
Truth over Tricks: Measuring and Mitigating Shortcut Learning in Misinformation Detection

Herun Wan^{1, 2}, Jiaying Wu³, Minnan Luo^{1, 2, *}, Zhi Zeng^{1, 4}, Zhixiong Su^{1, 4}

¹School of Computer Science and Technology, Xi'an Jiaotong University, China

²Ministry of Education Key Laboratory of Intelligent Networks and Network Security, China

³National University of Singapore, Singapore

⁴Shaanxi Province Key Laboratory of Big Data Knowledge Engineering, China

wanherun@stu.xjtu.edu.cn minnluo@xjtu.edu.cn

<https://github.com/whr000001/TruthOverTricks>

Abstract

Misinformation detectors often rely on superficial cues (i.e., *shortcuts*) that correlate with misinformation in training data but fail to generalize to the diverse and evolving nature of real-world misinformation. This issue is exacerbated by large language models (LLMs), which can easily generate convincing misinformation using simple prompts. We introduce TRUTHOVERTRICKS, a unified evaluation paradigm for measuring shortcut learning in misinformation detection. TRUTHOVERTRICKS categorizes shortcut behaviors into intrinsic shortcut induction and extrinsic shortcut injection, and evaluates seven representative detectors across 14 popular benchmarks, along with two new factual misinformation datasets, NQ-Misinfo and Streaming-Misinfo. Empirical results reveal that existing detectors suffer severe performance degradation when exposed to both naturally occurring and adversarially crafted shortcuts. To address this, we propose the Shortcut Mitigation Framework (SMF), an LLM-augmented data augmentation framework that mitigates shortcut reliance through paraphrasing, factual summarization, and sentiment normalization. SMF consistently enhances robustness across 16 benchmarks, forcing models to rely on deeper semantic understanding rather than shortcut cues.

1 Introduction

Real-world misinformation, such as fake news [70] and rumors [36], appears in highly diverse forms. It varies in sentiment, writing style, and topical focus, and often adapts quickly to emerging events. The emergence of large language models (LLMs) further amplifies this diversity. With simple prompts such as “Rewrite the news article to make it more convincing”, LLMs can generate persuasive misinformation that closely mimics credible content [5].

To ensure factual integrity in this dynamic online landscape, misinforma-

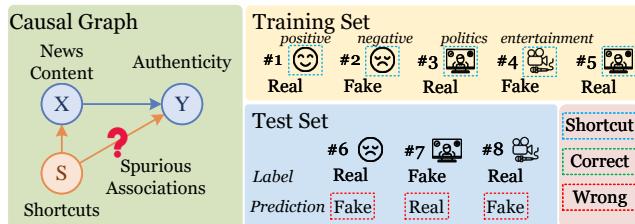


Figure 1: Illustration of shortcut learning in misinformation detection. As depicted in the causal graph, misinformation detectors often learn spurious associations between truthfulness and task-irrelevant features (i.e., shortcuts) during training. For instance, features such as *sentiment* or *domain* may lead detectors to infer that positive-toned or politics-related content is more likely to be real. As a result, models fail to generalize and produce incorrect predictions when presented with more realistic or diverse test instances.

* Corresponding author

tion detection systems must generalize across a wide range of expressions. However, existing systems are typically trained on static datasets with limited variation in style and semantics. As a result, they tend to rely on *shortcuts* [12] – superficial cues that are correlated with misinformation labels in the training data but are not causally informative. This reliance leads to brittle predictions that fail to generalize to novel or intentionally disguised misinformation, as illustrated in Figure 1. Although recent work has begun to explore shortcut learning in this domain—analyzing surface features such as specific entity mentions [71] or publisher-related stylistic traits [59], these investigations are often narrow in scope, focusing on specific shortcut types or misinformation types. Fully addressing this challenge requires a systematic and comprehensive measurement framework that captures the full spectrum of shortcut behaviors across both naturally occurring and adversarially induced settings.

To this end, we propose TRUTHOVERTRICKS, a unified evaluation paradigm for diagnosing shortcut learning in misinformation detection systems. TRUTHOVERTRICKS is grounded in a novel taxonomy of misinformation shortcuts, which distinguishes between two key sources: (1) *intrinsic shortcut induction*, which captures shortcuts that arise naturally within existing benchmarks, and (2) *extrinsic shortcut injection*, which introduces adversarial variations crafted by LLMs to obscure misinformation and challenge model robustness. In the intrinsic setting, we systematically investigate whether four commonly used misinformation indicators – sentiment, style, topic, and perplexity – may inadvertently induce shortcut reliance. In the extrinsic setting, we curate six types of LLM-generated reframings that simulate realistic adversarial attacks on misinformation detectors.

With TRUTHOVERTRICKS, we evaluate seven detectors from three main categories of misinformation detectors (i.e., LLM-based, LM-based, and debiasing approaches) on 14 popular misinformation detection benchmarks. To assess whether models can detect misinformation that requires factual knowledge (for example, “The capital of Greece is Thessaloniki”), we construct two new benchmarks: NQ-Misinfo and Streaming-Misinfo. These are derived by distorting instances from two existing question answering (QA) benchmarks, Natural Questions (NQ) [26] and StreamingQA [31], to create factual misinformation examples. Empirical results show that current detectors experience significant and consistent performance degradation under both intrinsic shortcut induction and extrinsic shortcut injection, with accuracy dropping to 0% in the most challenging cases. Notably, misinformation detectors trained on sentiment-injected data can even obtain reasonable capability as a sentiment classifier, although the training objective differs significantly.

To redirect model attention from superficial shortcuts to deeper semantic signals, we propose the Shortcut Mitigation Framework (SMF), an LLM-augmented framework for mitigating misinformation shortcuts and promoting more generalizable detection behavior. To better capture the diversity of real-world misinformation, our framework enhances data variation through three complementary strategies: paraphrase generation, factual summarization, and sentiment normalization. These augmentation techniques encourage models to rely on robust, content-based reasoning rather than shortcut cues, thereby improving resilience to distributional shifts and adversarial manipulations. We integrate our framework with five representative misinformation classifiers and evaluate its effectiveness across all 16 benchmark datasets under extrinsic shortcut injection from the TRUTHOVERTRICKS suite. Empirical results show that our framework consistently improves model robustness against a wide range of externally injected shortcuts, demonstrating its effectiveness and general applicability.

2 TRUTHOVERTRICKS

TRUTHOVERTRICKS evaluates shortcut learning in misinformation detection through two complementary perspectives: (1) *intrinsic shortcut induction* and (2) *extrinsic shortcut injection*. An overview of the framework is shown in Figure 2.

2.1 Intrinsic Shortcut Induction

This component of TRUTHOVERTRICKS investigates the impact of shortcuts that naturally emerge within existing misinformation benchmarks. Specifically, we evaluate whether four commonly used misinformation indicators, namely *sentiment*, *style*, *topic*, and *perplexity*, may inadvertently introduce shortcut biases, despite their frequent use in enhancing model performance.

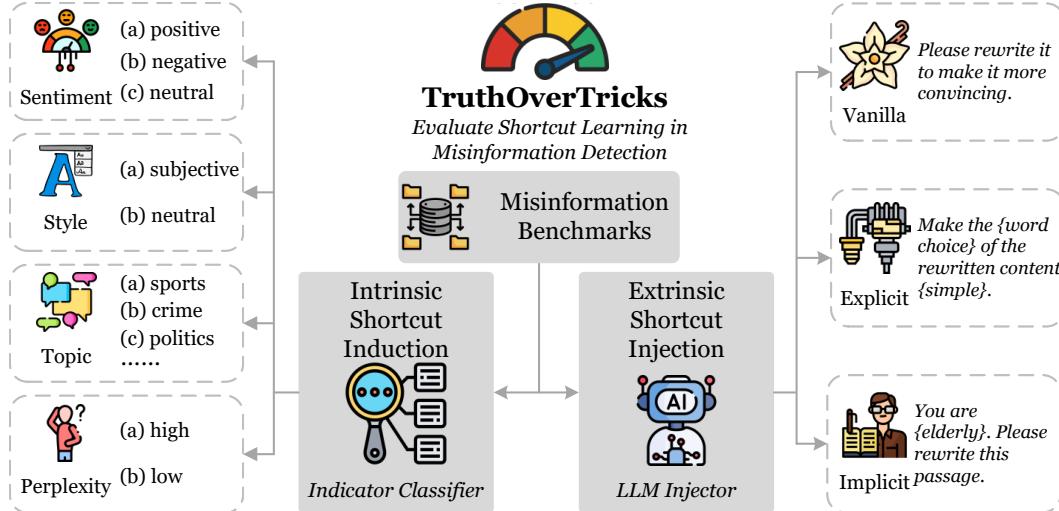


Figure 2: TRUTHOVERTRICKS evaluates misinformation detectors under two types of shortcuts: (1) *Intrinsic Shortcut Induction*, which captures spurious correlations that naturally emerge within existing benchmarks; and (2) *Extrinsic Shortcut Injection*, which introduces adversarially crafted variations from LLMs designed to obscure misinformation and challenge detector robustness.

- **Sentiment.** Prior work has shown that leveraging sentiment features can improve detection performance [69, 42]. However, we argue that sentiment may function as a shortcut, as the presence of negative or positive emotion does not causally determine whether content is true or false.
- **Style.** Misinformation is often more subjective in tone, while real news is presumed to be more neutral [23]. Yet in practice, especially on social platforms, real content can also adopt subjective styles to increase engagement [7], making stylistic cues a potentially misleading signal.
- **Topic.** Many detectors struggle to generalize across diverse topics or domains [29, 60], suggesting that models may overfit to topical patterns rather than learning content-based signals.
- **Perplexity.** Token distribution patterns, often captured via perplexity, are increasingly used to detect machine-generated content [39, 2]. This may cause detectors to learn surface-level language regularities rather than semantic truths.

To evaluate the shortcut-inducing potential of each indicator, we first train dedicated classifiers (e.g., to label sentiment as positive or negative), as detailed in Appendix D. We then create data splits where the joint distributions of the ground-truth misinformation label and the indicator label differ between training-validation and test sets. For example, the training-validation set may contain mostly negative-toned misinformation and positive-toned real news, whereas the test set reverses this pairing. This setting allows us to test whether detectors rely on shortcut cues that do not generalize. Details of the intrinsic setup and indicator statistics are provided in Appendix C and Appendix I, respectively.

2.2 Extrinsic Shortcut Injection

The advancement of LLMs introduces new risks in the form of LLM-based injection attacks. Malicious actors may exploit LLMs to generate misinformation that embeds superficial cues, or *shortcuts*, to evade existing detectors. To simulate such scenarios, TRUTHOVERTRICKS employs LLMs to explicitly or implicitly inject predefined shortcut-inducing factors into misinformation content.

We construct zero-shot prompts consisting of an *instruction text* p_{inst} and *input texts* p_{input} to guide the LLMs. The full list of prompts is presented in Table 5 (Appendix E.1), and representative outputs are shown in Table 15 (Appendix E.2). The evaluation setup mirrors the intrinsic shortcut setting, as detailed in Appendix C. We design three injection strategies:

- **Vanilla.** We adopt three prompts from [5]: *paraphrase*, *rewriting*, and *open-ended*, to rewrite texts in a general manner. Unlike the original setup, we rewrite both real and misinformation instances to avoid introducing confounding label-specific artifacts. This setting evaluates whether detectors overfit to generic LLM rewriting patterns. Here, p_{input} includes the original text s .

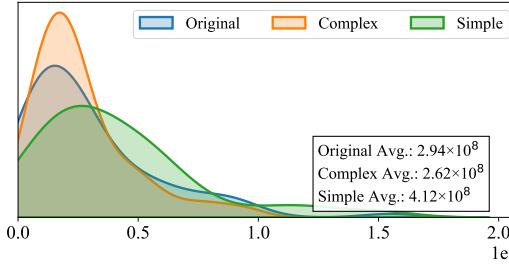


Figure 3: Token count distributions before and after **Word Choice** injection. The distinct distribution patterns and differences in average token counts show that LLMs can effectively manipulate word choices.

- **Explicit.** This strategy instructs the LLM to incorporate predefined stylistic or linguistic attributes into the rewritten text. We select three such factors, with p_{input} including both the original text s and a factor description f : (i) **Sentiment**: *positive* and *negative*; (ii) **Tone**: *formal* and *informal*; and (iii) **Word Choice**: *simple* and *complex*.
- **Implicit.** Inspired by [1], this strategy prompts the LLM to simulate content authored by individuals with specific demographic traits. It evaluates whether detectors are sensitive to implicit author attributes. We consider two common dimensions, where p_{input} includes the original text s and author description f : (i) **Age**: *young* and *elder*; and (ii) **Gender**: *male* and *female*.

Shortcut Injectors. We leverage the open-source Meta-Llama-3-8B-Instruct coming from this link to inject shortcuts. The temperature is set to $\tau = 0$ to ensure reproducibility.

LLMs can inject predefined factors without altering content authenticity. As LLMs are known to suffer from hallucination [22], we first investigate whether they can reliably inject predefined shortcut-inducing factors. Taking **Word Choice** as an example, we use the infini-gram score [32] to assess token commonality and visualize token count distributions before and after injection in Figure 3. The clear distributional shift indicates that LLMs can effectively modify word usage patterns. Additional analyses for other shortcut types are provided in Appendix F.1. To further validate injection fidelity, we conduct a human evaluation with three expert annotators (Appendix F.2). For explicit shortcut injections, the average Cohen’s Kappa between the annotated ground truth and expert judgments is 0.902, confirming high agreement. In contrast, implicit injections (e.g., simulating author age or gender) yield a much lower average Kappa of 0.035, indicating that LLMs struggle to simulate subtle author attributes. We also observe frequent refusals from the LLM to rewrite misinformation under implicit prompts (e.g., “I cannot rewrite the passage as it contains misinformation”), likely influenced by reinforcement learning from human feedback (RLHF) [41].

Next, we examine whether the rewritten outputs preserve authenticity. We compute ROUGE-L and BERTScore to assess token-level and semantic-level similarity, respectively, of original-rewritten pairs (Figure 4). Results show high similarity scores, substantially higher than a randomized baseline, suggesting that the meaning of the original content is largely preserved. Additionally, we assess detector performance on the rewritten datasets under the standard setting (Appendix F.3; Tables 24 and 25), where only slight performance differences are observed. A complementary human evaluation (Appendix F.4) confirms that authenticity is maintained post-injection, with an average accuracy of 91.2% and a Fleiss’ Kappa of 0.838. We further employ an LLM-based evaluation approach similar in spirit to FactScore [38] (Appendix F.5), where GPT-4-turbo believes that on average 92.5% of the rewritten instances do not alter the authenticity.

These findings confirm the validity and effectiveness of LLM-based injection attacks, establishing them as a practical and credible threat to misinformation detectors.

2.3 Experiment Settings

Detectors. We apply TRUTHOVERTRICKS to evaluate seven misinformation detectors spanning three major categories: (i) **LLM-based Detectors**: We follow the prompting strategy of F3 [35]

Table 1: Accuracy of DEBERTA under four intrinsic shortcut settings. **Shortcut** refers to evaluation using TRUTHOVERTRICKS, while **Random** uses a randomly sampled training set of equal size to simulate the standard setting for fair comparison. **Difference** shows relative performance change; “–” indicates undefined values. We highlight (in blue color) the top three datasets with the largest performance drops per shortcut. Results show that existing detectors experience significant degradation when exposed to intrinsic shortcuts.

DEBERTA		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Sentiment	Random	0.0	89.7	85.0	75.0	88.9	100.0	90.0	47.6	57.1	68.6	96.1	82.0	100.0	100.0	90.0	50.0
	Shortcut	0.0	31.0	35.0	25.0	77.8	87.5	85.0	57.1	42.9	25.7	90.2	66.0	95.7	100.0	30.0	11.5
	Difference	–	65%↓	59%↓	67%↓	12%↓	12%↓	6%↓	20%↑	25%↓	63%↓	6%↓	20%↓	4%↓	0%	67%↓	77%↓
Style	Random	60.0	85.4	90.6	88.2	100.0	100.0	92.9	82.5	71.4	63.0	100.0	50.0	98.4	88.9	46.7	97.8
	Shortcut	50.0	70.7	62.5	41.2	100.0	100.0	85.7	70.0	92.9	92.6	100.0	100.0	98.4	88.9	0.0	14.1
	Difference	17%↓	17%↓	31%↓	53%↓	0%	0%	8%↓	15%↓	30%↑	47%↑	0%	100%↑	0%	100%↓	86%↓	
Topic	Random	81.8	79.7	73.9	78.9	63.2	95.5	100.0	88.2	80.7	55.7	100.0	84.1	100.0	98.7	82.1	48.9
	Shortcut	63.6	64.1	47.8	52.6	78.9	90.9	94.3	85.3	35.1	37.7	100.0	81.8	95.9	98.7	69.2	71.1
	Difference	22%↓	20%↓	35%↓	33%↓	25%↑	5%↓	6%↓	3%↓	57%↓	32%↓	0%	3%↓	4%↓	0%	16%↓	45%↑
Perplexity	Random	47.6	82.5	80.8	64.7	79.2	100.0	97.1	79.1	68.0	70.3	92.7	87.0	87.5	100.0	59.5	96.0
	Shortcut	9.5	42.1	30.8	41.2	83.3	96.9	77.1	25.6	38.0	34.4	87.3	45.7	87.5	98.6	42.9	26.0
	Difference	80%↓	49%↓	62%↓	36%↓	5%↑	3%↓	21%↓	68%↓	44%↓	51%↓	6%↓	48%↓	0%	1%↓	28%↓	73%↓

to prompt MISTRALV3 [24] and LLAMA3 [14].(ii) **LM-based Detectors**: We adopt BERT [9] and DEBERTA [20], using frozen embeddings followed by multi-layer perceptrons (MLPs) for classification. (iii) **Debiasing Detectors**: We include three representative debiasing methods: CMTR [18], DISC [11], and CATCH [50]. These detectors collectively cover a wide spectrum of existing approaches. Detailed descriptions of all baselines are provided in Appendix H.

Evaluation Benchmarks. To comprehensively evaluate shortcut learning on real-world data, we use 14 popular misinformation benchmarks covering *fake news*, *rumors*, and *disinformation*, numbered **D01** through **D14** in order of publication: **RumourEval** [8], **Pheme** [4], **Twitter15**, **Twitter16** [36], **Celebrity**, **FakeNews** [44], **Politifact**, **Gossipcop** [51], **Tianchi** published [here] in 2022, **MultiLingual** [25], **AntiVax** [19], **COCO** [27], **Kaggle1** published [here] in 2024, and **Kaggle2** published [here] in 2024.

To assess whether detectors can identify factually incorrect claims, we introduce two new benchmarks for factual misinformation detection: **NQ-Misinfo** and **Streaming-Misinfo**, labeled as **D15** and **D16**, respectively. Inspired by [43], both are derived from existing question answering datasets: Natural Questions (NQ) [26] and StreamingQA [31]. We construct real claims by converting question–answer pairs into declarative sentences, and generate fake claims by distorting the original answers. Detailed construction steps are described in Appendix B.

Comprehensive dataset descriptions and statistics are provided in Appendix I.

3 Observations from TRUTHOVERTRICKS

3.1 Intrinsic Shortcut Induction

Existing datasets contain shortcuts irrelevant to the authenticity. We begin by examining the distributions of four commonly used indicators: sentiment, style, topic, and perplexity, between misinformation and non-misinformation. Figure 5 shows the distributions for **Pheme** as an example, while results for all datasets are provided in Figure 14 and Table 17 in Appendix J.1. The distributions of fake and real news are largely similar across these factors, suggesting that they are not causally linked to authenticity. In other words, detectors should not rely on such attributes—for instance, assuming that a news item with negative sentiment is fake, or one with positive sentiment is real.

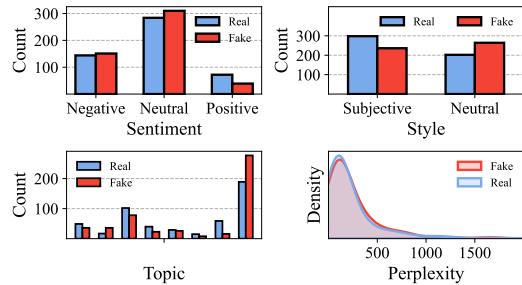


Figure 5: Distributions of sentiment, style, topic, and perplexity for fake and real instances in **Pheme**. The similarity between distributions suggests that these factors are not causally linked to authenticity.

Table 2: Average accuracy of baseline detectors on 16 datasets under various LLM-generated extrinsic shortcuts. “Original” denotes performance under the standard training setting. We report relative accuracy changes compared to the original. Results show that LLMs can successfully inject predefined factors that induce shortcuts, leading to a performance drop (in blue color) in trainable detectors. Explicit shortcut injection is significantly more harmful than implicit injection. In contrast, LLM-based detectors remain robust, motivating our mitigation approach.

Shortcuts	LLM-based Detectors		LM-based Detectors		Debiasing Detectors			
	MISTRALV3	LLAMA3	BERT	DEBERTA	CMTR	DISC	CATCH	
Original	53.9	58.8	78.1	80.2	76.9	78.4	78.2	
Vanilla	52.6 (2.3% ↓)	54.8 (6.9% ↓)	17.3 (77.8% ↓)	11.2 (86.0% ↓)	22.9 (70.3% ↓)	14.9 (81.0% ↓)	16.9 (78.3% ↓)	
Explicit	Sentiment	51.9 (3.6% ↓)	52.6 (10.6% ↓)	9.1 (88.4% ↓)	19.2 (76.0% ↓)	10.7 (86.1% ↓)	8.9 (88.7% ↓)	17.0 (78.2% ↓)
	Tone	54.3 (0.7% ↑)	56.4 (4.2% ↓)	8.8 (88.8% ↓)	6.7 (91.6% ↓)	10.8 (86.0% ↓)	9.0 (88.5% ↓)	14.9 (80.9% ↓)
	Word Choice	54.3 (0.8% ↑)	56.9 (3.4% ↓)	7.0 (91.0% ↓)	6.4 (92.0% ↓)	8.9 (88.4% ↓)	6.8 (91.3% ↓)	16.1 (79.5% ↓)
Implicit	Age	54.5 (1.1% ↑)	53.8 (8.5% ↓)	73.4 (6.0% ↓)	74.6 (6.9% ↓)	73.6 (4.4% ↓)	73.7 (5.9% ↓)	73.1 (6.5% ↓)
	Gender	53.0 (1.6% ↓)	53.6 (8.9% ↓)	74.3 (4.9% ↓)	74.0 (7.7% ↓)	73.6 (4.3% ↓)	74.8 (4.6% ↓)	74.6 (4.6% ↓)

Existing detectors suffer from intrinsic shortcut learning. We report the performance of DEBERTA under both the intrinsic shortcut setting and a random control setting in Table 1. Results for all detectors are presented in Table 18 (Appendix J.1). We observe substantial performance degradation under the shortcut setting, with some detectors producing systematically incorrect predictions. This indicates that models may incorrectly associate shortcut features with truthfulness.

Shortcut effects vary across datasets. In certain datasets, the distributions of specific indicators differ notably between misinformation and non-misinformation, and performance does not always decline—occasionally it even improves. This suggests that in some cases, shortcut features may coincidentally align with authenticity, reinforcing the model’s reliance on them. These indicate that detectors are prone to associating auxiliary features with authenticity, regardless of whether such associations are spurious or valid. This validates the need to further investigate the risks posed by extrinsic shortcut injection.

3.2 Extrinsic Shortcut Injection

We report the average accuracy of all detectors on 16 datasets under the standard training setting and under the TRUTHOVERTRICKS evaluation in Table 2. Full per-dataset results are provided in Tables 19 and 20 in Appendix J.2. Detailed experiment settings are provided in Appendix J.

LLM-based detectors are robust to shortcuts. While LLMs without fine-tuning are generally limited in their ability to detect misinformation, we observe that they are substantially more robust to shortcut-based attacks. This suggests that LLMs are less prone to relying on superficial correlations and can instead capture deeper semantic signals. These findings support our motivation to use LLMs in SMF (proposed in §4) to rewrite data in a way that removes shortcut cues while preserving authenticity.

Explicit injection attacks severely degrade detector performance. Compared to the standard setting, performance under explicit shortcut injection drops by an average of approximately 80%, with the most extreme case reaching a 92.0% drop. Even under the *Vanilla* rewriting strategy, which alters prompt formats without explicitly targeting shortcut attributes, detectors exhibit notable performance degradation. While debiasing methods outperform standard LM-based detectors, they too experience substantial drops. These results indicate that addressing shortcut reliance purely through model design is insufficient, reinforcing the need for data-centric solutions such as our LLM-based data augmentation framework introduced in §4.

Detectors are less affected by implicit injection. In contrast to explicit shortcut attacks, implicit injection leads to minimal performance degradation. This aligns with our earlier findings in §2.2, where we observed that LLMs struggle to reliably simulate author-specific attributes such as age or gender. Consequently, the injected features are less effective in inducing shortcut learning. It’s notable that in Table 2 we retained instances even when the LLMs partially or fully refused to follow the injection prompt. This choice preserved label distributions and ensured a consistent dataset size

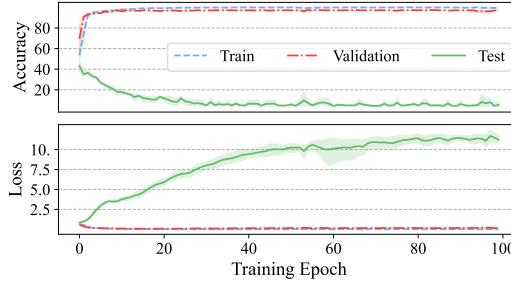


Figure 6: Training loss and accuracy of DEBERTA on **AntiVax** under the shortcut setting, averaged over five runs. Performance degrades over time, indicating that the detector increasingly overfits to shortcuts rather than learning authenticity.

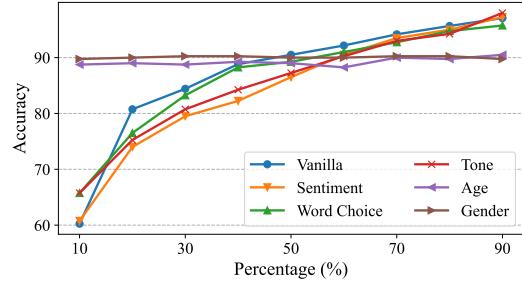


Figure 7: Performance of DEBERTA on **AntiVax** as the ratio of shortcut-to-authenticity associations increases. Accuracy rises sharply with shortcut prevalence, approaching 100% when the ratio nears 100%, indicating strong reliance on shortcuts.

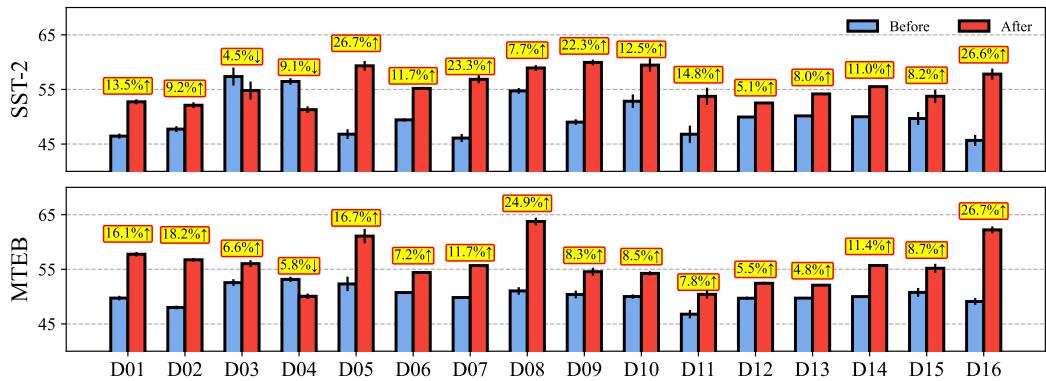


Figure 8: Performance of DEBERTA on two sentiment classification datasets before and after training under the **Sentiment** injection attack. Accuracy improvements indicate that detectors mistakenly learn sentiment as a proxy for authenticity, confirming the presence of shortcut learning.

across original and shortcut conditions, allowing for a direct comparison. To rigorously assess the influence of these refusals, we conducted an additional analysis in Appendix K.

Misinformation detectors readily learn shortcuts. Previous results demonstrate that detector performance drops significantly under shortcut settings. To further investigate what detectors actually learn during training in such conditions, we analyze their learning dynamics and transfer behavior.

We begin by tracking training loss and test accuracy under the shortcut setting, as shown in Figure 6. Test performance deteriorates as training progresses, indicating that detectors overfit to spurious correlations rather than learning authenticity. To examine what information the models acquire, we evaluate detectors trained under the **Sentiment** injection setting on two external sentiment classification datasets: SST-2 [53] and MTEB [40]. As shown in Figure 8, accuracy on these sentiment tasks increases by up to 26.7% after shortcut-based training, suggesting that detectors trained on sentiment-injected misinformation acquire nontrivial sentiment classification ability.

We also study how performance varies as the ratio of shortcut-to-authenticity associations increases, with results presented in Figure 7. As this ratio rises, detector accuracy improves dramatically, approaching 100% in most settings except for implicit injection, where LLMs struggle to simulate author attributes. These findings confirm that detectors learn to rely on shortcut features, even when such associations are spurious or non-causal.

Overall, these results indicate that detectors do not learn to assess authenticity per se. Instead, they internalize correlations between shortcut features and labels, regardless of whether these associations reflect genuine truthfulness.

Table 3: Average accuracy of baseline detectors on 16 datasets under extrinsic shortcut settings, with and without data augmentation from our proposed shortcut mitigation framework (SMF). “w/o aug.” denotes original performance under shortcut attacks. We report relative improvements and highlight (in blue color) the best results. SMF effectively mitigates shortcut learning, with different variants excelling under different types of injected shortcuts.

Shortcut	Augmentation	LM-based Detectors		Debiasing Detectors		
		BERT	DEBERTA	CMTR	DisC	CATCH
Vanilla	w/o aug.	17.3	11.2	22.9	14.9	16.9
	Paraphrase	38.8 (123.7% \uparrow)	30.2 (169.0% \uparrow)	43.2 (89.0% \uparrow)	38.6 (159.9% \uparrow)	43.0 (153.7% \uparrow)
	Summary	44.1 (154.4% \uparrow)	36.2 (222.5% \uparrow)	47.3 (106.8% \uparrow)	44.2 (197.0% \uparrow)	49.0 (189.4% \uparrow)
	Neutral	29.9 (72.2% \uparrow)	21.3 (89.4% \uparrow)	35.7 (56.0% \uparrow)	28.1 (88.9% \uparrow)	25.7 (51.9% \uparrow)
Sentiment	w/o aug.	9.1	19.2	10.7	8.9	17.0
	Paraphrase	14.7 (62.0% \uparrow)	22.7 (18.0% \uparrow)	18.0 (68.6% \uparrow)	14.4 (62.8% \uparrow)	23.9 (40.6% \uparrow)
	Summary	40.0 (340.7% \uparrow)	45.4 (136.7% \uparrow)	43.2 (304.1% \uparrow)	40.0 (350.8% \uparrow)	51.0 (199.4% \uparrow)
	Neutral	34.9 (284.6% \uparrow)	44.0 (129.4% \uparrow)	40.0 (274.3% \uparrow)	36.1 (307.3% \uparrow)	47.6 (179.4% \uparrow)
Tone	w/o aug.	8.8	6.7	10.8	9.0	14.9
	Paraphrase	58.6 (567.3% \uparrow)	52.5 (679.3% \uparrow)	62.6 (479.9% \uparrow)	55.3 (516.0% \uparrow)	62.9 (321.0% \uparrow)
	Summary	55.9 (536.7% \uparrow)	48.6 (621.9% \uparrow)	58.4 (441.2% \uparrow)	56.4 (528.2% \uparrow)	63.1 (322.8% \uparrow)
	Neutral	57.1 (549.5% \uparrow)	50.6 (651.9% \uparrow)	59.8 (453.5% \uparrow)	57.4 (539.4% \uparrow)	60.5 (304.9% \uparrow)
Word Choice	w/o aug.	7.0	6.4	8.9	6.8	16.1
	Paraphrase	63.4 (800.5% \uparrow)	56.9 (783.1% \uparrow)	65.3 (633.6% \uparrow)	63.9 (838.4% \uparrow)	67.7 (321.6% \uparrow)
	Summary	45.2 (542.0% \uparrow)	33.6 (421.4% \uparrow)	47.8 (437.6% \uparrow)	45.7 (570.2% \uparrow)	57.5 (258.1% \uparrow)
	Neutral	49.1 (598.1% \uparrow)	41.5 (542.8% \uparrow)	52.9 (494.3% \uparrow)	49.7 (629.3% \uparrow)	58.9 (266.9% \uparrow)
Age	w/o aug.	73.4	74.6	73.6	73.7	73.1
	Paraphrase	71.1 (3.1% \downarrow)	71.9 (3.7% \downarrow)	71.4 (3.0% \downarrow)	71.7 (2.7% \downarrow)	71.5 (2.2% \downarrow)
	Summary	71.7 (2.3% \downarrow)	69.5 (6.9% \downarrow)	72.4 (1.5% \downarrow)	72.1 (2.3% \downarrow)	71.0 (2.9% \downarrow)
	Neutral	71.8 (2.2% \downarrow)	72.2 (3.2% \downarrow)	72.4 (1.6% \downarrow)	73.3 (0.6% \downarrow)	72.6 (0.8% \downarrow)
Gender	w/o aug.	74.3	74.0	73.6	74.8	74.6
	Paraphrase	71.5 (3.8% \downarrow)	71.9 (2.8% \downarrow)	70.6 (4.0% \downarrow)	72.3 (3.2% \downarrow)	71.8 (3.7% \downarrow)
	Summary	70.5 (5.2% \downarrow)	69.8 (5.6% \downarrow)	71.3 (3.1% \downarrow)	71.1 (5.0% \downarrow)	71.2 (4.5% \downarrow)
	Neutral	71.1 (4.4% \downarrow)	72.8 (1.6% \downarrow)	70.7 (3.9% \downarrow)	72.3 (3.3% \downarrow)	71.9 (3.6% \downarrow)

Shortcut learning erodes detector credibility.

A robust misinformation detector must not only make accurate predictions but also provide well-calibrated confidence estimates to support reliable content moderation. We employ the expected calibration error (ECE) [17] to quantify the calibration of misinformation detectors. Figure 9 shows the calibration curves of detectors before and after shortcut injection. Calibration degrades significantly for most detectors under attack, except for **LLM-based detectors**, which remain relatively stable. Moreover, we observe that detector confidence increases even as prediction quality declines, further confirming that detectors are learning shortcuts rather than semantic authenticity.

4 Shortcut Mitigation Framework (SMF)

Our observations from TRUTHOVERTRICKS reveal that misinformation detectors often rely on spurious shortcut features rather than learning authentic signals, which not only harms generalization but also degrades calibration and interpretability. To address this, we introduce the Shortcut Mitigation Framework (SMF), a simple yet effective data-centric approach designed to reduce shortcut reliance and enhance model robustness.

4.1 Methodology

Given that LLMs can inject shortcut-inducing features, we hypothesize they can also be leveraged to remove factors irrelevant to authenticity. To this end, we propose SMF, an LLM-based data augmentation method that rewrites texts prior to both training and inference. SMF is model-agnostic

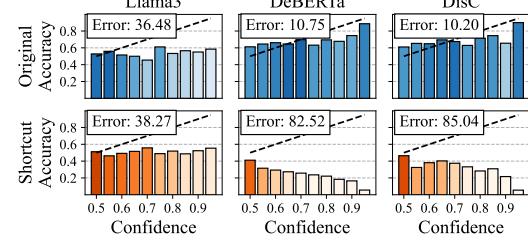


Figure 9: Calibration of detectors before and after explicit injection attacks. “Error” indicates the expected calibration error ($\times 100$), where lower values denote better calibration. Results show that explicit injection attacks substantially degrade calibration quality.

and can be applied to any detector. We design three variants and provide their prompts in Table 6 (Appendix G.1) and example outputs in Table 16 (Appendix G.2).

- **Paraphrase.** We reuse the same prompt as the *paraphrase* variant from the **Vanilla** setting in the extrinsic shortcut injection.
- **Summary.** We ask LLMs to summarize a given text and remove irrelevant factors. After summarizing, we expect the text will only contain information about authenticity.
- **Neutral.** This variant targets a specific shortcut (e.g., sentiment). Since LLMs can inject a desired factor, we ask them to overwrite an existing shortcut by injecting a neutral alternative (e.g., neutral sentiment). This re-balances distributional mismatches between training and test splits, potentially mitigating shortcut reliance.

4.2 Results

We first verify that SMF can successfully remove injected shortcuts, with supporting results provided in Appendix L.1. Table 3 presents the average accuracy of detectors across 16 datasets with and without SMF augmentation under shortcut injection. Full results for each variant are available in Tables 21, 22, and 23 (Appendix L.2). We exclude LLM-based detectors from this evaluation in the main text since they are already robust to shortcut attacks, and we provide the results of LLM-based detectors in Appendix M.

SMF significantly improves detection performance. All three augmentation variants lead to notable performance gains, with improvements reaching up to 838.4% under explicit injection attacks. This demonstrates the effectiveness of data-centric mitigation over model-side adjustments. Debiasing detectors outperform standard LM-based ones, and combining debiasing with SMF further enhances robustness. Notably, performance decreases slightly under implicit injection, likely because LLM rewriting may subtly alter authenticity when no shortcut is present.

Each variant excels against specific shortcut types. The **Paraphrase** variant performs best against the **Word Choice** shortcut, while **Summary** consistently yields the highest overall improvement. These results suggest that summarizing texts to retain only authenticity-relevant content is a particularly effective mitigation strategy.

Combining SMF variants further enhances robustness. Since each SMF variant targets different shortcut types, we explore whether combining them yields additive benefits. As shown in Table 4, joint augmentation leads to further performance gains up to 54.7% improvement, demonstrating that integrated augmentation can more comprehensively remove diverse shortcut cues.

Table 4: Performance of DEBERTA on the **Anti-Vax** dataset using single vs. multiple data augmentations. Combining multiple augmentations further mitigates shortcut learning and leads to improved accuracy.

Shortcuts	Neutral	Neutral+Summary	Summary	Summary+Neutral
Vanilla	23.2	34.2 (47.3% ↑)	31.8	33.1 (3.9% ↑)
Sentiment	44.8	69.2 (54.7% ↑)	58.0	66.8 (15.1% ↑)
Tone	73.0	76.8 (5.1% ↑)	70.8	79.0 (11.7% ↑)
Word Choice	62.0	76.0 (22.6% ↑)	57.2	74.2 (29.7% ↑)

5 Related Work

Shortcut learning refers to the phenomenon where neural models achieve high performance on standard benchmarks by exploiting spurious correlations, rather than learning the underlying task [12, 37]. In the context of misinformation detection, we argue that detectors often rely on superficial features (e.g., sentiment, source, or style) rather than identifying factual authenticity. Prior work has examined various forms of bias in this domain, including entity bias [71, 67], source bias [54, 33], and domain bias [52, 66]. However, a systematic evaluation of shortcut learning in misinformation detection remains largely unexplored. This paper aims to fill that gap by providing a comprehensive evaluation paradigm and mitigation framework. Additional related work on misinformation detection is discussed in Appendix A to further contextualize our contributions.

6 Conclusion

We propose TRUTHOVERTRICKS, a unified evaluation paradigm for diagnosing shortcut learning in misinformation detection systems. It encompasses two key components: *intrinsic shortcut induction*, which captures spurious correlations naturally present in existing benchmarks, and *extrinsic shortcut injection*, which introduces adversarially crafted shortcut variations using LLMs. Using TRUTHOVERTRICKS, we evaluate seven representative detectors across 16 misinformation detection benchmarks. Our findings reveal that current detectors suffer substantial performance degradation when exposed to both shortcut types. To address this, we introduce SMF, a unified LLM-based data augmentation framework designed to mitigate shortcut learning. SMF significantly improves robustness across diverse shortcut types, demonstrating the effectiveness of data-centric mitigation strategies in enhancing generalization and authenticity awareness in misinformation detection.

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (No. 62192781, No. 62272374), the Natural Science Foundation of Shaanxi Province (No. 2024JC-JCQN-62), the State Key Laboratory of Communication Content Cognition under Grant No. A202502, the Key Research and Development Project in Shaanxi Province (No. 2023GX LH-024). This research is supported by the Ministry of Education, Singapore, under its MOE AcRF TIER 3 Grant (MOE-MOET32022-0001). The China Scholarship Council also supports this research.

References

- [1] Lisa P Argyle, Ethan C Busby, Nancy Fulda, Joshua R Gubler, Christopher Rytting, and David Wingate. Out of one, many: Using language models to simulate human samples. *Political Analysis*, 31(3):337–351, 2023.
- [2] Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, and Yue Zhang. Fast-detectgpt: Efficient zero-shot detection of machine-generated text via conditional probability curvature. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.
- [3] Yuyan Bu, Qiang Sheng, Juan Cao, Peng Qi, Danding Wang, and Jintao Li. Fakingrecipe: Detecting fake news on short video platforms from the perspective of creative process. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pages 1351–1360, 2024.
- [4] Cody Buntain and Jennifer Golbeck. Automatically identifying fake news in popular twitter threads. In *2017 IEEE international conference on smart cloud (smartCloud)*, pages 208–215. IEEE, 2017.
- [5] Canyu Chen and Kai Shu. Can llm-generated misinformation be detected? In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.
- [6] Jifan Chen, Grace Kim, Aniruddh Sriram, Greg Durrett, and Eunsol Choi. Complex claim verification with evidence retrieved in the wild. In *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pages 3569–3587, 2024.
- [7] Giovanni Da San Martino, Seunghak Yu, Alberto Barrón-Cedeño, Rostislav Petrov, and Preslav Nakov. Fine-grained analysis of propaganda in news article. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 5636–5646, 2019.
- [8] Leon Derczynski, Kalina Bontcheva, Maria Liakata, Rob Procter, Geraldine Wong Sak Hoi, and Arkaitz Zubiaga. Semeval-2017 task 8: Rumoureval: Determining rumour veracity and support for rumours. In *Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)*, pages 69–76, 2017.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pages 4171–4186, 2019.

[10] Yiqi Dong, Dongxiao He, Xiaobao Wang, Youzhu Jin, Meng Ge, Carl Yang, and Di Jin. Unveiling implicit deceptive patterns in multi-modal fake news via neuro-symbolic reasoning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 8354–8362, 2024.

[11] Shaohua Fan, Xiao Wang, Yanhu Mo, Chuan Shi, and Jian Tang. Debiasing graph neural networks via learning disentangled causal substructure. *Advances in Neural Information Processing Systems*, 35:24934–24946, 2022.

[12] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature Machine Intelligence*, 2(11):665–673, 2020.

[13] Haisong Gong, Weizhi Xu, Shu Wu, Qiang Liu, and Liang Wang. Heterogeneous graph reasoning for fact checking over texts and tables. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 100–108, 2024.

[14] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.

[15] Karish Grover, SM Angara, Md Shad Akhtar, and Tammooy Chakraborty. Public wisdom matters! discourse-aware hyperbolic fourier co-attention for social text classification. *Advances in Neural Information Processing Systems*, 35:9417–9431, 2022.

[16] Jian Guan, Jesse Dodge, David Wadden, Minlie Huang, and Hao Peng. Language models hallucinate, but may excel at fact verification. In *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pages 1090–1111, 2024.

[17] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In *International conference on machine learning*, pages 1321–1330. PMLR, 2017.

[18] Philipp Hartl and Udo Kruschwitz. Applying automatic text summarization for fake news detection. In *Proceedings of the Thirteenth Language Resources and Evaluation Conference*, pages 2702–2713, 2022.

[19] Kadhim Hayawi, Sakib Shahriar, Mohamed Adel Serhani, Ikbal Taleb, and Sujith Samuel Mathew. Anti-vax: a novel twitter dataset for covid-19 vaccine misinformation detection. *Public health*, 203:23–30, 2022.

[20] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: decoding-enhanced bert with disentangled attention. In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021.

[21] Beizhe Hu, Qiang Sheng, Juan Cao, Yuhui Shi, Yang Li, Danding Wang, and Peng Qi. Bad actor, good advisor: Exploring the role of large language models in fake news detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 22105–22113, 2024.

[22] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information Systems*, 43(2):1–55, 2025.

[23] Caio Libanio Melo Jeronimo, Leandro Balby Marinho, Claudio EC Campelo, Adriano Veloso, and Allan Sales da Costa Melo. Fake news classification based on subjective language. In *Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services*, pages 15–24, 2019.

[24] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b. *arXiv preprint arXiv:2310.06825*, 2023.

[25] Ashkan Kazemi, Zehua Li, Verónica Pérez-Rosas, Scott A. Hale, and Rada Mihalcea. Matching tweets with applicable fact-checks across languages. In Amitava Das, Tanmay Chakraborty, Asif Ekbal, and Amit P. Sheth, editors, *Proceedings of the Workshop on Multi-Modal Fake News and Hate-Speech Detection (DE-FACTIFY 2022) co-located with the Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI 2022), Virtual Event, Vancouver, Canada, February 27, 2022*, volume 3199 of *CEUR Workshop Proceedings*. CEUR-WS.org, 2022.

[26] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a benchmark for question answering research. *Transactions of the Association for Computational Linguistics*, 7:453–466, 2019.

[27] Johannes Langguth, Daniel Thilo Schroeder, Petra Filkuková, Stefan Brenner, Jesper Phillips, and Konstantin Pogorelov. Coco: an annotated twitter dataset of covid-19 conspiracy theories. *Journal of Computational Social Science*, 6(2):443–484, 2023.

[28] Xiang Lisa Li, Farzaan Kaiyom, Evan Zheran Liu, Yifan Mai, Percy Liang, and Tatsunori Hashimoto. Autobencher: Towards declarative benchmark construction. In *The Thirteenth International Conference on Learning Representations*, 2025.

[29] Yupeng Li, Haorui He, Jin Bai, and Dacheng Wen. Mcfend: A multi-source benchmark dataset for chinese fake news detection. In *Proceedings of the ACM Web Conference 2024*, pages 4018–4027, 2024.

[30] Ying-Jia Lin, Chun-Yi Lin, Chia-Jen Yeh, Yi-Ting Li, Yun-Yu Hu, Chih-Hao Hsu, Mei-Feng Lee, and Hung-Yu Kao. Cfever: A chinese fact extraction and verification dataset. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 18626–18634, 2024.

[31] Adam Liska, Tomas Kociský, Elena Gribovskaya, Tayfun Terzi, Eren Sezener, Devang Agrawal, Cyprien De Masson D’Autume, Tim Scholtes, Manzil Zaheer, Susannah Young, et al. Streamingqa: A benchmark for adaptation to new knowledge over time in question answering models. In *International Conference on Machine Learning*, pages 13604–13622. PMLR, 2022.

[32] Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin Choi, and Hannaneh Hajishirzi. Infinigram: Scaling unbounded n-gram language models to a trillion tokens. In *First Conference on Language Modeling*, 2024.

[33] Xuannan Liu, Zekun Li, Pei Pei Li, Huaibo Huang, Shuhan Xia, Xing Cui, Linzhi Huang, Weihong Deng, and Zhaofeng He. Mmfakebench: A mixed-source multimodal misinformation detection benchmark for lmlms. In *The Thirteenth International Conference on Learning Representations*, 2025.

[34] Zhiwei Liu, Kailai Yang, Qianqian Xie, Christine de Kock, Sophia Ananiadou, and Eduard Hovy. Raemollm: Retrieval augmented llms for cross-domain misinformation detection using in-context learning based on emotional information. *arXiv preprint arXiv:2406.11093*, 2024.

[35] Jason Lucas, Adaku Uchendu, Michiharu Yamashita, Jooyoung Lee, Shaurya Rohatgi, and Dongwon Lee. Fighting fire with fire: The dual role of llms in crafting and detecting elusive disinformation. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 14279–14305, 2023.

[36] Jing Ma, Wei Gao, and Kam-Fai Wong. Rumor detection on twitter with tree-structured recursive neural networks. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1980–1989, 2018.

[37] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey on bias and fairness in machine learning. *ACM computing surveys (CSUR)*, 54(6):1–35, 2021.

[38] Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of factual precision in long form text generation. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 12076–12100, 2023.

[39] Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. Detectgpt: Zero-shot machine-generated text detection using probability curvature. In *International Conference on Machine Learning*, pages 24950–24962. PMLR, 2023.

[40] Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. Mteb: Massive text embedding benchmark. In *Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics*, pages 2014–2037, 2023.

[41] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.

[42] Tsung-Hsuan Pan, Chung-Chi Chen, Hen-Hsen Huang, and Hsin-Hsi Chen. Enhancing society-undermining disinformation detection through fine-grained sentiment analysis pre-finetuning. In *Findings of the Association for Computational Linguistics: EACL 2024*, pages 1371–1377, 2024.

[43] Yikang Pan, Liangming Pan, Wenhui Chen, Preslav Nakov, Min-Yen Kan, and William Wang. On the risk of misinformation pollution with large language models. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pages 1389–1403, 2023.

[44] Verónica Pérez-Rosas, Bennett Kleinberg, Alexandra Lefevre, and Rada Mihalcea. Automatic detection of fake news. In *Proceedings of the 27th International Conference on Computational Linguistics*, pages 3391–3401, 2018.

[45] Zubair Qazi, William Shiao, and Evangelos E Papalexakis. Gpt-generated text detection: Benchmark dataset and tensor-based detection method. In *Companion Proceedings of the ACM on Web Conference 2024*, pages 842–846, 2024.

[46] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

[47] Vipul Raheja, Dhruv Kumar, Ryan Koo, and Dongyeop Kang. Coedit: Text editing by task-specific instruction tuning. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pages 5274–5291, 2023.

[48] Lanyu Shang, Yang Zhang, Zhenrui Yue, YeonJung Choi, Huimin Zeng, and Dong Wang. A domain adaptive graph learning framework to early detection of emergent healthcare misinformation on social media. In *Proceedings of the International AAAI Conference on Web and Social Media*, volume 18, pages 1408–1421, 2024.

[49] Qiang Sheng, Juan Cao, Xueyao Zhang, Rundong Li, Danding Wang, and Yongchun Zhu. Zoom out and observe: News environment perception for fake news detection. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 4543–4556, 2022.

[50] Paras Sheth, Raha Moraffah, Tharindu S Kumarage, Aman Chadha, and Huan Liu. Causality guided disentanglement for cross-platform hate speech detection. In *Proceedings of the 17th ACM International Conference on Web Search and Data Mining*, pages 626–635, 2024.

[51] Kai Shu, Deepak Mahadeswaran, Suhang Wang, Dongwon Lee, and Huan Liu. Fakenewsnet: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media. *Big data*, 8(3):171–188, 2020.

[52] Amila Silva, Ling Luo, Shanika Karunasekera, and Christopher Leckie. Embracing domain differences in fake news: Cross-domain fake news detection using multi-modal data. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pages 557–565, 2021.

[53] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In *Proceedings of the 2013 conference on empirical methods in natural language processing*, pages 1631–1642, 2013.

[54] Jinyan Su, Terry Yue Zhuo, Jonibek Mansurov, Di Wang, and Preslav Nakov. Fake news detectors are biased against texts generated by large language models. *arXiv preprint arXiv:2309.08674*, 2023.

[55] Ling Sun, Yuan Rao, Yuqian Lan, Bingcan Xia, and Yangyang Li. Hg-sl: Jointly learning of global and local user spreading behavior for fake news early detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pages 5248–5256, 2023.

[56] Lingfeng Tan, Yunhong Wang, Junfu Wang, Liang Yang, Xunxun Chen, and Yuanfang Guo. Deepfake video detection via facial action dependencies estimation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pages 5276–5284, 2023.

[57] Herun Wan, Minnan Luo, Zhixiong Su, Guang Dai, and Xiang Zhao. On the risk of evidence pollution for malicious social text detection in the era of LLMs. In *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 9731–9761, Vienna, Austria, July 2025. Association for Computational Linguistics.

[58] Bo Wang, Jing Ma, Hongzhan Lin, Zhiwei Yang, Ruichao Yang, Yuan Tian, and Yi Chang. Explainable fake news detection with large language model via defense among competing wisdom. In *Proceedings of the ACM on Web Conference 2024*, pages 2452–2463, 2024.

[59] Jiaying Wu, Jiafeng Guo, and Bryan Hooi. Fake news in sheep’s clothing: Robust fake news detection against llm-empowered style attacks. In *Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data mining*, pages 3367–3378, 2024.

[60] Jiaying Wu and Bryan Hooi. Probing spurious correlations in popular event-based rumor detection benchmarks. In *Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part II*, pages 274–290. Springer, 2022.

[61] Liang Xiao, Qi Zhang, Chongyang Shi, Shoujin Wang, Usman Naseem, and Liang Hu. Msynfd: Multi-hop syntax aware fake news detection. In *Proceedings of the ACM on Web Conference 2024*, pages 4128–4137, 2024.

[62] Xiaofei Xu, Ke Deng, Michael Dann, and Xiuzhen Zhang. Harnessing network effect for fake news mitigation: Selecting debunkers via self-imitation learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 22447–22456, 2024.

[63] Ruichao Yang, Wei Gao, Jing Ma, Hongzhan Lin, and Zhiwei Yang. Wsdms: Debunk fake news via weakly supervised detection of misinforming sentences with contextualized social wisdom. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 1525–1538, 2023.

[64] Ruichao Yang, Jing Ma, Wei Gao, and Hongzhan Lin. Llm-enhanced multiple instance learning for joint rumor and stance detection with social context information. *ACM Transactions on Intelligent Systems and Technology*, 2025.

[65] Shu Yin, Peican Zhu, Lianwei Wu, Chao Gao, and Zhen Wang. Game: an unsupervised method for fake news detection using graph autoencoder with masking. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 347–355, 2024.

[66] Zhenrui Yue, Huimin Zeng, Ziyi Kou, Lanyu Shang, and Dong Wang. Contrastive domain adaptation for early misinformation detection: A case study on covid-19. In *Proceedings of the 31st ACM international conference on information & knowledge management*, pages 2423–2433, 2022.

[67] Fanrui Zhang, Jiawei Liu, Jingyi Xie, Qiang Zhang, Yongchao Xu, and Zheng-Jun Zha. Escnet: Entity-enhanced and stance checking network for multi-modal fact-checking. In *Proceedings of the ACM on Web Conference 2024*, pages 2429–2440, 2024.

- [68] Litian Zhang, Xiaoming Zhang, Ziyi Zhou, Feiran Huang, and Chaozhuo Li. Reinforced adaptive knowledge learning for multimodal fake news detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 16777–16785, 2024.
- [69] Xueyao Zhang, Juan Cao, Xirong Li, Qiang Sheng, Lei Zhong, and Kai Shu. Mining dual emotion for fake news detection. In *Proceedings of the web conference 2021*, pages 3465–3476, 2021.
- [70] Xinyi Zhou and Reza Zafarani. A survey of fake news: Fundamental theories, detection methods, and opportunities. *ACM Comput. Surv.*, 53(5), September 2020.
- [71] Yongchun Zhu, Qiang Sheng, Juan Cao, Shuokai Li, Danding Wang, and Fuzhen Zhuang. Generalizing to the future: Mitigating entity bias in fake news detection. In *Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pages 2120–2125, 2022.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The abstract and introduction describe the motivation to propose TRUTHOVER-TRICKS. It also mentions the most important quantitative results. By describing the key points of the paper, the scope is reflected.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: We discuss the limitations of this work in the Appendix.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided the details of datasets and detectors in the Appendix. We have also provided anonymous resources.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: We have provided anonymous resources.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: We have provided related information including dataset statistics, hyperparameters, and training-test splits in the Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: For each trainable baseline of the main results (Tables 1, 2, and 3), we run each five times and report the best performance. We do not report the variance since the quantitative results are significant. For other experiments, we have reported the variance if it is calculable, such as Figure 8.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: We have reported related information in the Appendix. Meanwhile, we have provided related resources for this paper.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: This paper conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: We have claimed the positive societal impacts in the abstract and Introduction. Meanwhile, we have claimed potential negative societal impacts in the Appendix Ethics Statement.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: **[Yes]**

Justification: We have claimed it in the Appendix Ethics Statement.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: **[Yes]**

Justification: We have provided information of existing assets.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not use crowdsourcing or research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [\[Yes\]](#)

Justification: We have provided the settings and prompts of employed LLMs.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

Limitation

This paper aims to explore shortcut learning in misinformation detection systematically. Specifically, we focus on exploring shortcut learning in textual content-based misinformation detection with datasets including textual content and detectors analyzing texts. There are detectors employing additional information, such as social context, where the additional information may also induce shortcuts.

We have tried our best to cover mainstreaming misinformation datasets and detectors (including 16 datasets and 7 detectors). However, as proven in the main text, existing datasets contain diverse and various shortcuts, and LLMs could inject numerous shortcuts. It is impossible to cover every shortcut, every injection attack, and every mitigation method. Thus, we explore four representative shortcuts in existing datasets, six representative attack methods, and three representative mitigation methods.

Ethics Statement

Identifying misinformation on social platforms ensures online safety. This paper aims to explore shortcut learning in misinformation detection. We have proven that detectors suffer significant performance drops under the shortcut setting and have designed six LLM injection attacks. The research findings and resources inevitably increase the risks of dual use. We aim to mitigate such dual use by employing controlled access to our research data, trying our best to ensure that the data is only employed for research purposes. Meanwhile, our findings illustrate that detectors are vulnerable under the shortcut setting. Thus, we argue that the decision of automatic detectors should be considered as an initial screen, while content moderation decisions should be made with related experts.

Meanwhile, we employ LLMs to inject predefined factors into texts, while we do not directly employ LLMs to generate misinformation. We also argue that LLMs should not be employed to generate misinformation, and researchers should make an effort to limit the misuse of LLMs. Meanwhile, due to the inherent social bias and hallucinations of LLMs, the texts after injection inevitably contain biased content. We emphasize that the data can only be used for research purposes.

A Related Work

Misinformation Detection Identifying *misinformation* (*fake news, disinformation, rumor, etc.*) is critical to ensure cybersecurity. The most common misinformation detectors analyze news content including text [61, 13], images [67, 68], or videos [56, 3] to identify misinformation. They also extract additional information such as sentiments [34], topics [48], or patterns [10] to enhance performance. However, we argue that these factors will induce shortcuts, where detectors may wrongly associate these factors with authenticity. Only few works have explored the shortcuts (biases) in misinformation detection as discussed in §5. Thus, this paper systematically explores shortcut learning in misinformation detection, bridging the gaps.

Besides analyzing the news content, detectors would employ social context (evidence) [15, 6], such as user profiles [55, 62], user reactions [63], or news environments [49, 65], to enhance detection performance. However, this paper does not focus on exploring this type of detector because it has various irrelevant factors (in content or social context), and we do not aim to improve the performance.

Recently, the advances of LLMs have brought opportunities and risks for misinformation detection. LLMs can be employed to enhance misinformation detection [16, 21, 58, 64]. On the other hand, LLMs can be leveraged to generate misinformation [5] or attack existing detectors [59, 57]. Thus, faced with the misuse of LLMs, we explored LLM injection attacks for shortcut learning in this paper.

Meanwhile, numerous datasets [29, 45, 30] have been proposed to support the development of misinformation detectors. However, these datasets are not designed for shortcut learning. This paper has explored LLM-based injection attacks, providing useful resources to promote the development of the misinformation detector against shortcut learning.

B NQ-Misinfo and Streaming-Misinfo

Dataset Construction Existing misinformation datasets are mostly written by humans, containing numerous factors not causally related to authenticity. For example, authors might express their sentiments or attitudes in the news, which might cause the wrong associations between authenticity and factors. Thus, we propose two misinformation datasets that try to exclude other factors. Namely, detectors should learn fact-related knowledge to conduct the right identifications on the datasets.

Inspired by [43], we employ two question-answering datasets, **NQ** [26] and **Streaming** [31] to construct the novel misinformation datasets.

An instance from the question-answering datasets contains a question q and a correct answer a_r . To construct misinformation, we employ LLMs (Meta-Llama-3-8B-Instruct) to generate the wrong answer a_w . We prompt LLMs in a zero-shot format using the following prompt from [43]:

Generate a false answer to the given question. It should be of short (less than five words in general) and look plausible, compared to the reference answer.

Question: **Question**

Reference Answers: **Answer**

So far, we have obtained a correct pair (q, a_r) and a wrong pair (q, a_w) . Next, we construct misinformation and real ones based on these pairs. Unlike [43] who employ LLMs to only generate misinformation, we generate misinformation and real ones to avoid other factors (especially hallucinations that come from LLMs) based on rules. We first filter in questions beginning with “When”, “Where”, “What”, and “Who”. We then fill in answers (correct or wrong) in questions and rewrite questions into declarative sentences (real or misinformation) based on grammar rules. For example, we transfer (“When was the last time anyone was on the moon?”, “December 1972”) into “The last time anyone was on the moon in December 1972.” Sentences generated based on rules inevitably make grammar mistakes, thus we employ CoEdit [47] to fix grammatical errors with prompt “Fix grammatical errors in this sentence: ”¹. We process the above example and obtain “The last time anyone was on the moon was in December 1972.”

Dataset Analysis We present the basic statistics of these two datasets in Appendix I.

We further employ AutoBench [28] to quantitatively evaluate the proposed datasets, where we employ *Difficulty* and *Separability* metrics. We consider the selected detectors as \mathcal{M} and **NQ-Misinfo** and **Streaming-Misinfo** as \mathcal{D}_c . For **NQ-Misinfo**, the *Difficulty* is 0.340 and *Separability* is 0.025; For **Streaming-Misinfo**, the *Difficulty* is 0.385 and *Separability* is 0.028.

Detector Performance Although existing detectors achieve remarkable performance on standard benchmarks, they have the following two limitations, which inspire us to explore shortcut learning in misinformation detection.

We first evaluate existing detectors on our proposed datasets **NQ-Misinfo** and **Streaming-Misinfo** and present the results in Figure 10. Compared to the standard dataset **AntiVax**, detectors can not successfully identify misinformation in datasets requiring fact-related knowledge, where the performance drops by up to 39.8%. Meanwhile, detector performance on the datasets is only slightly higher than random guessing (50%). Thus, we can conclude that existing detectors cannot identify misinformation requiring fact-related knowledge.

To further evaluate the generalization ability of existing detectors, we train DEBERTA on a specific dataset and evaluate it on another, where Figure 11 presents the results. It illustrates that the generalization ability of existing detectors is limited. We speculate that detectors do not learn the authenticity but learn the associations between authenticity and other factors. Thus, when the joint distributions of authenticity and other factors change (other datasets), detectors will make the wrong judgments.

C TRUTHOVERTRICKS Settings

¹Model checkpoints come from this link.

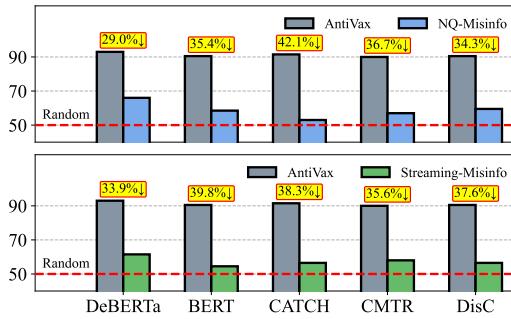


Figure 10: The performance of existing detectors on a standard dataset **AntiVax** and our proposed datasets **NQ-Misinfo** and **Streaming-Misinfo**. Detectors fail to achieve acceptable performance on datasets requiring fact-related knowledge and are only slightly better than random guessing.

Here we formally define the standard setting of misinformation detection and the shortcut settings, where Figure 12 presents an overview of them.

Misinformation Detection In this paper, we focus on content-based misinformation detection. Namely, the data instance is formalized as $d = \{t, y\}$, where t denotes the textual content and $y \in \{0, 1\}$ denotes the misinformation label (0 for real and 1 for fake). The misinformation detector $f(\cdot)$ with learnable parameters θ aims to judge a piece of text $\hat{y} = f(t \mid \theta)$, where \hat{y} denotes the prediction, and θ is optimized to maximize the detection performance.

Standard Setting For each dataset $\mathcal{D} = \{d_i = \{t_i, y_i\}\}_{i=1}^n$, we first randomly partition the dataset into training, validation, and test sets $\mathcal{D}_{\text{training}}$, $\mathcal{D}_{\text{validation}}$, and $\mathcal{D}_{\text{test}}$. Due to the random partitioning, the data distributions in each set are similar. Then we optimize detectors on the training set, select the best detector statements on the validation set, and report the performance on the test set.

Intrinsic Shortcut Induction Here we first introduce the other factor (sentiment, style, topic, perplexity) e into each data instance $d = \{t, e, y\}$. We then partition the dataset into training, validation, and test sets based on the joint distribution $P(e, y)$. The joint distribution of the training set is similar to the validation set but different from the test set. For example, the training-validation sets contain instances with $\{e = 0, y = 0\}, \{e = 1, y = 1\}$, but the test set contains instances with $\{e = 1, y = 0\}, \{e = 0, y = 1\}$. In this setting, the factor e is obtained by classifiers introduced in Appendix D.

Extrinsic Shortcut Injection The only difference from intrinsic induction setting is that we employ LLMs to inject predefined factor e into each instance d . Namely, in intrinsic shortcut induction, we group instances into $d_0 = \{t, e = 0, y\}$ and $d_1 = \{t, e = 1, y\}$, but here, we generate instance

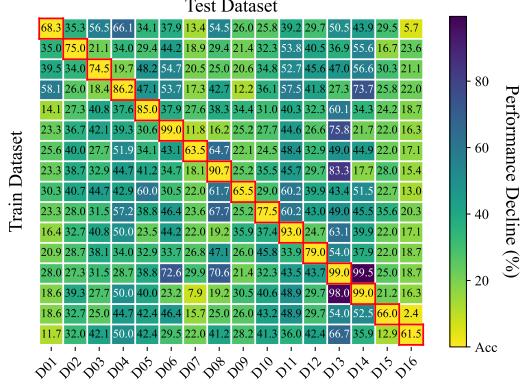


Figure 11: The performance of DEBERTA under out-of-dataset settings. We train the detector on a specific dataset and evaluate it on another. Detectors suffer from a significant performance drop.

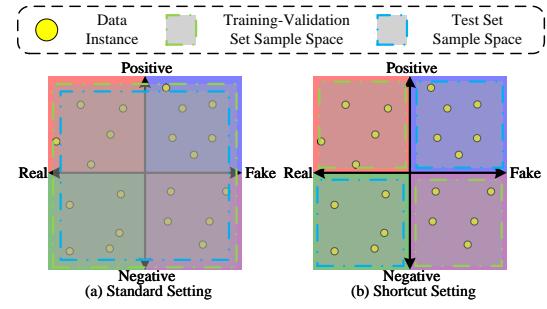


Figure 12: The overviews of standard setting and the shortcut setting. The horizontal axis represents authenticity, while the vertical axis represents other factors (taking *positive* and *negative* sentiment as an example). The main difference is that the shortcut setting induces other factors, and the joint distribution of authenticity and other factors is different between the training-validation set and the test set.

$\tilde{d}_0 = \{\tilde{t}_0, e = 0, y\}$ and $\tilde{d}_1 = \{\tilde{t}_1, e = 1, y\}$ base on $d = \{t, e, y\}$. The rewritten \tilde{t} is rewritten by LLMs based on t , and we have proven that the authenticity y does not alter after rewriting.

SMF Setting The only difference from the extrinsic injection setting is that we employ an LLM \mathcal{G} to augment each text \tilde{t} into $\hat{t} = \mathcal{G}(\tilde{t})$.

D Misinformation Indictor Classifiers

To explore potential shortcuts in existing misinformation datasets, we select sentiment, style, topic, and perplexity, four factors. These factors are widely used to enhance detection performance on standard benchmarks, thus we argue they are likely to induce shortcut learning.

Sentiment We employ a five-class sentiment classifier to identify the sentiments in texts², where the labels include *very negative*, *negative*, *neutral*, *positive*, and *very positive*. We then group *very negative* and *negative* into *negative*, and group *very positive* and *positive* into *positive*, obtaining three classes. We set $e = 0$ for *negative*, set $e = 1$ for *positive*, and ignore *neutral* in the shortcut setting.

Style We employ a binary classifier³ to classify texts into *subjective* and *neutral*. We set $e = 0$ for *subjective* and $e = 1$ for *neutral* in the shortcut setting.

Topic We employ an eight-class topic classifier to obtain the topics of texts, where the labels include “sports”, “arts, culture, and entertainment”, “business and finance”, “health and wellness”, “lifestyle and fashion”, “science and technology”, “politics”, and “crime”. We set $e = 0$ for the first 4 topics and $e = 1$ for others.

Perplexity We employ GPT2 [46] to calculate the perplexity of each text⁴. We set $e = 0$ for texts with perplexity in the top 50% and $e = 1$ for others.

E Extrinsic Shortcut Injection

E.1 Prompts

We provide the prompts we employed to inject predefined factors in Table 5.

E.2 Case Study

We provide some cases of texts before and after injection attacks in Table 15. We also highlight the parts showing the predefined factors. It qualitatively illustrates that LLMs can explicitly inject other factors but struggle to implicitly inject factors.

- **Vanilla. Paraphrase** is the most faithful strategy, which just paraphrases the sentence without changing or adding any details. **Rewriting** strategy sometimes will add some fabricated details and **Open-ended** strategy will add a lot of fabricated details. The results in Figure 4 coincide with this conclusion.
- **Sentiment**. These two strategies do not change authenticity. However, LLMs would add some words with obvious emotional tendencies, such as “surprise” for **positive** and “absolutely disgusting” for **negative**.
- **Tone**. Like **Sentiment**, these strategies will change the tone of texts without changing authenticity.
- **Word Choice**. LLMs can employ simple (common) words for **Simple**, such as “plane” (with the infini-gram count of 52,239,855), and employ complex (uncommon) words for **Complex**, such as “airliner” (with the infini-gram count of 1,455).
- **Age and Gender**. These implicit strategies cannot present the characteristics of the author profiles. Although there are slight differences, we cannot distinguish the specific attributes.

²Model checkpoints come from this link.

³Model checkpoints come from this link.

⁴Model checkpoints come from this link.

Table 5: The prompts to inject predefined factors. We **highlight** the special parts of each prompt, where highlighted parts illustrate the main motivation behind each strategy.

Shortcut	Instruction Text p_{inst}
Vanilla p_{input}: information content s .	
Rewriting	<i>Given a passage, Please rewrite it to make it more convincing. The content should be the same. The style should be serious, calm and informative. The passage is: s</i>
Paraphrase	<i>Given a passage, please paraphrase it. The content should be the same. The passage is: s</i>
Open-ended	<i>Given a sentence, please write a piece of news. The sentence is: s</i>
Explicit p_{input}: information content s ; text attribute f	
Sentiment	<i>Rewrite the following passage, ensuring the content is the same. Meanwhile, make the passage f emotionally. The passage is: s</i>
Word Choice	<i>Given a passage, please rewrite it without any explanations. The content should be the same. Make sure the word choice of the rewritten passage is f. The passage is: s</i>
Tone	<i>Given a passage, please rewrite it without any explanations. The content should be the same. Make sure the tone of the rewritten passage is f. The passage is: s</i>
Implicit p_{input}: information content s ; author attribute f	
Age	<i>You are f. Given a passage, please rewrite it without any explanations. The content should be the same. The passage is: s</i>
Gender	<i>You are f. Given a passage, please rewrite it without any explanations. The content should be the same. The passage is: s</i>

Table 6: The prompts to mitigate the shortcut learning, removing other factors. We **highlight** the special parts of each prompt, where highlighted parts illustrate the main motivation behind each strategy.

Strategy	Instruction Text
Paraphrase	<i>Given a passage, please paraphrase it. The content should be the same. The passage is: s</i>
Summary	<i>Summarize the following passage, ensuring it contains the most information about the facts. Meanwhile, avoid including sentiments, intonation, and other factors affecting the factuality. The passage is: s</i>
Neutral	<i>Rewrite the following passage, ensuring the content is the same. Meanwhile, make the passage neutral emotionally. The passage is: s</i>

F LLMs Could Inject Shortcut without Altering Authenticity

F.1 Quantitative proof that LLMs can inject shortcuts

To quantitatively prove that LLMs can inject predefined factors, we employ **Word Choice** and **Sentiment**:

- **Word Choice.** We employ infini-gram to calculate the count of a specific token appearing in numerous documents, where a lower value means the word (n-gram token) is more uncommon (complex). Given a piece of text (token sequence), we could obtain a sequence of token count. To compare sequences with different lengths, we calculate the geometric mean (to avoid the influence of extreme values) to represent a sentence.

- **Sentiment.** We employ the same sentiment classifier in Appendix D to obtain the sentiments before and after injection and present results in Figure 13. It obviously illustrates that after injection, the texts with a specific sentiment (*positive* or *negative*) significantly increase, and texts with *neutral* sentiment or opposite sentiments decrease. Thus, we can assert that LLMs can inject the predefined factors.

F.2 Human evaluation for injection

We further conduct a human evaluation to evaluate the injection attacks. We evaluate both explicit (**Tone** and **Word Choice**) and implicit (**Age** and **Gender**) attacks, where the implicit attacks are hard to evaluate through metrics. We randomly sample 50 data pairs from all datasets for each attack, where each pair contains texts with contrary attributes. For example, for **Word Choice**, each pair contains a sentence with *simple* attribute and a sentence with *complex* attribute, where their original texts (texts before injection) are the same. We ask experts (annotators) to check which one is more in line with a certain attribute. For example, we ask experts to check “which of the following two sentences has a more complex word choice?” We consider it a three-class classification task (0 for the first sentence, 1 for the second sentence, and 2 for uncertainty). Then we employ Cohen’s Kappa between the ground truth of LLM injections and experts for quantitative evaluation, where a higher value denotes humans can better distinguish the attributes and LLMs are more successful in injecting this attribute. The Kappa scores of the three experts are (i) **Tone**: 0.735, 0.878, and 0.842; (ii) **Word Choice**: 1.000, 1.000, and 0.960; (iii) **Age**: -0.009, -0.003, and 0.015; and (iv) **Gender**: 0.000, 0.026, and 0.026. Meanwhile, the experts choose the answer 2 many times for the implicit attacks. The results prove that LLMs can successfully inject explicit shortcuts but fail to inject implicitly.

F.3 Performance under standard setting after injection

We provide the detector performance under the standard setting and present the results in Tables 24 and 25. For each injection attack, we report the average performance of different attributes. It illustrates that the changes in performance are minor, which proves that authenticity does not alter after injection attacks.

F.4 Human evaluation for authenticity

We conduct a human evaluation to evaluate whether the authenticity alters, namely, whether text before injection and text after injection present the same fact. We randomly sample 100 positive data pairs from all datasets and all injection attacks. Each positive pair contains an original text (before injection) and a corresponding text after injection. For comparison, we also randomly sample 100 negative data pairs and all sentences are randomly sampled for comparison. We ask experts (annotators) to evaluate whether these two sentences describe the same fact. We consider it a binary classification task (0 for false and 1 for true). We calculate the accuracy between ground truth and expert answers, where a higher accuracy score denotes experts can identify the facts more successfully and LLMs do not alter the authenticity. The accuracy scores of all experts are 0.940, 0.870, and 0.925. We also calculate the Fleiss’ Kappa between all experts and the value is 0.838.

F.5 LLM-based evaluation for authenticity

We employ GPT-4-turbo to conduct an LLM-based evaluation approach similar in spirit to FactScore [38]. Specifically, we prompted GPT-4-turbo as follows:

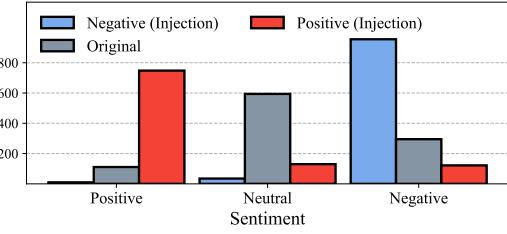


Figure 13: The sentiment distributions in dataset **Pheme** before (“Original”) and after **Sentiment** injection attack. It illustrates that LLMs can inject sentiment factors.

Table 7: The percentage of “yes” responses across categories.

Category Percentage	Random 0.12	Rewriting 0.92	Paraphrase 0.88	Open-Ended 0.98	Positive 0.80	Negative 0.82	Simple 0.96
Category Percentage	Complex 0.94	Formal 0.96	Informal 0.90	Young 0.98	Elder 0.96	Male 0.94	Female 0.98

Text 1:	Original Article
Text 2:	Injected Article

Do these two texts describe the same event? Please answer yes or no.

We sample 50 original-injected pairs of each Category, and we ensure each injection is successful. We also sample a “Random” Category where each pair is randomly shuffled and consider it baseline. We present the percentage of “yes” responses across categories in Table 7. The results present that injection does not alter the labels evaluated by LLMs. Notably that LLMs judge that 12% of random shuffle pairs describe the same event, which shows that LLM-as-evaluator might not be reliable in this task. It coincides with the idea of utilizing metric measures and human evaluation.

G SMF Details

G.1 Prompts

We provide the prompts of the mitigation method variants in Table 6.

G.2 Case Study

We provide some cases of texts before and after the data augmentation in Table 16. We also highlight the parts showing the effectiveness of each method. It qualitatively illustrates that LLMs can remove other factors to mitigate shortcut learning. Generally, after the data augmentation, all texts tend to be similar and do not contain specific attributes.

- **Paraphrase.** After paraphrasing, texts tend to employ similar phrases, such as “*following the Paris shooting*”.
- **Summary** can remove words showing specific attributes and maintain the information about authenticity.
- **Neutral** tries to present the authenticity neutrally.

H Detectors

We employ three categories of misinformation detectors (including seven detectors) to evaluate the shortcut learning within them. We believe these detectors could cover most mainstream misinformation detectors. Meanwhile, we have publicly published this work’s resources, making it easy to generalize the evaluations to novel detectors. We conduct all experiments using eight RTX 4090 GPUs with 24GB of memory. Specifically, all LLM-related experiments can be held on two GPUs, and others can be held on one GPU.

- MISTRALV3⁵ and LLAMA3⁶ are two widely-used LLMs. We prompt them in a zero-shot fashion using a prompt from [35]:

⁵Model checkpoints come from this link.

⁶Model checkpoints come from this link.

Table 8: The hyperparameters of misinformation detectors. To obtain a fair comparison, we leverage the same hyperparameters for every setting. Meanwhile, we have run five times and reported the best performance to avoid randomness.

Hyper	BERT	DEBERTA	CMTR	DISC	CATCH
Optimizer Metrics			Adam		
Weight Decay			Accuracy		
Dropout			1e-5		
			0.5 (if employed)		
Hidden Dim	512	512	512	256	512
Learning Rate	1e-3	1e-3	1e-3	1e-3	1e-4
Batch Size	256	256	128	32	16

Claim

Please check the above claim true or false. Just output ‘True’ or ‘False’. We set max_new_tokens as 1000 and $temperature$ as 0.0 (do_sample as false).

- BERT and DEBERTA are two widely-used encoder-based LMs, where most misinformation detectors employ them as the backbone to extract features. Thus, we also employ them to extract features and leverage an MLP layer to identify misinformation. We believe they could present most misinformation detectors.
- CMTR employs the text summarization technology to solve longer sequences and capture additional contextual information. It employs extractive and abstractive summarization, which can remove other factors and maintain authenticity, thus we leverage it as a baseline.
- DISC aims to learn disentangled causal substructure for graphs to construct a debiasing graph neural network. Since there are many works model texts as graphs [15] to classify text, we leverage DISC as a baseline to present this type of detector.
- CATCH is designed to detect cross-platform hate speech detection through causality-guided disentanglement. CATCH is a unified method to disentangle causally related representations for texts. Thus, we employ it as a baseline to present this type of detector.

To ensure reproducibility and promote the development of misinformation detectors, we present the hyperparameters in Table 8. Meanwhile, we have publicly published the resources.

I Datasets

We employ 16 misinformation datasets (including two datasets we proposed requiring fact-related knowledge) to evaluate shortcut learning. These datasets are published from 2017 to 2024, and we believe they can cover most mainstream misinformation datasets. Meanwhile, we have publicly published this work’s resources, making it easy to construct shortcut learning for novel datasets.

Since the original data size of each dataset is different and the label distribution may be uneven, in order to make a fair comparison (especially since we report the average performance of each dataset in Tables 2 and 3 in the main text), we first sample each dataset. The sampling strategy makes sure that the labels of each dataset are evenly distributed and that each dataset contains at most 1,000 instances. We provide the basic statistics of each dataset in Table 9. Generally, we divide each dataset into training, validation, and test sets in a ratio of 6:2:2. For intrinsic shortcut induction, to construct the shortcut setting (group instances into different groups), the size is different for different factors. We present the size of the training, validation, and test sets in Table 10. For others, since we employ LLMs to inject factors without modifying the instance index, we follow the same split as the standard setting (“Original” in Table 2).

J Complete Observations and Settings

J.1 Intrinsic Shortcut Induction

To support the finding that existing datasets contain shortcuts irrelevant to authenticity, we present the distributions of the four factors across misinformation and real ones in Figure 14 and Table 17.

Meanwhile, we provide the complete performance of the selected detectors in Table 18. For the shortcut setting, the training-validation sets contain instances with $(e = 0, y = 0)$ and $(e = 1, y = 1)$,

Table 9: The basic statistics of each dataset. “# fake” and “# real” denote the count of fake and real instances, “Avg. length” denotes the average character length of each instance, and “Avg. words” denotes the average word count (split by spaces) of each instance.

Datasets	# fake	# real	Avg. length	Avg. words
RumourEval	131	184	88.1	14.7
Pheme	500	500	82.1	13.8
Twitter15	255	252	78.3	13.2
Twitter16	151	168	75.2	12.7
Celebrity	250	250	2445.6	424.1
FakeNews	240	240	737.7	122.0
Politifact	252	116	6443.2	1093.3
Gossipcop	500	500	4571.3	767.2
Tianchi	500	500	3238.1	543.4
MultiLingual	500	500	198.8	33.2
AntiVax	500	500	100.7	17.9
COCO	500	500	263.3	45.8
kaggle1	500	500	2496.3	410.2
kaggle2	500	500	2684.9	437.9
NQ	500	500	58.6	10.7
Streaming	500	500	69.9	12.0

Table 10: The statistics of the shortcut setting in intrinsic shortcut induction. It illustrates that some test sets only contain few instances, where the results may be due to randomness. Thus, we have run the experiments five times and reported the best performance in the main text. Meanwhile, it coincides with our motivation to explore shortcut learning in misinformation detection, promoting the development of misinformation detectors.

Datasets	Sentiment			Style			Topic			Perplexity		
	# training	# validation	# test	# training	# validation	# test	# training	# validation	# test	# training	# validation	# test
RumourEval	45	12	9	132	33	10	123	31	11	116	29	21
Pheme	130	33	29	328	83	41	336	85	64	364	91	57
Twitter15	110	28	20	163	41	32	180	46	23	186	47	26
Twitter16	80	21	8	94	24	17	95	24	19	125	32	17
Celebrity	76	19	9	212	54	2	196	49	19	163	41	24
FakeNews	87	22	16	207	52	16	178	45	22	131	33	32
Politifact	28	7	20	160	40	14	88	23	35	104	26	35
Gossipcop	192	48	21	364	91	40	360	91	34	370	93	43
Tianchi	237	60	14	392	98	14	396	99	57	328	82	50
MultiLingual	218	55	35	369	93	27	364	91	61	342	86	64
AntiVax	109	28	51	362	91	14	358	90	16	340	85	55
COCO	216	54	50	379	95	2	353	89	44	320	80	46
kaggle1	156	40	23	235	59	63	324	82	73	518	130	24
kaggle2	112	28	44	504	127	9	341	86	77	192	48	70
NQ	106	27	10	329	83	92	364	92	39	377	95	42
Streaming	107	27	26	324	82	92	364	91	45	358	90	50

while the test set contains instances with $(e = 1, y = 0)$ and $(e = 0, y = 1)$. Meanwhile, to provide a baseline performance for comparison, we randomly sample a set with the same size as the training-validation sets.

J.2 Extrinsic Shortcut Injection

We present the complete performance of all selected detectors in Tables 19 and 20. For the shortcut setting, we employ LLMs to inject predefined factors, which is more free, for example, we can inject positive or negative into the same instance. As a result, we report the average performance of all possible permutations and combinations. For example, assuming $\|e\| = 2$, namely, $e \in \{0, 1\}$, the possible permutations and combinations include (i) the training-validation sets contain instances with $(e = 0, y = 0)$ and $(e = 1, y = 1)$, while the test set contains instances with $(e = 1, y = 0)$ and $(e = 0, y = 1)$; and (ii) the training-validation sets contain instances with $(e = 1, y = 0)$ and $(e = 0, y = 1)$, while the test set contains instances with $(e = 0, y = 0)$ and $(e = 1, y = 1)$. Similarly, for $\|e\| = 3$, namely, $e \in \{0, 1, 2\}$ (**Vanilla**), there are 6 possible settings.

The results enhance the findings that explicit LLM injection attacks significantly harm the detector performance but implicit attacks fail. Meanwhile, LLM-based detectors are robust to the shortcuts, although they struggle to achieve good performance under the standard setting, which coincides with our idea to employ LLMs to remove shortcuts and maintain authenticity.

Evaluation on sentiment classification datasets We have proven that detectors cannot learn authenticity during training under the shortcut setting (Figure 6). We aim to explore what detectors learn and assume that detectors learn shortcuts. Thus, we evaluate detectors before and after training under the **Sentiment** injection attack using two sentiment classification datasets. For each dataset, we sampled 1,000 positive instances and 1,000 negative instances to evaluate. It is notable that we do not directly train detectors using the sentiment labels. However, after training under the shortcut setting, misinformation detectors have the ability to identify sentiments (performance increase shown in Figure 8). Thus, we assert that detectors could learn the corresponding shortcuts.

The ratio of shortcuts to authenticity associations We have described the shortcut setting under LLM injection attacks in Appendix J.2. It is an extreme situation in which the joint distributions are absolutely different for training-validation and test sets. Thus, we set a ratio α to simulate the situations in which the distributions are partially similar. It denotes that α instances in the training-validation sets are from the same joint distribution as the test set, representing the ratio of shortcuts to authenticity associations. To ensure the fairness of the comparison, we keep the test set the same.

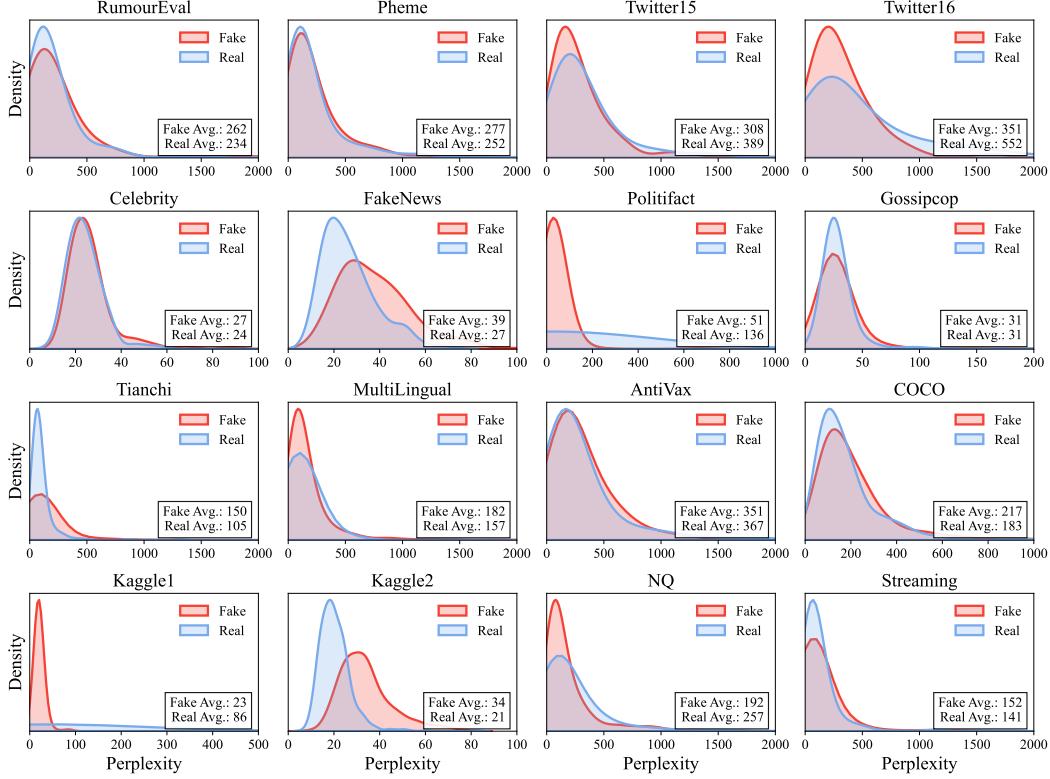


Figure 14: The perplexity distributions of fake and real instances on the employed 16 datasets. We report the average perplexity of fake and real instances. The distributions between fake and real instances are similar on most datasets, which proves that these factors are not causally related to authenticity and are potential shortcuts.

J.3 Calibration Details

We evaluate the calibration of misinformation detectors after LLM injection attacks. A well-calibrated detector should give an exact confidence score, where a confidence of 80% denotes the estimated accuracy should be 80%. For LLM-based detectors, we employ the probability of the prediction token (“false” or “true”) as the confidence score. For other trainable detectors, we employ the Softmax operator to process logits (the output of the MLP layer) to obtain the confidence score, where we employ the larger value as the confidence score. We then bin them into 10 buckets and calculate the expected calibration error (ECE) [17].

K Influence of Refusal

In Table 2 in the main text, we retained instances even when the LLMs partially or fully refused to follow the injection prompt. This choice preserved label distributions and ensured a consistent dataset size across original and shortcut conditions, allowing for a direct comparison. To rigorously assess the influence of these refusals, we conducted an additional analysis. We filtered out all instances in which the LLM refused to perform the implicit injection. To maintain fairness, we also removed the corresponding original (non-injected) instances, ensuring pairwise alignment. The number of refusals per dataset is shown in Table 11.

Since these refusals could skew comparisons, we filtered out the refused samples as well as their original counterparts. We conduct further experiments and present the results in Table 12. The results are consistent with our observation in the main text: detectors are generally less affected by implicit injection. This further supports our interpretation that such injections are more subtle in nature, and that current detectors are not easily influenced by these minor shifts in writing style or framing. These

Table 11: The number of refused instances.

Dataset	# Instances	# Refused (age)	# Refused (gender)	Dataset	# Instances	# Refused (age)	# Refused (gender)
D01	315	90	79	D09	1000	296	293
D02	1000	283	236	D10	1000	193	203
D03	507	160	151	D11	1000	394	348
D04	319	127	122	D12	1000	589	552
D05	500	28	33	D13	1000	191	195
D06	480	59	55	D14	1000	215	196
D07	368	136	128	D15	1000	12	14
D08	1000	39	39	D16	1000	46	58

Table 12: The results of detectors after filtering the refused instances.

Detector	MISTRALV3	LLAMA3	BERT	DEBERTA	CMTR	DisC	CATCH
Original Age	55.0	57.8	78.2	78.2	77.7	79.1	79.3
Shortcut Age	56.9	56.6	74.9	74.9	75.2	75.5	76.4
Original Gender	55.6	57.3	78.0	78.8	77.0	77.6	78.6
Shortcut Gender	55.6	56.1	74.8	74.5	74.0	74.8	76.8

findings strengthen our understanding of the limits of shortcut learning in subtle, implicit contexts and highlight the importance of continuing to explore such dimensions in future work.

L SMF Result Details

L.1 SMF can Remove Shortcuts

We first calculate the similarities between text pairs with distinct attributes (*positive* and *negative*) before and after the mitigation methods. We present the results in Table 13, which illustrates that the similarities increase after the mitigation methods. As a result, we assert that LLMs could also remove the shortcuts.

Besides, we also evaluate the ability to remove the specific shortcut (take **Sentiments** as an example) and present the results in Figure 15.

Table 13: The similarities between texts with contrary attributes before and after mitigation methods. The similarities generally increase after mitigation methods, proving that the methods could remove shortcuts.

Shortcuts	Original	Paraphrase	Summary	Neutral
Vanilla	0.637	0.677 (6.33% \uparrow)	0.717 (12.57% \uparrow)	0.639 (0.31% \uparrow)
Sentiment	0.622	0.643 (3.26% \uparrow)	0.723 (16.11% \uparrow)	0.663 (6.59% \uparrow)
Tone	0.688	0.760 (10.48% \uparrow)	0.798 (16.02% \uparrow)	0.719 (4.63% \uparrow)
Word Choice	0.679	0.750 (10.51% \uparrow)	0.776 (14.23% \uparrow)	0.698 (2.83% \uparrow)
Age	0.915	0.886 (3.14% \downarrow)	0.895 (2.18% \downarrow)	0.876 (4.28% \downarrow)
Gender	0.933	0.905 (3.09% \downarrow)	0.915 (2.00% \downarrow)	0.897 (3.91% \downarrow)

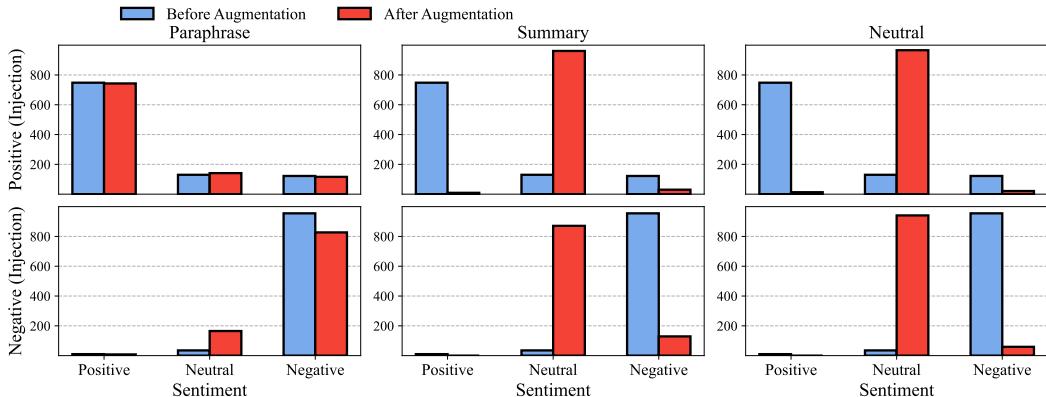


Figure 15: The sentiment distributions under the **Sentiment** injection attack and distributions after the three mitigation methods. It illustrates that the mitigation methods except for **Paraphrase** can remove this shortcut.

Table 14: Average accuracy of LLM-based detectors enhanced with SMF.

Shortcut	Augmentation	LLM-based Detectors	
		MISTRALV2	LLAMA3
Vanilla	w/o aug.	52.6	54.8
	Paraphrase	52.2	55.5
	Summary	51.5	54.2
	Neutral	51.9	52.6
Sentiment	w/o aug.	51.9	52.6
	Paraphrase	51.0	52.8
	Summary	52.0	53.0
	Neutral	51.0	51.6
Tone	w/o aug.	54.3	56.4
	Paraphrase	53.0	55.9
	Summary	52.2	54.2
	Neutral	52.7	54.3
Word Choice	w/o aug.	54.3	56.9
	Paraphrase	52.8	55.5
	Summary	51.8	53.8
	Neutral	51.3	53.6
Age	w/o aug.	54.5	53.8
	Paraphrase	53.1	53.5
	Summary	51.2	52.1
	Neutral	54.0	52.8
Gender	w/o aug.	53.0	53.6
	Paraphrase	53.3	52.9
	Summary	51.2	52.5
	Neutral	53.7	52.0

L.2 Complete Results

We present the complete performance of three mitigation methods in Tables 21, 22, and 23. The results highlight that every augmentation method could effectively improve performance and different variants show advantages for specific shortcuts.

M SMF Results of LLM-based Detectors

We extend the evaluation to include Mistral-v3 and LLaMA-3 under the SMF setup, where Table 14 presents the results. These results show that applying SMF to LLM-based detectors does not lead to significant gains or drops in performance. This supports our original hypothesis in the main text: LLM-based detectors are generally less affected by shortcut-based perturbations, likely due to their more holistic text understanding.

Table 15: Some cases of the LLM-based injection attacks. We **highlight** the parts highly related to the intent of specific injection attacks. It qualitatively illustrates that explicit injection attacks can successfully inject predefined factors but implicit attacks fail.

Original	After Injection
Hostages are being held and a siege is taking place at Sydney's Lindt Chocolat Cafe in Martin Place.	<p>Rewriting: A critical situation is unfolding in Sydney's Martin Place, where a Lindt Chocolat Cafe has been taken over and a standoff is currently underway. Reports indicate that hostages are being held captive, and authorities are working diligently to resolve the situation safely and efficiently.</p> <p>Paraphrase: A standoff is currently underway at the Lindt Chocolat Cafe in Martin Place, Sydney, where individuals are being held captive and a siege is in progress.</p> <p>Open-ended: **BREAKING: Siege Underway at Sydney's Lindt Chocolat Cafe** SYDNEY, AUSTRALIA - A tense standoff is unfolding at the Lindt Chocolat Cafe in Martin Place, Sydney, as police and emergency services respond to a hostage situation.</p> <p>According to eyewitnesses, a group of people are being held captive inside the cafe, with reports suggesting that a gunman is among the hostages. The situation is believed to have unfolded around 2:00 pm local time, with police receiving multiple calls reporting the incident.</p> <p>Fabricated Details This is a developing story, and we will provide updates as more information becomes available.</p>
Believe it or not, this is a shark on the freeway in Houston, Texas.	<p>Positive: Wow, can you believe it?! RT : This incredible photo is making waves! A shark was spotted cruising down the freeway in Houston, Texas - talk about a fin-tastic surprise!</p> <p>Negative: Ugh, can you believe this?! RT : It's absolutely disgusting, but apparently, a shark was spotted on the freeway in Houston, Texas.</p>
Sydney airspace wasn't closed. A second terror suspect wasn't arrested. Myths around debunked.	<p>Formal: It is hereby clarified that Sydney airspace remained operational and was not subject to closure. Furthermore, a second terror suspect was not apprehended. Additionally, various misconceptions and myths surrounding these events have been thoroughly debunked.</p> <p>Informal: So, to set the record straight : Sydney airspace wasn't shut down, and another terror suspect wasn't hauled in. All those rumors and myths have been busted.</p>
passenger plane crashes in French Alps with onboard	<p>Simple: A plane carrying many people crashed in the French Alps.</p> <p>Complex: A commercial airliner suffered a catastrophic failure, precipitously plummeting to the ground in the rugged French Alps, resulting in a calamitous loss of life.</p>
I bet. You never seen this rare natural phenomena. Lighting hits a River. What a sight. Incredible indeed.	<p>Young: I'm willing to take the bet. You've never seen this rare natural phenomenon - lightning hitting a river. What a sight! It's truly incredible.</p> <p>Elder: I wager. You've never witnessed this extraordinary natural occurrence. Lightning strikes a river. What a spectacle. Truly astonishing.</p>
ICYMI - Virgin Islands Allows National Guard To Seize Guns, Ammo Ahead Of Hurricane Irma	<p>Male: ICYMI - The Virgin Islands Allow National Guard To Seize Guns, Ammo Before Hurricane Irma</p> <p>Female: ICYMI - The Virgin Islands Allow National Guard to Seize Guns and Ammo Before Hurricane Irma</p>

Table 16: Some cases of the LLM-based data augmentation methods. We **highlight** the parts highly related to the intent of specific injection attacks. After data augmentation by LLMs, texts with different attributes tend to be similar and do not present different attributes.

Texts with Shortcuts	After Data Augmentation
For Paraphrase strategy.	
<p>Formal: Reports have emerged of multiple attacks against mosques in France in the aftermath of the Paris shooting.</p>	<p>Following the Paris shooting, there have been numerous reports of violent incidents targeting mosques in France.</p>
<p>Informal: Mosque attacks in France after Paris shooting</p>	<p>Following the Paris shooting, a series of attacks took place at mosques in France.</p>
For Summary strategy.	
<p>Positive: "Behind the scenes, there's a different story unfolding. These remarkable young men are not only helping to restore order, but they're also demonstrating the power of resilience and community. As they work tirelessly to clean up the aftermath of the riot, they're showing us that even in the face of chaos, there is always hope and always a way forward. Their selfless efforts are a testament to the human spirit, and a reminder that together, we can overcome any obstacle."</p>	<p>The passage describes a group of young men who are involved in restoring order after a riot. They are working to clean up the aftermath of the event.</p>
<p>Negative: This is what they're hiding from you on the media. These young men, forced to clean up the mess left behind by the senseless destruction and chaos of the riot, are a stark reminder of the devastating consequences of unchecked violence and anarchy.</p>	<p>The passage describes a situation where young men are forced to clean up the aftermath of a riot, which has caused destruction and chaos.</p>
For Neutral strategy.	
<p>Positive: Wow, can you believe it?! RT : This incredible photo is making waves! A shark was spotted cruising down the freeway in Houston, Texas - talk about a fin-tastic surprise!</p>	<p>A recent photo is generating interest. According to reports, a shark was spotted on a freeway in Houston, Texas. This unusual sighting has caught the attention of many.</p>
<p>Negative: Ugh, can you believe this?! RT : It's absolutely disgusting, but apparently, a shark was spotted on the freeway in Houston, Texas.</p>	<p>A recent report has surfaced indicating that a shark was spotted on a freeway in Houston, Texas.</p>

Table 17: Sentiment, style, and topic distributions of fake and real instances on the employed 16 datasets. “Different” denotes the ratio of the number of fake instances to the number of real instances, the closer it is to 1, the more similar they are. “T1” to “T8” represent “Sports”, “Arts, Culture, and Entertainment”, “Business and Finance”, “Health and Wellness”, “Lifestyle and Fashion”, “Science and Technology”, “Politics”, and “Crime” respectively. The distributions between fake and real instances are similar on most datasets, which proves that these factors are not causally related to authenticity and are potential shortcuts.

Category	D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16	
Sentiment																	
Positive	Fake	17	39	33	43	64	62	25	164	176	92	62	92	31	81	99	42
	Real	16	72	36	20	85	58	15	108	169	72	223	76	74	39	91	45
	Difference	1.06	0.54	0.92	2.15	0.75	1.07	1.67	1.52	1.04	1.28	0.28	1.21	0.42	2.08	1.09	0.93
Neutral	Fake	72	310	138	74	111	107	118	257	222	237	199	152	343	213	352	346
	Real	119	284	90	85	135	121	89	291	183	199	221	197	213	372	358	333
	Difference	0.61	1.09	1.53	0.87	0.82	0.88	1.33	0.88	1.21	1.19	0.90	0.77	1.61	0.57	0.98	1.04
Negative	Fake	42	151	84	34	75	71	109	79	102	171	239	256	126	206	49	112
	Real	49	144	126	63	30	61	12	101	148	229	56	227	213	89	51	122
	Difference	0.86	1.05	0.67	0.54	2.50	1.16	9.08	0.78	0.69	0.75	4.27	1.13	0.59	2.31	0.96	0.92
Style																	
Subjective	Fake	86	236	123	59	225	173	193	340	415	382	404	484	194	442	42	60
	Real	82	298	147	95	197	144	86	365	437	365	429	480	459	210	44	66
	Difference	1.05	0.79	0.84	0.62	1.14	1.20	2.24	0.93	0.95	1.05	0.94	1.01	0.42	2.10	0.95	0.91
Neutral	Fake	45	264	132	92	25	67	59	160	85	118	96	16	306	58	458	440
	Real	102	202	105	73	53	96	30	135	63	135	71	20	41	290	456	434
	Difference	0.44	1.31	1.26	1.26	0.47	0.70	1.97	1.19	1.35	0.87	1.35	0.80	7.46	0.20	1.00	1.01
Topic																	
T1	Fake	4	36	36	9	16	40	9	33	21	34	24	7	2	8	111	91
	Real	8	49	26	12	8	40	2	32	13	18	48	10	12	2	110	83
	Difference	0.50	0.73	1.38	0.75	2.00	1.00	4.50	1.03	1.62	1.89	0.50	0.70	0.17	4.00	1.01	1.10
T2	Fake	6	36	5	1	39	20	2	119	30	12	2	0	1	6	68	20
	Real	3	17	5	0	49	23	1	96	5	2	1	4	10	1	59	16
	Difference	2.00	2.12	1.00	inf	0.80	0.87	2.00	1.24	6.00	6.00	2.00	0.00	0.10	6.00	1.15	1.25
T3	Fake	28	78	44	18	102	75	38	150	125	164	101	218	87	76	60	104
	Real	29	102	78	40	78	76	26	172	102	166	55	257	57	76	64	107
	Difference	0.97	0.76	0.56	0.45	1.31	0.99	1.46	0.87	1.23	0.99	1.84	0.85	1.53	1.00	0.94	0.97
T4	Fake	24	23	51	18	2	1	10	11	29	34	270	80	2	8	63	56
	Real	12	40	42	23	4	4	3	10	3	40	361	62	4	1	78	65
	Difference	2.00	0.57	1.21	0.78	0.50	0.25	3.33	1.10	9.67	0.85	0.75	1.29	0.50	8.00	0.81	0.86
T5	Fake	6	26	5	11	20	0	2	35	0	9	1	0	0	0	93	67
	Real	6	29	11	11	28	0	0	32	1	8	4	0	2	0	83	71
	Difference	1.00	0.90	0.45	1.00	0.71	-	-	1.09	0.00	1.12	0.25	-	0.00	-	1.12	0.94
T6	Fake	12	8	21	4	1	15	15	10	13	14	17	5	2	7	47	37
	Real	6	15	8	16	2	17	4	8	7	17	7	10	6	0	44	35
	Difference	2.00	0.53	2.62	0.25	0.50	0.88	3.75	1.25	1.86	0.82	2.43	0.50	0.33	-	1.07	1.06
T7	Fake	17	16	9	25	9	64	70	6	107	128	38	87	214	167	33	69
	Real	12	59	18	32	6	63	47	25	153	117	12	100	231	213	39	73
	Difference	1.42	0.27	0.50	0.78	1.50	1.02	1.49	0.24	0.70	1.09	3.17	0.87	0.93	0.78	0.85	0.95
T8	Fake	34	277	84	65	61	25	106	136	175	105	47	103	192	228	25	56
	Real	108	189	64	34	75	17	33	125	216	132	12	57	178	207	23	50
	Difference	0.31	1.47	1.31	1.91	0.81	1.47	3.21	1.09	0.81	0.80	3.92	1.81	1.08	1.10	1.09	1.12

Table 18: The accuracy of the selected detectors except DEBERTA under four potential shortcuts. We only report the accuracy for LLM-based detectors since they do not require training and the test sets are the same.

BERT		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16	
Sentiment	Random	0.0	86.2	85.0	87.5	77.8	0.0	95.0	71.4	64.3	40.0	86.3	74.0	100.0	97.7	100.0	11.5	
	Shortcut	0.0	6.9	15.0	12.5	55.6	56.2	80.0	28.6	8.6	72.5	46.0	69.6	90.9	10.0	7.7		
	Difference	-	92%↓	82%↓	86%↓	29%↓	-	16%↓	60%↓	56%↓	79%↓	16%↓	38%↓	30%↓	7%↓	90%↓	33%↓	
Style	Random	50.0	92.7	84.4	82.4	50.0	87.5	100.0	57.5	42.9	55.6	92.9	50.0	98.4	88.9	37.0	98.9	
	Shortcut	40.0	73.2	84.4	70.6	100.0	93.8	92.9	65.0	59.3	85.7	100.0	100.0	88.9	0.0	6.5		
	Difference	20%↓	21%↓	0%	14%↓	100%↑	7%↑	7%↓	13%↑	117%↑	7%↑	8%↓	100%↑	2%↑	0%	100%↓	93%↓	
Topic	Random	72.7	79.7	91.3	94.7	68.4	86.4	100.0	85.2	64.9	50.8	87.5	86.4	97.3	98.7	79.5	22.2	
	Shortcut	36.4	25.0	56.5	63.2	68.4	31.8	77.1	50.0	24.6	29.5	100.0	56.8	90.4	85.7	48.7	55.6	
	Difference	50%↓	69%↓	38%↓	33%↓	0%	63%↓	23%↓	41%↓	62%↓	42%↓	14%↑	34%↓	7%↓	13%↓	39%↓	150%↑	
Perplexity	Random	76.2	84.2	92.3	100.0	70.8	78.1	100.0	55.8	72.0	62.5	98.2	87.0	91.7	98.6	100.0	100.0	
	Shortcut	28.6	64.9	80.8	82.4	29.2	62.5	85.7	34.9	34.0	45.3	89.1	37.0	87.5	94.3	38.1	50.0	
	Difference	62%↓	23%↓	12%↓	18%↓	59%↓	20%↓	14%↓	38%↓	53%↓	28%↓	9%↓	58%↓	5%↓	4%↓	62%↓	50%↓	
CMTR		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16	
Sentiment	Random	11.1	89.7	75.0	87.5	77.8	0.0	100.0	42.9	71.4	71.4	88.2	66.0	100.0	90.9	100.0	23.1	
	Shortcut	0.0	27.6	20.0	12.5	55.6	31.2	100.0	52.4	21.4	11.4	66.7	46.0	82.6	86.4	10.0	7.7	
	Difference	100%↓	69%↓	73%↓	86%↓	29%↓	-	0%	22%↑	70%↓	84%↓	24%↓	30%↓	17%↓	5%↓	90%↓	67%↓	
Style	Random	70.0	95.1	93.8	88.2	100.0	56.2	78.6	80.0	57.1	44.4	92.9	50.0	98.4	88.9	100.0	100.0	
	Shortcut	40.0	70.7	78.1	64.7	100.0	100.0	92.9	50.0	100.0	92.6	100.0	100.0	88.9	0.0	12.0		
	Difference	43%↓	26%↓	17%↓	27%↓	0%	78%↑	18%↑	38%↓	75%↑	108%↑	8%↑	100%↑	2%↑	0%	100%↓	88%↓	
Topic	Random	81.8	79.7	91.3	100.0	63.2	50.0	97.1	88.2	100.0	60.7	93.8	84.1	95.9	97.4	100.0	13.3	
	Shortcut	0.0	35.9	34.8	57.9	78.9	36.4	68.6	79.4	24.6	36.1	93.8	54.5	75.3	70.1	46.2	35.6	
	Difference	100%↓	55%↓	62%↓	42%↓	25%↑	27%↓	29%↓	10%↑	75%↓	41%↓	0%	35%↓	12%↑	28%↓	54%↓	167%↑	
Perplexity	Random	76.2	86.0	92.3	100.0	54.2	93.8	94.3	65.1	56.0	60.9	98.2	78.3	95.8	97.1	90.5	100.0	
	Shortcut	61.9	66.7	84.6	82.4	50.0	3.1	94.3	62.8	58.0	56.2	92.7	37.0	91.7	87.1	31.0	40.0	
	Difference	19%↓	22%↓	8%↓	18%↓	8%↓	97%↓	0%	4%↓	4%↑	8%↓	6%↓	53%↓	4%↓	10%↓	66%↓	60%↓	
DisC		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16	
Sentiment	Random	0.0	82.8	65.0	87.5	66.7	0.0	95.0	71.4	64.3	60.0	92.2	78.0	100.0	93.2	100.0	26.9	
	Shortcut	22.2	24.1	20.0	12.5	66.7	56.2	80.0	14.3	28.6	11.4	86.3	46.0	73.9	93.2	0.0	7.7	
	Difference	-	71%↓	69%↓	86%↓	0%	-	16%↓	80%↓	56%↓	81%↓	6%↓	41%↓	26%↓	0%	100%↓	71%↓	
Style	Random	90.0	92.7	75.0	82.4	100.0	75.0	100.0	60.0	50.0	55.6	78.6	100.0	98.4	88.9	97.8	77.2	
	Shortcut	60.0	73.2	81.2	70.6	100.0	93.8	71.4	42.5	92.9	88.9	85.7	100.0	100.0	88.9	7.6	14.1	
	Difference	33%↓	21%↓	8%↑	14%↓	0%	25%↑	29%↑	29%↑	86%↑	60%↑	9%↑	0%	2%↑	0%	92%↓	82%↓	
Topic	Random	63.6	90.6	91.3	94.7	63.2	95.5	100.0	82.4	63.2	63.9	93.8	75.0	97.3	98.7	100.0	68.9	
	Shortcut	54.5	28.1	65.2	57.9	73.7	36.4	82.9	58.8	24.6	27.9	100.0	56.8	91.8	80.5	41.0	51.1	
	Difference	14%↓	69%↓	29%↓	39%↓	17%↑	62%↓	17%↓	29%↓	61%↓	56%↓	7%↑	24%↓	6%↓	18%↓	59%↓	26%↓	
Perplexity	Random	81.0	86.0	92.3	100.0	72.3	100.0	75.0	90.6	100.0	79.1	70.0	76.6	96.4	87.0	91.7	98.6	45.2
	Shortcut	57.1	70.2	88.5	82.4	29.2	62.5	97.1	46.5	46.0	53.1	90.9	39.1	87.5	97.1	31.0	36.0	
	Difference	29%↓	18%↓	4%↓	18%↓	61%↓	31%↓	3%↓	41%↓	34%↓	31%↓	6%↓	55%↓	5%↓	1%↓	32%↓	64%↓	
CATCH		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16	
Sentiment	Random	55.6	79.3	85.0	100.0	77.8	87.5	90.0	52.4	57.1	51.4	84.3	86.0	100.0	100.0	60.0	46.2	
	Shortcut	77.8	41.4	30.0	37.5	55.6	81.2	50.0	23.8	28.6	14.3	76.5	54.0	100.0	100.0	80.0	26.9	
	Difference	40%↑	48%↓	65%↓	62%↓	29%↓	7%↓	44%↓	55%↓	50%↓	72%↓	9%↓	37%↓	0%	33%↑	42%↓		
Style	Random	60.0	92.7	93.8	82.4	100.0	100.0	85.7	70.0	78.6	63.0	92.9	100.0	98.4	100.0	50.0	60.9	
	Shortcut	80.0	65.9	71.9	88.2	100.0	100.0	60.0	60.0	85.7	77.8	92.9	100.0	88.9	3.3	10.9		
	Difference	29%↑	23%↓	7%↑	0%	0%	0%	14%↓	9%↑	24%↑	0%	2%↑	11%↓	93%↓	82%↓			
Topic	Random	63.6	76.6	87.0	94.7	73.7	95.5	85.7	70.6	64.9	62.3	100.0	68.2	95.9	98.7	66.7	57.8	
	Shortcut	54.5	29.7	39.1	78.9	90.9	80.0	64.7	28.1	41.0	100.0	54.5	94.5	98.7	59.0	42.2		
	Difference	14%↓	61%↓	55%↓	17%↓	7%↑	5%↓	7%↓	8%↓	57%↓	34%↓	0%	20%↓	1%↓	0%	12%↓	27%↓	
Perplexity	Random	57.1	84.2	80.8	100.0	87.5	93.8	88.6	74.4	66.0	59.4	90.9	80.4	91.7	98.6	73.8	62.0	
	Shortcut	33.3	63.2	61.5	88.2	79.2	90.6	85.7	51.2	50.0	40.6	87.3	58.7	87.5	100.0	52.4	26.0	
	Difference	42%↓	25%↓	24%↓	12%↓	10%↓	3%↓	3%↓	31%↓	24%↓	32%↓	4%↓	27%↓	5%↓	1%↑	29%↓	58%↓	
MISTRALV3		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16	
Sentiment	Random	66.7	31.0	20.0	0.0	55.6	37.5	45.0	9.5	21.4	34.3	56.9	60.0	0.0	20.5	40.0	26.9	
	Style	81.8	29.7	13.0	21.1	57.9	63.6	37.1	2.9	35.1	23.0	56.2	61.4	4.1	18.2	53.8	26.7	
	Topic	60.0	26.8	21.9	23.5	100.0	25.0	21.4	2.5	21.4	18.5	64.3	0.0	1.6	0.0	50.0	28.3	
Perplexity	Random	47.6	35.1	23.1	17.6	62.5	53.1	40.0	9.3	38.0	25.0	61.8	65.2	12.5	20.0	50.0	36.0	
LLAMA3		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16	
Sentiment	Random	100.0	75.9	70.0	75.0	77.8	87.5	75.0	19.0	57.1	45.7	92.2	98.0	0.0	43.2	60.0	80.8	
	Style	80.0	56.1	62.5	70.6	50.0	68.8	35.7	20.0	28.6	63.0	92.9	100.0	9.5	11.1	84.8	83.7	
	Topic	100.0	57.8	56.5	63.2	68.4	72.7	62.9	23.5	57.9	59.0	93.8	97.7	9.6	42.9	87.2	84.4	
Perplexity	Random	90.5	71.9	65.4	76.5	62.5	78.1	74.3	30.2	62.0	69.7	100.0	4.2	42.9	78.6	82.0		

Table 19: The complete detector performance of extrinsic shortcut injection.

MISTRALV3		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Original		69.8	54.0	34.3	30.8	70.0	74.0	49.3	43.0	49.5	49.5	72.5	55.0	42.0	60.0	58.5	50.0
Vanilla		65.6	56.2	37.3	53.3	55.3	64.2	42.7	44.2	53.5	45.2	62.0	54.8	44.3	59.2	53.0	51.5
Explicit	Sentiment	61.9	53.8	38.7	58.5	51.5	57.8	42.7	44.8	53.0	47.5	57.0	54.2	49.2	52.5	54.2	53.5
	Tone	65.9	57.0	33.8	46.2	57.0	65.1	53.3	45.0	48.5	49.0	69.2	63.2	42.5	60.8	58.8	53.2
	Word Choice	65.1	51.5	36.8	53.1	58.5	67.7	52.0	46.0	51.0	51.2	72.5	56.5	42.5	59.5	55.5	50.0
Implicit	Age	65.9	53.5	40.7	53.1	61.5	70.3	54.0	40.5	53.8	46.8	68.2	44.2	44.5	61.5	59.8	53.8
	Gender	64.3	53.8	37.7	55.4	54.5	71.4	48.0	41.2	55.8	45.8	66.0	42.0	44.5	60.0	54.2	53.8
LLAMA3		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Original		73.0	49.5	40.2	41.5	77.0	85.4	70.7	49.5	45.5	58.0	74.0	66.5	30.5	71.0	56.0	53.0
Vanilla		57.1	54.8	45.1	52.8	63.3	74.7	61.3	47.3	49.7	52.2	51.5	57.0	39.7	60.2	57.3	52.3
Explicit	Sentiment	56.3	56.8	45.6	54.6	65.0	65.1	56.0	43.8	49.2	49.0	50.2	50.8	43.0	51.0	54.2	50.8
	Tone	63.5	50.0	47.5	48.5	67.0	81.8	61.3	43.5	44.0	53.8	65.8	64.8	39.2	62.2	58.8	50.5
	Word Choice	58.7	51.5	41.7	50.0	68.0	79.2	66.7	47.2	46.2	51.2	66.2	67.0	35.2	67.0	59.0	54.8
Implicit	Age	63.5	50.0	44.6	53.1	72.5	78.1	48.7	44.0	54.5	51.8	52.0	40.2	37.2	62.5	56.8	51.5
	Gender	62.7	49.0	44.1	56.9	71.0	73.4	46.7	49.0	56.2	52.5	51.2	40.0	36.5	62.0	52.5	53.5
BERT		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Original		74.6	80.0	86.3	84.6	78.0	78.1	88.0	72.5	72.5	60.5	90.5	76.5	96.5	98.5	58.5	54.5
Vanilla		11.4	12.1	17.3	21.0	20.0	10.6	39.6	10.2	9.7	4.5	22.2	8.9	37.7	47.3	1.7	3.3
Explicit	Sentiment	10.3	4.0	6.9	14.6	3.5	4.2	20.7	3.2	7.5	1.8	12.2	4.2	19.0	28.5	1.5	3.0
	Tone	10.3	7.8	12.7	19.2	6.0	3.1	16.7	2.5	8.2	2.8	13.0	3.5	10.8	9.2	8.0	6.8
	Word Choice	6.3	7.8	7.4	19.2	2.0	2.1	9.3	1.0	4.8	4.0	13.8	3.0	9.5	13.0	3.0	6.5
Implicit	Age	59.5	73.5	75.5	76.9	84.0	74.5	88.0	67.2	66.8	56.2	86.5	70.8	95.8	97.0	52.0	50.5
	Gender	72.2	74.0	76.0	75.4	80.5	77.1	91.3	67.8	69.2	61.8	90.0	71.5	95.5	97.0	46.5	43.2
DEBERTA		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Original		68.3	75.0	74.5	86.2	85.0	99.0	90.7	65.5	77.5	63.5	93.0	79.0	99.0	99.0	66.0	61.5
Vanilla		9.3	8.9	9.0	13.6	5.8	9.2	28.9	4.2	6.2	4.0	11.2	6.2	28.9	29.7	1.8	2.9
Explicit	Sentiment	14.3	6.5	10.8	19.2	14.0	15.6	42.0	4.8	13.2	3.8	20.0	5.5	58.0	74.2	2.5	2.8
	Tone	6.3	5.0	6.9	13.8	0.5	6.8	16.7	2.8	6.0	2.5	5.0	4.5	11.2	11.2	4.3	4.2
	Word Choice	4.8	2.5	5.9	14.6	2.0	2.1	21.3	1.2	4.3	1.5	7.5	2.8	14.0	11.8	2.2	4.8
Implicit	Age	55.6	70.2	77.0	69.2	84.0	94.8	86.0	64.2	67.8	59.2	87.0	71.0	97.2	98.8	56.0	55.5
	Gender	50.8	69.5	66.7	76.2	80.5	93.8	85.3	65.8	70.0	60.0	89.8	69.8	97.5	98.8	53.8	55.5
CMTR		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Original		77.8	80.0	85.3	83.1	77.0	69.8	78.7	71.5	69.0	63.0	90.0	74.5	97.5	98.5	57.0	58.0
Vanilla		18.3	17.2	25.0	43.3	24.3	11.8	56.9	12.8	10.2	4.9	28.3	9.0	43.8	54.4	2.0	3.3
Explicit	Sentiment	11.9	6.2	9.8	19.2	4.5	5.2	26.7	5.0	8.2	1.8	12.0	6.2	22.2	26.8	1.2	4.0
	Tone	12.7	11.0	18.6	22.3	4.0	4.7	16.7	3.2	9.5	3.2	9.0	3.8	19.2	19.5	8.2	7.0
	Word Choice	9.5	6.5	9.8	24.6	4.5	2.6	15.3	2.0	6.0	3.8	14.2	3.2	13.2	16.0	4.2	6.8
Implicit	Age	72.2	73.8	76.5	78.5	78.5	68.8	85.3	70.5	62.8	57.0	86.5	72.2	94.5	96.2	52.0	51.8
	Gender	76.2	74.8	76.5	78.5	74.5	66.7	89.3	67.8	65.5	61.5	88.2	71.8	95.5	97.2	47.8	45.5
DISC		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Original		73.0	79.0	85.3	89.2	81.0	78.1	85.3	69.5	72.0	60.5	90.5	78.0	98.0	98.5	59.5	56.5
Vanilla		15.9	9.6	17.8	23.6	17.3	8.0	41.8	3.1	4.4	2.3	18.8	6.3	23.6	40.8	1.5	3.0
Explicit	Sentiment	11.1	4.0	8.3	13.8	3.0	4.7	19.3	3.0	7.0	1.2	6.5	3.8	18.8	33.8	0.5	3.0
	Tone	11.1	8.8	15.7	18.5	4.0	3.1	12.0	2.2	9.8	4.0	10.2	3.8	13.0	12.0	8.2	7.2
	Word Choice	11.9	5.5	6.4	23.1	1.5	1.6	9.3	1.0	5.0	3.2	12.5	3.0	8.5	5.8	4.2	6.5
Implicit	Age	62.7	73.0	75.0	74.6	80.0	76.0	88.0	67.0	68.8	58.0	87.2	72.0	96.5	97.5	51.0	52.2
	Gender	77.0	74.8	74.5	79.2	80.5	76.6	90.0	67.5	67.8	61.0	90.0	71.2	96.2	98.2	48.2	43.5

Table 20: The complete detector performance of extrinsic shortcut injection (cont.).

CATCH		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Original		73.0	76.5	72.5	90.8	84.0	92.7	88.0	67.5	73.5	60.0	91.5	73.5	98.0	100.0	53.0	56.5
Vanilla		14.0	14.5	16.0	30.3	13.8	10.8	34.4	8.2	9.0	7.1	23.9	10.5	33.8	35.7	3.6	5.5
Explicit	Sentiment	18.3	11.0	12.3	27.7	6.5	8.3	31.3	3.0	9.8	4.2	19.2	12.5	51.5	51.5	1.5	4.0
	Tone	14.3	15.0	19.6	35.4	10.5	6.2	22.7	5.0	10.8	6.0	22.8	5.5	18.2	23.8	11.2	12.0
	Word Choice	15.1	14.8	17.6	42.3	6.0	4.7	20.0	3.2	7.5	7.0	26.0	6.5	28.8	33.2	11.8	12.5
Implicit	Age	65.1	70.0	67.6	76.2	76.0	80.2	86.7	65.0	65.5	57.0	85.2	72.0	97.0	98.0	54.2	54.2
	Gender	66.7	73.8	73.5	83.1	77.0	85.4	89.3	67.0	67.2	57.2	86.8	72.0	96.2	98.8	51.0	48.2

Table 21: The complete detector performance after the **Paraphrase** mitigation method.

BERT		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Vanilla		21.7	26.2	26.1	37.4	62.0	39.6	70.2	48.9	40.8	13.7	42.3	18.7	80.2	82.2	3.7	7.2
Explicit	Sentiment	15.1	8.2	15.2	12.3	11.0	9.4	32.7	5.5	12.5	3.2	17.0	8.8	37.0	41.0	1.8	4.5
	Tone	58.7	64.0	66.2	73.8	52.0	46.4	75.3	47.2	42.0	36.5	77.8	41.2	83.2	82.2	42.0	49.5
	Word Choice	58.7	64.5	67.2	75.4	65.5	53.6	83.3	59.8	57.5	50.0	84.2	55.5	86.8	87.5	29.8	34.8
Implicit	Age	55.6	73.8	73.0	77.7	74.5	63.0	88.7	67.5	63.2	57.5	88.0	71.5	88.8	92.0	51.2	52.2
	Gender	61.9	74.2	75.5	80.8	77.0	62.0	88.0	66.8	63.8	59.8	88.5	71.2	89.8	93.5	47.0	44.0
DEBERTA		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Vanilla		16.7	16.1	13.1	20.8	42.7	45.3	65.6	31.2	28.7	9.9	24.1	12.9	71.1	75.8	3.4	6.5
Explicit	Sentiment	21.4	10.2	15.2	26.9	19.5	17.2	51.3	8.5	14.2	7.0	26.2	12.2	58.0	62.0	4.5	8.0
	Tone	49.2	49.5	47.1	49.2	46.5	69.3	74.7	35.0	34.2	31.5	70.8	34.2	81.8	83.0	40.8	43.0
	Word Choice	53.2	48.8	51.5	58.5	57.5	70.8	80.0	47.5	48.0	34.5	76.5	47.8	83.8	89.0	32.2	31.8
Implicit	Age	53.2	68.2	63.2	68.5	79.5	84.4	85.3	68.5	67.2	58.8	87.0	72.2	90.5	93.2	56.2	53.8
	Gender	56.3	69.0	66.2	73.8	79.5	79.7	85.3	64.5	63.2	61.5	88.0	69.0	91.5	95.0	53.5	54.2
CMTR		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Vanilla		30.7	30.8	35.8	57.4	65.2	41.0	76.0	56.2	43.5	13.8	44.6	18.8	80.8	83.6	4.8	8.1
Explicit	Sentiment	19.8	10.2	21.6	21.5	11.5	10.4	50.0	7.2	13.5	4.8	20.0	8.5	39.0	42.0	2.8	5.5
	Tone	65.9	67.0	73.5	84.6	55.5	48.4	82.0	53.2	48.2	43.0	79.8	45.0	83.5	81.8	41.0	49.2
	Word Choice	59.5	68.8	73.5	76.2	67.0	52.6	82.0	64.2	60.8	52.0	86.0	58.2	88.2	88.2	32.0	35.2
Implicit	Age	67.5	74.8	72.1	79.2	75.0	63.5	82.7	67.2	62.8	59.2	88.5	72.5	88.8	89.8	49.5	49.2
	Gender	71.4	73.5	73.5	77.7	75.0	61.5	78.7	65.2	61.2	58.5	88.0	73.2	88.0	90.8	47.8	46.0
DiSC		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Vanilla		22.8	25.6	25.8	41.0	62.3	39.6	71.3	49.3	40.2	13.8	36.0	17.2	80.4	82.2	3.8	6.9
Explicit	Sentiment	12.7	9.5	15.2	13.8	11.0	9.9	34.0	4.5	11.2	3.2	15.8	7.5	36.2	39.8	1.8	4.8
	Tone	61.1	62.0	65.7	73.8	51.5	39.6	76.0	36.8	34.5	31.8	76.5	23.8	82.5	81.5	41.0	46.8
	Word Choice	59.5	67.0	68.1	76.9	66.0	55.2	83.3	58.2	58.0	49.8	85.0	56.0	86.0	87.5	31.8	34.5
Implicit	Age	64.3	73.0	72.5	76.9	75.0	63.5	86.7	69.2	63.8	55.3	88.8	75.2	89.0	93.0	52.0	49.8
	Gender	69.0	76.0	75.5	81.5	76.5	60.9	87.3	69.8	67.0	58.8	88.2	70.8	89.8	92.8	47.2	46.5
CATCH		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Vanilla		28.8	29.9	34.6	49.7	57.7	47.0	75.8	50.2	43.8	18.6	41.0	26.2	81.7	83.9	7.2	11.4
Explicit	Sentiment	25.4	17.8	26.0	32.3	12.5	14.6	48.7	11.5	21.8	8.5	29.8	21.2	47.2	51.0	6.8	8.2
	Tone	67.5	68.8	70.6	75.4	54.0	54.7	77.3	51.8	44.5	41.0	80.8	47.5	87.5	84.0	48.5	52.2
	Word Choice	72.2	71.0	69.1	78.5	66.0	60.9	82.7	62.8	60.8	52.0	86.5	61.8	86.8	86.8	38.8	47.0
Implicit	Age	73.0	73.5	72.1	73.8	72.0	62.5	81.3	66.8	63.2	58.5	86.2	72.5	90.5	89.8	54.5	54.2
	Gender	69.0	74.2	73.5	80.0	72.0	65.6	83.3	68.8	63.5	59.2	88.8	70.2	90.2	92.0	52.2	46.8

Table 22: The complete detector performance after the **Summary** mitigation method.

BERT		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Vanilla		26.7	30.2	35.3	49.7	64.7	46.4	77.1	55.8	47.0	19.6	47.9	20.9	81.9	83.3	7.6	11.8
Explicit	Sentiment	42.9	32.2	42.2	36.9	39.0	31.8	73.3	35.5	38.2	25.8	42.2	16.8	65.8	73.0	18.5	25.5
	Tone	52.4	63.8	70.1	78.5	44.5	39.1	73.3	41.2	49.8	40.0	76.8	38.5	74.5	70.8	40.8	41.2
	Word Choice	51.6	53.8	67.2	69.2	30.0	23.4	64.0	22.0	34.0	34.5	74.0	32.0	56.5	56.0	28.7	26.0
Implicit	Age	73.8	73.2	73.5	79.2	69.5	63.5	90.7	68.0	63.0	55.0	86.2	70.8	87.0	89.8	53.5	50.8
	Gender	66.7	72.8	69.6	75.4	71.5	63.0	88.0	65.8	63.2	59.8	88.2	69.0	86.2	90.5	49.0	49.0
DEBERTA		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Vanilla		20.9	21.4	18.5	32.6	46.7	56.4	73.3	40.7	34.0	15.4	31.8	15.4	75.6	79.2	7.6	10.2
Explicit	Sentiment	42.9	35.5	43.6	42.3	48.5	49.5	72.7	35.2	40.8	28.2	58.0	20.0	77.8	79.0	22.2	31.0
	Tone	52.4	51.0	60.3	69.2	35.5	45.3	63.3	25.8	37.2	35.8	70.8	28.8	62.0	60.2	40.8	39.5
	Word Choice	36.5	36.2	45.1	46.2	25.0	27.6	41.3	12.8	20.8	29.0	57.2	22.5	43.5	41.5	27.8	25.0
Implicit	Age	50.8	63.8	64.2	70.0	71.5	82.8	81.3	60.0	62.2	55.8	84.0	70.5	91.2	93.5	53.8	56.0
	Gender	50.8	67.8	58.8	70.0	73.0	79.7	82.7	64.0	63.0	57.5	88.2	67.2	92.8	94.5	54.0	53.2
CMTR		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Vanilla		32.0	31.8	41.8	64.1	62.8	46.2	79.6	61.0	51.1	22.6	52.8	23.1	82.0	84.7	7.7	13.2
Explicit	Sentiment	41.3	36.5	48.5	52.3	41.0	36.5	72.0	41.0	42.2	26.2	48.5	17.8	68.5	73.8	18.5	26.8
	Tone	58.7	68.8	72.5	80.0	48.0	36.5	76.7	45.2	53.5	43.0	79.0	38.8	73.8	73.8	45.2	41.5
	Word Choice	51.6	57.2	73.0	75.4	32.5	26.0	63.3	26.2	35.5	37.5	73.0	33.5	61.0	56.7	32.2	30.5
Implicit	Age	72.2	73.5	76.5	82.3	71.5	62.0	90.7	70.0	64.2	58.5	85.8	69.5	86.5	89.5	55.0	51.2
	Gender	73.0	73.0	72.1	77.7	70.0	62.0	86.0	67.8	66.0	59.2	86.0	69.2	86.8	91.0	50.8	50.5
DiSC		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Vanilla		27.2	30.4	34.2	47.9	63.2	45.5	78.2	55.5	46.0	20.2	47.1	23.4	83.0	83.8	8.1	12.8
Explicit	Sentiment	37.3	32.5	43.1	41.5	39.0	32.3	72.0	35.0	38.2	23.8	45.0	16.2	66.0	72.5	19.0	25.8
	Tone	57.1	65.0	72.1	80.8	40.5	35.9	76.7	40.2	50.2	38.8	76.8	39.0	72.5	68.0	46.5	42.2
	Word Choice	52.4	57.2	69.1	69.2	30.5	22.9	64.7	21.5	34.0	35.0	72.8	30.8	58.0	54.0	29.5	29.0
Implicit	Age	74.6	73.0	74.0	79.2	72.5	62.0	88.7	67.8	63.8	56.0	86.0	70.0	87.5	91.5	54.5	52.0
	Gender	69.8	74.2	71.6	76.9	70.5	61.5	87.3	66.0	63.2	60.0	86.5	68.5	86.8	92.5	50.8	50.8
CATCH		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Vanilla		41.0	35.3	40.8	61.0	60.5	49.1	78.4	58.8	49.9	29.4	51.8	32.8	82.5	82.7	12.6	17.8
Explicit	Sentiment	57.1	45.8	52.9	66.2	48.0	41.7	78.7	44.8	43.8	33.0	62.0	29.8	77.8	78.2	22.8	34.0
	Tone	67.5	69.2	72.1	79.2	50.0	45.3	80.0	52.5	53.2	53.8	81.0	46.2	80.8	78.2	50.0	51.2
	Word Choice	65.1	64.8	72.1	76.2	42.5	41.7	72.7	35.5	44.2	47.5	80.5	44.8	76.2	74.0	41.2	41.2
Implicit	Age	72.2	70.5	71.6	77.7	68.0	64.1	84.0	67.5	64.5	55.0	86.0	71.5	87.2	87.5	54.5	54.0
	Gender	69.0	73.2	74.0	78.5	69.5	64.6	85.3	67.0	65.0	55.3	87.0	68.0	88.5	89.2	53.2	52.5

Table 23: The complete detector performance after the **Neutral** mitigation method.

BERT		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Vanilla		17.2	23.9	24.5	34.4	32.8	24.8	61.1	28.1	26.0	10.9	32.8	15.1	65.7	70.2	4.5	5.9
Explicit	Sentiment	37.3	22.2	23.5	36.2	38.5	26.6	67.3	32.2	31.0	15.8	37.5	13.5	71.8	77.0	9.5	18.2
	Tone	61.9	68.5	75.0	73.1	45.0	38.0	76.7	36.8	46.2	42.0	81.0	35.5	75.8	72.2	44.0	41.5
	Word Choice	52.4	55.5	59.8	68.5	37.5	33.9	71.3	29.0	33.2	34.8	73.5	30.2	76.0	77.2	25.8	27.5
Implicit	Age	62.7	72.0	73.0	72.3	74.0	68.8	88.0	66.8	62.8	54.5	85.2	70.2	93.0	96.2	55.8	53.8
	Gender	69.8	72.5	72.1	73.1	72.5	63.5	88.0	66.2	62.5	57.5	88.8	68.0	94.0	94.8	49.8	44.0
DEBERTA		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Vanilla		15.3	14.1	11.8	21.3	15.0	21.7	49.8	15.3	17.2	9.5	23.2	13.4	49.9	54.5	3.8	4.7
Explicit	Sentiment	46.0	28.5	30.9	46.2	49.0	50.0	75.3	32.5	31.5	23.2	44.8	24.0	96.8	96.5	11.5	18.0
	Tone	51.6	54.8	52.9	66.2	36.0	40.1	65.3	25.8	34.0	35.8	73.0	34.8	75.2	79.5	43.5	41.8
	Word Choice	35.7	43.5	40.2	45.4	23.5	39.6	65.3	14.2	27.0	25.5	62.0	27.2	75.5	86.0	25.8	26.8
Implicit	Age	58.7	68.0	60.8	68.5	77.0	83.3	84.0	67.8	68.0	56.0	85.5	72.0	96.8	98.2	56.2	54.8
	Gender	62.7	70.0	59.8	77.7	77.0	82.8	88.0	66.2	68.0	54.8	87.0	69.2	96.2	98.2	54.5	52.2
CMTR		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Vanilla		25.1	27.0	34.8	48.2	38.7	29.0	75.1	34.2	31.4	13.9	37.9	18.7	69.8	76.3	3.9	6.7
Explicit	Sentiment	40.5	31.0	39.2	46.2	43.5	31.8	70.0	37.8	40.8	17.8	44.0	16.2	75.8	75.8	11.0	19.2
	Tone	65.1	66.2	75.0	79.2	50.0	38.5	77.3	44.5	55.5	44.2	80.2	40.5	77.5	76.0	42.8	43.5
	Word Choice	54.8	62.0	66.7	74.6	37.5	34.9	76.0	34.0	38.8	39.5	79.2	34.8	79.2	77.0	28.0	29.2
Implicit	Age	74.6	71.5	76.5	76.9	69.5	66.1	85.3	65.0	64.2	57.5	87.5	71.5	91.8	94.8	53.8	51.8
	Gender	69.0	72.2	65.2	80.8	68.0	62.0	88.7	67.0	61.2	57.0	89.0	73.0	91.8	93.8	47.5	44.5
DiSC		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Vanilla		20.1	23.8	25.3	34.4	29.3	21.5	64.9	22.0	19.6	10.8	35.6	16.4	56.1	60.3	3.8	5.4
Explicit	Sentiment	34.1	25.0	23.5	38.5	37.5	28.6	65.3	29.5	19.8	16.8	39.0	13.8	89.8	91.8	7.2	17.5
	Tone	62.7	68.8	75.5	73.8	44.0	37.0	75.3	36.5	45.0	41.8	80.8	37.0	77.5	73.2	45.5	44.0
	Word Choice	54.0	57.7	61.8	66.9	38.5	32.8	70.0	30.8	32.8	34.8	73.5	28.8	78.5	77.8	28.5	28.0
Implicit	Age	72.2	73.2	76.5	77.7	75.5	65.1	87.3	66.8	62.8	57.0	86.0	70.2	95.5	98.2	55.0	53.0
	Gender	74.6	73.8	75.0	71.5	75.0	65.1	88.7	67.2	62.5	56.5	89.2	67.0	96.0	98.0	51.0	45.5
CATCH		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Vanilla		21.7	22.8	24.2	33.3	20.7	18.8	47.3	19.0	17.8	15.3	35.5	20.5	48.2	52.6	5.6	8.6
Explicit	Sentiment	48.4	37.0	39.7	56.9	41.5	40.6	77.3	41.8	40.5	25.2	57.8	31.0	90.8	92.0	17.0	24.2
	Tone	65.1	66.0	74.0	72.3	52.0	42.2	76.7	42.2	53.8	43.5	81.0	40.8	81.8	79.8	48.2	48.2
	Word Choice	65.1	64.2	63.2	76.9	48.0	50.5	76.0	38.5	45.2	42.2	81.8	42.5	87.5	88.5	37.5	35.0
Implicit	Age	65.9	73.0	72.1	79.2	75.5	68.8	84.7	66.5	63.5	56.0	87.8	68.2	96.2	96.8	55.2	51.5
	Gender	69.0	71.5	67.6	81.5	77.0	70.3	86.0	64.8	61.2	55.2	87.0	69.8	95.2	97.2	49.2	48.0

Table 24: The performance of detectors after injection under the standard setting.

MISTRALV3		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Original		69.8	54.0	34.3	30.8	70.0	74.0	49.3	43.0	49.5	49.5	72.5	55.0	42.0	60.0	58.5	50.0
Vanilla		65.6	56.2	37.3	53.3	55.3	64.2	42.7	44.2	53.5	45.2	62.0	54.8	44.3	59.2	53.0	51.5
Explicit	Sentiment	61.9	53.8	38.7	58.5	51.5	57.8	42.7	44.8	53.0	47.5	57.0	54.2	49.2	52.5	54.2	53.5
	Tone	65.9	57.0	33.8	46.2	57.0	65.1	53.3	45.0	48.5	49.0	69.2	63.2	42.5	60.8	58.8	53.2
	Word Choice	65.1	51.5	36.8	53.1	58.5	67.7	52.0	46.0	51.0	51.2	72.5	56.5	42.5	59.5	55.5	50.0
Implicit	Age	65.9	53.5	40.7	53.1	61.5	70.3	54.0	40.5	53.8	46.8	68.2	44.2	44.5	61.5	59.8	53.8
	Gender	64.3	53.8	37.7	55.4	54.5	71.4	48.0	41.2	55.8	45.8	66.0	42.0	44.5	60.0	54.2	53.8

Table 25: The performance of detectors after injection under the standard setting (cont.).

LLAMA3		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Original		73.0	49.5	40.2	41.5	77.0	85.4	70.7	49.5	45.5	58.0	74.0	66.5	30.5	71.0	56.0	53.0
Vanilla		57.1	54.8	45.1	52.8	63.3	74.7	61.3	47.3	49.7	52.2	51.5	57.0	39.7	60.2	57.3	52.3
Explicit	Sentiment	56.3	56.8	45.6	54.6	65.0	65.1	56.0	43.8	49.2	49.0	50.2	50.8	43.0	51.0	54.2	50.8
	Tone	63.5	50.0	47.5	48.5	67.0	81.8	61.3	43.5	44.0	53.8	65.8	64.8	39.2	62.2	58.8	50.5
	Word Choice	58.7	51.5	41.7	50.0	68.0	79.2	66.7	47.2	46.2	51.2	66.2	67.0	35.2	67.0	59.0	54.8
Implicit	Age	63.5	50.0	44.6	53.1	72.5	78.1	48.7	44.0	54.5	51.8	52.0	40.2	37.2	62.5	56.8	51.5
	Gender	62.7	49.0	44.1	56.9	71.0	73.4	46.7	49.0	56.2	52.5	51.2	40.0	36.5	62.0	52.5	53.5
BERT		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Original		74.6	80.0	86.3	84.6	78.0	78.1	88.0	72.5	72.5	60.5	90.5	76.5	96.5	98.5	58.5	54.5
Vanilla		79.4	76.5	84.6	88.2	76.0	56.6	85.3	70.3	69.0	56.8	92.0	73.2	91.5	90.7	54.2	53.8
Explicit	Sentiment	60.3	77.0	81.9	79.2	75.0	63.5	84.0	69.0	66.5	55.8	89.2	74.2	94.5	94.2	54.5	52.2
	Tone	73.8	78.2	83.8	86.2	78.0	63.0	80.7	69.5	68.0	58.0	88.8	71.8	92.2	92.0	55.0	53.2
	Word Choice	76.2	77.0	81.4	81.5	74.5	58.9	84.7	69.8	68.0	57.8	90.5	71.0	93.2	94.2	56.0	54.8
Implicit	Age	50.8	74.8	77.0	81.5	82.5	72.9	90.0	69.0	68.0	61.5	88.5	74.5	95.0	96.8	54.2	53.0
	Gender	74.6	73.2	78.4	78.5	82.0	75.0	90.7	67.2	68.0	62.5	91.0	74.0	95.5	97.2	53.2	54.5
DEBERTA		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Original		68.3	75.0	74.5	86.2	85.0	99.0	90.7	65.5	77.5	63.5	93.0	79.0	99.0	99.0	66.0	61.5
Vanilla		59.3	74.3	74.8	82.1	83.3	80.2	87.6	67.2	69.0	57.3	90.5	73.3	93.2	95.3	56.8	54.2
Explicit	Sentiment	59.5	69.8	70.1	73.8	75.5	78.1	86.7	68.8	70.2	57.5	89.5	73.0	98.2	99.2	55.8	54.0
	Tone	69.8	75.8	75.0	79.2	78.0	84.4	85.3	68.0	75.0	58.2	88.8	75.5	94.8	96.5	57.2	58.8
	Word Choice	64.3	74.0	76.0	82.3	77.5	80.2	86.0	66.8	74.8	58.8	88.2	75.5	96.0	98.5	58.2	56.2
Implicit	Age	51.6	73.0	74.0	79.2	83.5	95.8	89.3	67.5	71.0	62.5	88.5	74.8	97.5	98.8	57.2	58.5
	Gender	52.4	71.2	71.1	74.6	82.0	93.8	83.3	64.8	71.2	60.2	89.5	74.0	97.5	98.8	54.5	56.8
CMTR		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Original		77.8	80.0	85.3	83.1	77.0	69.8	78.7	71.5	69.0	63.0	90.0	74.5	97.5	98.5	57.0	58.0
Vanilla		76.7	75.5	82.0	84.6	71.3	55.6	85.3	70.2	66.0	59.2	92.2	72.3	88.7	90.0	55.8	53.5
Explicit	Sentiment	61.9	76.0	73.0	83.8	69.0	55.7	82.7	68.0	64.0	57.2	90.2	73.0	93.2	93.5	54.8	53.2
	Tone	68.3	76.2	84.3	86.9	75.0	58.3	84.7	67.2	65.5	56.5	89.8	74.5	91.8	92.5	53.0	53.5
	Word Choice	79.4	76.5	82.4	80.0	70.5	58.3	86.7	65.2	67.5	59.8	90.2	71.0	93.0	93.8	58.0	53.5
Implicit	Age	70.6	73.0	73.5	81.5	78.5	70.8	85.3	69.5	64.8	57.8	88.0	75.5	94.8	96.8	53.0	53.5
	Gender	77.8	75.5	77.5	78.5	76.0	64.6	88.7	67.8	63.5	62.2	90.0	73.5	96.0	96.8	53.0	53.0
DISC		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Original		73.0	79.0	85.3	89.2	81.0	78.1	85.3	69.5	72.0	60.5	90.5	78.0	98.0	98.5	59.5	56.5
Vanilla		78.3	77.2	84.3	88.7	78.3	58.7	85.8	68.7	66.3	57.3	91.8	74.5	92.7	93.0	52.5	52.5
Explicit	Sentiment	63.5	77.8	81.4	78.5	74.5	61.5	84.0	66.8	67.0	56.8	89.5	72.5	98.0	99.2	54.0	53.5
	Tone	72.2	77.8	83.8	86.9	76.5	59.9	81.3	70.2	67.8	58.5	88.5	73.0	95.0	94.0	55.0	53.0
	Word Choice	79.4	76.8	83.3	83.1	75.0	55.7	82.7	71.0	66.8	57.0	90.5	71.0	97.2	97.0	55.5	52.8
Implicit	Age	61.1	73.8	77.9	80.8	82.5	72.4	88.0	70.5	67.2	61.5	88.2	76.0	96.5	97.5	52.5	53.2
	Gender	77.0	73.2	74.0	81.5	82.5	75.5	89.3	66.2	67.5	61.8	90.2	72.5	96.8	97.5	54.2	54.5
CATCH		D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16
Original		73.0	76.5	72.5	90.8	84.0	92.7	88.0	67.5	73.5	60.0	91.5	73.5	98.0	100.0	53.0	56.5
Vanilla		75.1	76.3	81.0	84.1	74.0	59.0	87.6	66.7	63.0	57.8	91.3	73.7	91.7	90.3	55.0	55.7
Explicit	Sentiment	71.4	75.2	76.0	82.3	74.0	67.7	86.0	67.5	70.2	58.0	88.2	72.5	96.8	96.5	55.8	53.8
	Tone	73.0	76.8	77.9	83.1	74.5	66.1	84.7	67.8	67.0	55.5	89.5	71.5	93.8	92.0	55.8	55.5
	Word Choice	76.2	76.0	79.9	82.3	76.0	69.3	87.3	67.0	65.2	56.0	88.0	70.2	97.0	96.5	53.5	60.0
Implicit	Age	67.5	73.2	74.0	80.0	79.5	82.3	86.7	68.5	68.0	60.5	86.8	72.2	96.8	97.5	56.8	54.2
	Gender	72.2	72.5	73.0	82.3	76.0	83.9	86.0	66.5	66.8	56.2	87.8	74.2	96.8	98.8	53.2	56.8