distribution similarity. The proportionality
requirement is managed through the initial population and crossover design, ensuring the genetic
algorithm optimizes class distribution while maintaining proportionality across folds for a balanced
stratification.

3.4 On the convergence of stratification algorithms

For large multi-label datasets, as the dataset size grows, random splits asymptotically preserve the
marginal label frequencies in each fold due to the law of large numbers. We provided a mathematical
proof of this property in Appendix [A.T] This property makes random stratification a practical choice
for very large datasets, where computational efficiency and simplicity are preferable.

For smaller datasets, where NN is finite, WDES provides strong guarantees of approaching the optimal
stratification as the number of generations and population size increase.



Proposition 3.1 (Convergence Rate of WDES to Empirical Optimum). Let Fys,¢ C F denote the
set of stratifications explored by the WDES algorithm after G generations with a population size M.
Then the expected suboptimality of the final stratification Swpgs € Fur,c satisfies:

. 1
E [L(Swogs)] — Ly, , < O <MG> :

where L% = denotes the optimal Wasserstein score in the empirical subset.

Proof. See Appendix [A.2] O

The above results shows that the expected quality of the WDES stratification improves at a rate
of O(1/MG), meaning that as the number of generations and population size increase, the WDES
algorithm converges toward the global optimum. This makes WDES a particularly effective choice
for small datasets, where the algorithm can afford the additional computational cost required to reach
an optimal stratification, providing guarantees of high-quality splits as the search progresses.

4 Experiments

We conduct a comparative analysis of three stratification strategies: a) random sampling using KFold
from the scikit-learn library [34], b) Iterative Pixel Stratification, and c) Wasserstein-Driven
Evolutionary Stratification implemented using the deap library [35].

To achieve this, we start by testing these algorithms on the datasets outlined in Section.T]to calculate
the statistical similarity measures (described in Section [3.1)). For all the algorithms, we consider
the number of pixels belonging to each class in the provided mask of every sample to guide the
stratification procedure. The applicable parameters used for WDES are outlined in Appendix D] We
perform stratification with datasets randomly shuffled five times and average the calculated similarity
measures.

Following this, we perform 10-fold cross-validation tests with random splitting and the targeted
stratification strategies. For every fold, we train a UNet [6] with a resnet34 encoder from [36] for
50 epochs to perform segmentation on the images. The training process employs a learning rate
of 2e-4 and utilizes the Adam optimizer with DiceLoss. For PascalVOC, CELoss is used instead,
with a learning rate of 1e-4 and trained for 100 epochs. All experiments are conducted on a single
Nvidia A100 graphics card with 40GB of VRAM, without distributed training, ensuring consistent
and comparable results across the different stratification methods. We evaluate the stratification
methods by measuring the variance in model performance across folds, to assess whether targeted
stratification provides more stable and reliable evaluations.

4.1 Datasets

We select datasets spanning four major application domains: autonomous driving/street scenes,
medical images, satellite imagery, and general-purpose datasets. For autonomous driving, we use
Cityscapes [21] and CamVid [18]. In the medical domain, we consider EndoVis2018, a robotic scene
segmentation dataset from MICCAI 2018 [[19]]. For satellite imagery, we use the LoveDA dataset
[20], which focuses on land-cover segmentation in urban and rural locations. For general-purpose
segmentation tasks, we include PascalVOC 2012 [17].

To characterize the complexity of each dataset, we define several key properties. Class Cardinality
(CC) refers to the average number of classes present in a sample. Class Ubiquity (CU) captures the
average number of samples in which each class appears, indicating how frequently each class occurs
across the dataset. Average Imbalance Ratio (AIR) is the mean of class-wise imbalance ratios, where
the imbalance ratio for a given class is the ratio of pixels in the most frequent class to those in the class
under consideration. Entropy quantifies the diversity in class proportions; higher entropy implies a
more balanced distribution of classes, whereas lower entropy indicates imbalance. These metrics
provide a nuanced understanding of the datasets’ structural diversity and segmentation challenges.
The properties of all datasets are summarized in Table|l} sorted by entropy.



Table 1: Datasets and properties

Dataset N Images N Classes CC CU AIR Entropy
PascalVOC [17] 2,913 21 248 344 79 1.82
CamVid [18] 701 32 17.44 370  7.56E+06 1.94
EndoVis [19] 2,235 12 6 1,117 1,492 2.38
LoveDA [20] 2,522 8 497 1568 4.5 2.61
CityScapes [21] 2,974 35 16.6 1412 467 3.17

Table 2: Comparison of stratification methods using statistical similarity measures across datasets.
WDES yields folds that better reflect the overall distribution, as indicated by PLD and LWD. The
advantage narrows for datasets with higher class cardinality and lower ubiquity.

SD PLD (x10-5) LWD (x10
Mean Std Mean Std Mean Std

Random 0.42 0.00 955 137 750 2.62
PascalVOC IPS 10.28 246 733 244 533 1.20
WDES 042 000 456 779 514 1.63

Random 0.00 0.00 634 373 183 5.08
Camvid IPS 6.68 1.18 76.6 530 209 844
WDES  0.00 0.00 36.7 447 138 17.84

Random 0.50 0.00 609 814 661 355
EndoVis IPS 1142 105 769 122 764 752
WDES 050 0.00 208 238 399 104

Random 032 0.00 1110 109 1080 884
LoveDA IPS 806 1.15 1090 207 1100 87.4
WDES 032 0.00 377 314 635 16.0

Random 0.50 0.00 126 154 304 165
Cityscapes IPS 1154 269 148 174 324 222
WDES  0.50 0.00 67 344 217 517

Dataset Method

Random 1 24 2.2
Ranking IPS 2 2.6 2.8
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Figure 2: Relative improvement of WDES over random splitting in PLD and LWD. Performance gap
decreases with increasing class cardinality, but WDES maintains an edge in datasets with high class
ubiquity.



Table 3: Average segmentation performance of UNet across stratification methods in 10-fold cross-
validation. Standard deviations in Accuracy, F1, and IoU are used to assess consistency. WDES
performs best in low-entropy datasets, while random splitting becomes competitive as entropy
increases.

Dataset Method Accuracy Fl ToU
Mean Std (x10-3) Mean Std (x10-3) Mean Std (x10-3)
Random 0.76 20.6 0.58 32.5 0.44 34.3
PascalVOC IPS 0.76 14.5 0.58 30.3 0.44 31.6
WDES 0.75 11.0 0.57 24.0 0.43 24.2
Random 0.94 0.68 0.91 1.16 0.89 1.17
Camvid IPS 0.94 0.74 0.91 1.35 0.89 1.27
WDES 0.94 0.67 0.91 1.09 0.89 1.06
Random 0.94 19.4 0.86 27.0 0.80 28.1
EndoVis IPS 0.94 14.1 0.87 29.3 0.79 30.7
WDES 0.94 13.0 0.85 17.9 0.79 18.9
Random 0.88 6.63 0.80 6.39 0.69 8.38
LoveDA IPS 0.88 7.39 0.80 9.29 0.69 10.7
WDES 0.88 7.49 0.80 9.86 0.69 11.0
Random 0.79 11.2 0.61 9.12 0.50 8.64
Cityscapes IPS 0.79 10.3 0.61 14.9 0.50 15.2
WDES 0.79 11.2 0.61 14.4 0.50 12.8
Random 2.4 1.8 1.8
Ranking IPS 2 2.6 2.6
WDES 1.6 1.6 1.6

5 Results and Discussion

5.1 Distribution of Labels and Samples

Table [2] presents the statistical similarity measures calculated for the subsets generated across the
five datasets. For each measure and dataset, we report the mean over five runs, highlighting the
best-performing method in bold. An overall average rank is also computed for each method by
assigning rank 3 to the method with the lowest mean and rank 1 to the one with the highest.

Our findings indicate that WDES consistently achieves superior performance in terms of PLD
and LWD across all datasets, underscoring its effectiveness in preserving label proportions and
label distributions within the stratified subsets. Although IPS was explicitly designed to address
proportionality in class presence, WDES outperforms it not only in LWD (which it directly optimizes)
but also in PLD. This reinforces the perspective that stratification for image segmentation tasks benefits
more from minimizing distributional dissimilarity than from simply ensuring class proportions.

WDES also exhibits favorable SD scores, which follow directly from its design. Because WDES
explicitly enforces predefined sample proportions across folds, it naturally results in balanced
sample counts. This behavior is similarly observed in random splitting, which allocates samples
proportionally across folds without replacement.

Another noteworthy pattern emerges in relation to dataset complexity. As class cardinality increases,
the performance gap between WDES and random splitting diminishes for both PLD and LWD. This
trend suggests that when more classes are present per sample, the benefits of targeted stratification
decrease due to the inherent balancing effect of high cardinality. In contrast, as class ubiquity
increases, indicating that classes are more commonly present across the dataset, the superiority
of WDES becomes more pronounced. This is expected, as higher ubiquity leads to more overlap
between classes and samples, thereby amplifying the benefits of optimization-based stratification.
These trends are illustrated in Figure[2] which presents the changes in PLD and LWD differences
relative to class cardinality and ubiquity using trend lines.
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Figure 3: Stratification method rankings by performance variance across datasets. WDES ranks
highest in low-entropy settings; random splitting improves with higher entropy, reducing the benefit
of targeted stratification.

Table 4: Average segmentation performance of UNet for underrepresented classes (bicycle, boat,
and potted plant) in PascalVOC under 10-fold cross-validation. Standard deviations in Accuracy, F1
Score, and IoU are reported to assess consistency. WDES yields the most stable results across all
three rare classes, indicating improved fold balance for low-frequency categories.

Accuracy F1 IoU
Mean Std Mean Std Mean Std

Random 0.62 0.04 031 0.08 0.19 0.06
Bicycle IPS 0.62 0.04 031 0.09 0.19 0.06
WDES 062 003 031 0.07 0.19 0.05

Random 0.72 0.05 053 0.09 037 0.08
Boat IPS 0.70 0.06 049 0.14 033 0.12
WDES 072 0.04 055 0.08 038 0.08

Random 0.71 0.08 047 0.16 032 0.14
Potted Plant IPS 071 0.09 051 0.16 036 0.14
WDES 070 0.07 047 012 031 0.10

Class Method

5.2 Variance of Performance

Table 3] presents the results of training a UNet model on each dataset using 10-fold cross-validation.
For each fold, we evaluate performance using Accuracy, F1 Score, and Intersection over Union (IoU),
and report the average across the ten experiments. To highlight the robustness of each stratification
strategy, we identify the method with the lowest standard deviation for each metric. Rankings are
assigned from 1 to 3, with 1 indicating the lowest variance in performance and thus better fold
consistency.

Our analysis shows that WDES achieves the best average rank in standard deviation across Accuracy,
F1 Score, and IoU. This indicates that WDES produces splits that are more consistent with each
other and better reflect the overall data distribution, leading to more stable model evaluation. While
we cannot distinguish whether the reduced variance stems from the training or test set, the smaller
size of the test set suggests it is more affected by sampling variability. Thus, the improvements in
test set consistency are likely the main driver of the reduced standard deviation. This makes the
average cross-validation score under WDES a more reliable estimate of a model’s true generalization
performance. We leave empirical validation of this to future work.

To further examine whether these improvements extend to underrepresented categories, we analyzed
the segmentation performance for three rare classes in PascalVOC: bicycle, boat, and potted plant.
As shown in Table ] WDES consistently yields lower standard deviation in Accuracy, F1 Score,
and IoU for these classes compared to random and IPS-based splits. This mirrors the global trend



observed in our main results, suggesting that WDES not only improves stability across folds overall
but also enhances evaluation consistency for rare classes in low-entropy datasets.

As we move from low-entropy to high-entropy datasets, where label distributions are inherently more
balanced and diverse, the advantage of WDES diminishes. The performance of random splitting
improves and can even outperform stratified approaches. In these cases, the class distributions are
already relatively uniform across samples, making targeted stratification less critical. This trend
is reflected in the increasing rank of random splitting and the decline in WDES performance with
increasing entropy, as illustrated in Figure [3]

While IPS was designed to be a label-aware stratification method, it ranks lowest on average across
accuracy, F1, and IoU deviation. A potential reason lies in its single-pass, greedy allocation strategy,
which reduces label demands in a fold as soon as a sample is assigned. This mechanism introduces
a path dependency that prevents the algorithm from reassessing earlier decisions or accounting
for broader distributional goals. Furthermore, although IPS considers pixel-level proportions, its
strategy is primarily focused on satisfying per-label pixel quotas without evaluating the resulting
inter-label distribution in each fold. As a result, by prioritizing rare labels first and assigning samples
based solely on immediate label demand, it may overlook more nuanced strategies for dividing the
dataset, such as balancing co-occurring label groups, preserving contextual diversity, or accounting
for interdependencies between frequent and infrequent classes.

6 Conclusion and Limitations

In this paper, we introduced WDES, a stratification method for image segmentation tasks based on a
genetic algorithm that minimizes the Wasserstein distance between label distributions. We provide
a theoretical guarantee (Appendix [A.2)) that WDES converges to a globally optimal stratification
given sufficient generations. We empirically compared its performance against iterative (IPS) and
random sampling across several datasets and evaluation criteria. WDES outperforms both iterative
and random methods, achieving the best average rank in accuracy, F1 score, and IoU variance in
segmentation tasks, particularly for low-entropy datasets. Conversely, random stratification shows
lower variance in high-entropy datasets, indicating that the benefits of targeted stratification diminish
as class distributions become more uniform.

We emphasize the importance of stratification in cross-validation and train-test splits for image
segmentation, particularly to avoid underrepresenting certain test sets and biasing the evaluation.
This issue is especially critical for rare or underrepresented classes and when working with small
datasets. Because final performance scores in cross-validation are typically computed as the mean
of fold-wise means, the effects of imbalanced splits are not mitigated by the repeated nature of the
process. While WDES improves upon simpler strategies, it is not a universal solution. Its reliance
on minimizing Wasserstein distance assumes that distributional similarity alone ensures balanced
splits, potentially overlooking other factors such as spatial structure or class co-occurrence. Future
work should explore alternative similarity measures and more comprehensive modeling of dataset
composition to improve stratification in segmentation tasks.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
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in the statements. Theorem statements are mentioned in the main paper.
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¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification: We provide detailed information on model architecture, training procedures,
and experimental setup in Section[d] The datasets used in our experiments are publicly
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for easy reproducibility in the Appnedix.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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be necessary to either make it possible for others to replicate the model with the same
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sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
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Answer: [Yes]

Justification: We used exclusively publicly available data for training and testing. We also
provide a reference implementation allowing for easy reproducibility of our experimental
results.
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* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed information about dataset used and the experimental setup.
Additional information about model hyper-parameters and the optimizer can be found in
Section[d] We also provide a reference implementation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviation across five random seeds for statistical similarity
measures and across ten folds for segmentation performance metrics. These error bars
reflect variability due to different train/test splits and random initializations, which are
central to our main claims. All reported deviations correspond to one standard deviation.
The calculation is done using standard statistical functions from Python libraries such as
NumPy. This approach captures the expected variance across repeated runs and ensures the
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Computational resources are outlined in section ]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

 The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:We have followed the NeurIPS Code of Ethics to the best of our ability and
knowledge.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: The work improves evaluation reliability in image segmentation tasks, espe-
cially in critical domains like medical imaging. While primarily methodological, its misuse
could enable biased performance reporting if stratification is selectively applied.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The proposed methods and findings pose minimal risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit and cite the original owners of assets (PascalVOC, CamVid, EndoVis,
LoveDA and Cityscapes) used in this paper. LoveDA and Cityscapes explicitly state in
its license that these datasets are freely available for research or academic work. For the

PascalVOC, CamVid and EndoVis datasets, no original license is available. The model
implementation from smp is under MIT License.
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» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code for the proposed algorithm is submitted as part of supplementary
material with the necessary documentation. The license for the assets is mentioned wherever
applicable. The assets have been anonymized.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Convergence of Stratification Algorithms

This section presents two results on the convergence behavior of stratification methods. The first shows
that random splits of large multi-label datasets asymptotically preserve marginal label frequencies
in each fold, by the law of large numbers, ensuring representativeness without explicit stratification.
The second analyzes WDES, an evolutionary algorithm that minimizes label distribution differences
across folds. It proves that the expected quality of the best-found stratification improves at a rate of
O(1/MG), converging toward the global optimum as the number of generations and population size
grow.

A.1 Asymptotic Representativeness of Random Splits in Multi-Label Datasets

Theorem A.1. Let D = {(x,,,yn)})_, be a dataset where each'y,, € {0,1} is a binary label
vector over a fixed set of L labels. Suppose D is randomly partitioned into K disjoint folds
S = {S1,...,SEY such that each fold satisfies |S*| ~ v* N, for a fixed target proportion vector
r € [0, 1% with Zszl r® = 1. Then, for any label index { € {1,...,L}, the empirical label
frequency in each fold converges almost surely to the true marginal label frequency as N — oo. That
is, forallk =1,... K,

P (0) == p(0),
where

. 1
P (6) = 5 D yne and p(t) = Elyne] = Plyne = 1).
nesk
Proof. Fix alabelindex ¢ € {1, ..., L}. For each sample n, define the binary indicator:
ZT(LZ) = Yne € {0, 1}

By assumption, the data points (x,,, y,,) are drawn i.i.d., so the sequence {Zr(f)}fyzl is i.i.d. Bernoulli
with mean:
E[Z{)] = p(0).

Now consider the random assignment of samples to each fold S*, where |S*| ~ 7* N. For sufficiently
large NV, each |S*| — oo and the samples in each fold remain representative of the full dataset.

Let 1
Hk - § ()

nesSk
Then, by the Strong Law of Large Numbers (SLLN),

(0 5 EIZ0) = p(t),  as|S*| = cc.
Therefore, for any k, k' € {1,..., K},
P (0) = PR ()] = 0,
and each fold becomes asymptotically representative of the true label distribution. [
A.2 Optimality and Convergence of WDES

To quantify the effectiveness of WDES, we derive a convergence bound that characterizes how the
quality of stratifications improves with the number of generations and population size under standard
evolutionary algorithm assumptions.

Proposition A.1 (Convergence Rate of WDES to Empirical Optimum). Let Fy; ¢ C F denote the
set of stratifications explored by the WDES algorithm after G generations with a population size M.
Then the expected suboptimality of the final stratification Swpgs € Far,c satisfies:

1
e <o(—).
E[L(Swoes)] = Ly o < O <MG>

where L Forc denotes the optimal Wasserstein score found in the empirical subset.
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Proof. WDES is a genetic algorithm that evolves a population of M stratifications over G generations.
The algorithm operates using elitist selection, where the best individual is preserved across generations.

This ensures that the sequence of best-found scores {L{. 5:1 is non-increasing.

Each generation performs M fitness evaluations, totaling M G evaluations across the run. The search
space F is finite because there are finitely many possible assignments of N labeled data points to K
folds satisfying approximate size constraints. Hence, WDES induces a finite-state stochastic process
over Far,c C F, the set of stratifications visited during execution.

Let D = {(x,,yn)}._; be a dataset with C classes, and let F denote the space of feasible stratifica-
tions S = {S*, ..., SK}, where each fold S* satisfies the approximate size constraint |S*| =~ ¥V,
for a target proportion vector r € [0, 1], with 3, r* = 1.

Define the class distribution in fold k as P¥ = ﬁ > nesk L[yn = i), and the global class distribution

as P, = L0 My, = 4], fori = 1,...,C. Let F¥ = Y7 PFand F, = Y¢_, P be the
cumulative class distributions in fold % and the full dataset, respectively.

The Label Wasserstein Distance of stratification S is defined as:

K C
L(S):%ZZ]FC’“—FC .

k=1c=1

Crucially, the mutation operator used in WDES is assumed to be ergodic, i.e., it has a positive
probability of reaching any feasible stratification from any other. This property, together with elitist
selection, guarantees that the algorithm converges in probability to the global optimum over F, as
shown in [37]. However, in finite time, WDES only explores F/ g, and its best possible result
is L . The expected gap between the final stratification’s score and this empirical optimum
decreases with the number of independent evaluations M G. This follows from classical convergence
results for evolutionary algorithms under elitist, ergodic dynamics, where the convergence rate to the
best solution seen is: )
E [L(Swpes)] — Ly, <0 (J\/[G) .

This bound reflects the diminishing returns of increasing population size and generations, but confirms
that more search budget leads to better empirical solutions. O

Remark. The theorem guarantees convergence to the best stratification within the explored subset
Fum,c, not necessarily the global optimum L* = minser L(S). Nonetheless, due to the ergodic
nature of the mutation operator, the probability of reaching any region of the space is non-zero. Thus,
L;:IVI,G — L* as G — o0, and the algorithm converges to the global optimum in probability.
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B Iterative Pixel Stratification Algorithm

Following the notation introduced in Section 3] the algorithm for IPS is described in Algorithm|[I]

Algorithm 1 Iterative Pixel Stratification

Input: A dataset D of C classes, N samples that have a total of P pixels. The dataset is to be
divided into K folds in the proportion r = 71, ..., 7%.
Output: Disjoint subsets Sy, ..., Sk
1: #Calculate desired number of samples per fold
2: {NF}C « N .r
3: for c < 1to C do
# Calculate number of pixels present per class
P.+—{P:ce(C}
# Calculate desired number of pixels per class per fold
(PSP
end for
while |D| > 0 do
#Find rarest class
l < argmin P,

A B A U

—_ —

c
12: for (Xl, Yz) € D;do

13: #Find folds with largest desire for class !
14: M < argmax Plk

keK
15: if |[M| =1 then
16: m < M
17: else
18: M’ + argmin N*

keM

19: if |[M'| = 1 then
20: m <+ M’
21: else
22: m < Random Element of (M)
23: end if
24: end if
25: # Assign sample to subset and remove from dataset
26: S™ +— S™ U (x1,y1)
27: D« D\ {(x;,y1)}
28: N™ < N™—1
29: forcc C'do
30: Pcm = Pcm — Pc(XZ;YI)
31 end for
32: end for

33: end while
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C Wasserstein-Driven Evolutionary Stratification Algorithm

Following the notation introduced in Section 3] the algorithm for WDES is described in Algorithm [2]

Algorithm 2 Wasserstein-Driven Evolutionary Stratification (WDES)
Input: A dataset D of C classes and N samples, to be divided into K folds according to

proportions r = (r1,...,rk); population size M; number of generations G; crossover rate p.;
mutation rate p,,.
Output: Disjoint subsets S1, ..., Sk corresponding to the fittest individual.

1: #Initialize population of candidate stratifications
2: fori < 1to M do

3: Generate random fold assignments according to r
4: Store as individual I;
5: end for
6: for g < 1to G do
7: #Evaluate fitness of each individual
8: for i < 1to M do
9: Evaluate fitness using Label Wasserstein Distance (Eq. [3) for fold assignments in I;
10: end for
11: #Select parents via tournament selection
12: Select pairs of individuals based on lowest LWD values
13: # Apply crossover and correction
14: for p < 1 to number of parent pairsdo
15: if random() < p. then
16: Exchange random segments of fold assignments between parents
17: Apply correction to preserve fold proportions r
18: end if

19: end for
20: # Apply mutation
21: for i «+ 1to M do

22: if random() < p,,, then

23: Randomly swap fold assignments of two samples in I;
24: end if

25: end for

26: end for

27: #Select best-performing individual as final stratification
28: I* < argmin LWD(Z;)
I

29: Return Slj. .., Sk as the folds encoded in I*
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D Genetic Algorithm parameters

We empirically selected the hyper-parameters for the genetic algorithm by evaluating performance
across multiple datasets. For each parameter, we increased its value until no further improvements
were observed in the stratification quality. The final values are shown in Table 5]

Table 5: WDES Parameters

Parameter Value
Number of Generations 50
Number of Individuals 100
Gene Mating Probability 0.5
Individual Mutation Probability 0.2
Selection Tournament size 3

E Time and Space Complexity of WDES

The computational complexity of the Wasserstein Distance-based Evolutionary Stratifier (WDES)
can be analyzed in terms of the population size M, number of generations GG, number of samples
N, number of classes C, and number of folds K. Each individual in the population represents
an assignment of all NV samples into K folds, and the fitness evaluation involves computing the
Wasserstein distance across C'-dimensional class histograms.

The overall time complexity is therefore O(M - G - K - C), with an additional linear component in N
arising from crossover and mutation operations. The space complexity is O(M - N), as the algorithm
maintains a population of M individuals, each encoding fold assignments for all samples.

In practice, the runtime of WDES is further influenced by the genetic algorithm parameters, including
mutation and crossover probabilities, which determine how much of the population is updated
between generations. These hyperparameters affect convergence speed and computational cost but do
not alter the asymptotic complexity. An empirical assessment of runtime performance is provided in
the following section.

F Runtime Analysis

We evaluate the runtime performance of our stratification methods on an Apple MacBook Pro with an
M3 Pro processor and 36 GB of memory. Figure ] presents the runtime in seconds (with a logarithmic
scale on the y-axis) for Random splitting, IPS, and WDES across all datasets.
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—e— Random
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z 1
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Figure 4: Runtime comparison of Random splitting, IPS, and WDES across all datasets.
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Table 6: Comparison of stratification methods on similarity-based evaluation metrics. Results are
averaged across datasets for Random splitting, IPS, CS-IPS, and WDES. While CS-IPS performs
slightly better than IPS in some cases, WDES consistently achieves the best scores across all metrics,
indicating stronger distributional alignment.

SD PLD (x10-%) LWD (x10
Mean Std Mean Std Mean Std

Random 0.42 0.00 955 137 750 2.62

PascalVOC CS-IPS 096 0.00 525 633 425 032
IPS 1028 246 733 244 533 1.20

WDES 042 000 456 779 514 1.63

Random 0.00 0.00 634 373 183 5.08

Camvid CS-IPS 0.60 0.00 580 039 175 148
IPS 6.68 1.18 76.6 530 209 844

WDES  0.00 0.00 36.7 447 138 7.84

Random 0.50 0.00 609 814 661 355

EndoVis CS-IPS 080 0.00 485 800 549 334
IPS 1142 1.05 769 122 764 752

WDES 050 0.00 208 238 399 104

Random 032 0.00 1110 109 1080 884

LoveDA CS-IPS 0.64 0.00 935 119 892 7.58
IPS 806 1.15 1090 207 1100 87.4

WDES 032 0.00 377 314 635 16.0

Random 0.50 0.00 126 154 304 165

Cityscapes CS-IPS 190 0.00 130 448 300 4.73
IPS 11.54 269 148 174 324 222

WDES 050 000 67 344 217 517

Dataset Method

Random 1 3.0 3.2
Ranking CS-IPS 2 22 2.0
IPS 3 3.8 3.8

WDES 1 1 1

G Class-Sensitive Iterative Pixel Stratification (CS-IPS)

The Class-Sensitive Iterative Pixel Stratification (CS-IPS) algorithm introduces an alternative iterative
approach for constructing balanced folds based on pixel-level class distributions. The method begins
by ranking all classes in the dataset according to their rarity, determined by the total number of pixels
belonging to each class. Starting from the rarest class, all samples containing pixels of that class are
identified and sorted in descending order based on the number of pixels associated with the current
class. The sorted samples are then distributed across folds in a zig-zag manner to ensure a balanced
representation of the class across partitions. This procedure is repeated iteratively for each subsequent
class until all samples have been assigned. The resulting folds aim to maintain pixel-level balance
while accounting for class frequency in a straightforward, iterative manner.

We report the results of CS-IPS alongside those obtained using random splitting, IPS, and WDES in
Table[6] While CS-IPS achieves slightly improved performance compared to IPS in several cases,
WDES consistently attains the highest overall performance across datasets. These results reinforce our
motivation for adopting a more flexible, globally optimized approach such as the genetic algorithm
employed in WDES.

The corresponding segmentation results, summarized in Table (/| exhibit a similar trend. CS-IPS
provides measurable improvements over IPS, indicating the benefits of incorporating class sensitivity
in the iterative process. However, WDES continues to outperform all other methods, underscoring
the advantages of optimization-driven stratification over purely heuristic approaches.
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Table 7: Average segmentation performance of UNet under 10-fold cross-validation using different
stratification methods. Reported values correspond to Accuracy, F1 Score, and IoU. CS-IPS shows
improved stability compared to IPS but remains below WDES, which continues to yield the most
consistent and reliable fold performance.

Accuracy F1 IoU
Mean Std (x10-3) Mean Std (x10-3) Mean Std (x10-3)
Random 0.76 20.6 0.58 32.5 0.44 34.3

Dataset Method

PascalVOC  CS-IPS 0.71 12.2 0.45 26.2 0.32 25.3
IPS 0.76 14.5 0.58 30.3 0.44 31.6
WDES 0.75 11.0 0.57 24.0 0.43 24.2
Random 0.94 0.68 0.91 1.16 0.89 1.17
Camvid CS-IPS 0.94 0.70 0.91 1.32 0.89 1.24
IPS 0.94 0.74 091 1.35 0.89 1.27
WDES 0.94 0.67 0.91 1.09 0.89 1.06
Random 0.94 19.4 0.86 27.0 0.80 28.1
EndoVis CS-IPS 0.92 13.6 0.86 21.2 0.78 21.4
IPS 0.94 14.1 0.87 29.3 0.79 30.7
WDES 0.94 13.0 0.85 17.9 0.79 18.9
Random 0.88 6.63 0.80 6.39 0.69 8.38
LoveDA CS-IPS 0.88 7.30 0.80 8.19 0.69 10.3
IPS 0.88 7.39 0.80 9.29 0.69 10.7
WDES 0.88 7.49 0.80 9.86 0.69 11.0
Random 0.79 11.2 0.61 9.12 0.50 8.64
Cityscapes ~ CS-IPS 0.79 12.2 0.61 21.5 0.51 18.2
IPS 0.79 10.3 0.61 14.9 0.50 15.2
WDES 0.79 11.2 0.61 14.4 0.50 12.8
Random 2.6 2.2 2.2
Ranking CS-IPS 24 2.6 2.6
IPS 2.6 3.2 3.6
WDES 1.8 1.8 1.8

H Additional Evaluation Metrics

To ensure that the evaluation of stratification quality is not biased toward a specific similarity metric,
we further assess all stratification methods using additional distributional measures: the Linear-kernel
Maximum Mean Discrepancy (L-MMD) and the Linear Energy Distance (L-ED). These metrics
provide complementary perspectives on distributional similarity between folds and the overall dataset,
capturing higher-order differences beyond those measured by the Label Wasserstein Distance (LWD).

Table E] reports results for all methods—random splitting, IPS, CS-IPS, and WDES—across these
alternative metrics. Consistent with the findings based on LWD, WDES achieves the lowest average
discrepancy across datasets, demonstrating that its advantages generalize across diverse statistical
criteria. IPS performs competitively on the PascalVOC dataset, which we attribute to its higher
proportion of single-class samples. Overall, these results confirm that the performance gains of
WDES are robust to the choice of similarity metric.

Pixel Label Pair Distribution (PLPD) In addition to the aforementioned distributional measures,
we incorporate a class co-occurrence metric inspired by the Label Pair Distribution (LPD) proposed
in literature [25]. This measure captures second-order relationships between classes that tend to
appear together within the same sample. We adapt this concept to the pixel level, computing the
Pixel Label Pair Distribution (PLPD) to quantify the co-occurrence consistency between folds and
the global dataset. The results, presented in Table |8} extend our analysis by evaluating how well
each method preserves inter-class relationships. The previously introduced CS-IPS method is also
included for completeness.
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Table 8: Evaluation of stratification quality using alternative similarity measures: Pixel Label Pair
Distribution (PLPD), Linear-kernel Maximum Mean Discrepancy (L-MMD), and Energy Distance
(L-ED). Results are averaged across datasets for Random splitting, IPS, CS-IPS, and WDES. WDES
consistently outperforms the other methods across all three metrics, demonstrating that its advantages
generalize beyond Wasserstein-based evaluation.

Dataset Method PLPD L-MMD (x102) L-ED

Random 0.67 5.67 3.64

CS-IPS 0.69 2.68 2.91

PascalVOC ' 1pg 0.66 1.84 2.56
WDES 0.76 2.94 2.49

Random 470 12.2 8.93

Camvid  CSIPS 5.97 11.1 8.28
v IPS 4.62 14.7 9.91
WDES 4.58 7.16 6.98

Random 0.36 46.8 14.7

EndoVi CS-IPS 0.29 35.7 11.7
ndovis IPS 0.27 55.2 16.4
WDES 0.25 17.9 9.53

Random  1.35x10-5 78.6 20.9

CS-IPS  1.22x10-5 62.7 17.2

LoveDA IPS  121x10-5 69.9 213
WDES  1.20x10-5 277 12.8

Random 3.73 20.7 7.70

Cit CS-IPS 3.75 212 7.44
1tyscapes IPS 3.85 233 8.24
WDES 3.68 11.8 5.79

Random 3 3.2 3.2

Rankin CS-IPS 32 22 22
g IPS 2.2 32 3.6
WDES 1.6 1.4 1.0

These additional evaluations further corroborate the overall trends observed in the main results:
while iterative approaches such as IPS and CS-IPS produce reasonable fold-level balance, WDES
consistently achieves superior alignment with global label distributions across all tested metrics.

I Dataset details

L1 Cityscapes

Cityscapes is a large benchmark dataset for training and testing pixel-level and instance-level semantic
labeling. It contains diverse stereo video sequences from street scenes in 50 cities. Of these
frames, 5,000 images have high-quality pixel annotations across 30 visual classes, grouped into
eight categories: flat, construction, nature, vehicle, sky, object, human, and void. We use only the
left-camera images (the annotated view) and run our experiments on the training set, since it’s the
largest split.

1.2 CamVid

The Cambridge-driving Labeled Video Database (CamVid) captures footage from the perspective of
a driving automobile, unlike most videos that are filmed with fixed-position CCTV-style cameras.
From this footage, 701 frames were sampled at 1 Hz and manually labeled with 32 semantic classes.
Similar to CityScapes, we only use the largest subset, the training set.

28



Figure 5: Example Cityscapes data: the original image (left) and its enhanced annotation mask (right),
for better visualization.

Figure 6: Example CamVid data: the original image (left) and its enhanced annotation mask (right).

1.3 Pascal VOC 2012

The Pascal VOC 2012 serves as a cornerstone resource for training and comparing semantic segmen-
tation models. It comprises 20 classes, including entities like people, animals, vehicles, and indoor
objects. The dataset comprises 1,464 training images, 1,449 validation images, and a private testing
set. Each image in this dataset is annotated with pixel-level segmentation, bounding box, and object
class information. For our experiments, we exclusively utilized the training set.

Figure 7: Example Pascal VOC 2012 data: the original image (left) and its enhanced annotation mask
(right).

1.4 EndoVis2018

The EndoVis2018 dataset, used in the Robotic Scene Segmentation Challenge of MICCAI 2018,
contains 16 robotic nephrectomy procedures recorded using da Vinci Xi systems in porcine labs.
Each procedure comprises 149 training frames and 250 testing frames, each with a resolution of
1280x1024. The dataset includes images from both the left and right eye cameras, as well as the
stereo camera calibration parameters. However, labels are only available for the left eye camera, with
12 categories. In this case, we utilized only the training set.

I.5 LoveDA

The LoveDA dataset, a comprehensive collection of remote sensing images, is designed for semantic
segmentation. It comprises 5,987 high-resolution images captured across three Chinese cities,
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Figure 8: Example EndoVis2018 data: the original image (left) and its annotation mask (right).

capturing a diverse range of urban and rural scenes. These images are meticulously annotated with
166,768 object annotations, categorized into seven distinct land-cover classes: background, buildings,
roads, water bodies, barren land, forests, and agricultural areas. Again, only the training set is utilized.

P

Figure 9: Example LoveDA data: the original image (left) and its enhanced annotation mask (right).
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