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Deepfake videos present a significant challenge in the current media landscape. While current deepfake detection 
methods demonstrate satisfactory performance, there is still room for improvement in their ability to generalize 
and detect unseen scenarios, particularly those involving imperceptible cues. This paper introduces a novel 
multi-modal deepfake detection model named SpectraVisionFusion Transformer (SVFT), which incorporates 
spatial and frequency domain statistical artifacts to improve generalization performance. The SVFT framework 
uses two different backbone encoder models to take advantage of both spatial and frequency domain cues in 
video sequences, along with a decoder and classifier, for common cross-attention and classification, respectively. 
The spatial domain branch uses a convolutional transformer-based encoder to analyze facial visual features. 
In contrast, the frequency domain branch employs a language transformer encoder. Additionally, we introduce 
a weighted feature embedding fusion mechanism that integrates spectral-based statistical feature embeddings 
and visual cues to achieve a more comprehensive and balanced spatial-frequency feature representation. By 
coordinately analyzing these modalities, our model exhibits improved detection and generalization capabilities 
in unseen scenarios. Our proposed SVFT model achieved 92.57% and 80.63% accuracy in extensive cross-

manipulation and dataset evaluation, respectively, while surpassing the performance of traditional and single-

domain-based approaches.
1. Introduction

The prevalence of deepfake videos has raised concerns over the gen-

uineness and trustworthiness of multimedia content shared across var-

ious media platforms [1]. These videos, often created using advanced 
AI algorithms, are capable of seamlessly replacing or manipulating the 
faces of individuals in existing video footage, resulting in highly con-

vincing but fabricated content [2].

The advent of generative neural networks has directed noteworthy 
advancements in the creation of realistic deepfake content, including 
variational autoencoders (VAEs) [3] and generative adversarial net-

works (GANs) [4]. However, even with these advancements, deepfake 
videos created by these networks often display irregularities in the fre-

quency domain [5–7] and visual elements compared to genuine ones, 
as the comprehensive frequency spectrum analysis has revealed [8]. 
Detecting such manipulations [9–20] has become a crucial challenge, 
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requiring innovative approaches that can effectively capture the com-

plex patterns and traits inherent in synthetic media.

Deep learning approaches have gained prominence in recent times 
owing to their exceptional ability to learn discriminative features. These 
approaches have explored various domains for feature learning, includ-

ing spatial perspectives [21–25], frequency analysis, temporal char-

acteristics, and their combinations [26–31]. However, a well-known 
drawback of these methods is their vulnerability to performance degra-

dation when evaluated on unseen datasets. This is because detection 
models tend to overfit within specific datasets. To address this chal-

lenge, researchers are increasingly focusing on finding more general-

ized features [24,29,30,32]. However, the ability of deepfake detection 
methods to generalize across diverse forgeries remains a challenge.

Considering the prospect of generalized detection across unseen 
forgeries, we aim to enhance deepfake facial forgery detection by im-

proving the learned feature representations with two primary objec-

tives. Firstly, to achieve generalization to unknown forgery patterns, 
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Fig. 1. The SVFT model pipeline. The SVFT method leverages the strengths of the Convolutional Transformer Encoder (CTE) and Language Transformer Encoder 
(LTE) to capture spatial and frequency cues, enabling joint analysis and common cross-attention of statistical patterns and visual cues.
we explore the domain-invariant discrepancy between authentic and 
deepfake content with the aim of avoiding overfitting to particular 
forgery patterns in the training data. Secondly, we identify the intrin-

sic cues, which are crucial in improving the reasoning of the model 
about forgery cues. Therefore, our proposed deepfake detection frame-

work, SVFT, analyzes spatial and spectral anomalies to enhance the 
generalized accuracy and robustness. The SVFT framework integrates 
two powerful backbone models: the convolutional transformer encoder 
(CTE) and the language transformer encoder (LTE). CTE excels in cap-

turing local spatial information and modeling complex visual patterns 
using self-attention mechanisms and convolutional operations. On the 
other hand, LTE specializes in capturing contextual relationships and 
semantic meaning within spectral-based statistical features. Our model 
captures complementary information from spatial and frequency do-

mains and enables a coordinated analysis of unique characteristics by 
combining these modalities with a common cross-attention decoder and 
classification head. The collaborative analysis of spatial representations 
and spectral anomalies helps our model exploit the interplay between 
visual cues and statistical patterns to enhance overall deepfake detec-

tion performance. The proposed SVFT framework is depicted in Fig. 1. 
Our paper presents several contributions,

• We proposed a new multi-modal deepfake detection transformer 
model, SpectraVisionFusion Transformer (SVFT), that integrates 
language and vision encoders, enabling coordinated analysis of the 
fused complementary cues from facial video sequences and respec-

tive frequency domain spectral-based statistical features.

• We introduce a joint training mechanism that arranges real and 
fake video frames together with their features in a structured order, 
enhancing the ability of the model to discern between real and 
deepfake content.

• We also developed a weighted feature embedding fusion mecha-

nism that combines the visual cues from the convolutional encoder 
and spectral-based statistical features from the language encoder. 
This fusion, along with a common cross-attention decoder and clas-

sifier, enables the joint analysis of fused complementary informa-

tion, resulting in improved detection performance.

• Finally, we assessed the effectiveness of the SVFT approach on 
benchmark datasets to showcase its superior performance and 
enhanced detection capabilities in discerning real and deepfake 
videos compared to traditional and single-domain-based methods.

In this paper, subsequent sections are as follows: Section 2 recaps re-
593

lated work. Section 3 illustrates our proposed method and delves into 
the effectiveness of frequency domain analysis. Section 4 details the 
experimental settings. Section 5 explains the evaluation results and 
analysis. In Section 6, we provide our conclusion.

2. Related work

In the following section, we will explore the studies conducted on 
deepfake forensics and synthesis relevant to our methodology.

2.1. Deepfake synthesis

Deepfake multimedia content production has experienced signifi-

cant advancements since the introduction of adversarial architecture 
[4] by Goodfellow et al. in 2014. These generative networks are trained 
via an adversarial process, assuming the dual roles of generator and 
discriminator, with the objective being to create synthetic facial al-

terations indistinguishable from genuine ones. Notably, research on 
GANs has evolved into several breakthroughs that have resulted in new 
state-of-the-art manipulation methods. These include the benefits of la-

beled data in training [33], spectral normalization [34], leveraging the 
Wasserstein distance [35], and style mixing or progressive growth [36]. 
Over time, facial manipulation algorithms have also improved exponen-

tially. Early attempts relied on landmark-based methods [37,38] that 
utilized the facial structure to identify a reference face with an identi-

cal posture to the target face and then swapped to the target look after 
acclimating the lighting, geometry, color, and other aspects. However, 
these methods were limited to altering faces with exact poses. Succeed-

ing efforts [14,39–42] introduced 3𝐷 face representations to address 
this limitation, including face reenactment [11], expression manipula-

tion [43], and the Face2Face approach [17]. Still, they could not gener-

ate nonexisting parts (e.g., expression) in the reference face, resulting in 
unnatural cues in the synthesized face. Lately, GAN-based approaches 
have achieved better face-swapping outcomes. Specifically, Korshunava 
et al. [44] introduced a transformation method for each target individ-

ual, while IPGAN [45], RSGAN [46], and FaceShifter [47] introduced 
content-agnostic face-swapping tools. Although current deepfake gen-

eration methods produce high-quality results, most facial alterations 
still require better attention to the inner face and a blending phase to 
achieve a genuinely realistic deepfake. Also, the spectral anomalies in 
deepfake content are primarily caused by the upsampling procedures 
used during the generation process [5,6]. Analysis of reconstructed 
deepfake content reveals distinct spectral artifacts that indicate the up-
sampling strategies lead the generator networks towards such cues.
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2.2. Deepfake forensics

Traditional forensic techniques for detecting forgery employed fea-

tures such as pattern analysis, local noise assessments, and lighting 
modeling. However, as deep learning methods advance, facial forg-

eries have become more visually realistic, making these traditional 
features less effective. To handle this, recent works propose using high-

dimensional semantic cues in the conceptual feature spaces, such as 
local textures, noise statistics, and frequency information, to pinpoint 
specific forgery patterns to distinguish deepfake faces from real ones.

Earlier deepfake detection studies have utilized convolutional neu-

ral networks (CNN) such as MesoNet [21], Xception [22], RNN [23], 
and CapsuleNet [24] to extract tampering visual characteristics in an 
inexplicable manner. The abovementioned methods primarily rely on 
the spatial domain, with Xception as the baseline method. These stan-

dard techniques for detecting tampering involve extracting features 
from each video frame. However, these conventional methods lack in-

terpretability and perform poorly when applied to different datasets, as 
they do not clearly explain the underlying operations used to extract 
the features.

Many researchers have identified the intrinsic differences between 
real and forged faces for better generalization performance. One no-

table detector that has been proposed by Li et al. is Face X-ray [25], 
which effectively extracts blending traces from forged images and pro-

duces good results on unknown datasets. Regardless, such low-level 
traces quickly fade when facing image degradation, resulting in a sig-

nificant decline in performance. While most deepfake generation ap-

proaches are conducted in the spatial domain, they often neglect the 
importance of enforcing fidelity in the frequency domain. To address 
this, researchers have proposed methods that combine different do-

mains, such as spatial-frequency [26,27] and spatial-temporal [28]. For 
example, Liu et al. [26] have studied up-sampling operation in the 
frequency domain, a standard step in most facial forgery procedures, 
which can result in mutations in the phase spectrum. To address this, 
they have presented a novel method, Spatial Phase Shallow Learning 
(SPSL), that blends spatial pictures and phase spectrum to catch the 
up-sampling cues of facial manipulation. Yuan Wang et al. [27] have 
introduced a Spatial-Frequency Dynamic Graph-Based network (SFDG) 
that uses relation-aware spatial-frequency features to promote general-

ized forgery detection with a graph-based relation-reasoning approach. 
Similarly, Hu et al. [28] have presented a frame-temporality two-stream 
convolution network (FTSC) for compressed deepfake content detection 
that uses spatial and temporal features. However, despite the improved 
performance, these approaches mainly rely on the learned forgery pat-

terns presented in the training samples. Thus, they will experience an 
apparent performance decline for several reasons, such as when dealing 
with disruptive image degradation, novel forgery patterns, and not co-

ordinately learning spatial, frequency, or temporal features during the 
training process.

Several studies have attempted to improve deepfake detection by 
incorporating auxiliary supervision and attention methods to drive the 
network focus toward local traits in forged areas. For example, Zhao et 
al. [29] presented a fine-grained deepfake detection framework (Multi-

Att) that aggregates high-level semantic and local texture information 
into attention maps to categorize real and deepfake samples. Regard-

less, this approach fails to distinguish highly compressed videos with 
blurry textures. Similarly, Cao et al. [30] employed the reconstruction 
difference of authentic faces using pixel-level segmentation mapping 
methods (RECCE) for deepfake detection, which generalizes better to 
unknown forgery patterns. Nonetheless, these methods rely on dataset-

specific forgery patterns or manipulation techniques. Wang et al. [31]

introduced a scheme of locally and globally learning image features uti-

lizing the deep convolutional transformer network (CPT) to exploit the 
global characteristics within a facial image for generalized deepfake de-

tection. However, this method has a limited detection performance on 
594

low-quality images.
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Despite the vanilla spatial-frequency-temporal fusion ethos, the cur-

rent methods lack content-aware feature modeling and learning, and 
when they face unseen forgeries or image perturbations, their perfor-

mance drops significantly. In contrast, our proposed SVFT approach 
excavates content-aware frequency clues and enables the comprehen-

sive fusion of spatial and frequency features through common cross-

attention and coordinated analysis. This approach provides a promising 
solution for deepfake detection by considering both spatial and fre-

quency clues in a content-aware manner.

3. Proposed method

Our proposed SVFT approach is outlined in Fig. 1, which comprises 
four distinct modules. Firstly, a frequency domain analysis calculates 
the spectral-based statistical features between the three color channels 
of video frame sequences. By measuring the spectral difference between 
the color channels of the video frames, we can identify discrepancies 
that may indicate deepfake manipulations. The mean values, average 
mean, minimum, maximum, and correlations of these spectral differ-

ences are calculated to form a spectral feature vector. Secondly, we use 
a convolution transformer-based encoder, derived from the convolu-

tion vision transformer (CvT) [48], to detect visual patterns indicative 
and capture high-level features of deepfake manipulations. Indicative 
visual patterns are unique cues, structures, or characteristics within an 
image that can be analyzed to detect forgery anomalies. At the same 
time, high-level features are intrinsic characteristics that exist through-

out all the manipulated deepfake content. Thirdly, we use a language 
transformer-based encoder, which is based on DistilBERT (DBT) [49], 
to exploit contextual relationships and semantic meaning within the 
input frequency domain features that could provide valuable insights 
for deepfake detection. The SVFT core component is the feature fu-

sion mechanism, which merges the encoded visual representations with 
the spectral-based features extracted from video frames. This fusion of 
spectral-based features enriches the discriminative power of the model, 
enabling it to detect subtle anomalies introduced during the deepfake 
generation process. The weighted fusion mechanism assigns importance 
to the output of each encoder, helping the model to emphasize the 
more informative modality in the decision-making process. Finally, we 
introduce a transformer decoder layer that facilitates cross-model at-

tention. This decoder layer facilitates the model to capture the intricate 
spectral cues, semantics, and visual patterns indicative of deepfake ma-

nipulations. By integrating all these components, our approach provides 
improved detection and generalized performance.

3.1. Frequency domain decomposition

Generative models can produce synthetic face videos that appear 
natural and realistic, though the generation of high-frequency details 
often leads to a systemic bias. Spectral artifacts may arise in the genera-

tor due to different upsampling methods, which can direct it toward 
specific spectral anomalies. However, the discriminator may find it 
challenging to deal with high-frequency artifacts of low magnitudes as 
authentic frames often have such high-frequency components. Hence, 
synthetic video frames generated without direct correlation constraints 
may contain detectable spectral anomalies and distortions in their fre-

quency spectrum.

3.1.1. Frequency domain spectral analysis

Based on our observations, it is possible to utilize spectral statistical 
artifacts to identify deepfakes. Specifically, we begin by examining the 
structure of a 2𝐷 generative neural network 𝐺

(
𝑥, 𝑦;𝑊 ,𝐻1) with re-

spect to the rendering of spatial frequencies, which can be realized as a 
sequence of convolution layers 𝐶𝑜𝑛𝑣𝑙𝑖 ∶ ℝ

𝑑𝑙−1×𝑑𝑡−1 → ℝ𝑑1×𝑑1 with a set 
of parameters space 𝑊 ∈ , input features 𝐻1 ∈ ℝ𝑑0×𝑑0 , and output 

space ℝ𝑑×𝑑 :
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𝐻𝑙+1
𝑖

= 𝐶𝑜𝑛𝑣𝑙𝑖
(
𝐻𝑙

)
= 𝜎

⎛⎜⎜⎝
𝐶(𝑙)∑
𝑐=1
𝐹 𝑙𝑖𝑐 ⊛ 𝑈𝑝

(
𝐻𝑙
𝑐

)⎞⎟⎟⎠ (1)

In the context of layer-based generative models, the number of output 
channels is denoted by 𝑖, the notation 𝑙 denotes the depth or layer index, 
𝑐 the number of input channels, and 𝐶(𝑙) is the output channel 𝐻𝑙 color 
space at layer 𝑙. The output is generated by applying a parametric 2𝐷
filter with size 𝑘𝑙, 𝐹 𝑙𝑖𝑐 ∈ℝ𝑘𝑙×𝑘𝑙 , to the input, 𝐻𝑙

𝑐 , in the 𝑐-th channel of 
the 𝑖-th output channel of the 𝑙-th 𝐶𝑜𝑛𝑣 layer is denoted by 𝐶𝑜𝑛𝑣𝑙𝑖 ∈
ℝ𝑑𝑙×𝑑𝑙 with spatial dimension 𝑑𝑙 . The resulting output is then passed 
through a nonlinearity operator, 𝜎(.), and a convolution operator, ⊛. 
The output for each layer, 𝑙, of the network is indexed by 𝑖 and has 
a spatial dimension of 𝑑𝑙 . The upsampling operator, 𝑈𝑝(.), is used to 
increase the spatial dimensions of the output.

𝐻𝑙+1
𝑖

=
𝐶(𝑙)∑
𝑐=1
𝐹 𝑙𝑖𝑐 ⊛ 𝑈𝑝

(
𝜎
(
𝐻𝑙
𝑐

))
(2)

According to Khayatkhoei et al., [6], restricting the activation func-

tion 𝜎 to rectified linear units (ReLU) results in the generative network 
producing a result space with a piece-wise linear structure, particularly 
in a miniature vicinity of 𝐻1. Consequently, it can be assumed that the 
generative network is end-to-end linear. Thus 𝜎(.) can be excluded from 
Equation (2). This implies that our analysis is confined to the location of 
a particular single sample. Also, it should be noted that 𝑈𝑝(.) is a fixed 
shift-invariant linear function that can be integrated with 𝐻𝑙 . However, 
it is not removed but instead considered a preprocessing process on the 
intake to each layer, leading to the following result,

𝐻𝑙+1
𝑖

=
𝐶(𝑙)∑
𝑐=1
𝐹 𝑙𝑖𝑐 ⊛𝐻

𝑙
𝑐 (3)

We apply 2𝐷 discrete Fourier transform (𝐷𝐹𝑇 ) to derive the spatial 
frequency spectrum components of any 2𝐷 filter in the 𝑙-th 𝐶𝑜𝑛𝑣 layer 
of a generated deepfake video frame, in Equation (3),

�̃�𝑙+1
𝑖

=𝐷𝐹𝑇
(
𝐻𝑙+1
𝑖

)
=𝐷𝐹𝑇

⎛⎜⎜⎝
𝐶(𝑙)∑
𝑐=1
𝐹 𝑙𝑖𝑐 ⊛𝐻

𝑙
𝑐

⎞⎟⎟⎠ (4)

In the Fourier space, the convolution theorem states that the convo-

lution of two functions is equivalent to the convolution in real space. 
Thus, we can streamline Equation (4) by utilizing this theorem,

�̃�𝑙+1
𝑖

=
𝑐(𝑙)∑
𝑐=1
𝐹 𝑙𝑖𝑐 × �̃�

𝑙
𝑐 =

⟨
𝐹 𝑙𝑖 , �̃�

𝑙
⟩

(5)

In equation (5), the variables 𝐹 𝑙
𝑖
=
(
𝐹 𝑙
𝑖1,… , 𝐹 𝑙

𝑖𝐶

)𝑇
represents a se-

quence of spatial frequency components found in the frequency spec-

trum of 2𝐷 trainable filters of the 𝑙-th 𝐶𝑜𝑛𝑣 layer with filter size 𝑘𝑙 and 

spatial dimension 𝑑𝑙 . Additionally, the �̃�𝑙 =
(
�̃�𝑙

1,… , �̃� 𝑙
𝐶

)𝑇
represents 

the synthesized output deepfake video frame. Equation (5) further in-

dicates that each channel in the following layer is a composite of all 
channels from the prior layer using different groups of elements in the 
frequency domain.

Thus, improving the output spectrum of each deepfake frame in a 
neighborhood can only be achieved by adjusting the filter 𝐹 𝑙

𝑖
spectrum. 

The filters aim to extract the informative components from the intake 
spectrum, which is aliased by upsampling. Accordingly, the maximum 
spatial frequency in each 𝐶𝑜𝑛𝑣𝑙 layer should be capped by the Nyquist 
to have the highest correlation between the channels of a generated 
deepfake frame. To forge a fresh deepfake frame �̃�𝑙+1

𝑖
in a video se-

quence, we assume the coordinates of the new frame as 𝐹 𝑙
𝑖
, with the pre-

vious frame �̃�𝑙 serving as a reference. Each vector 𝐹𝑖
𝑙
, 𝑖 = 1,… ,𝐶(𝑙+1)
595

is trained independently and applied to reduce the loss of each �̃�𝑙+1
𝑖
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Fig. 2. Comparing the high-frequency components of real and deepfake video 
frames to identify differences in the spectrum of the same subject.

component in the preceding layer. The generative networks foresee �̃�𝑙

as adequate for constructing a color channel per separate coefficient 
vector 𝐻𝑖

𝑙
, 𝑖 = 1, … , 𝐶(𝑙+1). Consequently, the output frame should ap-

pear natural in the spatial domain by stacking three generated color 
channels of a deepfake video frame (red, green, and blue). According 
to Theorem 1 in [6], the outer layers of the generative network, which 
have larger spatial dimensions 𝑑𝑙 , primarily generate high-frequency 
content with filter size 𝑘𝑙 specified, the more significant the size of 
𝑑𝑙 , the higher the correlation in the filter spectrum and, therefore, the 
slighter its capacity. Thus, the outward layers liable for rendering high-

frequency components in deepfake frames are additionally capped in 
their spectrum corresponding to the internal layers with a minor size of 
𝑑𝑙 . Although a more significant filter dimension, 𝑘𝑙 , can be employed 
in the outward layers to offset the impact of a bigger size of 𝑑𝑙 , still 
the lower-frequency components will have a bigger end-to-end filter di-

mension than high-frequency components, therefore, a more negligible 
spectrum correlation. It is essential to note that all layers in a generative 
model can generate without aliasing but fall short for high-frequency 
content with low magnitude.

When generating deepfake video frame sequences, it is vital to con-

sider the application of direct correlation between the generated color 
channels. In case it fails to do that, it might only cause slight changes 
in spatial frequency components, which only shift minor attributes in 
the visualization of the rendered deepfake video and can not be seen 
from the naked eye. However, these changes will yield significant spec-

trum aberrations in the frequency domain. Fig. 2 illustrates an example 
of spectral anomalies and the difference between a real video sample 
frame and a generated deepfake sample frame of the same subject in 
the frequency spectrum. It is crucial to acknowledge that these potential 
limitations during the generation process can be exploited to improve 
the detection performance.

3.1.2. Frequency domain spectral features

Our analysis has led us to suggest vital yet simple statistical fea-

tures that can pinpoint spectral anomalies in deepfake video frames. 
These features include the minimum 

(
𝑀𝑖𝑛𝐴𝑣𝑔.

)
, maximum 

(
𝑀𝑎𝑥𝐴𝑣𝑔.

)
, 

and mean 
(
𝑀𝑒𝑎𝑛𝐴𝑣𝑔.

)
of average spectrum differences between color 

channels. Also, the correlation coefficients 
(
𝐶𝑜𝑟𝑟𝑅𝐺∕𝑅𝐵∕𝐺𝐵

)
between 

the spectrum of the color channels in the frequency domain, and we 
employ the Pearson correlation to compute these values. In order to ex-
tract these spectral anomalies based statistical features, we applied the 
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Fig. 3. The statistical features, such as 𝑀𝑒𝑎𝑛𝑅𝐺 , 𝑀𝑒𝑎𝑛𝑅𝐵 , 𝑀𝑒𝑎𝑛𝐺𝐵 , 𝑀𝑒𝑎𝑛Avg., 𝑀𝑖𝑛Avg., 𝑀𝑎𝑥Avg. values distributions and the correlation statistical values distribu-

tions 𝐶𝑜𝑟𝑟 , 𝐶𝑜𝑟𝑟 , and 𝐶𝑜𝑟𝑟 , of real (shown in blue) and deepfake (shown in orange) sequences are analyzed through frequency spectrum analysis.
𝑅𝐺 𝑅𝐵 𝐺𝐵

2𝐷 discrete Fourier transform 𝐷𝐹𝑇
(
𝑥𝑅∕𝐺∕𝐵

(
𝑘𝑥, 𝑘𝑦

))
to a 2𝐷 video 

frame 𝑥𝑅∕𝐺∕𝐵(𝑝, 𝑞) as in (6),

𝐷𝐹𝑇
(
𝑥𝑅∕𝐺∕𝐵

(
𝑘𝑥, 𝑘𝑦

))
= 1
𝑚𝑛

𝑚−1∑
𝑝=0

𝑛−1∑
𝑞=0
𝑥𝑅∕𝐺∕𝐵(𝑝, 𝑞)𝑒

−𝑖2𝜋
(
𝑘𝑥𝑝

𝑚
+
𝑘𝑦𝑞

𝑛

)
(6)

Where 𝑝 and 𝑞 represent the coordinates of a video frame 𝑥𝑅∕𝐺∕𝐵(𝑝, 𝑞). 
Further, the 𝐷𝐹𝑇 of all channels is individual. By computing the mod-

ulus of 𝐷𝐹𝑇
(
𝑥𝑅∕𝐺∕𝐵

(
𝑘𝑥, 𝑘𝑦

))
as formulated in (7), we obtain the 

magnitude spectrum for all three color channels.

𝑆𝑝𝑒𝑐
(
𝑥𝑅∕𝐺∕𝐵

(
𝑘𝑥, 𝑘𝑦

))
= |||𝐷𝐹𝑇 (

𝑥𝑅∕𝐺∕𝐵
(
𝑘𝑥, 𝑘𝑦

))||| (7)

It can also be denoted as,

𝑆𝑝𝑒𝑐
(
𝑥𝑅∕𝐺∕𝐵

(
𝑘𝑥, 𝑘𝑦

))
= [ℜ

{
𝐷𝐹𝑇

(
𝑥𝑅∕𝐺∕𝐵

(
𝑘𝑥, 𝑘𝑦

))}2
+ℑ

{
𝐷𝐹𝑇

(
𝑥𝑅∕𝐺∕𝐵

(
𝑘𝑥, 𝑘𝑦

))}2] 12 (8)

Equation (8) shows the real part of 𝐷𝐹𝑇
(
𝑥𝑅∕𝐺∕𝐵

(
𝑘𝑥, 𝑘𝑦

))
as ℜ

and the imaginary part as 𝔍. Additionally, the correlation coeffi-

cients 
(
𝐶𝑜𝑟𝑟𝑅𝐺∕𝑅𝐵∕𝐺𝐵

)
between the spectra of the color channels (

𝑆𝑝𝑒𝑐
(
𝑥𝑅∕𝐺∕𝐵

(
𝑘𝑥, 𝑘𝑦

)))
were computed as described in (9).

𝐶𝑜𝑟𝑟𝑅𝐺 = 𝜌
(
𝑆𝑝𝑒𝑐

(
𝑥𝑅

(
𝑘𝑥, 𝑘𝑦

))
, 𝑆𝑝𝑒𝑐

(
𝑥𝐺

(
𝑘𝑥, 𝑘𝑦

)))
(9)

Here 𝐶𝑜𝑟𝑟𝑅𝐺 denotes the correlation coefficients between color chan-
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nels, and can be written as,
𝐶𝑜𝑟𝑟𝑅𝐺 =
𝐶𝑜𝑣

(
𝑆𝑝𝑒𝑐

(
𝑥𝑅

(
𝑘𝑥, 𝑘𝑦

))
, 𝑆𝑝𝑒𝑐

(
𝑥𝐺

(
𝑘𝑥, 𝑘𝑦

)))√
𝜎
(
𝑆𝑝𝑒𝑐

(
𝑥𝑅

(
𝑘𝑥, 𝑘𝑦

)))
⋅ 𝜎

(
𝑆𝑝𝑒𝑐

(
𝑥𝐺

(
𝑘𝑥, 𝑘𝑦

))) (10)

In Equation (10), 𝐶𝑜𝑣 represents covariance, while 𝜎 represents the 
standard deviation of both 𝑆𝑝𝑒𝑐

(
𝑥𝑅

(
𝑘𝑥, 𝑘𝑦

))
and 𝑆𝑝𝑒𝑐

(
𝑥𝐺

(
𝑘𝑥, 𝑘𝑦

))
. 

The minimum, maximum, and mean values are calculated by using 
the average spectrum difference between the color channels, namely 
𝐷𝑅𝐺∕𝑅𝐵∕𝐺𝐵 , mathematically expressed as in Equation (11).

𝐷𝑅𝐺 = 1
𝑚𝑛

𝑚−1∑
𝑘𝑥=0

𝑛−1∑
𝑘𝑦=0

(|||𝑆𝑝𝑒𝑐 (𝑥𝑅 (𝑘𝑥, 𝑘𝑦)) −𝑆𝑝𝑒𝑐
(
𝑥𝐺

(
𝑘𝑥, 𝑘𝑦

))|||) (11)

The mean (𝑀𝑒𝑎𝑛𝐴𝑣𝑔.) value is computed as in (12),

𝑀𝑒𝑎𝑛𝐴𝑣𝑔. =
(
𝐷𝑅𝐺 +𝐷𝑅𝐵 +𝐷𝐺𝐵

)
∕3 (12)

The minimum and maximum values of the average spectrum differences (
𝐷𝑅𝐺∕𝑅𝐵∕𝐺𝐵

)
of all three color channels are denoted by 𝑀𝑖𝑛𝐴𝑣𝑔., and 

𝑀𝑎𝑥𝐴𝑣𝑔., respectively, in Fig. 3. Additionally, the mean values of color 
channel spectrum differences 

(
𝐷𝑅𝐺∕𝑅𝐵∕𝐺𝐵

)
are calculated individually 

as:

𝑀𝑒𝑎𝑛𝑅𝐺 =𝑀𝑒𝑎𝑛
(
𝐷𝑅𝐺

)
(13)

𝑀𝑒𝑎𝑛𝑅𝐵 =𝑀𝑒𝑎𝑛
(
𝐷𝑅𝐵

)
(14)

𝑀𝑒𝑎𝑛𝐺𝐵 =𝑀𝑒𝑎𝑛
(
𝐷𝐺𝐵

)
(15)

According to the findings presented in Fig. 3, statistical features 
based on the frequency spectrum show a clear difference between gen-
uine and deepfake frames of the same subject. To validate this claim, 
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Fig. 4. t-SNE feature distributions between Real and Deepfake video sequences on all the datasets used in our evaluations.
we scrutinized the histogram distributions of the proposed statistical 
features from the FF++ dataset [50]. Blue represents real face frames, 
while orange represents fake ones. During the deepfakes generation, in-

terpolation operations alter the spatial distribution of color channels 
in a generated face frame due to changes in the facial geometry. The 
statistical anomalies depict the shifts in the pixel value distribution of 
the real and deepfake color channels in the 2𝐷 discrete Fourier spec-

trum revealed by 𝑀𝑒𝑎𝑛𝑅𝐺, 𝑀𝑒𝑎𝑛𝑅𝐵, 𝑀𝑒𝑎𝑛𝐺𝐵, 𝑀𝑒𝑎𝑛𝐴𝑣𝑔., 𝑀𝑖𝑛𝐴𝑣𝑔. and 
𝑀𝑎𝑥𝐴𝑣𝑔. values distributions. Further, analysis of the correlation sta-

tistical values distributions at the bottom of Fig. 3, such as 𝐶𝑜𝑟𝑟𝑅𝐺 , 
𝐶𝑜𝑟𝑟𝑅𝐵 , and 𝐶𝑜𝑟𝑟𝐺𝐵 , shows that the real video sequences have a high 
correlation between color channels. In contrast, the deepfake ones show 
less correlation. This indicates that the generative model fails to re-

produce the statistical values of high-frequency components with low 
magnitude. Therefore, we conclude that the generated deepfake video 
sequences lack the application of unpretentious correlation constraints 
between color channels and reveal spectral irregularities. Our proposed 
spectral anomalies-based statistical features can help differentiate be-

tween authentic and deepfake video sequences. The t-SNE feature dis-

tributions for all training datasets used in our evaluation are shown in 
Fig. 4.

3.2. Convolutional transformer encoder branch

The design of the CTE architecture incorporates two novel convol-

ution-based processes into the conventional vision transformer (ViT) 
[51] framework, i.e., convolutional token embedding and convolutional 
projection as illustrated in Fig. 5.

In order to establish a hierarchical structure [52] for the vision 
branch in the SVFT model, akin to CNNs but with an attention mech-

anism, the CTE model can be partitioned into three stages. The initi-

ation of each stage involves a convolutional token embedding opera-

tion, which executes an overlapping convolution process with a specific 
stride on a reshaped 2𝐷 token map. Following this, layer normaliza-

tion is applied to the output per the procedure outlined in [53]. This 
approach permits the model to grasp local information and reduce se-

quence size while increasing token feature dimension across each stage, 
attaining spatial down-sampling, and augmenting feature maps in num-

bers. The third step in each stage applies the convolutional projection to 
individual self-attention blocks within the transformer block, which in-

volves performing a depth-wise separable 𝑠 ×𝑠 convolution process [22]
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on a token map that has been reshaped into a 2𝐷 format. This strategy 
improves the ability of the model to grasp the local spatial context and 
lessens semantic ambiguity in the attention mechanism. The applica-

tion of convolution stride aids in managing computational complexity. 
It allows for sub-sampling of the key and value matrices, resulting in im-

proved efficiency of up to 4 × 4 or more while having minimal impact 
on performance. The convolutional token embedding and convolutional 
projection are discussed in detail as follows,

3.2.1. Convolutional token embedding

The convolution token embedding process in CTE is designed to cap-

ture local spatial contexts in a multi-stage hierarchy approach. This 
process models a range of local features, including higher-order seman-

tic primitives and low-level edges. Specifically, the output token map 
from a previous stage 𝑥𝑖−1 can be expressed as a 2𝐷 video sequence 
frame 𝑥𝑖. This approach allows for the modeling of local spatial con-

texts in a hierarchical manner, thus improving upon the existing CNNs.

𝑥𝑖−1 ∈ℝ𝐻𝑖−1×𝑊𝑖−1×𝐶𝑖−1 (16)

In the input to the stage 𝑖, our objective is to obtain a functional map-

ping of 𝑥𝑖−1 to new tokens 𝑓
(
𝑥𝑖−1

)
with a channel size 𝐶𝑖. To achieve 

this, we employ function 𝑓 (⋅), which is a two-dimensional convolution 
operation with a kernel size of 𝑠 × 𝑠, a stride of 𝑠 − 𝑜, and 𝑝 padding to 
address boundary conditions. The resulting token map is represented as 
follows,

𝑓
(
𝑥𝑖−1

)
∈ℝ𝐻𝑖×𝑊𝑖×𝐶𝑖 (17)

Where, 𝐻𝑖 represents the height and 𝑊𝑖 denotes the width of a new 
token map,

𝐻𝑖 =
[
𝐻𝑖−1 + 2𝑝− 𝑠

𝑠− 𝑜
+ 1

]
, (18)

𝑊𝑖 =
[
𝑊𝑖−1 + 2𝑝− 𝑠

𝑠− 𝑜
+ 1

]
(19)

Following pre-processing, 𝑓
(
𝑥𝑖−1

)
is transformed into an 𝐻𝑖 ×𝑊𝑖 ×

𝐶𝑖 size and subsequently subjected to layer normalization [53]. This 
normalization process prepares the input for the succeeding stage 𝑖 for 
transformer blocks.

The convolutional token embedding layer adjusts the dimensions of 
the token feature and number at different stages. Adjusting the convolu-
tion parameters can reduce token sequence length and increase feature 
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Fig. 5. (a) The proposed CTE architecture comprises a hierarchical multi-stage structure, enabled by the Convolutional Token Embedding layer. (b) Illustration of 
the convolution projection as the initial layer in the Convolutional Transformer Block.

Fig. 6. (a) Two types of Convolutional projection. (a) default convolutional projection, and (b) Squeezed convolutional projection. We use squeezed convolutional 
projection.
dimension. This allows tokens to represent more complex visual pat-

terns over larger areas, which helps improve the CTE learning process.

3.2.2. Convolutional projection for attention

The convolutional projection layer in the CTE model aims to en-

hance local spatial context modeling by enabling the under-sampling 
of key (𝐾) and values (𝑉 ) matrices as shown in Fig. 5-(b) for better 
efficiency. This layer uses depth-wise separable 𝑠 × 𝑠 convolutions to re-

duce computational costs and generalize the transformer block of the 
ViT model.

Fig. 6-(a), an 𝑠 × 𝑠 convolutional projection is depicted, which in-

volves the initial reshaping of tokens into a 2𝐷 token map. A depthwise 
separable convolution layer with the kernel dimension of 𝑠 is used for 
the convolutional projection. Eventually, the projected tokens are flat-

tened into a 2𝐷 form to continue processing.

𝑥
𝑞∕𝑘∕𝑣
𝑖

= 𝐹 𝑙𝑎𝑡𝑡𝑒𝑛
(
𝐶𝑜𝑛𝑣2𝑑

(
𝑅𝑒𝑠ℎ𝑎𝑝𝑒2𝐷

(
𝑥𝑖
)
, 𝑠
))

(20)

In 𝑄∕𝐾∕𝑉 matrices, 𝑥𝑞∕𝑘∕𝑣
𝑖

represents the input token at layer 𝑖, while 
𝑥𝑖 represents the original undisturbed token before the convolutional 
projection. The 𝐶𝑜𝑛𝑣2𝑑 process involves a depth-wise separable convo-
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lution [22] implemented using a combination of depth-wise 𝐶𝑜𝑛𝑣2𝑑, 
𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚2𝑑, and point-wise 𝐶𝑜𝑛𝑣2𝑑. Here, 𝑠 symbolizes the convo-

lution kernel size. The new transformer block design, which includes the 
convolutional projection layer, can easily realize the original position-

wise linear projection layer with a 1 × 1 convolution layer.

3.2.3. The CTE model operations over three stages

The first stage of the CTE model starts with a convolutional em-

bedding layer as shown in Fig. 5-(a), where the subsequent Multi-Head 
Self-Attention (MHSA) operation enables the model to capture global 
contextual information (by utilizing 64 output channels with a stride 
of 4 and 7 × 7 kernel size), and two Multi-Layer Perceptron (MLP) 
layers further process the extracted features. In the second stage, the 
CTE model focuses on refining a frame 𝑥0 features F𝑥0 obtained from 
the previous stage. It also starts with a convolutional embedding layer 
employing 192 output channels with a stride of 2, and a 3 × 3 kernel 
size. A convolutional projection layer follows this embedding step. Then 
MHSA is applied by the model to incorporate a global context. The two 
MLP layers are subsequently employed to further enhance the extracted 
features. In the third stage, the model performs additional feature re-

finement. A convolutional embedding layer with 384 output channels, 

a 3 × 3 kernel size, and a stride of 2 is used. Similarly, this is succeeded 
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Fig. 7. The LTE bi-directional language modeling.
Table 1

Comprehensive Details about The CTE Model Parameters.

Stages Layer Name CTE Output Size

Conv. Embedding 7 × 7, 64, stride 4 56 × 56

Stage 1 Conv. Projection [3 × 3, 192] × 2

MHSA [H1 = 1 , D1 = 64] × 2 56 × 56

MLP [R1 = 4] × 2

Conv. Embedding 3 × 3, 192, stride 2 28 × 28

Stage 2 Conv. Projection [3 × 3, 768] × 2

MHSA [H2 = 3 , D2 = 192] × 2 28 × 28

MLP [R2 = 4] × 2

Conv. Embedding 3 × 3, 384, stride 2 14 × 14

Stage 3 Conv. Projection [3 × 3, 1024] × 2

MHSA [H3 = 6 , D3 = 384] × 2 14 × 14

MLP [R3 = 4] × 2

Classifier Linear 2 1 × 1

Complexity 4.53 GFLOPs

by a convolutional projection layer and then MHSA is applied again 
to capture global contextual dependencies. Notably, this stage incorpo-

rates ten MLP layers to further process the refined features. Following 
the three stages, the CTE model concludes with a head layer responsi-

ble for classification or output feature embeddings F𝑥0 extraction. The 
output size of this layer is 1 ×1, and it employs a linear transformation. 
In the case of the CTE model employed as an individual classification 
network, the resulting output consists of two classes, representing the 
classification categories of real and deepfake.

3.2.4. CTE model parameters and specifications

The CTE adopted the convolution vision transformer (CvT-13) model 
architecture [48]. The CTE model encompasses a total of 19.98 million 
parameters. Also, we implement the Vanila CTE model for the deep-

fake detection evaluation. Table 1 gives comprehensive details about 
the CTE parameters.

3.3. Language transformer-based encoder

The LTE model is derived from a distilled version of the BERT model 
[54], previously mentioned as DBT [49]. Unlike most language mod-

els that are unidirectional and can only traverse a context window 
of features from right to left or vice versa, the LTE model employs 
bi-directional language modeling. This approach allows for a more 
holistic view of the feature sequence, enabling the simultaneous con-

sideration of all features on either side of a given feature value in 
contextual language modeling. As illustrated in Fig. 7, this offers a 
distinct advantage over unidirectional models. The LTE model con-

sists of six transformer blocks, each block consisting of a multi-head 
self-attention mechanism and a fully connected feed-forward network 
layer. A residual connection [52] and layer normalization [53] are used 
around these sub-layers to maintain consistency. Specifically, the func-
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tion 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥𝑓𝑖) implemented by each sub-layer produces an output 
of 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥𝑓𝑖+𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥𝑓𝑖)), with the output dimensions of 512 
to facilitate the residual connections between layers. These blocks are 
then stacked atop one another to form the overall architecture of the en-

coder model. The layer operations can be viewed in Fig. 8, and further 
details are as follows.

3.3.1. Embedding layer

We take the input spectral features 𝑥𝑓𝑜 extracted from a video frame 
𝑥𝑜 and transform them into token embeddings and subwords using a 
DBT-based tokenizer [49], which utilizes WordPiece embeddings [55]

and has a vocabulary of 30522 tokens. This process, as shown in Fig. 8-

(a), helps us capture the contextual and semantic meaning of the input 
tokens and enables us to unambiguously represent a sequence of feature 
values in one token sequence. The initial token in each sequence is con-

sistently a distinctive classification token [𝐶𝐿𝑆], and its associated final 
hidden state serves as the comprehensive illustration of the sequence 
feature for classification. We apply segment embeddings to feature to-

kens to distinguish between two different sequences of tokens in a single 
input. We differentiate the sequences of features in two manners: by iso-

lating them with a special token [𝑆𝐸𝑃 ] and adding an embedding to 
indicate their sequence (𝐴𝑜𝑟𝐵). Our input embedding is depicted as 𝐸
(Fig. 9), with the final hidden vectors of the special token and the 𝑖-
th input token as 𝐶 ∈ 𝑅𝐻 and 𝑇𝑖 ∈ 𝑅𝐻 , respectively. Additionally, we 
incorporate position embeddings along with token and segment embed-

dings to indicate token sequence position. This step involves combining 
the token, segment, and position embeddings to construct the input rep-

resentation of a token. As shown in Fig. 9, this construction allows us 
to grasp the meaning of input tokens and provide a more accurate rep-

resentation for classification and feature extraction tasks.

3.3.2. Transformer encoder

The LTE model consists of a series of transformer blocks that func-

tion as the basic components of the encoder model. Each transformer 
block [56] has two sub-operational layers: a self-attention layer and 
a feed-forward neural network layer, as shown in Fig. 8-(b). The self-

attention layer in each transformer block facilitates the model to con-

centrate selectively on various portions of the input sequence in order to 
capture contextual information and dependencies between tokens. This 
approach provides greater flexibility and accuracy in modeling complex 
relationships within the input data. Meanwhile, the attention output 
undergoes a non-linear transformation through the feed-forward neural 
network layer.

The LTE architecture relies on the self-attention mechanism as a 
key component. Specifically, it facilitates the model to grasp the in-

terrelationships between tokens in the input feature series. Through 
self-attention, the model calculates attention scores between each pair 
of tokens, which are then utilized to calculate the weighted sums of 
the token embeddings. These attention scores reflect the relative im-

portance or relevance of each token within the feature sequence. The 
self-attention process is carried out in parallel multiple times using 

multi-head attention (𝑀𝐻𝑆𝐴LTE). This enables each attention head 



Alexandria Engineering Journal 91 (2024) 592–609M.A. Amin, Y. Hu, C.-T. Li et al.

Fig. 8. The Language Transformer Based Encoder (LTE) - model architecture. (a) Embedding Layer (b) Transformer Encoder (c) Classification Head or Output Feature 
Embedding Extractor.

Fig. 9. Input embedding illustration for LTE. The input embeddings for LTE are the sum of token, segmentation, and position embeddings.
to capture different aspects of the input sequence, creating various 
representations of the context. The 𝑀𝐻𝑆𝐴LTE approach is advanta-

geous as it projects queries, keys, and values times using learned linear 
projections for dimensions of 𝑑𝑘, 𝑑𝑘, and 𝑑𝑣. The attention function 
is employed alongside individual projection, generating output values 
with the dimension of 𝑑𝑣. Afterward, these values are combined and 
projected again, concluding in the final values illustrated in Fig. 10-(b).

Assuming that 𝑞 and 𝑘 are independent random variables with a 
variance of 1 and mean of 0, the dot product, 𝑞 ⋅ 𝑘 is 

∑𝑑𝑘
𝑖=1 𝑞𝑖𝑘𝑖, of 

the two, has a mean of 0 and a variance of 𝑑𝑘. This explains why the 
dot products get larger. The multi-head attention process enables the 
model to heed cues from various illustrations of subspaces, each fo-

cusing on different positions. It overcomes the limitation of a single 
attention head, which tends to average out the information.

𝑀𝐻𝑆𝐴LTE(𝑄,𝐾,𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡
(
ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑ℎ

)
𝑊 𝑂 (21)

where head in 𝑖 =𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛
(
𝑄𝑊 𝑄

𝑖
,𝐾𝑊 𝐾

𝑖 ,𝑉 𝑊
𝑉
𝑖

)
In (21), the parameter matrices of projections are 𝑊𝑂 ∈ ℝℎ𝑑𝑣×𝑑model ,

𝑊 𝑄
𝑖

∈ ℝ𝑑model×𝑑𝑘 , 𝑊 𝐾
𝑖

∈ ℝ𝑑model×𝑑𝑘 , and 𝑊 𝑉
𝑖

∈ ℝ𝑑model×𝑑𝑣 . The multi-

head attention is achieved by employing scaled dot-product attention 
multiple times, as depicted in Fig. 10-(a). The input includes queries and 
keys with dimension 𝑑𝑘 and values with dimension 𝑑𝑣. We compute the 
dot products of the query with all keys, next, divided by 

√
𝑑𝑘, and then, 

finally, we determine the weights on the values by passing it through 
a SoftMax function. The attention function is typically calculated on a 
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matrix of queries (𝑄) in practice. The keys and values matrices, 𝐾 and 
Fig. 10. (a) Scaled Dot-Product Attention, and (b) The LTE Multi-Head At-

tention (𝑀𝐻𝑆𝐴LTE) is comprised of multiple attention layers that operate 
simultaneously.

𝑉 , are also combined. The output matrix is computed according to the 
following procedure in (22).

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛LTE(𝑄,𝐾,𝑉 ) = sof tmax

(
𝑄𝐾𝑇√
𝑑𝑘

)
𝑉 (22)

In the LTE model, the attention output is subjected to a fully con-

nected layer and point-wise feed-forward network layer, which adds 

non-linearity to the model and enables it to capture intricate patterns 
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Table 2

LTE Model Parameters.

Parameters LTE

Number of layers (transformer blocks) 6

Total number of self-attention heads 12

Number of hidden units 768

Total number of trainable parameters 66 Million

Complexity 17.92 GFLOPs

and relationships. In our encoder, each layer has a feed-forward net-

work that is utilized identically in every position, in addition to the 
attention sub-layers. This feed-forward network incorporates two linear 
operations isolated by a ReLU activation function.

𝐹𝐹𝑁LTE
(
𝑥𝑓0

)
=max

(
0, 𝑥𝑓0𝑊1 + 𝑏1

)
𝑊2 + 𝑏2 (23)

While the linear operations remain consistent across various posi-

tions, the parameters used differ from layer to layer. This can also be 
understood as two convolutions with a kernel size of 1.

3.3.3. Normalization, pooling, and output layers

Further, layer normalization is applied after each sub-layer, such as 
the feed-forward and self-attention layers. Normalizing the output of the 
sub-layer is essential as it leads to more stable training and better gener-

alization. The LTE model also includes a pooling layer that aggregates 
the representations of all the tokens into a fixed-size representation. 
The pooled representation captures the meaning of the input feature 
sequence as a whole. The output layer is typically task-specific, such 
as feature embedding extraction or classification. Here, the LTE output 
embeddings F𝑥𝑓0 are extracted and combined with the CTE model for 
joint analysis through a common decoder.

3.3.4. Language encoder model parameters

The LTE model has around 66 million parameters, which is approx-

imately 40% of the size of the BERT base model. Table 2 gives more 
details about the model parameters.

3.4. Weighted feature embeddings fusion

The weighted feature embeddings fusion mechanism, illustrated in 
Fig. 1, is implemented by combining the CTE and LTE output em-

beddings, F𝑥𝑖 and F𝑥𝑓𝑖 , following the acquisition of multi-modality 
representations through the input video sequences 𝑥𝑖 and respective sta-

tistical features 𝑥𝑓𝑖 in batches to the convolution and language encoders 
of the SVFT model, respectively. This layer facilitates a comprehensive 
comprehension of real and deepfake characteristics, thereby enhancing 
detection performance.

Additionally, in the feature fusion process, weights are utilized to 
blend the features from each encoded output and regulate their relative 
significance in the final representation. These weights (𝛼, 𝛽) are scalar 
values that can be adjusted based on the assigned importance of each 
modality. Here, 𝛼 represents the weighted representation of CTE, which 
is 0.7, and similarly, 𝛽 represents the LTE weighted value of 0.3. The 
weighted fusion aggregation of the encoded outputs is determined by 
(24).

FF =
(
𝛼 × F𝑥𝑖

)
+
(
𝛽 × F𝑥𝑓𝑖

)
(24)

3.5. SVFT decoder and classification head layers

The SVFT decoder model [56], as mentioned in Fig. 1, utilizes fused 
feature embeddings (FF) from convolution and language encoder mod-

els. It then applies common cross-attention using the decoder and the 
final classification output is generated using the classification head 
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layer. The step-by-step functioning procedure is outlined as follows.
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Fig. 11. SVFT Decoder and Classification Head Layers.

3.5.1. SVFT decoder layer

The decoder layer in the SVFT model plays an integral function in 
processing the input fused features FF and generating an output rep-

resentation for the classification head. The decoder layer applies two 
operations to the fused features in succession, such as the self-attention 
mechanism and feed-forward network. The self-attention helps the 
model to concentrate on distinct parts of the FF cues, capturing de-

pendencies and relationships between different deepfake characteristics 
and cues. The feed-forward neural network operations include non-

linear activations and linear transformations. This allows the model to 
perform complex computations and generate a more informative and 
higher-level discriminative representation of the FF cues. Here decoder 
layer parameters such as output feature vectors have a dimensionality 
of 2 with two attention heads. The operations in the decoder layer and 
classification head layer of the SVFT model are shown in Fig. 11. In 
the SVFT decoder, the multi-head self-attention process computes at-

tention scores (𝛼) for each position 𝑖 based on the given input FF cues, 
as follows:

𝛼𝑖 = Sof tmax

(
𝑄𝑖 ⋅𝐾

𝑇
𝑖√

𝑑𝑘

)
(25)

Here, 𝑄𝑖 and 𝐾𝑖 represent the query and key embeddings for position 𝑖, 
and the key embeddings dimension by 𝑑𝑘. The attention scores (𝛼) are 
then utilized to compute the weighted aggregate of value embeddings 
(𝑉 ) to obtain the attended output 

(
𝑂𝑖

)
for position 𝑖:

𝑂𝑖 =
∑(

𝛼𝑖 ⋅ 𝑉𝑖
)

(26)

In the next SVFT decoder operation, layer normalization (𝐿𝑁) is 
applied after the self-attention operation to normalize the intermediate 
representations. Given an input FF cues, the layer normalization oper-

ation is defined as:

𝐿𝑁(FF) = 𝛾

(
FF − 𝜇√
𝜎2 + 𝜖

)
+ 𝛽 (27)

Here, learnable scales and shift parameters 𝛾 and 𝛽 are used alongside 
the mean and standard deviation of FF(𝜇 and 𝜎) and a small constant 𝜖
for numerical stability.

At the last stage of operation in the decoder, the FF cues are passed 
to a feed-forward network (𝐹𝐹𝑁). 𝐹𝐹𝑁 includes two linear transfor-

mations isolated by a GELU activation function.

𝐹𝐹𝑁(FF) =𝐺𝐸𝐿𝑈
(
FF.𝑊1 + 𝑏1

)
𝑊2 + 𝑏2 (28)

Here, FF represents the input features to the feed-forward network, 
GELU is the Gaussian Error Linear Unit activation function, 𝑏1 and 𝑏2

are biasing vectors, and 𝑊1 and 𝑊2 are weight matrices.
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Table 3

SVFT Layer Modules and Their Parameters.

Layer Modules Total Parameters Trainable Parameters

LTE 66,955,010 66,955,010

CTE 19,613,250 19,613,250

Decoder Layer 10,302 10,302

Classifier Layer 6 6

GELU Activation 0 None

Dropout 0 None

Total 86,578,568 86,578,568

Complexity 25.89 GFLOPs

3.5.2. Fully connected and classification layers

The fully connected and classification layers in the SVFT model 
work together to transform the features from the decoder layer into 
a suitable representation for classification. These layers aim to cap-

ture the necessary information and make accurate predictions for the 
given classification task by applying linear transformations, non-linear 
activations, and regularization techniques like dropout. The fully con-

nected layer uses a linear transformation to grasp non-linear affinities 
between fused features FF in a lower-dimensional space. The fully con-

nected layer has an input dimension of 2, corresponding to the resultant 
dimensionality of the decoder layer and representing the number of out-

put classes. After the fully connected layer, the output goes through a 
GELU activation function and a dropout layer. The GELU function in-

troduces non-linearity, which can help capture complex patterns in the 
feature data. The GELU activation function [57] is defined as:

GELU(FF) = 0.5

(
1 + erf

(
FF√
2

))
(29)

Here, FF represents the input cues to the GELU activation function. 
During training, the dropout layer plays a crucial role in preventing 
overfitting and enhancing generalization by randomly setting a fraction 
of the input elements to zero. This approach mitigates network reliance 
on specific input features and ensures it performs well on new, unseen 
data, dropout operation is,

FFdrop = Dropout (𝑝)(FF) (30)

Here, 𝑝 represents the probability of a component being zeroed. Finally, 
the output goes via an additional linear layer to generate the logits of 
each class. The fully connected layer parameters depend on the input 
and output sizes, precisely the number of output classes. The linear 
layer in the SVFT model uses a linear transformation to the input tensor 
and is defined as:

𝑦 = Linear
(
FFdrop ,𝑊 , 𝑏

)
= FFdrop 𝑊

𝑇 + 𝑏 (31)

Here, FFdrop represents the input feature embeddings, 𝑦 denotes the 
output class probability, 𝑏 represents the bias vector, and 𝑊 represents 
the weight matrix. The GELU activation function and dropout layer do 
not have trainable parameters but contribute to the overall model be-

havior.

3.5.3. SVFT model parameters and specification

The SVFT model parameters represent the count of learnable pa-

rameters in the network architecture. These parameters are the values 
that the model adjusts throughout the training cycle to optimize its 
performance for deepfake classification tasks Table 3 provides a com-

prehensive breakdown of all parameters. The decoder layer has 10302 
parameters. These parameters are utilized for the decoder component of 
the model, which applies cross-attention and transforms the fused fea-

tures. The GELU activation function does not introduce any learnable 
parameters. The decoder output undergoes this non-linear activation 
function. Similarly, the dropout layer does not introduce any new learn-
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able parameters, it has a dropout rate of 0.25. It randomly sets elements 
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of the input tensor to zero during training, which helps in preventing 
overfitting. The fully connected layer has six parameters. These param-

eters include weights and biases and are responsible for transforming 
the decoder output to the desired output classes. There are 86,578,568 
trainable parameters in the SVFT model.

4. Experimental settings

4.1. Datasets

Experiments were performed on four prominent benchmark datasets 
to evaluate the efficacy of the proposed SVFT model: such as Face-

Forensics++ (FF++) [50], Deepfake Detection Challenge (DFDC) [58], 
Celeb-DF-v2 (CDF) [59], and DeeperForensics-1.0 (Deeper) [60]. A to-

tal of 1000 videos were selected from each dataset and partitioned into 
distinct subsets, training, validation, and test, in distribution by follow-

ing the [50]. The training, validation, and testing datasets contain 720, 
140, and 140 videos, respectively.

FF++: FF++ is an early and widely recognized video dataset that 
comprises 1,000 authentic face videos sourced from YouTube and 4000 
associated manipulated videos. Each real video clip is associated with 
four types of forgeries: DeepFakes (DF), Face2Face (F2F), FaceSwap 
(FS), and NeuralTextures (NT). Various compression ratios are applied 
to the videos, resulting in subsets of raw quality (raw or c0), high-

quality (c23) with mild compression, and low-quality with heavy com-

pression (c40) videos. Given its diverse content and extensive scale, 
FF++ is commonly utilized for model training.

DFDC: DFDC stands out as one of the enormous Deepfake datasets, 
comprising 104,500 fake videos and 23,654 authentic videos captured 
by 3426 actors and actresses. The fake videos exhibit remarkably real-

istic appearances.

CDF: The CDF dataset contains 5639 high-quality deepfake and 590 
authentic videos. The fake videos are forged using improved methods of 
face swapping, resulting in exceptionally realistic face transformations. 
The dataset benefits from enhanced facial appearance.

Deeper: Deeper is one of the enormous datasets publicly available 
for real-world face manipulation detection. This dataset enhances the 
original videos from FF++ by applying advanced tampering techniques 
to change facial identities. A careful selection of videos ensures diversity 
and quality within the dataset.

4.2. Evaluation metric

We utilize the Area Under the Receiver Operating Characteristic 
Curve (AUC) as an evaluation metric following the previous works [26], 
[27], [29], [30], [31], which is standard practice in most studies. AUC 
reflects the overall performance under different detection thresholds, 
independent of the threshold values.

4.3. Training and testing settings

This section discusses the details of the parameters used in the CTE, 
LTE, and SVFT models training and testing. The CTE model also serves 
as the baseline model for the deepfake classification task, and we imple-

mented it as a separate method for comparison with our SVFT model.

Models Initialization: The CTE model was initialized from the pre-

trained CvT [48] backbone weights trained on ImageNet1k [61]. This 
choice was motivated by the success of CvT in capturing hierarchical 
features in image data, as demonstrated through its strong performance 
in image understanding tasks. All parameters of the CTE model were 
fine-tuned on deepfake datasets using the data transformations con-

cerning the mean and standard deviation of training datasets, Table 4

provides the details. Similarly, the LTE framework is based on the DBT 
base model [49], with its backbone initialized using the DBT weights. 
The DBT base model is pre-trained on a substantial amount of general-
purpose knowledge, utilizing the BooksCorpus (800 million words) and 
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Fig. 12. Visual Depiction of Structured Training Process.
English Wikipedia (2,500 million words). To align the LTE with our 
specific deepfake detection task, it underwent further training and fine-

tuning on deepfake datasets. Finally, the SVFT model was initialized 
with two pre-trained encoders (CTE and LTE), both trained on deepfake 
datasets. The model also incorporates a standard transformer decoder 
layer with a classifier layer, initialized with random weights, ensuring 
adaptability to our task.

Training and Testing Hyperparameters: The CTE model under-

went training with the AdamW optimizer over a total of 30 epochs. 
A learning rate of 5𝑒−5 was carefully selected through a grid search, 
balancing convergence speed and stability. To dynamically adjust the 
learning rate during training, a CosineAnnealingLR scheduler was em-

ployed, utilizing a cosine annealing schedule with 𝑇𝑚𝑎𝑥=30, 𝑒𝑡𝑎𝑚𝑖𝑛=0, 
and 𝑙𝑎𝑠𝑡𝑒𝑝𝑜𝑐ℎ=-1. The choice of a batch size of 128 for training and val-

idation loaders, and 512 for test loaders, was driven by computational 
efficiency considerations. In the LTE branch, most hyperparameters 
mirrored those of CTE, with the exception of a weight decay of 0.001, 
strategically employed for regularization. The SVFT model inherited hy-

perparameters from CTE and LTE, maintaining consistency, except for 
a learning rate of 0.001 and a weight decay of 0.01, carefully chosen to 
suit the unique characteristics of the fusion model. These hyperparam-

eter choices were guided by empirical experiments, ensuring a balance 
between model convergence, generalization, and regularization.

Training Strategy: The CTE and LTE backbones and SVFT model 
training process were executed using the Fabric, which enables dis-

tributed training using the lightning framework of Pytorch. The barrier 
synchronization point is used for the distributed training setup, ensuring 
coordinated execution across multiple processes. Further, the LTE train-

ing process strategy involves tokenization and numericalization before 
fine-tuning the model. In the first step, we tokenized the frequency do-

main statistical data using the DBT-based tokenizer with the maximum 
length of input allowed, 512, and the vocabulary size of 30522. After 
tokenization, the feature data was numerically encoded to prepare it for 
model input. The numericalization is performed on the tokenized data 
using the same tokenizer. The data is converted into a torch-compatible 
format, including input IDs, attention masks, and labels. Like the steps 
mentioned, the SVFT model adopted the input strategies applied to both 
CTE and LTE backbone training. Overall, we employed a comprehensive 
methodology for training CTE, LTE, and SVFT using mixed-precision 
training with “bf16-mixed” [62], enabling efficient utilization of com-

putational resources while maintaining satisfactory model accuracy and 
computational cost.

The SVFT Structured Training Process: In the SVFT structured 
training, we aim to enhance the ability of the model to discern the char-

acteristics that differentiate real and fake videos by exposing the model 
to both types of data on common subjects. The training process begins 
by organizing the video sequences and corresponding features, where 
real videos and their corresponding features are paired and succeeded 
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by the fake video sequence and their features, which are then provided 
Table 4

Dataset Characteristics: Mean and Standard Deviation.

Datasets Mean Standard Deviation

FF++ [0.6034, 0.4359, 0.3801] [0.2232, 0.1801, 0.1705]

DF [0.6051, 0.4498, 0.3932] [0.2209, 0.1863, 0.1834]

FS [0.6035, 0.4361, 0.3806] [0.2220, 0.1784, 0.1687]

F2F [0.6050, 0.4372, 0.3815] [0.2228, 0.1793, 0.1699]

NT [0.6042, 0.4354, 0.3796] [0.2246, 0.1806, 0.1707]

DFDC [0.5127, 0.3541, 0.3195] [0.2182, 0.1828, 0.1811]

CDF [0.5424, 0.3566, 0.2991] [0.2186, 0.1634, 0.1449]

Deeper [0.5462, 0.3911, 0.3308] [0.2445, 0.1716, 0.1507]

as input to the SVFT model. This permits the model to understand the 
distinguishing features and patterns that differentiate fake videos from 
real ones. A visual depiction is shown in Fig. 12. The process of alter-

nating between real and fake video sequences continues throughout the 
training procedure. This interleaved training scheme approach further 
enriches the learning process by providing intrinsic information and 
cues for the model to differentiate between real and fake videos.

4.4. Data augmentations and transformations

The proposed SVFT model utilizes RetinaFace [63], a single-stage 
face detector, to extract the input facial frames from videos. Addition-

ally, we employ the DLib face detector with 81 facial landmarks to 
ensure that the detected facial area encompasses all landmark points. 
Frames that do not meet this criterion are discarded. The facial video 
sequence is then resized to 224 × 224 to accommodate the CTE model, 
which serves as one of the backbones of the SVFT framework. Two 
sets of data transformations are used for training, validation, and test 
datasets.

The first transformation type aims to augment the training data and 
involves random horizontal flipping, random cropping, random resiz-

ing, conversion to tensor, and normalization. Random resizing scales 
the input image randomly, while random cropping extracts a 224 × 224
pixel patch from the resized frame. Afterward, the frame is transformed 
to a PyTorch tensor and normalized utilizing the mean and standard de-

viation values prescribed in Table 4. The second transformation process 
is performed on the validation and test datasets, including conversion 
to tensor and normalization by employing the same mean and stan-

dard deviation values. This approach ensures that the validation and 
test datasets undergo the exact normalization strategy as the training 
dataset, thus ensuring consistency in the computed metrics.

4.5. Loss function

During the training of all three models, CTE, LTE, and SVFT, the 

binary cross entropy loss (𝐵𝐶𝐸𝐿𝑆𝑉 𝐹𝑇 ) [64] was computed for each ex-
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ample in the training datasets, and the average loss across all examples 
were employed to correct the model parameters through the backprop-

agation process. The objective is to reduce the loss function value to 
enhance the accuracy of the model in binary classification tasks.

𝐵𝐶𝐸𝐿𝑆𝑉 𝐹𝑇 = −(𝑦 ⋅ log(𝑝) + (1 − 𝑦) ⋅ log(1 − 𝑝)) (32)

where 𝑦 represents the true binary label and the 𝑝 in [0, 1] symbolizes 
the predicted probability for the positive class.

5. Results and evaluations

In order to assess the generalization capability of our proposed 
deepfake models, we executed various experiment scenarios using cross-

manipulation and cross-dataset setups. This allowed us to simulate 
unseen forgery methods and datasets separately. Specifically, we eval-

uated the detection ability and robustness of our model under different 
compression settings and against unseen perturbations. We conducted 
within and cross-manipulation evaluations using the FF++ dataset [50]

and its subsets, and cross-dataset performance evaluations were per-

formed by training the models on FF++ [50] and testing on DFDC 
[58], CDF [59], and Deeper [60] datasets. Furthermore, we evaluated 
compression-based performance on the FF++ manipulations subsets 
and analyzed against four unseen perturbations using the FF++ dataset 
(Brightness Change, Contrast Change, Random Block Occlusion, and 
Gaussian Blur). Methods with the “※” symbol are trained using pub-

licly provided codes to produce results under the exact environment as 
ours for comparison.

5.1. Evaluation on unseen cross manipulations

We aim to demonstrate the significance of our proposed baseline 
CTE and SVFT methods by testing their generalization capabilities on 
the cross-manipulation method in the FF++ dataset [50]. The dataset 
comprises four deepfake attack methods - F2F, FS, DF, and NT - each 
yield significantly different results. In real-world scenarios, the deep-

fakes are usually unknown. To replicate such situations, we split the 
FF++ datasets into target and reference based on distinct manipulation 
techniques. We then trained our deepfake detection models on each 
subset of the FF++ dataset and tested them on all the remaining sub-

datasets. We used the raw version of FF++ for training and testing 
and performed a comparison of our method performance with six state-

of-the-art methods. Table 5 displays the comparison results. We also 
showed the learned features embedding space by the LTE branch with 
the t-SNE [65] feature distributions in Fig. 4, illustrating the clustering 
of the learned features.

The findings presented in Table 5 demonstrate that our pro-

posed methodology consistently outperforms its competitors in most 
cross-manipulation settings by a significant margin. Specifically, when 
trained on the DF dataset and evaluated on FS, F2F, and NT, our ap-

proach showcases performance gains of 17.43%, 5.25%, and 12.86%, 
respectively, in terms of AUC. Moreover, our model remains effective 
under the four intra-domain settings, which are highlighted in gray. 
These results suggest that our method is capable of uncovering adap-

tive frequency features and establishing connections between essential 
forged clues in the spatial and frequency domains through joint learn-

ing. Although some instances show that our SVFT method slightly 
underperforms when trained on F2F and NT, it is likely because the 
manipulation patterns only exist in certain small regions. On the other 
hand, our CTE method outperforms the latest methods in many cases 
such as SFDG [27] and RECCE [30], while CTE only utilizes the vi-

sual modality, highlighting the effectiveness of incorporating frequency 
domain statistical modality to aid visual modality in deepfake detec-

tion. Our SVFT method achieves better results compared to methods 
utilizing statistical-visual multimodalities, indicating its ability to effec-
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tively capture fine-grained statistical-visual inconsistencies and explore 
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Table 5

Our Proposed Methods are Evaluated for Intra and Cross-manipulation 
on the FF++ Dataset. We compare our Methods with the state-of-the-art 
Methods in terms of AUC (%).

Train Methods
Test

Avg.
DF FS F2F NT

DF

Xception※[22] 99.32 49.05 73.60 73.61 73.90

Face X-ray※[25] 98.71 63.32 60.06 69.82 72.98

SPSL※[26] 99.35 48.14 67.86 73.88 72.31

MultiAtt [29] 99.92 40.61 75.23 71.08 71.71

RECCE※[30] 99.19 57.42 74.39 85.04 79.01

SFDG [27] 99.73 75.34 86.45 86.64 87.03

CTE (Ours) 99.70 73.00 78.00 90.10 85.70

SVFT (Ours) 99.99 92.77 91.70 99.90 96.09

FS

Xception※[22] 66.45 99.40 88.83 71.32 81.50

Face X-ray※[25] 63.02 98.44 93.83 94.57 87.47

SPSL※[26] 46.42 99.93 98.90 97.80 85.76

MultiAtt [29] 64.13 99.67 66.39 50.10 70.07

RECCE※[30] 66.66 99.76 73.66 57.46 74.39

SFDG [27] 81.71 99.53 77.30 60.89 79.85

CTE (Ours) 76.40 99.91 85.60 74.40 84.08

SVFT (Ours) 84.10 99.99 91.78 81.93 89.70

F2F

Xception※[22] 80.33 76.25 99.47 69.66 81.43

Face X-ray※[25] 45.82 96.12 98.15 95.76 83.96

SPSL※[26] 60.06 98.58 99.48 98.70 89.21

MultiAtt [29] 86.15 60.14 99.13 64.59 77.50

RECCE※[30] 88.04 67.35 98.93 74.16 82.12

SFDG [27] 97.38 73.54 99.36 72.61 85.72

CTE (Ours) 81.80 76.28 99.20 80.90 84.05

SVFT (Ours) 84.90 92.90 99.92 82.00 89.68

NT

Xception※[22] 79.98 73.17 81.36 99.15 83.42

Face X-ray※[25] 70.51 91.77 91.03 92.54 86.46

SPSL※[26] 57.01 99.43 99.67 99.90 89.00

MultiAtt [29] 87.23 48.22 75.33 98.66 77.36

RECCE※[30] 90.20 58.06 76.65 97.17 80.52

SFDG [27] 91.73 83.58 70.85 99.74 86.47

CTE (Ours) 94.10 80.50 79.80 99.95 88.58

SVFT (Ours) 92.00 92.80 91.70 99.99 94.87

correlations in non-critical phoneme-viseme regions with better gen-

eralization capability against unseen forgery methods. This aspect is 
crucial in practical applications, emphasizing the importance of our 
proposed methodology.

5.2. Evaluation on cross-dataset settings

This section evaluates our methods in a cross-dataset setting to as-

sess the generalization performance. Cross-dataset evaluation can be 
challenging in realistic scenarios due to the unfamiliar domain void 
between the training and testing sets. For deepfake detection models, 
domain generalization ability is an essential criterion. To this end, we 
conducted cross-dataset experimentation wherein we trained proposed 
detection models on FF++ [50] (raw), which includes all four types 
of manipulation datasets, and evaluated them on three unseen datasets, 
namely DFDC [58], CDF [59], and Deeper [60]. Table 6 reports the AUC 
results of several methods. Our approach achieves promising results 
compared to recent methods on all three unseen datasets with unknown 
post-processing distortions. Furthermore, the t-SNE feature distributions 
presented in Fig. 4 illustrate the embedding space of the learned fea-

tures through the LTE branch. Our approach exhibits more compact 
feature distributions for intra-class (real or fake) instances when com-

pared to other existing methods. The inter-class instances are also more 
distinguishable, which substantially enhances the AUC when assessing 
unknown deepfakes.

In particular, the CDF [59] and DFDC [58] datasets are considered 
challenging due to the various manipulations and perturbations used 
to generate deepfake videos. Our SVFT approach shows significant im-

provement in generalization performance, with a 7.94% and 2.29% 

increase in the AUC metric compared to the second-place SPSL [26]
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Fig. 13. Evaluation of our Proposed Method against Compressed Versions of the FF++ Dataset (c23 and c40). Results are compared with state-of-the-art methods in 

terms of AUC (%).

Table 6

Our Proposed Methods are Compared to State-of-the-art Methods 
in terms of AUC (%) on Cross-Dataset Evaluation of DFDC, CDF, 
and Deeper Datasets.

Train Methods Test Avg.

DFDC CDF Deeper

FF++

Xception※[22] 67.90 59.46 69.81 65.06

(raw)

Face X-ray※[25] 70.01 74.20 72.30 72.17

SPSL※[26] 75.56 76.88 71.41 74.62

MultiAtt [29] 69.56 67.44 67.34 68.11

RECCE※[30] 68.34 68.94 88.70 75.32

CPT [31] 73.68 72.43 78.19 74.76

SFDG [27] 73.64 75.83 92.10 80.52

CTE (Ours) 79.92 77.72 73.18 76.94

SVFT (Ours) 83.50 78.12 80.27 80.63

and SFDG [27] models, respectively, as stated in Table 6. Unexpect-

edly, the baseline CTE method marginally outperformed the others on 
the DFDC and CDF datasets. On the Deeper dataset, our baseline CTE 
and SVFT approaches underperformed in comparison with the state-

of-the-art from RECCE [30], CPT [31], and SFDG [27] methods, with 
the latter showing the best detection performance, at least 3.40% on 
average from the second-place RECCE [30]. Overall, our method per-

formed better on average in the cross-dataset domain. It is noteworthy 
that multimodal deepfake detection methods generally produce better 
results than unimodal methods. There are several possible reasons to 
explain these results.

The results obtained can be attributed to three primary factors. (1)

The supervised learning approach effectively utilizes intra and cross-

category cues. (2) The multi-model feature learning method can inte-

grate the internal affinities of global and local regions, thereby acquir-

ing more thorough indications concerning intrinsic cues. (3) The RGB 
cues and high-frequency statistical anomalies are utilized to enhance 
the generalization capability of the model to counteract interference 
from varying qualities. These reasons make our SVFT method com-

petitive and superior compared to existing methods, which tend to 
overfit specific forgery patterns presented in the training samples. The 
experimental results strongly indicate the importance of exploiting spa-

tial, temporal, and frequency domain information. Our method is more 
likely to tap into subtle inconsistencies and intrinsic complementary 
features with content-aware semantic attention. The coordinated anal-

ysis and interaction between spatial and frequency domain statistical 
values help in reasoning about generally forged cues, thus enhancing 
the generalization performance of our proposed SVFT model on unseen 
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deepfakes.
5.3. Evaluation on compression manipulations

The impact of compression on deepfake video detection is significant 
as it can hinder the development of a generalized approach. Therefore, 
we evaluate the robustness performance of our models in scenarios with 
two ratios. The evaluation comparison is reported in Fig. 13. Our mod-

els were trained on the FF+ (raw) [50] dataset and evaluated using c23 
and c40 compression to simulate practical scenarios. However, most 
research works use videos with compression factors c23 and c40 for 
training, which could lead to improved performance.

As shown in Fig. 13, many methods experience a significant decrease 
in accuracy when it comes to cross-compression detection. This applies 
to methods such as [22,25,26,28,30]. Our proposed method, however, 
surpasses these methods by a notable margin. This is due to the fact that 
our SVFT model utilizes two streams. The first stream is a frame-level 
convolution transformer encoder network. The second stream is a fre-

quency spectrum-based network that incorporates spectral-dependent 
statistical features resistant to compression. Thus, our method is able to 
generate robust results that are not affected by compression. Our pro-

posed SVFT method exhibits superior performance on c23 videos with a 
higher number of forgery artifacts, as opposed to c40 videos which tend 
to lose more artifacts due to more extensive compression resulting in 
fewer forged traces. In the FaceSwap (FS) setting, our methods achieve 
an AUC of 92.77% and 81.66% (trained on FF++ raw and evaluated on 
c23 and c40), surpassing the second-best performing method FTSC [28]

by a significant gap of 6.02% and 1.71%, respectively. Notably, FTSC 
[28] is explicitly designed to detect compressed videos. Although our 
SVFT performs better in the c23 category in the NeuralTexture set, it 
loses to FTSC [28] by a small margin on the average AUC score of c40. 
However, our method surpasses other recent state-of-the-art approaches 
in all settings for compression, with an average AUC of 85.09% on c23 
and 78.50% on c40. In Deepfake and Face2Face compressed video de-

tection, FTSC [28] and RECCE [30] outperformed our method.

5.4. Robustness evaluation on perturbations

To ensure that a detector possesses good generalization, it should 
also be able to withstand expected video degradations. As most multi-

media content is sourced from the Internet, the data is likely to undergo 
unfamiliar distortions during transfers. To assess the robustness of our 
proposed methods against unseen perturbations, we applied four types 
of distortions - Brightness Change (BC), Contrast Change (CC), Ran-

dom Block Occlusion (RBO), and Gaussian Blur (GB) - to the FF++ 
(raw) [50] dataset, creating a perturbations dataset. Using the original 

FF++ [50] dataset (raw), we trained our models and tested them on 
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Table 7

Perturbations Types and Intensity Levels.

No. Perturbation Types Five Intensity Levels

1
Brightness Factors: -0.1, -0.2, -0.3,

Change -0.4, -0.5

2
Contrast Factors: 1.0, 2.0, 3.0,

Change 4.0, 5.0

3
Random Block Number of Blocks: 5, 10, 15, 20, 25

Occlusion Block size: 20x20, Fill value: 0

4
Gaussian Kernel size: 3x3, 5x5, 7x7, 9x9, 11x11

Blur Sigma: (0.3 ⋅ ((kernel size − 1) ⋅ 0.5 − 1)) + 0.8

Fig. 14. Demonstration of perturbation effect. From left to right (5 levels): orig-

inal image, Brightness Change, Contrast Change, Block Occlusion, and Gaussian 
Blur.

the FF++ [50] dataset with various perturbations. Each perturbation 
type was applied to five different intensity levels, and the illustrations 
per level for every disturbance are envisioned in Fig. 14, as detailed in 
Table 7. Fig. 15 shows the anti-perturbation performance of our mod-

els against the state-of-the-art methods with respect to the AUC metric 
for all intensity levels for each degradation type. The average AUC val-

ues of robustness performance of all degradation types are compared 
against recent state-of-the-art in Table 8.

When evaluating the performance across four disturbance cate-

gories, our model demonstrated superior results in two categories: 
Brightness Change and Block Occlusion. Moreover, we achieved compa-

rable results to the top-performing Xception model [22] in Color Con-

trast (94.14% versus 98.67%). Notably, when considering Block-wise 
disturbance, we observed that block masking resulted in a variation 
in brightness, potentially damaging high-frequency image components. 
Despite this, the detection performance of our model remained at the 
forefront due to the interaction of different modalities. It is noteworthy 
that prior methods experience a significant decrease in performance 
when confronted with Gaussian blur at higher levels of damage, which 
destroys frequency statistics. This degradation suggests that accentu-

ating distinct manipulation patterns observed in the training dataset 
is susceptible to typical perturbations. Our proposed SVFT model sur-

passes most texture-based techniques due to the inherent complemen-

tary cues learned from two streams, providing a sufficient discrimina-

tion basis for detection. Moreover, it shows that high-level semantic 
features are more robust to perturbations. This helped our model out-

perform their counterparts and exhibit a favorable average performance 
among the four perturbations, demonstrating its robustness with an 
AUC of 91.17%.

5.5. Ablation studies

This section presents the ablation as a means to scrutinize the strate-
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gies that influence the performance of our presented SVFT framework 
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and training process. Specifically, we develop the following: (1) the Im-

pact of the Weighted Concatenation on the Performance, (2) the Impact 
of Mixed-Precision Training on Computation Resources, Training time, 
and Accuracy, (3) the Impact of the LTE Branch on Performance, and 
(4) Impact of Structure Training Strategy.

5.5.1. Impact of the weighted concatenation on the performance

In the SVFT model, as illustrated in Fig. 1, we use a two-branch 
framework to assemble an intricate feature representation of visual and 
statistical cues in the spatial-frequency domain. The spatial branch con-

centrates on RGB artifacts, while the frequency domain branch focuses 
more on statistical anomalies and inconsistencies. To mitigate the ef-

fects of both branches, we perform an ablation analysis on the values 
of 𝛼 and 𝛽 in Equation (24), as shown in Table 9. The best performance 
on the DFDC dataset is achieved with a setting of 𝛼 = 0.7 and 𝛽= 0.3. 
This also suggests that the spatial embeddings are more critical than 
the statistical embedding to assemble a biased joint representation of 
spatial-frequency cues, which again establishes that the joint represen-

tation emanated from the face manipulation method can function as 
crucial indications for deepfakes identification.

5.5.2. Impact of mixed-precision training

In this analysis, we compare the training performance of two meth-

ods, CTE and SVFT, using different precision modes: 32-bit True Pre-

cision and Automatic Mixed Precision (bf16-mixed). We analyze the 
training time, computation cost, and AUC values for each method and 
precision mode to determine the effectiveness of automatic mixed preci-

sion. We trained the CTE and SVFT models for 30 epochs using both 32-

bit True Precision and Automatic Mixed Precision. The training times, 
computation costs, and AUC values were recorded for each combina-

tion. A comparison is depicted in Fig. 16.

The results demonstrate that training with Automatic Mixed Pre-

cision offers notable advantages over 32-bit True Precision regarding 
training time and computation cost. In the CTE case, training time was 
reduced by approximately 35% when using Automatic Mixed Precision, 
resulting in a more efficient training process. Additionally, the computa-

tion cost decreased by around 3 GB, indicating a reduction in memory 
usage. Similarly, for SVFT, training time decreased by approximately 
24% with Automatic Mixed Precision, leading to faster convergence 
and model training. The computation cost was also reduced by around 
1.2 GB, further optimizing resource utilization. The achieved AUC val-

ues of 100% for both precision modes indicate that the discriminative 
performance of the models remained unaffected by the precision mode 
used. Further, mixed-precision training with reduced numerical preci-

sion leads to faster convergence during the optimization process; sec-

ondly, in terms of model stability, the lower-precision data types can 
introduce a certain level of noise during training. Paradoxically, this 
noise can act as a regularizer, preventing the model from overfitting 
to the training data and improving its generalization performance on 
unseen data, contributing to enhanced model stability without compro-

mising the detection performance.

5.5.3. Impact of LTE branch on performance

To investigate the significance of the frequency domain represen-

tation through statistical anomalies via the LTE branch, we can ob-

serve the experimental results of different evaluations in Tables 5, 6, 
8, and Fig. 13. The frequency domain spectral features adopted in the 
LTE branch of the SVFT model have helped achieve enhanced gen-

eralized detection performance on average AUC metric in the cross-

manipulation evaluation, such as 96.42% on Deepfakes compared to 
single stream-based CTE, which is 85.70%. Further, the trend contin-

ues for FS, F2F, and NT, with average gains of 5.62%, 5.63%, and 
6.29%, respectively. The accuracy of the deepfake detection task on 
cross datasets, compression sets, and perturbation sets peek similar pat-
terns.
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Fig. 15. The AUCs (%) scores over five intensity levels for each perturbation type.

Table 8

Robustness Against Four Types of Unseen Perturbations. The average AUC (%) ob-

tained over five different intensity levels is reported. We also calculate the AUCs over 
all perturbations for each method.

Train Methods Original Average AUC over Five Levels Avg.

BC CC RBO GB

FF++

Xception※[22] 99.30 77.43 98.67 78.52 74.19 82.20

(raw)

Face X-ray※[25] 99.90 87.60 88.50 99.11 63.80 87.25

SPSL※[26] 98.32 89.49 88.93 72.40 84.61 83.86

RECCE※[30] 99.32 91.74 91.19 83.88 87.29 88.52

CTE (Ours) 99.99 89.35 94.14 97.76 77.73 89.75

SVFT (Ours) 99.99 94.42 90.39 99.25 80.61 91.17

Table 9

Ablation Study on the SVFT feature fusion layer, specifically on the weights of the spa-

tial domain-based CTE branch (represented by 𝛼) and the frequency domain-based LTE 
branch (represented by 𝛽). The evaluation results on the DFDC dataset were measured 
using the AUC metric (%).

𝛼 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

𝛽 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AUC 80.08 80.71 83.50 80.25 80.37 79.80 79.80 78.53 77.89

Fig. 16. Mixed-Precision Evaluation Comparison with respect to Computation Resources, Training Time and Accuracy.
5.5.4. Impact of the structure training strategy

It should be emphasized that the efficacy of the structure training 
approach is contingent upon several critical factors. The diversity and 
quality of training datasets are essential for the model to generalize 
well to unseen data. To assess the usefulness of the suggested train-

ing process, we conducted two experiments and calculated the equal 
error rate (EER). In the first case, we employed traditional random-

ization for training, and in the second case, we applied our proposed 
training structure. After 30 training epochs, in the first case, we got the 
EER of 0.1471, while on our proposed training methodology, we got 
less EER value of 0.0796 with the same AUC score of 99.99% on the 
intra-evaluation of the FF++ [50] dataset. These results suggest that a 
balanced representation of real and fake videos and a diverse range of 
characteristics and scenarios can help the model develop a robust un-

derstanding of the differences between the two types and have proven 
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effective in our evaluations.
6. Conclusion

In conclusion, we introduce a novel approach for deepfake de-

tection, SpectraVisionFusion Transformer (SVFT), which combines the 
analysis of frequency domain statistical features and spatial artifacts 
to improve the generalization capability. The coordinated analysis of 
visual and spectral information has proven effective in detecting deep-

fakes in diverse scenarios, as demonstrated by the improved accuracy, 
resilience to adversarial attacks, and better generalized performance. 
Further, to verify the contribution of our method, the empirical val-

idation of our SVFT framework was conducted on various deepfake 
datasets. The SVFT achieved outstanding performances compared to 
state-of-the-art methods on intra- and cross-manipulation settings with 
improved average performance in terms of AUC in DF (9.03%), FS 
(2.23%), F2F (0.47%), and NT (8.4%). In robustness evaluation, al-

though our method performed well with an increased compression ratio 

applied to deepfake images, the detection performance was affected 
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significantly. Further, when we applied the four unseen perturbations, 
our method performed well overall but saw a significant drop in per-

formance when contrast or blur variations were applied, indicating 
our method’s limitation. On the cross-dataset evaluation, our methods 
also performed consistently, such as on DFDC (83.50% vs. competi-

tion 75.56%), on the CDF (78.12% vs. competition 76.88%), but on 
the Deeper, our SVFT model underperformed (80.27% vs. competition 
92.10%), but overall our method perform the best. We believe that our 
proposed approach contributes to advancing deepfake detection tech-

niques, providing valuable insights for addressing the challenges posed 
by synthetic media and ensuring the integrity of visible content in the 
digital age. The extensive evaluation of benchmark datasets also demon-

strated the efficacy of our proposed model in distinguishing between 
legitimate and deepfake videos, surpassing traditional approaches with 
their robust and enhanced detection capabilities, thereby indicating su-

perior generalization performance. However, future work will further 
explore the impact analysis of compression, contrast, and blur on per-

formance in our proposed framework and how it can be mitigated 
to improve performance in real-world cases. Besides that, the overall 
framework complexity and network compression will be studied.
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