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ABSTRACT

We study quantile-optimal policy learning where the goal is to find a policy whose
reward distribution has the largest α-th quantile for some α ∈ (0, 1). We focus
on the offline setting whose generating process involves unobserved confounders.
Such a problem suffers from three main challenges: (i) nonlinearity of the quantile
objective as a functional of the reward distribution, (ii) unobserved confounding
issue, and (iii) insufficient coverage of the offline dataset. To address these chal-
lenges, we propose a suite of causal-assisted policy learning methods that provably
enjoy strong theoretical guarantees under mild conditions. In particular, to address
(i) and (ii), using causal inference tools such as instrumental variables and nega-
tive controls, we propose to estimate the quantile objectives by solving nonlinear
functional integral equations. Then we adopt a minimax estimation approach with
nonparametric models to solve these integral equations, and propose to construct
conservative policy estimates that address (iii). The final policy is the one that
maximizes these pessimistic estimates. In addition, we propose a novel regular-
ized policy learning method that is more amenable to computation. Finally, we
prove that the policies learned by these methods are Õ(n−1/2) quantile-optimal
under a mild coverage assumption on the offline dataset. To our best knowledge,
we propose the first sample-efficient policy learning algorithms for estimating the
quantile-optimal policy when there exists unmeasured confounding.

1 INTRODUCTION

Offline reinforcement learning (RL) (Levine et al., 2020; Prudencio et al., 2023) aims to learn the op-
timal decision-making policies from pre-collected datasets, where the learner has no control over the
data collection process. This lack of control is further complicated by the fact that many real-world
datasets suffer from incomplete information due to unmeasured confounders (Rubin, 1974)—factors
influencing both the actions and rewards, yet not observed by the learner. These unobserved con-
founders naturally arise in the partially observable setting, where the behavior policy used to gener-
ate the actions is contingent on the state, while only noisy observations of the state are recorded in
the data. A prime example can be found in healthcare, where electronic health records (EHR) may
lack key details about a patient’s condition or treatment environment (Hernán & Robins, 2016), but
decisions about treatment still need to be optimized based on the available data.

In many decision-making scenarios, rather than expected rewards, we are interested in optimizing
more nuanced objectives involving quantiles of the reward distribution. For instance, to measure the
efficacy of job training programs, it may be more meaningful to optimize for the median income
increase, as the mean could be skewed by a few extreme cases. Moreover, quantile-based objectives
naturally arise when some notion of fairness is of interest (Yang et al., 2019; Liu et al., 2022).

In this paper, we tackle the problem of quantile-optimal policy learning in offline settings where
unmeasured confounders play a critical role. Our goal is to find a policy that maximizes the α-th
quantile of the reward distribution, conditioning on the context. Such a policy is learned on a pre-
collected offline dataset that involves unobserved confounders, which are some hidden variables that
simultaneously affect the rewards and actions stored in the data.

This problem is particularly challenging due to three core issues: (i) the quantile objective is a
nonlinear functional of the reward distribution, making statistical estimation more difficult; (ii) un-
measured confounders introduce bias into the estimation problem, which can lead to misleading
results if not properly accounted for; and (iii) the offline dataset often lacks full coverage, meaning
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that the distribution of the collected data might have insufficient overlap with that induced by some
candidate policy, making it challenging to evaluate the performance of that policy.

To address these challenges, we propose a suite of novel, causal-assisted policy learning approaches.
Our methods leverage powerful causal inference techniques, such as instrumental variables (IV)
(Angrist et al., 1996; Baiocchi et al., 2014) and negative controls (NC) (Lipsitch et al., 2010; Tchet-
gen et al., 2020), to account for unmeasured confounding. Leveraging these causal inference tools,
we frame the quantile-based estimation problem as solving nonlinear functional integral equa-
tions, which can be solved using a minimax estimation approach with nonparametric models. This
enables us to address Challenges (i) and (ii). Furthermore, to handle Challenge (iii), we propose to
adopt the pessimism principle (Jin et al., 2021; Xie et al., 2021; Rashidinejad et al., 2021; Buckman
et al., 2020; Lu et al., 2022), which enables us to relax the requirement on data coverage. We in-
troduce two versions of the algorithms based on the pessimism idea – a constrained version and a
regularized version. In particular, our method works as long as the offline data has sufficient cover-
age over the optimal policy, and it does not matter whether the data contains sufficient information
about the suboptimal policies — pessimism ignores policies with large uncertainty and enables us
to only focus on the policies that are covered by the dataset.

We prove that our algorithms achieve sample efficient Õ(n−1/2) suboptimality bounds, where n
is the sample size. Compared to existing works that study offline policy learning with confounded
datasets aiming to maximize expected rewards, our analysis is more complicated due to the nonlinear
nature of the quantile-based objective. In particular, to get the suboptimality bounds, we leverage
the local curvature of the nonlinear operator in the functional estimating equation. We examine the
statistical error of the estimated quantile-based objective in terms of a local norm, defined using
the first-order Taylor expansion of the nonlinear operator. To our best knowledge, we establish the
first provably sample-efficient algorithms for quantile-optimal policy learning under unmeasured
confounding and insufficient support.

1.1 RELATED WORKS

Offline Decision Making Our work is built upon the general framework of offline reinforcement
learning (Yin et al., 2022; Uehara et al., 2021; Jin et al., 2021; Xie et al., 2021; Rashidinejad et al.,
2021) and offline contextual bandits (Li et al., 2012; Lee et al., 2021; Metevier et al., 2019). In
particular, Cassel et al. (2023); Zhu & Tan (2020); Prashanth et al. (2020) study nonlinear objectives
in contextual bandits without confounding bias. To address the challenge of insufficient coverage
in the offline dataset, we incorporate the principle of pessimism (Jin et al., 2021; Xie et al., 2021;
Rashidinejad et al., 2021; Buckman et al., 2020; Lu et al., 2022; Chen et al., 2023). Our algorithm
leverages the idea of pessimism to handle the challenge of insufficient data coverage. Our problem
has two additional challenges due to the nonlinearity of the quantile objective and the unobserved
confounders, which are not addressed in most of these works.

Causal Inference A substantial body of work in causal inference has focused on addressing con-
founding bias through covariate adjustment (Rubin, 1974; Rosenbaum & Rubin, 1983; Lee et al.,
2010; Liu et al., 2024), instrumental variables (Angrist et al., 1996; Ai & Chen, 2003; Newey &
Powell, 2003; Chen et al., 2003; Chernozhukov & Hansen, 2008; Chen & Pouzo, 2012; Baiocchi
et al., 2014; Hartford et al., 2017), and negative controls (Miao et al., 2018; Kallus et al., 2021).
Our estimation procedure leverages tools from nonlinear nonparametric instrumental variables, e.g.,
(Chen & Pouzo, 2012) and negative controls (Miao et al., 2018; Kallus et al., 2021). We need to ad-
ditionally incorporate pessimism for policy learning, which leads to a more complicated algorithm
and analysis.

Pessimism + Causal Inference There are existing works that combine pessimism with causal
inference tools to establish algorithms for confounded offline decision making (Dong et al., 2023;
Chen et al., 2023). Our work is particularly relevant to Chen et al. (2023), which studies a similar
setting, with the goal of maximizing the expected return. In contrast, we study the quantile objective,
which involves the nonlinear estimating equation, and thus requires a more sophisticated analysis.

Quantile Policy Learning Quantile treatment effect has been extensively studied in Econometrics
(Abadie et al., 2002; Chernozhukov & Hansen, 2005; Horowitz & Lee, 2007; Chernozhukov &
Hansen, 2008; Chen & Pouzo, 2012; Gagliardini & Scaillet, 2012). However, limited research has
explored quantile policy learning. For instance, Wang et al. (2018) investigates quantile-optimal
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treatment regimes, while Linn et al. (2017) proposes quantile regression methods to indirectly and
approximately optimize the quantile of outcomes within specific decision rule classes. Additionally,
Fang et al. (2023) incorporates the quantile of the reward as a regularization term in their objective
to maximize the average reward.

2 OFFLINE DECISION MAKING PROBLEM SETUP

In this section, we formalize the problem of offline decision making under the confounded contextual
bandit model. Let A ∈ A be the action and ∆(A) denote the set of all distributions over A. Let
X ∈ X be the context, and Y ∈ R be the reward. Denote O as the side observations that can assist
in decision making. In this paper, O can be either the Instrumental Variables (IVs) Z (Angrist et al.,
1996) or the negative control exposure-outcome pair (E, V )(Lipsitch et al., 2010). Informally, IVs
are random variables that affect the reward only through the actions. The Negative Control Exposure
(NCE), denoted byE, are random variables known not to causally affect the reward Y. The Negative
Control Outcomes (NCO), denoted as V are random variables known to be causally unaffected by
either the action A or E. We will elaborate on these side observations in detail later. Let U ∈ U
denote the unmeasured confounders that causally affectsA and Y simultaneously. We use the lower-
case letter to indicate a realization of the corresponding random variable. The decision-making
process involves two steps: first, collecting an offline dataset, and then learning a policy from the
offline data to apply in an interventional process.

The offline data collection process The offline data collection process (ODCP) describes the pro-
cess by which the offline dataset is collected. ODCP generates n samples, {ui, xi, oi, ai, yi}ni=1. We
assume tuples of random variables are independent and identically distributed. As U is unmeasured,
the offline dataset only includes {xi, ai, oi, yi}ni=1. A motivating example is the dataset of job train-
ing programs aimed at improving workers’ income distributions (Abadie et al., 2002; Chernozhukov
& Hansen, 2008). Here, Yi represents the utility for the i-th worker, defined as the difference be-
tween the increase in wage and the cost of participating in the program. Xi captures the worker’s
pre-intervention covariates. Ai denotes whether the i-th worker participates in the program. Ui

could represent unmeasured factors such as the worker’s motivation, which influence both their par-
ticipation decision Ai and their utility outcomes Yi. Oi serves as an instrumental variable Angrist
et al. (1996), which could be whether the worker was invited to participate in the program.

The Interventional Procecss A policy π : X → ∆(A) is defined as a mapping from the context
to a distribution over the action space, specifying the decision-making rule. From the offline dataset,
we learn a policy π̂, which is subsequently applied in an interventional process. In this process, we
no longer observe the side observations. Moreover, the context X follows a different but known
distribution from that in the ODCP. We denote the new distribution as p̃(x). The environment first
generates the context X ∼ p̃(x). The action a is then selected by the agent using the learned policy
π̂, based solely on the newly generated X. In the job training program example, this corresponds
to the government using the learned policy to decide whether to allow a new worker to join the
program based on their pre-intervention covariates. WhenO represents the IV,Z, Figure 1 illustrates
possible causal directed acyclic graphs (DAGs) for both the ODCP and the interventional process.
We provide the details of the ODCP, interventional process, and the motivated examples for the case
of observing NCs as the side observations in §J.1.

Figure 1: The DAGs when the IVs are observed as the side observations. The dashed edge implies
that the causal relationship may be absent. The grey node indicates that U is unmeasured. Left:
DAG for the ODCP. The IV Z causally affects Y only throughA. Right: DAG for the interventional
process. All arrows coming into the node A have been removed other than the one from the node X.
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Quantile Objective and Regret. We denote the expectation over the distribution of random vari-
ables in ODCP as E. For a fix π, we denote the expectation over the distribution of random variables
in the interventional process as Epπ

in
. Existing works focus on learning the policy that maximizes the

average reward, Epπ
in
[Y ] (Lu et al., 2022; Guo et al., 2022). The main goal of this paper, however,

is to maximize the average structural quantile of the reward. Formally, given X = x, for any ac-
tion a, we let h∗α(a, x) denote the α-th quantile of the potential outcome Y (a). In the language of
do-calculus (Pearl, 1995), it holds that P[Y ≤ h∗α(A,X) |X = x, do(A = a)] = α. We assume
that Y |A,X is continuously distributed without atoms so that h∗α is unique. We do not assume that
h∗α takes any parametric form. Our goal is to learn a policy π∗ : X → ∆(A) that maximizes the
average structural quantile function:

vπα := Epπ
in
[h∗α(A,X)] . (2.1)

In real-world applications, the objective shifts from maximizing the average outcome to optimizing
a quantile of the outcome distribution when the focus is on distributional fairness. For the job
training examples, governments aim to ensure that the majority of workers experience income gains
rather than optimizing the average utility, which can be skewed by extreme values. Thus, the focus
is on maximizing the median or lower quantiles to address income inequality. To measure the
performance of our estimated π̂, we define the notion of regret for a fixed π as

Regret(π) := vπ
∗

α − vπα. (2.2)

We remark that our objective is a nonlinear functional of the distribution of Y. Unlike the average
reward scenario, learning the optimal policy and theoretically analyzing the rate of the regret pose
significant challenges.

3 DESIGN OF ALGORITHMS

In this section, we identify key challenges that arise in quantile policy learning and propose algo-
rithms specifically designed to address these challenges.

3.1 CAUSAL IDENTIFICATION

Optimizing the average quantile function Epπ
in
[h∗α(A,X)] over π hinges on first estimating

h∗α(A,X). While a naive approach involves a quantile regression of Y on A and X, the unmea-
sured confounders U bring the endogeneity into the ODCP, making this approach inappropriate for
the structural quantile function (Chernozhukov & Hansen, 2008; Chen et al., 2014; Horowitz & Lee,
2007). To address the confounding bias, we propose leveraging the side observations observed in
ODCP to transform the estimation of h∗α(A,X) into solving an integral equation T (h) = 0 for h,
where T is a nonlinear operator, and h∗α(A,X) is a solution of the equation.

For instance, denote D := (Y,X,A,O). When the side observations are instrumental variables Z,
we write 1{Y ≤ h(A,X)} − α as W (D;h). Let h ∈ H ⊆ (X,Z) → R where H is a functional
space that we will determine later. Chen et al. (2014) shows that, under certain regularity conditions,
for the nonlinear operator T IV : H → L2(pX,Z) defined as T IVh := E [W (D;h) |X,Z] , we
have T IVh∗α(A,X) = 0 almost surely (See details of the derivation of this in §A). When the side
observations is the negative control exposure-outcome pair (E, V ), we derive a novel set of integral
equations that h∗α satisfies. Denote

T1(h1, h2) := E [W (D;h1)− h2(V,A,X) |E,A,X] ,

T2(h1, h2) := E [h2(V,A
′, X) |A′, X] ,

where A′ is drawn uniformly in the action space A, independent of other variables. The nonlinear
operators T1 and T2 are defined on their corresponding domains, with values in the L2 spaces of
square-integrable functions.

Theorem 3.1 (Informal Version of Conditional Moment Restrictions for Negative Controls)
Let T NC := (T1, T2). Under certain regularity conditions imposed on the NCs, there exists bridge
functions h∗2 : V ×A× X → R so that

T NC(h∗α, h
∗
2) = 0. (3.1)
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Proof See §J.2 for the complete statement of the Theorem and a detailed proof.

The equation of the form T (h) = 0 is referred to as conditional moment restrictions in econometrics
(Chamberlain, 1992; Ai & Chen, 2003; Newey & Powell, 2003; Chen & Pouzo, 2009b). To our best
knowledge, Theorem 3.1 is the first conditional moment restrictions result for the structural quantile
when negative controls are observed. Consequently, estimating h∗α reduces to solving the conditional
moment restrictions T IVh = 0 or T NCh = 0 for h. Throughout the remainder of the paper, we
primarily focus on the case where IVs are observed in the ODCP, due to space constraints. Similar
algorithms and theoretical guarantees apply to the negative control setting, which is discussed in
detail in §J. The only distinction between IVs and NCs is that T NC requires solving two conditional
moment restrictions simultaneously, while T IV involves solving one. This difference is minimal,
allowing us to use a similar approach for both cases. In fact, our methodology applies to any side
observation for which the relationship T h = 0 can be established. For simplicity, we use T to refer
to T IV in the main text.

3.2 MINIMAX ESTIMATION AND PESSIMISM PRINCIPLE

Solving T (h) = 0 for h ∈ H is a nonparametric nonlinear inverse problem. It is generally impossi-
ble to find a closed-form solution. Here, inspired by the minimax approach of Dikkala et al. (2020)
for estimating nonparametric mean IV regression E [Y − h(A,X) |X,Z] = 0, we propose to use a
minimax approach to estimate nonparametric quantile IV function h∗α. Specifically, 1

2∥T (h)∥22 can
be estimated by leveraging Fenchel duality:

Ln(h) := sup
θ∈Θ

{
1

n

n∑
i=1

[W (Di;h)θ(Xi, Zi)]−
1

2n

n∑
i=1

θ2(Xi, Zi)

}
(3.2)

for a chosen real-valued test function class Θ on X × Z. Thus, we can construct an estimator of
h∗α by minimizing Ln(h) over h ∈ H for a suitable hypothesis function space H. We refer the
reader to §B for the details of this derivation. However, it would be problematic if we directly plug
in the greedy solution ĥ := arg infh∈HLn(h) and maximize v(ĥ, π) = Epπ

in
[ĥ(A,X)] over π. The

sub-optimal context-action pairs may mislead the learned policy by making the variance of ĥ high,
due to insufficient sample size (Jin et al., 2021). See §B for a detailed discussion. To tackle this,
we learn a pessimistic policy by doing uncertainty quantification on Ln(h). Specifically, we first
construct a solution set (SS), S(en), for h based on Ln(h) as:

S(en) :=
{
h ∈ H : Ln(h) ≤ inf

h∈H
Ln(h) + en

}
, (3.3)

where en is a small positive threshold such that h∗α ∈ S(en). We will determine it later based on our
novel theoretical analysis. Then we select the policy that optimizes the pessimistic average structural
quantile function:

π̂ := arg sup
π

inf
h∈S(en)

v(h, π). (3.4)

We name the policy learning procedure in Equation (3.4) as the Solution Set Algorithm.

3.3 THE REGULARIZED ALGORITHM

As an intermediate step to learn π̂, we need to minimize Ln(h) for h restricted to h ∈ S(en) in the
Solution Set Algorithm. This is an optimization problem with a data-dependent constraint, which is
often computationally intractable. Therefore, we propose a computationally benign version of the
policy learning algorithm. Let En(h) = Ln(h) − infh∈H Ln(h). We modify the objective function
in equation 3.4 by adding a regularization term λnEn(h). The regularized version of the pessimistic
policy is then defined as:

π̂R := arg sup
π

inf
h∈H

{v(h, π) + λnEn(h)}. (3.5)

The proposed approach reformulates the original constrained optimization problem in Equation
(3.4), into its augmented lagrangian counterpart (Rashidinejad et al., 2022). The additional reg-
ularization term λnEn(h) penalizes Ln(h), which is equivalent to penalizing the threshold of the
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uncertainty constraint equation 3.3. Furthermore, when the estimator h is close to h∗α, the regular-
ization term approaches λnEn(h∗α), thereby becoming a small quantity. Consequently, we expect
less bias when optimizing the augmented lagrangian over π. We called the policy learning proce-
dure in Equation (3.5) the Regularized Algorithm. In practice, the optimization of h ∈ H over
the regularized objective can be implemented by gradient-based methods. For example, Xie et al.
(2021) uses the mirror descent method to learn the pessimistic policy.

Minimax Estimation for Negative Controls The minimax estimation for negative controls
closely mirrors that of instrumental variables, with the key difference being the need to solve two
conditional moment restrictions simultaneously. In §J.3, we provide the detailed design of the solu-
tion set and the regularized version of the algorithms for negative controls.

4 THEORETICAL RESULTS

We provide a theoretical analysis of the rate of the regret of the policy π̂ and π̂R. Deriving the regret
of a quantile-optimal policy is surprisingly challenging, mainly due to two factors: (1) the standard
concentration inequalities used in the minimax literature does not work for ∥T h∥2 because of the
nonlinearity of T , and (2) it is difficult to bound the regret in terms of ∥T h∥2 . To address the first
challenge, we use bracketing number techniques from van de Geer (2009); Chen et al. (2003). For
the second challenge and the solution set algorithm, we first demonstrate that h∗α ∈ S(en) with high
probability and that ∥T h∥2 converges at a fast rate uniformly over h ∈ S(en). We then define

ĥπ := arg inf
h∈S(en)

v(h, π). (4.1)

We show that we can link the regret of π̂ to ||T ĥπ∗ ||2 by performing a local expansion of T ĥπ∗

around h∗α, and hence address the challenge (2). Finally, we derive the convergence rate of the
regret of π̂. For regularized algorithm, we define a quantity analogous to ĥπ as:

ĥπR := arg inf
h∈H

{v(h, π) + λnEn(h)}.

We then perform a local expansion of T ĥπ∗

R around h∗α and bound the regret in a similar manner as
in the solution set algorithm. Although we are only demonstrating the analysis when instrumental
variables are observed in this section, every theorem presented has an equivalent counterpart for
negative controls, as detailed in §K. We also include a discussion on the stated assumptions and
conditions in this section in §N. To begin with, we impose a few conditions on the hypothesis and
test function spaces.

Assumption 4.1 (Identifiability and Realizability) We assume the structural quantile function
h∗α ∈ H. For any h ∈ H with E [W (D;h) |X,Z] = 0, we have ||h− h∗α||∞ = 0.

Assumption 4.2 (Compatibility of Test Function Class) For any h ∈ H, infθ∈Θ ∥θ − T h∥2 =

ϵΘ, and ϵΘ = Õ(n−1/2).

Assumption 4.3 (Regularity of Function Classes) We assume H is compact with respect to the
norm ∥·∥∞ . We say a function class F is star-shaped if for every f ∈ F and for any r ∈ [0, 1],
we have rf ∈ F . We assume Θ is star-shaped. We also assume the support of h∗α is bounded by
LY > 0. Moreover, it holds that suph∈H ||h||∞ ≤ Bh and supθ∈Θ ||θ||∞ ≤ Bθ.

Assumption 4.1 states that the hypothesis space H captures h∗α and h∗α is the unique solution to the
conditional moment restriction. Assumption 4.2 ensures that the test function class is rich enough
to approximate T h for all h ∈ H. Assumption 4.3 can be easily satisfied by choosing H and Θ to
be standard uniformly bounded and closed function classes. Due to the form of Ln(h), it is natural
to consider the function class

Q := {W (·;h)× θ(·) : h ∈ H, θ ∈ Θ} .

We then define an event that quantifies the approximation error between each of the two terms
inside the supremum in Ln(h) and its population counterpart. This event will later be proved to
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have a high probability by using empirical process theory. Fix a sequence of small positive constant
ηn that decreases with n. Let E denote the event

E :=
{
|En [q(D)]− E [q(D)]| ≤ ηn (∥θ∥2 + ηn) ,

∣∣||θ||2n,2 − ||θ||22
∣∣ ≤ 1

2

(
||θ||22 + η2n

)
,∀q ∈ Q

}
.

(4.2)

Condition 4.4 Suppose that Assumption 4.3 holds. For any ξ > 0, there exists ηn > 0 such that the
event E holds with probability at least 1− 2ξ.

In §E, we establish that Condition 4.4 is satisfied for some ηn = Õ(n−1/2) given that H and Θ

are suitably selected. Here, Õ(k) denotes O(k · poly(log k)). Consequently, Assumption 4.2 can be
stated as infθ∈Θ ∥θ − T h∥2 = η2n.

All the theoretical results in this section are built on the event E . For the rest of the paper, we assume
the condition 4.4 holds. We first present the analysis of the solution set version algorithm. We then
circle back to the regularized algorithm in Section 4.3. We begin by decomposing the regret (2.2) of
π̂ as:

Regret(π̂) = vπ
∗

α − v(ĥπ
∗
, π∗)︸ ︷︷ ︸

(i)

+ v(ĥπ̂, π∗)− v(ĥπ̂, π̂)︸ ︷︷ ︸
(ii)

+ v(ĥπ̂, π̂)− vπ̂α︸ ︷︷ ︸
(iii)

. (4.3)

Since π∗ in term (i) is the oracle policy, it does not depend on our chosen estimator ĥ. We will show
that term (i) can be controlled by imposing a mild condition on the distribution shift of the context
between ODCP and the interventional process. Term (ii) is bounded by zero by the optimality of π̂.
To control term (iii), we first demonstrate that on the event E , the solution set S(en) exhibits some

favorable properties. In the following, we use the notation
E
≲ and

E
≳ to represent the inequality that

holds on the event E .

Theorem 4.5 (Uncertainty Quantification) Suppose that Assumptions 4.1, 4.2, and 4.3 hold.

(i). Ln(h
∗
α)

E
≲ 13

4 η
2
n. Moreover, if we set en > 13

4 η
2
n, then h∗α ∈ S(en).

(ii). suph∈S(en) ∥T h∥2
E
≲ O

(√
en
)
+O (ηn) .

Proof See §G.1 for a detailed proof.

Theorem 4.5 (i) states that when en is chosen properly, the solution set S(en) captures h∗α with
high probability. This fact is notably important for managing term (iii), and results in the following
Corollary 4.6. Theorem 4.5 (ii) characterizes the rate of conditional RMSE for all h in S(en). In
subsequent discussions, we will show that ||T ĥπ∗ ||2 can be linked to the upper bound of the regret
of π̂ stated in Corollary 4.6.

Corollary 4.6 (Regret Decomposition) Suppose that Assumptions 4.1, 4.2 and 4.3 hold. If en >
13
4 η

2
n, then the regret corresponding to π̂ is bounded by

Regret(π̂)
E
≲ vπ

∗

α − v(ĥπ
∗
, π∗) = Epπ∗

in

[
h∗α(A,X)− ĥπ

∗
(A,X)

]
. (4.4)

Proof See §G.4 for a detailed proof.

4.1 LOCAL EXPANSION WITHIN THE SOLUTION SET

The upper bound in Corollary 4.6 is linear in ĥπ
∗

while T is a nonlinear operator on H. Bridging
||T ĥπ∗ ||2 to the regret of π̂ is a nontrivial task. We demonstrate that employing a local expansion of
T ĥπ∗

around h∗α emerges as a suitable method. A necessary step to perform the local expansion is
to ensure that our estimator is consistent to h∗α.
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Assumption 4.7 (Regularity of Conditional Density) We assume that the conditional density of Y
given (A,X,Z), pY |A,X,Z=(a,x,z)(y) is continuous in (y, a, x, z) and supy pY |A,X,Z(y) < K for
some K > 0 for almost all (A,X,Z).

Assumption 4.7 imposes some mild assumptions on the conditional density of Y given (A,X,Z),
which is used to ensure that T is a continuous operator with respect to || · ||∞. The assumption is
standard in NPQIV (Chen & Pouzo, 2012). We now give a consistent result for any h ∈ S(en).

Theorem 4.8 (Consistency of the Estimator of the Solution Set Algorithm) Suppose that As-
sumptions 4.1, 4.2, 4.3 and 4.7 hold. If en = O(η2n, ) then on the event E , for any h ∈ S(en),
∥h− h∗α∥∞ = op (1) and hence ∥h− h∗α∥2 = op (1) .

Proof See §G.2 for a detailed proof.

Theorem 4.8 shows any h in S(en) is a consistent estimator of h∗α. With consistency, one remaining
step is required before advancing with local expansion: establishing the correct definition of the
derivative of T hwith respect to h. Following Ai & Chen (2012), we introduce the notion of pathwise
derivative of T h, dT h∗

α

dh , and its associated weak norm:

||h− h∗α|| :=

√√√√E

[(
dT h∗α
dh

[h− h∗α]

)2
]
. (4.5)

The formal definition of the pathwise derivative can be found in Lemma H.1. Let Hϵ :=
{h ∈ H : ||h− h∗α||2 ≤ ϵ} ∩ S(en) be the restricted space of S(en) around the neighborhood of
h∗α, where ϵ is a sufficiently small positive number such that P(E ∩

{
ĥπ

∗ ∈ Hϵ

}
) ≥ 1− 3ξ. Such ϵ

is guaranteed to exist by Condition 4.4 and Theorem 4.8.

Assumption 4.9 (Local Curvature for the Estimator of the Solution Set Algorithm) If we set
en > 13

4 η
2
n, then there exists a sufficiently small positive number ϵ and a finite constant c0 > 0

such that for any h ∈ Hϵ, ||h− h∗α|| ≤ c0 ∥T h∥2.

Assumption 4.9 is where we do the local expansion. The constant c0 controls the approximation
error of local expansion.

4.2 REGRET OF π̂

Assumption 4.9 allows us to do local expansion and link ||h− h∗α|| to ∥T h∥2 . Combining this with
the regret decomposition yields the rate of the regret for π̂.

Assumption 4.10 (Change of Measure) For the marginal distribution of context p̃ in the interven-
tional process and the optimal interventional policy π∗, suppose there exists a function b : X ×Z →
R such that E

[
b2(X,Z)

]
<∞ and

E
[
b(X,Z)pY |A,X,Z(h

∗
α(A,X)) |A = a,X = x

]
=
p̃(x)π∗(a |x)
p(x, a)

. (4.6)

Assumption 4.10 can be interpreted as a condition that requires the offline data in ODCP to cover
the distribution induced by the oracle policy π∗.

Theorem 4.11 (Rate of Convergence of the Regret of the Solution Set Algorithm) Suppose that
structural model Assumption A.1 holds. Suppose that Assumptions 4.1, 4.2, and 4.3 for function
classes H and Θ hold. Suppose also that the Assumptions 4.9 and 4.10 hold. If the threshold en
for the solution set is set to en > 13

4 η
2
n, then the regret corresponding to π̂ is bounded on event

E ∩
{
ĥπ

∗ ∈ Hϵ

}
by

Regret(π̂)≲c0 ∥b∥2 ·
(
O (

√
en) +O (ηn)

)
.

Proof See §G.5 for a detailed proof.
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This theorem shows that the regret is bounded by the product of the expansion error c0, the ℓ2 norm
of the change-of-measure function b and O

(√
en
)
+O (ηn) . If we set en = O(η2n), Theorem 4.11

gives a rate of O(ηn). In Appendix E, we show that ηn = Õ(n−1/2) when H and Θ are linear
spaces, which corresponds to a “fast statistical rate” (Uehara et al., 2021; Dikkala et al., 2020; Li
et al., 2022). Notably, this rate is identical to that in settings where the average reward, rather than the
average quantile, is maximized (Chen et al., 2023). This indicates that there is no loss of efficiency
when extending the analysis to the nonlinear case. In Theorem K.9, we show that when the negative
controls are observed, the regret of the solution set algorithm shares a same order of Õ(n−1/2)

4.3 THEORETICAL ANALYSIS FOR THE REGULARIZED ALGORITHM

For the regularized version of the algorithm, we apply a similar approach to ĥπR and π̂R. We prove
that ĥπR is consistent to h∗α. Consequently, we perform a local expansion of ĥπ

∗

R around h∗α, allowing
the regret to be linked to T ĥπ∗

R . The informal versions of the theorems of consistency and regret rate
are presented below, with the detailed analysis provided in §C.

Theorem 4.12 (Informal Version of the Consistency of the Estimator of the Regularized Algorithm)
Under certain regularity conditions, for any ϵλn

> 0, if we set λn ≥ η
−(1+ϵλn )
n , then on the event

E , for any π,
∥∥∥ĥπR − h∗α

∥∥∥
∞

= op (1) and hence
∥∥∥ĥπR − h∗α

∥∥∥
2
= op (1) .

Proof See §C.3 for the complete statement and §G.3 for a detailed proof.

Theorem 4.12 states that on the event E , the estimated structural quantile function ĥπR is consistent
to the ground-truth h∗α. Note the regularization parameter λn in Theorem C.3 only depends on ηn,
which is the rate of convergence of the tail bounds of the chosen function classes.

Theorem 4.13 (Informal Version of the Convergence of Regret of the Regularized Algorithm)
Under certain regularity conditions, for any 0 < ϵλn < 1, if the regularized parameter λn is set to
λn = η

−(1+ϵλn )
n . Then with high probability, the regret of π̂R is bounded by

Regret(π̂R)≲O(η
1−ϵλn
n ).

Proof See §C.4 for the complete statement and §G.6 for a detailed proof.

Theorem 4.13 implies that if we set λn = η
−(1+ϵλn )
n , the regret rate of π̂R would be of O(η

1−ϵλn
n ).

Recall by Theorem 4.11, Regret(π̂) has a rate of O(ηn). Thus the rate of π̂R is only slower than that
of π̂ by an infinitesimal amount ϵλn

. The quantity ϵλn
appears in the definition of λn and is crucial

for the consistency result in Theorem C.3. Intuitively, when ϵλn
is small, the rate of convergence

of ĥπ
∗

R to h∗α is slow. Consequently, the local expansion error c0 in Assumption 4.9 could be large,
which in terms leads to a slower regret rate. Essentially, ϵλn

can be viewed as the trade-off when con-
verting an optimization problem with data-dependent constraints into a nonconstrained optimization
problem. We further observe that when selecting the function spaces H and Θ as the linear func-
tion classes, our achieved rate of Õ(n−1/2(1−ϵλn )) surpasses the Õ(n−1/3) rate of the regularized
version reported in Xie et al. (2021), and closely matches the Õ(n−1/2) rate in Rashidinejad et al.
(2022). Note that Rashidinejad et al. (2022) requires the knowledge of the propensity score, which
is a strong assumption and is not required by our method. In addition, we focus on estimating the
nonlinear mapping of the distribution function, in contrast to the linear mapping in their work. In
Theorem K.12, we show that when the negative controls are observed, the regret of the regularized
policy shares a same order of Õ(n−1/2(1−ϵλn )).

Other Applications Although we present the analysis of a general structural quantile model, our
algorithm remains applicable as long as the problem can be reformulated into solving conditional
moment restrictions. When it is impossible to establish the conditional moment restrictions, we can
still apply our methodology in some cases. We provide several such examples in §D.
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5 EXPERIMENT

In this section, we evaluate the performance of the regularized version of the algorithm through sim-
ulation experiments. We consider the case where instrumental variables are observed in a synthetic
ODCP. To investigate the algorithm’s robustness, we consider offline datasets that contain p% of
action distributed as random noise, independent of (X,Z,U), and affecting only Y. We set p to be
20, 50 and 70. We take this approach to deliberately contaminate the offline dataset, enabling us to
evaluate the robustness of our algorithm. One of the key strengths of pessimism Jin et al. (2021) is
its ability to handle suboptimal actions that could mislead the learned policy due to undercoverage
in the offline dataset. Through the simulation experiment, we aim to demonstrate this advantage.
For implementation, we let both H and Θ be some linear function classes. Given a fix h ∈ H and
π, the optimization procedure over Θ can be carried out by deriving the closed-form solution of a
standard nonparametric regression problem. We then optimize over H by substituting the closed-
form solution over Θ and performing the gradient descent. Finally, we update the optimal policy
π̂R by solving a linear programming problem. The complete details regarding the data generating
process for the synthetic dataset and the implementation of the algorithm can be found in §I. Figure
2 characterizes the regret plotted against the sample size n, illustrating the empirical convergence
rate of the algorithms. We can see that as n increases, the values and variability of the regrets for
the pessimistic algorithm decrease rapidly. In addition, the pessimistic algorithm is able to achieve
low regrets for large sample sizes even if 70% of the dataset is contaminated.

Figure 2: The line plots of the regret over the sample size in {50, 100, 200, 400, 800, 1600, 3200,
6400}. Each point is the average regret of 20 trials. The boundary of the shaded area corresponds
to the values of average regrets plus or minus the standard deviation. The noise proportions refer to
the proportion of sample actions that are random noise.

6 DISCUSSION

In this work, we propose a policy learning algorithm where the goal is to find a policy whose reward
distribution has the largest α-th quantile for some α ∈ (0, 1). To our best knowledge, this is the first
sample-efficient policy learning algorithm for estimating the quantile-optimal policy under unmea-
sured confounding. Our work takes the IVs and NCs as examples of the side observations to tackle
the confounding bias. We demonstrate that the proposed algorithm is equally effective when other
side observations with different underlying causal structures are observed in the ODCP, as long as
the conditional moment restrictions can be established.
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A CAUSAL IDENTIFICATION FOR INSTRUMENTAL VARIABLES

We describe our approach to tackling the problem of confounding bias when we observe IV as the
side observation from the ODCP. We introduce the nonparametric quantile IV model (NPQIV) in
the ODCP and the conditional moment restrictions it follows.

A standard nonparametric instrumental variables model requires the instrumental variables Z to
satisfy three conditions: (i) relevance: the distribution of action is not constant in the instrumental
variables, (ii) exclusion: the instrumental variables affect the reward only through action, and (iii)
unconfoundedness: the instrumental variables is conditionally independent of the error term (Newey
& Powell, 2003; Hartford et al., 2017). The general NPQIV model, however, necessitates a more
stringent set of assumptions (Chen et al., 2014). Following the treatment of Section 6 in Chen &
Pouzo (2012), we employ a simplified version of the NPQIV model incorporating the additive error
assumption and conditional moment restriction:

Assumption A.1 (Model Assumption for Quantile IV) We assume that the following conditions
hold for the IV model in the ODCP:

Y = h∗α(A,X) + ϵ and P(ϵ ≤ 0 |X,Z) = α.

By Chen et al. (2014), with some regularity conditions, Assumption A.1 holds by the underlying
causal structure of the ODCP in the IV case, as depicted in Figure 1. In contrast to a standard regres-
sion model where the mean of the error term is assumed to be 0, we define ϵ as the structural error.
This error term adheres to a distinct conditional distribution assumption and is responsible for the
confounding effect induced by the unmeasured confounders U . Consequently, ϵ is not independent
of (A,X) and the condition P(ϵ ≤ 0 |X,A) = α does not hold. This subtlety renders the conven-
tional quantile regression of Y on A and X erroneous. Fortunately, the existence of the IV allows
us to write Assumption A.1 as

E [1{Y ≤ h∗α} |X,Z] = α.

If we write 1{Y ≤ h∗α(A,X)} − α as W (D;h∗α) where D = (Y,X,A), we would then establish
the relationship: E [W (D;h∗α) |X,Z] = 0. If we further impose the condition of the uniqueness
of the h∗α that satisfies this relationship, we can obtain an estimator of h∗α by solving the following
conditional moment equation:

E [W (D;h) |X,Z] = 0 (A.1)

with respect to h.

B MINIMAX ESTIMATION AND PESSIMISTIC PRINCIPLE FOR THE IVS.

We first define a conditional residual mean squared error (RMSE) on equation A.1 with respect to
h :

∥T h∥22 := E
[
(E [W (D;h) |X,Z])2

]
, (B.1)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

where T is the nonlinear operator defined as

T h(·) := E [W (D;h) | (X,Z) = ·] .

Note that for any function h we have

∥T h∥22 ≥ 0, and ∥T h∥22 = 0 if and only if E [W (D;h) |X,Z] = 0.

Therefore, we can construct an estimator h ∈ H of h∗α by minimizing equation B.1 in a suitable
hypothesis function space H. However, Equation (B.1) is a squared of a conditional expectation.
Estimating it using the squared empirical expectation introduces variance terms, leading to bias. To
address this, we first utilize the Fenchel duality of the function x2/2 and reformulate 1

2 ∥T h∥
2
2 as

1

2
∥T h∥22 = E

[
sup
θ

T h(X,Z)ζ − 1

2
θ2
]
.

As the supremum of the dual form is achieved by ζ = T h, we have

1

2
∥T h∥22 = E

[
sup
θ∈Θ

T h(X,Z)θ(X,Z)− 1

2
||θ||22

]
= sup

θ∈Θ

{
E [W (D;h)θ(X,Z)]− 1

2
||θ||22

}
. (B.2)

The last equality holds by the interchangeability principle (Dai et al., 2017). Therefore, we replace
the problem of minimizing B.1 by minimizing B.2. Let Ln(h) denote the empirical version of
equation B.2, i.e.,

Ln(h) := sup
θ∈Θ

{
En [W (D;h)θ(X,Z)]− 1

2
||θ||2n,2

}
= sup

θ∈Θ

{
1

n

n∑
i=1

[W (Di;h)θ(Xi, Zi)]−
1

2n

n∑
i=1

θ2(Xi, Zi)

}
, (B.3)

where we introduce a real-valued test function class Θ on X × Z such that T h can be well approx-
imated by some function in Θ. As Ln(h) can now be computed from the offline data, we can then
estimate h∗α by minimizing Ln(h) with respect to h.

The Pessimistic Principle. A major challenge of offline decision making is to deal with the dis-
tribution shift between the ODCP that generates the observed action and the oracle policy. To see
this, given h and π, we denote v(h, π) = Epπ

in
[h(A,X)] . Suppose we have already obtained an es-

timator ĥ, We then greedily maximize v(ĥ, π), returning π̃ = arg supπ v(ĥ, π). We can decompose
the regret equation 2.2 of π̃ as:

Regret(π̃) = vπ
∗

α − vπ̃α

= vπ
∗

α − v(ĥ, π∗)︸ ︷︷ ︸
(i)

+ v(ĥ, π∗)− v(ĥ, π̃)︸ ︷︷ ︸
(ii)

+ v(ĥ, π̃)− vπ̃α︸ ︷︷ ︸
(iii)

, (B.4)

As π∗ in tern (i) is the oracle policy, it does not depend on our chosen estimator ĥ. We will show
that this term can be controlled by imposing a mild condition on the distribution shift of the context
between ODCP and the interventional process in Section 4. Term (ii) is bounded by zero by the
optimality of π̃. Term (iii) presents a unique subtlety: π̃ and ĥ are both derived from offline data,
creating spurious correlation. For example, when the distribution that generates the action is nearly
deterministic, the action space is underexplored. The sub-optimal context-action pairs may mislead
the learned policy π̃ by making the variance of ĥ high, due to insufficient sample size (Jin et al.,
2021). To tackle this, we learn a pessimistic policy by doing uncertainty quantification on Ln(h).
Specifically, we first construct a solution set S(en) for h based on Ln(h) as:

S(en) :=
{
h ∈ H : Ln(h) ≤ inf

h∈H
Ln(h) + en

}
,
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where en is a small positive threshold we will determine later. We will show in Theorem 4.5 (i)
that, with high probability, h∗α lies in S(en) by choosing en properly. Then we select the policy that
optimizes the pessimistic average reward function:

π̂ := arg sup
π

inf
h∈S(en)

v(h, π).

In this way, (iii) can be upper bounded by zero due to our definition of π̂ if we choose ĥ to be
arg infh∈S(en) v(h, π̂).

The Solution Set (SS) Algorithm. Here’s a brief overview of our steps so far: Firstly, We have
reframed the causal identification problem as a task of solving the conditional moment restriction,
as depicted in Equation equation A.1. Secondly, inspired by the moment equation equation A.1,
we devised a loss function equation B.2 that can be computed from the offline data. Thirdly, we
construct a solution set equation 3.3 based on equation B.3. Finally, we obtain our learned policy π̂
from the solution set equation 3.3. We summarize the algorithm in Algorithm 1.

Algorithm 1 Quantile Effect Policy Learning
Input: Offline dataset {ai, xi, zi, yi}ni=1 from ODCP, hypothesis space H, test function space Θ and threshold

en.
(i) Construct solution set S(en) as the level set of H with respect to metric Ln(·) and threshold en.
(ii) π̂ = arg supπ infh∈S(en) v(h, π).

Output: π̂.

C THEORETICAL ANALYSIS OF THE REGULARIZED ALGORITHM

In this section, we provide a rigorous treatment on the regret analysis of the policy learned by the
regularized algorithm when IVs are observed. Analogous to Corollary 4.6, we state an upper bound
of Regret(π̂R).

Corollary C.1 (Regret Decomposition for the Regularized Algorithm) The regret correspond-
ing to π̂R is bounded by

Regret(π̂R) ≤ Epπ∗
in

[
h∗α(A,X)− ĥπ

∗

R (A,X)
]
+ λnEn(h∗α). (C.1)

Proof See the proof of Theorem C.4 for a detailed proof.

Corollary C.1 states that the regret of π̂R can be upper bounded by the average difference between
h∗α(A,X) and ĥπ

∗

R (A,X) in the interventional process, plus a regularization term. Recall we define
En(h∗α) as the difference Ln(h

∗
α) − infh∈H Ln(h). The challenging aspect, bounding Ln(h

∗
α), has

already been addressed in Theorem 4.5 (i). To handle infh∈H Ln(h), we introduce the following
assumption:

Assumption C.2 (Sample Criterion) We assume infh∈H Ln(h) = O(η2n).

Assumption C.2 is a prevalent condition in M-estimation theory (Van der Vaart, 2000). The as-
sumption holds when the optimization method is effective. Consequently, the regularization term
mentioned in Corollary C.1 can be effectively bounded. But how about the initial term? The strategy
remains to associate it with the RMSE, ||T ĥπ∗

R ||2, through Taylor expansion. We begin by affirming
the consistency of ĥπR.

Theorem C.3 (Consistency of the Estimator of the Regularized Algorithm) Suppose that As-
sumptions 4.1, 4.2, 4.3, 4.7 and C.2 hold. For any ϵλn

> 0, if we set λn ≥ η
−(1+ϵλn )
n , then on

the event E , for any π,
∥∥∥ĥπR − h∗α

∥∥∥
∞

= op (1) and hence
∥∥∥ĥπR − h∗α

∥∥∥
2
= op (1) .

Proof See §G.3 for a detailed proof.
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Theorem C.4 (Convergence of Regret of the Regularized Algorithm) Suppose that the struc-
tural model Assumption A.1 holds. Suppose that Assumptions 4.1, 4.2, and 4.3 for the function
classes H and Θ hold. Suppose also that the regularity of density Assumption 4.7, the Sample Cri-
terion Assumption C.2, the local curvature Assumption 4.9, and the data coverage Assumption 4.10
hold. Foy any 0 < ϵλn < 1, if the regularized parameter λn is set to λn = η

−(1+ϵλn )
n . then the

regret corresponding to π̂R is bounded on event E ∩
{
ĥπ

∗

R ∈ {h ∈ H : ||h− h∗α||2 ≤ ϵ}
}

by

Regret(π̂R)≲O(η
1−ϵλn
n ).

Proof See §G.6 for a detailed proof.

D OTHER APPLICATIONS

In this section, we show that our algorithm remains applicable as long as the problem can be refor-
mulated into solving a conditional moment restriction. For instrumental variables, the conditional
moment restriction E [W (D;h) |X,Z] = 0, can be replaced by solving E

[
W̃ (D;h) |X,Z

]
= 0,

where h is the parameter of interest, related to a functional W̃ that is specified by the problem. In
the case of negative controls, we can solve equations equation J.6 and equation J.7 after substitut-
ing W̃ (D;h) for W (D;h). In particular, our algorithm is effective with more restricted forms of
quantile models.

Example D.1 (Single Index Quantile Model (Wu et al., 2010)) The structural quantile function
is restricted to the form h(A,X) = h0(θ

T
0 (X,A)), where h0 and θ0 are unknown. The functional

W̃ (D;h) is then defined as 1{Y ≤ h0(θ
T
0 (X,A))} − α. For this example to fall in our framework,

we simply choose H = H̃ ×RdimX ×RdimA to be the function class that contains the function of the
form: h : X ×A → R defined by h(X,A) = h̃(θT1 X + θT2 A).

Example D.2 (Partially Linear Quantile Model (Chen & Pouzo, 2009a)) The structural quan-
tile function is restricted to the form h(A,X) = h0(A) + θT0 X, where h0 and θ0 are unknown. The
functional W̃ (D;h) is then defined as 1{Y ≤ h0(A)+θ

T
0 X}−α.We then choose H = H̃×RdimX ,

which contains the function of the form: h : X ×A → R defined by h(X,A) = h̃(A) + θTX.

When it is impossible to find a conditional moment restriction, We can still apply our approach in
some cases. In Example D.3, we extend the method to a more general setting than maximizing the
quantile function, demonstrating the flexibility of the proposed algorithm.

Example D.3 (Quantile-Based Risk Measures (Dowd & Blake, 2006)) We consider the spectral
risk measure,

∫ 1

0
w(α)h∗αdα, which is a member of the family of quantile-based risk measures. Here,

w(α) is a known weighting function that makes the spectral risk measure coherent. To estimate the
spectral risk measure, we consider a finite index set I = {α1, . . . , αm} such that αi ∈ (0, 1) for
any i. We then Define

Mϕ(A,X;h) :=

m∑
i=1

ϕ(αi)hαi(A,X). (D.1)

where h = (hα1
, . . . , hαm

), for some known function ϕ. The idea is that we simultaneously estimate
{hαi(A,X)}mi=1 for each αi via the proposed algorithm. Then we approximate −

∫ 1

0
w(α)hαdα by

Mϕ(A,X;h). The choice of ϕ depends on the numerical method we used to approximate the inte-
gral. For example, Newton–Cotes method is one popular choice that has the form of equation D.1.
Given that ϕ(αi) is fixed, we now introduce the policy-learning algorithm that minimizes the spec-
tral risk measure or, equivalently, maximizes the negative spectral risk measure through the use of
instrumental variables. The case for negative controls is similar. For each i ∈ [m], we define

Wi(D;hαi
) := 1{Y ≤ hαi

(A,X)} − αi,

Li,n(hαi
) := sup

θ∈Θ

{
En [Wi(D;hαi

)θ(X,Z)]− 1

2
||θ||2n,2

}
.
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For the solution set version, we further let

Si(en) :=

{
hαi

∈ H : Li,n(hαi
) ≤ inf

hαi
∈H

Li,n(hαi
) + en

}
, and

S(en) := S1(en)× · · · × Sm(en).

The estimated policy is then given by π̂Q = arg supπ infh∈S(en) Epπ
in
[Mϕ(A,X;h)] . For the reg-

ularized version, we define En(h) :=
∑m

i=1 Li,n(hαi
) −

∑m
i=1 infhαi

∈H Li,n(hαi
). The estimated

policy is given by π̂Q
R = arg supπ infh∈H{Epπ

in
[Mϕ(A,X;h)]+λnEn(h)}. We now present a result

that characterizes the convergence rates of regret for the algorithms applied in Example D.3.

Corollary D.4 (Convergence of the Regret for Quantile-based Risk Measures). Suppose
maxi∈[m] ϕ(αi) =M.

(i) Suppose that the assumptions in Theorem 4.11 hold. Specifically, the identifiability Assump-
tion 4.1 and the regularity Assumption 4.3 hold for each h∗αi

. The local curvature Assump-
tion 4.9 holds uniformly for all h∗αi

for some constant c0. In addition, there exists a change
of measure function for each αi in Assumption 4.10. Then Regret(π̂Q)≲O(Mm · ηn) with
probability 1− 3mξ.

(ii) Suppose that the assumptions in Theorem C.4 hold. Specifically, the identifiability Assump-
tion 4.1 and the regularity Assumption 4.3 hold for each h∗αi

. The sample criterion assump-
tion C.2 holds for each Li,n(hαi). The local curvature Assumption 4.9 holds uniformly for
all h∗αi

for some constant c0. In addition, there exists a change of measure function for each
αi in Assumption 4.10. Then Regret(π̂Q

R)≲O(Mm · η1−ϵλn
n ) with probability 1− 3mξ.

Proof See §G.7 for a detailed proof.

The results presented in Corollary D.4 align with our intuition: selecting a smaller value for m
improves the performance on regret. However, given that m dictates the precision of using Equation
(D.1) to estimate the risk measure

∫ 1

0
w(α)h∗αdα, it essentially represents a trade-off between these

two aspects.

E CONCENTRATION BOUND

Throughout this section, we let ϕ : X×A → RHn and ψ : X×Z → Rθ(n) be two feature maps. Hn

and θ(n) represent the dimensions of the embedding spaces, where we assume exponential decay,
i.e., Hn and θ(n) are both O(log n). We then define two linear spaces, H and Θ, as following:

H := {X ×A → β⊤
1 ϕ(·) : β1 ∈ RHn , ∥β1∥2 ≤ C1, ∥ϕ∥2,∞ ≤ 1}, (E.1)

Θ := {X × Z → β⊤
2 ψ(·) : β2 ∈ Rθ(n), ∥β2∥2 ≤ C2, ∥ψ∥2,∞ ≤ 1}. (E.2)

The goal of this section is to verify that Condition 4.4 holds with this choice of H and Θ with
ηn = Õ(n−1/2). Recall that the event E in Condition 4.4 is an intersection of two events of the
uniform concentration bounds of some function classes. The plan is to first show that the event{

sup
w(·)θ(·)∈Q

|En [W (D;h)θ(X,Z)]− E [W (D;h)θ(X,Z)]| ≤ ηn(∥θ∥2 + ηn)
}

holds with high probability in Section E.2. Then we will show that the event

{
∣∣||θ||2n,2 − ||θ||22

∣∣ ≤ 1

2

(
||θ||22 + η2n

)
,∀θ ∈ Θ}

holds with high probability in Section E.3. Finally, we take a union bound of the two events to
complete the verification of Condition 4.4.

E.1 CONCEPTS FROM THE EMPIRICAL PROCESS THEORY

To characterize the concentration bound, we first need to introduce some concepts in the empirical
process theory.
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Bracketing Number. Given two functions f1 and f2 such that ∥f1 − f2∥ ≤ t, An t-bracket
[f1, f2] is a subset of functions of the real-valued function class F on X satisfying for all f ∈
[f1, f2] ,∀x ∈ X , f1(x) ≤ f(x) ≤ f2(x). The bracketing number N[ ](t;F , ∥·∥2) of a function
class F with respect to the norm ∥·∥2 is the smallest number of t-brackets needed to cover F .

Covering Number. The covering number N(t;F , ∥·∥) of a function class F with respect to a
norm ∥·∥ is the smallest number of t-balls in F needed to cover F .

Localized Population Rademacher Complexity. The localized population Rademacher com-
plexity with respect to {Xi}ni=1 and function class F is defined as

Rn(η;F) := E{εi}n
i=1,{Xi}n

i=1

[
sup

f∈F,∥f∥2≤η

1

n

n∑
i=1

εif(Xi)

]
.

where {εi}ni=1 are i.i.d. Rademacher random variables.

Critical Radius. Suppose F is a real-valued function class on X such that ∀f ∈ F , ||f ||∞ ≤ c for
some constant c ≥ 0. The critical radius of F is the largest possible η such that Rn(η;F) ≤ η2/c.

E.2 CONCENTRATION BOUND OF THE FUNCTION CLASS Q USING BRACKETING NUMBER

Recall that we define the function class Q as Q = {W (·;h)× θ(·) : h ∈ H, θ ∈ Θ} . In this subsec-
tion, we show that the first event of Condition 4.4 holds with high probability.

Theorem E.1 (Rate of Tail Bound of the Function Class Q.) If we choose H as (E.1) and Θ as
(E.1), then the event {|En [W (D;h)θ(X,Z)]− E [W (D;h)θ(X,Z)]| ≤ ηn (∥θ∥2 + ηn)} holds
with probability 1− ξ for some ηn = Õ(n−1/2).

Proof We proceed with the help of the following two lemmas.

Lemma E.2 (Bracketing Number of the Function Class Q) For every t small enough, under As-
sumption 4.7, there exists C3 > 0 such that

logN[ ](t;Q, ∥·∥2) ≤ An log(
C3

t
), (E.3)

where An = 4(Hn + θ(n)).

Proof See §F.1 for detailed proof.

Lemma E.3 (Lemma 3.11. in Hu et al. (2020)) Let Q̃ be a class of function uniformly bounded by
one in ∥·∥2 and q0 be a fixed element in Q̃. Let Q̃(t) = {q ∈ Q̃ : ∥q − q0∥2) ≤ t}. Suppose
logN[ ](t; Q̃, ∥·∥2) ≤ An log(

C
t ) Then there exist universal positive constants C4, C5, C6 and C7

such that for any ξ > 0,

P

 sup
q∈Q̃;

∥q−q0∥2>
√

An
n

|(En − E)(q)|√
An

n ∥q − q0∥2 log(C∥q − q0∥−1
2 )

≤ C4

An
log(C5/ξ)

 ≥ 1− ξ/2. (E.4)

Moreover, for q ∈ Q̃(
√

An

n ), we have

P

 sup
q∈Q̃(

√
An
n )

|(En − E)(q)| ≤ C6 log(C7/ξ)

An log
2(Cn/An)

An

n
log(Cn/An)

 ≥ 1− ξ/2. (E.5)

This lemma is a simple variant of Lemma 5.13 in van de Geer (2009).
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By lemma E.2, we can substitute q0 as the zero function and Q̃ = Q/C1 in Lemma E.3. Then the
event in (E.4) concerns the supremum over q ∈ Q and ∥q∥2 ≥ C1

√
An/n. Since when ∥q∥2 ≥

C1

√
An/n, log(

C3C1

∥q∥2
) ≤ log(C3

√
n
An

), (E.4) becomes:

P

 sup
q∈Q;

∥q∥2>C1

√
An
n

|(En − E)(q)|√
An

n ∥q∥2 log(C3

√
n
An

)
≤ C4

An
log(C5/ξ)

 ≥ 1− ξ/2. (E.6)

Moreover, the restriction q ∈ Q̃(
√

An

n ) of the event in (E.5)

is replaced with q ∈ Q(C1

√
An

n ). We now denote ηn =

max{
√

An

n log(C3

√
n
An

) C4

An
log(C5/ξ), [

C1An

n
C6 log(C7/ξ)

An log2(C3n/C1An)
log(C3n/C1An)]

1/2}. Then

combine (E.5) and (E.6) and take the union bond, we conclude that

P

(
sup

w(·),θ(·)∈Q
|En [W (D;h)θ(X,Z)]− E [W (D;h)θ(X,Z)]| ≤ ηn (∥θ∥2 + ηn)

)

≥ P

 sup
w(·),θ(·)∈Q

(
C1

√
An
n

) |En [W (D;h)θ(X,Z)]− E [W (D;h)θ(X,Z)]| ≤ η2n,

sup
∥w(·)θ(·)∥2≥C1

√
An
n

|En [W (D;h)θ(X,Z)]− E [W (D;h)θ(X,Z)]| ≤ ηn ∥θ∥2


≥ 1− ξ.

We complete the proof by noticing that ηn = Õ(n−1/2) by choice.

E.3 CONCENTRATION BOUND USING CRITICAL RADIUS

We now demonstrate that there exists ηn = Õ(n−1/2) such that the event {
∣∣||θ||2n,2 − ||θ||22

∣∣ ≤
1
2

(
||θ||22 + η2n

)
,∀θ ∈ Θ} holds with high probability when Θ is chosen to be the linear space E.2.

Subsequently, we can then take the union bound to verify Condition 4.4.

Lemma E.4 For any ξ > 0, there exists ηn = Õ(n−1/2) such that the event {
∣∣||θ||2n,2 − ||θ||22

∣∣ ≤
1
2

(
||θ||22 + η2n

)
,∀θ ∈ Θ} holds with probability 1−ξ when Θ is chosen to be the linear space (E.2).

Proof We proceed with the help of two lemmas:

Lemma E.5 (Lemma F.4 in Chen et al. (2023)) The covering numbers N(t;H, ∥·∥∞) and

N(t; Θ, ∥·∥∞) are upper bounded by
(
1 + 2C1

t

)Hn and
(
1 + 2C2

t

)θ(n)
, respectively.

Lemma E.6 (Theorem 14.1 in Wainwright (2019)) Let tn be the critical radius of Θ. There exists
universal positive constants k0 and k1 such that for any ηn ≥ tn + k0

√
log(k1/ξ)/n, we have

|∥θ∥2n − ∥θ∥22| ≤
1

2
∥θ∥22 +

1

2
η2n, ∀θ ∈ Θ

with probability at least 1− ξ.

By Lemma E.5, we can substitute Θ for F in F.3. Hence the critical radius of Θ is bounded by
O(
√

(θ(n) log n)/n) = Õ(n−1/2). We then use Lemma E.6 to complete the proof.
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Theorem E.7 (Main Theorem of Concentration Bound) Condition 4.4 holds when choosing H and
Θ as in (E.1) and (E.2) with some ηn = Õ(n−1/2).

Proof By Theorem E.1, we have

P (|En [W (D;h)θ(X,Z)]− E [W (D;h)θ(X,Z)]| ≤ ηn (∥θ∥2 + ηn,∀h ∈ H,∀θ ∈ Θ)) ≥ 1− ξ.

Combine with Lemma E.4 and take the union bound, and we complete the proof.

F SUPPORTING LEMMAS OF §E

In what follows, we introduce and provide proofs for the supporting lemmas concerning the brack-
eting and covering numbers of certain function classes of interest, as discussed in Section E. These
lemmas play a crucial role in verifying Condition 4.4.

F.1 PROOF OF LEMMA E.2

Proof We prove this Lemma with the help of the two Lemmas below.

Lemma F.1 The bracketing numbers N[ ](t; Θ, ∥·∥2) is upper bounded by
(
1 + 4C1

t

)θ(n)
.

Proof Note that H is indexed by the set β̃ = {β2 ∈ Rθ(n) : ∥β2∥2 ≤ C2}. Let F (x, z) ≡ 1. For
any βT

2 ψ(·), β̃T
2 ψ(·) ∈ Θ, i.e., β2, β̃2 ∈ β̃, we have

|βT
2 ψ(x, z)− β̃T

2 ψ(x, z)| ≤
∥∥∥β2 − β̃2

∥∥∥
2
∥ψ∥2,∞ F (x, z) ≤

∥∥∥β2 − β̃2

∥∥∥
2

almost surely in (X,Z). So by Theorem 2.7.11 in van der vaart & Wellner (2013),

N[ ](t; Θ, ∥·∥2) ≤ N(
t

2
; β̃, ∥·∥2) ≤ N(

t

2
;Θ, ∥·∥2) ≤ N(

t

2
;Θ, ∥·∥∞) ≤

(
1 +

4C2

t

)θ(n)

where the last step leverages Lemma E.5.

Lemma F.2 (Theorem 3 & Example 5.1 in Chen et al. (2003)) Let the indicator function class be

W := {W (·;h) : h ∈ H} .

Suppose Assumption 4.7 holds. Then the bracketing number N[ ](t;W, ∥·∥2) is upper bounded by(
1 + 8C1K

2

t2

)Hn

for t small enough, where K > 0 uniformly upper bounds supy pY |A,X,Z(y) for

almost all (A,X,Z).

Proof In the proof of Theorem 3 in Chen et al. (2003), for t small enough, with Assumption 4.7:

N[ ](t;F2, ∥·∥2) ≤ N((
t

2K
)

1
s ; Θ′, ∥·∥∞)N((

t

2K
)

1
s ;H, ∥·∥∞)

In our case of indicator functions, as also indicated in Example 5.1 in Chen et al. (2003), choose
s = 1

2 and F2 = W . Let Θ′ = {α} and combine with Lemma E.5, we have

N[ ](t,W, ∥·∥2) ≤ 1 ·N((
t

2K
)2;H, ∥·∥∞) ≤

(
1 +

8C1K
2

t2

)Hn

.

Therefore, we complete the proof.
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We prove the upper bound of the function class Q by combining the upper bounds of the function
classes Θ and W . Consider t ∈ (0, 1) small enough,

logN[ ](t,Q, ∥·∥2) ≤ logN[ ](
t

2
;W, ∥·∥2) +N[ ](

t

2
;Θ, ∥·∥2)

≤ Hn log(1 +
8C1K

2

t2
) + θ(n) log(1 +

4C2

t
)

≤ (Hn + θ(n)) log

(
(1 +

8C1K
2

t2
)(1 +

4C2

t2
)

)
≤ 2(Hn + θ(n)) log

(
1 + max{8C1K

2, 4C2}
t2

)
,

where the second inequality holds by Lemma F.1 and Lemma F.2. We then let An = 4(Hn + θ(n)),
C3 =

√
1 + max{8C1K2, 4C2} to complete the proof.

Lemma F.3 (Lemma F.7 in Chen et al. (2023)) If the covering number of C2-uniformly bounded
function class F satisfies logN(t;F , ∥·∥∞) ≤ A log (1 + 2C2/t) for some constant A, the critical
radius of F is upper bounded O(

√
(A log n)/n).

G PROOF OF THE MAIN RESULTS OF SECTION 4

In this section, we prove the main results in Section 4. The goal is to establish the convergence rates
of the regret for the solution set algorithm and the regularized algorithm for the IV case.

G.1 PROOF OF THEOREM 4.5

Theorem 4.5 closely parallels Theorem 6.4 in Chen et al. (2023), with adaptations made to suit
our specific context. Despite the resemblance of the theorem statement and proof techniques, we
nevertheless include a detailed proof to accommodate the shift from a linear operator to a nonlinear
operator, which results in several changes in how the final results are presented. In particular, with
Assumptions 4.1 and 4.2, we prove that h∗α ∈ S(en) by deriving an upper bound for Ln(h

∗
α). We

then derive the upper bound for ∥T h∥2 for any h ∈ S(en).

Theorem 4.5 (i). In this part, we first compute an upper bound of Ln(h
∗
α). We then deduce that

h∗α ∈ S(en) if en > 13
4 η

2
n.

Proof It holds on E that

Ln(h
∗
α) = sup

θ∈Θ
En [W (D;h∗α)θ(Z,X)]− 1

2
||θ||2n,2

≤ sup
θ∈Θ

{
|En [W (D;h∗α)θ(Z,X)]− E [W (D;h∗α)θ(Z,X)]|

+
1

2

∣∣||θ||2n,2 − ||θ||22
∣∣+ E [W (D;h∗α)θ(Z,X)]− 1

2
||θ||22

}
E
≲ sup

θ∈Θ

{
ηn (||θ||n,2 + ηn) +

1

4

(
||θ||22 + η2n

)
+ E [W (D;h∗α)θ(Z,X)]− 1

2
||θ||22

}
,

where the first inequality holds by triangle inequality and the second inequality holds by the defini-
tion of E . Let Lλ(·) = supθ∈Θ E [W (D;h∗α)θ(Z,X)]− λ||θ||22. Then Ln(h

∗
α) satisfies

Ln(h
∗
α) ≤ L1/8(h∗α)− inf

θ∈Θ

(
1

8
||θ||22 − ηn||θ||2

)
+

5

4
η2n, (G.1)
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We further let θλ(·;h) = arg supθ∈Θ Lλ(h). To relate L1/8 to L1/2, we observe that for Lλ1(h)
and Lλ2(h) where 0 < λ1 ≤ λ2,

Lλ2(h) = sup
θ∈Θ

E [W (D;h)θ(Z,X)]− λ2||θ||22

=
λ2
λ1

· sup
θ∈Θ

{
E
[
λ1
λ2
W (D;h)θ(Z,X)

]
− λ1||θ||22

}
≥ λ2
λ1

·

(
E
[
λ1
λ2
W (D;h) · λ1

λ2
θλ1(Z,X;h)

]
− λ1

∥∥∥∥λ1λ2 θλ1(Z,X;h)

∥∥∥∥2
2

)

≥ λ1
λ2

Lλ1(h), (G.2)

where the first inequality holds by letting θ = λ1

λ2
θλ1 . Note λ1

λ2
θλ1 ∈ Θ as λ1 ≤ λ2 and Θ is

star-shaped. Now substituting λ1 = 1
8 and λ2 = 1

2 and plugging equation G.2 into equation G.1:

Ln(h
∗
α)

E
≲ 4L1/2(h∗α)− inf

θ∈Θ

(
1

8
||θ||22 − ηn||θ||2

)
+

5

4
η2n

≤ 4L1/2(h∗α) +
13

4
η2n, (G.3)

where the second inequality holds by computing the minimum value of the quadratic equation of
||θ||22. Also note that

L1/2(h∗α) = sup
θ∈Θ

{
E [W (D;h∗α)θ(Z)]−

1

2
||θ||22

}
≤ sup

θ

{
E [W (D;h∗α)θ(Z)]−

1

2
||θ||22

}
=

1

2
∥T h∗α∥

2
2 ,

where the first inequality holds by relaxing the conditions of the event and the second inequality
follows by Fenchel duality. Hence G.3 gives

Ln(h
∗
α)

E
≲ 2 ∥T h∗α∥

2
2 +

13

4
η2n

≤ 13

4
η2n, (G.4)

where the third inequality is followed by Assumption 4.1. By the nonnegativity of Ln(·) 1 , it follows
that

Ln(h
∗
α)− inf

h∈H
Ln(h)

E
≲

13

4
η2n.

Therefore, by definition of the solution set in equation 3.3, with en > 13
4 η

2
n, it holds on E that

h∗α ∈ S(en).

Theorem 4.5 (ii). In this part, we derive an upper bound for ∥T h∥22 for any h ∈ S(en).

1See the remark under Assumption 4.2
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Proof We first note it holds for all h ∈ S(en) that

Ln(h) = sup
θ∈Θ

En [W (D;h)θ(Z,X)]− 1

2
||θ||2n,2

≥ sup
θ∈Θ

{
− |En [W (D;h)θ(Z,X)]− E [W (D;h)θ(Z,X)]|

− 1

2

∣∣||θ||2n,2 − ||θ||22
∣∣+ E [W (D;h)θ(Z,X)]− 1

2
∥θ∥22

}
E
≳ sup

θ∈Θ

{
− ηn (∥θ∥2 + ηn)−

1

4

(
||θ||22 + η2n

)
+ E [W (D;h)θ(Z,X)]− 1

2
∥θ∥22

}
. (G.5)

The first inequality holds by the triangle inequality and the second equality holds by the definition
of E . Let Θ+(h) = {θ ∈ Θ : E [W (D;h)θ(X,Z)] > 0}. For any θ+ ∈ Θ+(h), suppose that
E [W (D;h)θ+(X,Z)] = β ∥θ+∥22. By definition of θ+, we have β > 0. Let 0 < κ ≤ 1. Since Θ
is star-shaped, we have κθ+ ∈ Θ. By plugging in κθ+ in equation G.5, we have for any h ∈ S(en)
and θ+ ∈ Θ+(h) that

Ln(h)
E
≳ κ

(
β − 3

4
κ

)∥∥θ+∥∥2
2
− ηnκ

∥∥θ+∥∥
2
− 5

4
η2n. (G.6)

Recall the definition of the solution set S(en). For any h ∈ S(en), it holds that

Ln(h) ≤ inf
h∈H

Ln(h) + en

≤ Ln(h
∗
α) + en

E
≲

13

4
η2n + en, (G.7)

where the second inequality holds by noting that h∗α ∈ H and the last inequality follows from
equation G.4. Combine equation G.6 and equation G.7, we get

κ

(
β − 3

4
κ

)∥∥θ+∥∥2
2
− ηnκ

∥∥θ+∥∥
2
−∆n

E
≲ 0, (G.8)

where we define

∆n =
18

4
η2n + en. (G.9)

Note equation G.8 holds for any 0 < κ ≤ 1. By setting κ = min{1, β}, we have β − 3
4κ > 0. Now

we solve the quadratic inequality in equation G.8, and deduce that on event E , for all h ∈ S(en) and
θ+ ∈ Θ+(h) that

∥∥θ+∥∥
2

E
≲
ηnκ+

√
(ηnκ)

2
+ κ (4β − 3κ)∆n

κ
(
2β − 3

2κ
) . (G.10)

Considering the following two cases.

Case (i) when β ≥ 1. If β ≥ 1, κ = min{β, 1} = 1. On E ,

∥∥θ+∥∥2
2

E
≲

(
ηn +

√
η2n + (4β − 3)∆n(
2β − 3

2

) )2

≤ 4
(
ηn +

√
η2n +∆n

)2
≤ 8

(
2η2k +∆n

)
, (G.11)
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where the first inequality holds by equation G.10, the second inequality holds by noting that β = 1
will maximize the right-hand side. Plugging this result into equation G.8 and rearranging with
κ = 1, we have

E
[
W (D;h)θ+(Z)

]
≤
∥∥θ+∥∥2

2

=
3

4

∥∥θ+∥∥2
2
+

1

4

∥∥θ+∥∥2
2

E
≲

3

4

∥∥θ+∥∥2
2
+ ηn

∥∥θ+∥∥
2
+∆n

≤ 6
(
2η2k +∆n

)
+ ηn

(
4ηn + 3

√
∆n

)
+∆n

≤ 16η2n + 7∆n + 3ηn
√
∆n

≤ 20η2n + 11∆n, (G.12)

where the first inequality holds by noting that κ(β − 3
4κ) =

1
4 and the third inequality holds by the

upper bound of ∥θ+∥2 in equation G.11.

Case (ii) when β < 1. If β < 1, we plug in κ = β. It holds on E that

β
∥∥θ+∥∥

2

E
≲ 2

(
ηn +

√
(ηnκ)

2
+∆n

)
≤ 2

(
2ηn +

√
∆n

)
,

which suggests that

E
[
W (D;h)θ+(X,Z)

]
= β

∥∥θ+∥∥2
2

E
≲ 2

(
2ηn +

√
∆n

)∥∥θ+∥∥
2
. (G.13)

Combination of Case (i) and Case (ii). Combining equation G.12 and equation G.13, we then
have for any h ∈ S(en) and θ+k ∈ Θ+

k (h) that

E
[
W (D;h)θ+(X,Z)

] E
≲ max

{
2
(√

∆n + 2ηn

)
∥θ∥2 , 20η

2
n + 11∆n

}
≤ max

{
Cn ∥θ∥2 , C

2
n

}
,

where Cn = 5ηn + 4
√
∆n. We then consider the case when E [W (D;h)θ(X,Z)] < 0 for θ ∈

Θ\Θ+(h), it follows for any h ∈ S(en), θ ∈ Θ that

E [W (D;h)θ(X,Z)]
E
≲ max

{
Cn ∥θ∥2 , C

2
n

}
. (G.14)

Now let θ∗h(X,Z) = argminθ∈Θ ∥θ − T h∥2. By equation G.14, it then holds for any h ∈ S(en)
that

E [T h(X,Z)θ∗h(X,Z)]
E
≲ max

{
Cn ∥θ∗h∥2 , C

2
n

}
. (G.15)

For the left-hand side of equation G.15, we have

E [T h(X,Z)θ∗h(X,Z)] = E [T h(X,Z) (θ∗h(X,Z)− T h(X,Z) + T h(X,Z))]
≥ ∥T h∥22 − ∥T h∥2 ∥θ

∗
h − T h∥2

= ∥T h∥22 , (G.16)

where the first inequality holds by the Cauchy-Schwartz inequality and the last equality holds by
Assumption 4.2. For the right-hand side of equation G.15, we have,

max
{
Cn ∥θ∗h(X,Z)∥2 , C

2
n

}
≤ Cn (Cn + ∥θ∗h − T h+ T h∥2)
≤ Cn (Cn + ∥T h∥2) , (G.17)

where the last inequality holds by the triangular inequality and Assumption 4.2. Combining equa-
tion G.16 and equation G.17 with equation G.15, for all h ∈ S(en), we have:

∥T h∥22 − C2
n − Cn ∥T h∥2

E
≲ 0,
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which gives that

∥T h∥2
E
≲

1

2

(
Cn +

√
C2

n + 4C2
n

)
≤ O(Cn)

= O(5ηn + 4

√
18

4
η2n + en)

= O (
√
en) +O (ηn) ,

where the third equality holds by definition of Cn and the definition of ∆n in equation G.9.

G.2 PROOF OF THEOREM 4.8

We prove that, on event E , any h ∈ S(en) converges in probability to h∗α with respect to ∥·∥∞ and
hence ∥·∥2 , when en = O(η2n).

Proof We first show that it converges in probability in ∥·∥∞ by using two lemmas that investigate
the property of the loss function Ln. Lemma G.1 below gives a lower bound of the empirical loss
on event E . Lemma G.2 shows that the RMSE ∥T h∥22 is continuous on (H, ∥·∥∞).

Lemma G.1 (Lower Bound of the Empirical Loss) Suppose that Assumptions 4.3 and 4.2 hold.
On the event E , for all h ∈ H, we have

Ln(h) = sup
θ∈Θ

En [W (D;h)θ(X,Z)]− 1

2
||θ||2n,2 ≥ min{ηn

2
∥T h∥2 ∥T h∥

2
2} − O(η2n).

Proof See §H.1 for a detailed proof.

Lemma G.2 (Continuity of the Linear Operator) Suppose the Assumption 4.7 holds. ∥T h∥22 is
continuous on (H, ∥·∥∞).

Proof See §H.3 for a detailed proof.

We are ready to prove consistency. For any ϵ > 0, we have

P [∥h− h∗α∥∞ > ϵ, h ∈ S(en)]

≤ P
[

inf
h∈H,∥h−h∗

α∥∞>ϵ
Ln(h) ≤ O(η2n)

]
≤ P

[
min

{
inf

h∈H,∥h−h∗
α∥∞>ϵ

ηn
2

∥T h∥2 , inf
h∈H,∥h−h∗

α∥∞>ϵ
∥T h∥22

}
≤ O(η2n)

]
,

where the second inequality holds by Lemma G.1, and O(·) means multiplying by a constants.
Denote φϵ := infh∈H,∥h−h∗

α∥∞>ϵ ∥T h∥2 . Assumption 4.1, 4.3 and Lemma G.2 implies that H is
compact and ∥T h∥2 is continuous on (H, ∥·∥∞). Hence φϵ is strictly positive. We then have

P [∥h− h∗α∥∞ > ϵ, h ∈ S(en)] ≤ P
[
min

{ηn
2
φϵ, φ

2
ϵ

}
≤ O(η2n)

]
,

which converges to zero as n goes to infinity. The result follows from the fact that the supremum
norm is stronger than the L2 norm under a finite measure:

P [∥h− h∗α∥2 > ϵ, h ∈ S(en)] ≤ P [∥h− h∗α∥∞ > ϵ, h ∈ S(en)] ,

which converges to one as n goes to infinity.
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G.3 PROOF OF THEOREM C.3

We prove that if we set λn ≥ η
−(1+ϵλn )
n where ϵλn is an arbitrary positive real number, then on the

event E , ĥπR converges in probability to h∗α with respect to ∥·∥∞ and hence ∥·∥2 .
Proof We use a similar argument as in the proof of Theorem 4.8. But we first need quantify an
upper bound of the empirical loss of the regularized version estimator:

Lemma G.3 (Upper Bound of the Empirical Loss of Regularized Version Estimator) Suppose
that Assumption 4.1, Assumption 4.3 and Assumption C.2 hold. If we set λn ≥ η

−(1+ϵλn )
n where

0 < ϵλn
< 1 is arbitrary, then on the event E , En(ĥπR) = O(η

1+ϵλn
n ) and Ln(ĥ

π
R) = O(η

1+ϵλn
n ).

Proof See §H.2 for a detailed proof.

Therefore, for any ϵ > 0, we have

P
[∥∥∥ĥπR − h∗α

∥∥∥
∞
> ϵ
]

≤ P
[

inf
h∈H,∥h−h∗

α∥∞>ϵ
Ln(h) ≤ O(η

1+ϵλn
n )

]
≤ P

[
min

{
inf

h∈H,∥h−h∗
α∥∞>ϵ

ηn
2

∥T h∥2 , inf
h∈H,∥h−h∗

α∥∞>ϵ
∥T h∥22

}
≤ O(η

1+ϵλn
n )

]
,

where the first inequality holds by Lemma G.3, the second inequality holds by Lemma G.1, and
O(·) omits absolute constants. Denote φϵ := infh∈H,∥h−h∗

α∥∞>ϵ ∥T h∥2 . Assumption 4.1, 4.3 and
Lemma G.2 implies that H is compact and ∥T h∥2 is continuous on (H, ∥·∥∞). Hence φϵ is strictly
positive. We then have

P
[∥∥∥ĥπR − h∗α

∥∥∥
∞
> ϵ
]
≤ P

[
min

{ηn
2
φϵ, φ

2
ϵ

}
≤ O(η

1+ϵλn
n )

]
,

which converges to zero as n goes to infinity. The result follows from the fact that the supremum
norm is stronger than the L2 norm under a finite measure:

P
[∥∥∥ĥπR − h∗α

∥∥∥
2
> ϵ
]
≤ P

[∥∥∥ĥπR − h∗α

∥∥∥
∞
> ϵ
]
,

which converges to one as n goes to infinity.

G.4 DECOMPOSITION OF THE REGRET WITH PESSIMISM & PROOF OF COROLLARY 4.6

In this section, we study the regret of the estimated policy π̂ with pessimism. The result in this sec-
tion will be utilized in §G.5 for the proof of the convergence rate of the regret. Recall the definition
of ĥπ and π̂:

ĥπ := arg inf
h∈S(en)

v(h, π),

π̂ := arg sup
π

inf
h∈S(en)

v(h, π) = arg sup
π
v(ĥπ, π).

The regret of policy π̂ is given by

Regret(π̂) = vπ
∗

α − vπ̂α

= vπ
∗

α − v(ĥπ
∗
, π∗)︸ ︷︷ ︸

(i)

+ v(ĥπ
∗
, π∗)− v(ĥπ̂, π̂)︸ ︷︷ ︸

(ii)

+ v(ĥπ̂, π̂)− vπ̂α︸ ︷︷ ︸
(iii)

, (G.18)

Here, (ii) ≤ 0 holds by optimality of π̂ and (iii)
E
≲ 0 holds by definition of ĥπ̂ in equation 4.1 and

the fact that h∗α ∈ S(en) on event E by Theorem 4.5. Therefore, we just need to bound (i). We now
give the upper bound for (i) §G.5.
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G.5 PROOF OF THEOREM 4.11

We prove the convergence rate of the regret of the solution set algorithm for IV. By Corollary 4.6,
we can focus on the estimation error of the average reward function for the optimal interventional
policy π∗, i.e., the term (i) in equation G.18.

Proof By definition of the change of measure function (Assumption 4.10), we have:

vπ
∗

α − v(ĥπ
∗
, π∗) = Epπ∗

in

[
h∗α(A,X)− ĥπ

∗
(A,X)

]
= E

[
(h∗α(A,X)− ĥπ

∗
(A,X))E

[
b(X,Z)pY |A,X,Z(h

∗
α(A,X)) |A,X

]]
.

Then by the Tower property,

vπ
∗

α − v(ĥπ
∗
, π∗) = E

[
E
[
(h∗α(A,X)− ĥπ

∗
(A,X))b(X,Z)pY |A,X,Z(h

∗
α(A,X)) |A,X

]]
= E[pY |A,X,Z(h

∗
α(A,X))(h∗α(A,X)− ĥπ

∗
(A,X))b(X,Z)]

= E
[
E
[
pY |A,X,Z(h

∗
α(A,X))(h∗α(A,X)− ĥπ

∗
(A,X)) |X,Z

]
b(X,Z)

]
≤ ||ĥπ

∗
− h∗α|| · ∥b∥2 ,

where the last inequality holds by the Cauchy-Schwartz inequality. Denote Eϵ := E ∩
{
ĥπ

∗ ∈ Hϵ

}
.

Thus we can bound the regret as

Regret(π̂)
Eϵ

≲ ||ĥπ
∗
− h∗α|| · ∥b∥2

≤ c0

∥∥∥T ĥπ∗
∥∥∥
2
· ∥b∥2

≤ c0 ∥b∥2 · [O (
√
en) +O (ηn)],

where the first inequality holds by the regret decomposition in §G.4, the second inequality holds
by Assumption 4.9, and the last inequality holds by Theorem 4.5. Hence, we complete the proof of
Theorem 4.11.

G.6 PROOF OF THEOREM C.4

In this section, we prove that if the regularized parameter λn is set to λn = η
−(1+ϵλ)
n , then on the

event E the convergence rate of the regret of the regularized algorithm is of order η1−ϵλn
n .

Proof We first decompose the regret corresponding to π̂R as:

Regret(π̂R) = vπ
∗

α − vπ̂R
α

=
[
vπ

∗

α + λnEn(h∗α)
]
−
[
v(ĥπ̂R

R , π̂R) + λnEn(ĥπ̂R

R )
]
+
[
v(ĥπ̂R

R , π̂R) + λnEn(ĥπ̂R

R )
]

− [v(h∗α, π̂R) + λnEn(h∗α)] .

By the optimality of ĥπ̂R, we have

Regret(π̂R) ≤
[
vπ

∗

α + λnEn(h∗α)
]
−
[
v(ĥπ̂R

R , π̂R) + λnEn(ĥπ̂R

R )
]

≤
[
vπ

∗

α + λnEn(h∗α)
]
− sup

π
inf
h∈H

{v(h, π) + λnEn(h)}

≤
[
vπ

∗

α + λnEn(h∗α)
]
−
[
v(ĥπ

∗

R , π∗) + λnEn(ĥπ
∗

R )
]
.

After rearranging the terms, we get

Regret(π̂R) = Epπ∗
in

[
h∗α(A,X)− ĥπ

∗

R (A,X)
]
+ λnEn(h∗α)− λnEn(ĥπ

∗

R )

≤ Epπ∗
in

[
h∗α(A,X)− ĥπ

∗

R (A,X)
]
+ λnEn(h∗α) (G.19)
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Following the same argument as in Section G.5, we conclude that for the first term,

Epπ∗
in

[
h∗α(A,X)− ĥπ

∗

R (A,X)
] ERϵ

≲ c2 ∥b∥2 ·
∥∥∥T ĥπ∗

R

∥∥∥
2
. (G.20)

For the second term, we have by Theorem 4.5 (ii) that

λEn(h∗α) ≤ λLn(h
∗
α) ≤ O(η1−ϵλ

n ). (G.21)

Moreover, using the fact that Regret(π̂R) ≥ 0 and rearranging terms, we have

Epπ∗
in

[
h∗α(A,X)− ĥπ

∗

R (A,X)
]
≥ λnEn(ĥπ

∗

R )− λnEn(h∗α)
ERϵ

≳ λnLn(ĥ
π∗

R )− λnO(η2n)

≥ λn min{ηn
2
∥T ĥπ

∗

R ∥2, ∥T ĥπ
∗

R ∥22} − λnO(η2n) (G.22)

We now show that ∥T ĥπ∗

R ∥2 = O(ηn). When ηn

2 ∥T ĥπ∗

R ∥2 ≥ ∥T ĥπ∗

R ∥22, the result is immediate.
When ηn

2 ∥T ĥπ∗

R ∥2 < ∥T ĥπ∗

R ∥22, combining equation G.20 and equation G.22, we have

c2 ∥b∥2 · ∥T ĥ
π∗

R ∥2
ERϵ

≳ λn · ηn
2
∥T ĥπ

∗

R ∥2 − λnO(η2n).

Solving for ∥T ĥπ∗

R ∥2 and substituting λn = η
−(1+ϵλn )
n yields

∥T ĥπ
∗

R ∥2 = O(ηn).

Substituting this into equation G.20, we know the first term of equation G.19 is upper bounded
by O(ηn). By equation G.21, we know the second term of equation G.19 is upper bounded by
O(η1−ϵλ

n ). By summing up the two terms, we conclude that

Regret(π̂R)
ERϵ

≲ O(η
1−ϵλn
n ).

Therefore, we complete the proof.

G.7 PROOF OF COROLLARY D.4

We present the order of the convergence rate of the regret for minimizing the quantile-based risk
measures. The idea is to aggregate the individual regret of each αi.

Proof Define Ei as the event

Ei :=
{
|En [Wi(D;hαi

)θ(X,Z)]− E [Wi(D;hαi
)θ(X,Z)]| ≤ ηn (∥θ∥2 + ηn) ,∣∣||θ||2n,2 − ||θ||22

∣∣ ≤ 1

2

(
||θ||22 + η2n

)
,∀hαi

∈ H,∀θ ∈ Θ
}
, (G.23)

and then define E ′ =
⋂m

i=1 Ei. So E ′ holds with probability 1-2mξ. We can upper bound the regret
of π̂Q as:

Regret(π̂Q) = Epπ
in

[
m∑
i=1

ϕ(αi)h
∗
αi
(A,X)

]
− Epinπ̂Q

[
m∑
i=1

ϕ(αi)hαi
(A,X)

]
E′

≲ Epπ∗
in

[
m∑
i=1

ϕ(αi)(h
∗
αi
(A,X)− ĥπ

∗

αi
(A,X))

]

≤M

m∑
i=1

Epπ
in

[
h∗αi

(A,X)− ĥπ
∗

αi
(A,X))

]
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For the regularized algorithm, we have a similar upper bound:

Regret(π̂Q
R) ≤ Epπ∗

in

[
m∑
i=1

ϕ(αi)(h
∗
αi
(A,X)− ĥπ

∗

Rαi
(A,X))

]
+ λn(En(h∗)− En(ĥπ

∗

R )

≤M

m∑
i=1

Epπ
in

[
h∗αi

(A,X)− ĥπ
∗

Rαi
(A,X)

]
+ λn(En(h∗)− En(ĥπ

∗

R )

The rest of the proof now follows from applying the proof in Theorem 4.11 and Theorem C.4 to
each i.

H SUPPORTING LEMMAS FOR SECTION 4

In what follows, we present the statement and proofs of the supporting lemmas used in §4.

Lemma H.1 (Directional Derivative) Following Ai & Chen (2012), we introduce the notion of
pathwise derivative of T h in the direction h− h∗α evaluated at h∗α as follows:

dT h∗α
dh

[h− h∗α] :=
dE[W (D; (1− r)h∗α + rh) |X,Z]

dr

∣∣∣ r=0.

We then define a pseudo distance between h and h∗α on S(en) based on the pathwise derivative:

||h− h∗α|| :=

√√√√E

[(
dT h∗α
dh

[h− h∗α]

)2
]
. (H.1)

Suppose H is convex and the regularity density assumption 4.7 hold. For any h ∈ H,
dT h∗α
dh

[h− h∗α] = E[pY |A,X,Z(h
∗
α(A,X)) {h(X,A)− h∗α(A,X)} |X,Z].

Hence ||h− h∗α|| =
√

E[(E[pY |A,X,Z(h∗α(A,X)) {h(X,A)− h∗α(A,X)} |X,Z])2].

Proof Recall thatW (D;h∗α) = 1{Y ≤ h∗α(A,X)}−α. Assumption 4.7 assures that the conditional
density pY |A,X,Z exists almost surely. Then

dT h∗α
dh

[h− h∗α] =
dE[W (D; (1− r)h∗α(A,X) + rh(A,X)) |X,Z]

dr

∣∣∣ r=0

=
dE[1{Y ≤ h∗α(A,X) + r[h(A,X)− h∗α(A,X)]} − α |X,Z]

dr

∣∣∣ r=0

=
dP(Y ≤ h∗α(A,X)) + r(h(A,X)− h∗α(A,X) |X,Z)

dr

∣∣∣ r=0

By Assumption 4.9, we can write the conditional probability as the integral of the conditional density
pY |A,X,Z:

dT h∗α
dh

[h− h∗α] =
d

dr
E[
∫ h∗

α(A,X)+r(h(A,X)−h∗
α(A,X))

−∞
pY |A,X,Z(y)dy |X,Z]

∣∣∣ r=0

= E[pY |A,X,Z(h
∗
α(A,X) + r[h(X,A)− h∗α(A,X)]) {h(X,A)− h∗α(A,X)} |X,Z]

∣∣∣ r=0

= E[pY |A,X,Z(h
∗
α(A,X)) {h(A,X)− h∗α(A,X)} |X,Z]. (H.2)

Hence ||h − h∗α|| =
√
E[(E[pY |A,X,Z(h∗α(A,X)) {h(X,A)− h∗α(A,X)} |X,Z])2] by definition

of the pseudometric.
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H.1 PROOF OF LEMMA G.1

Proof Recall that on the event E , |En [W (D;h)θ(X,Z)]− E [W (D;h)θ(X,Z)]| ≤
ηn (∥θ∥2 + ηn) and

∣∣||θ||2n,2 − ||θ||22
∣∣ ≤ 1

2

(
||θ||22 + η2n

)
. Note we define θ∗h(X,Z) as

argminθ∈Θ ∥θ − T h∥2 . We consider the following two cases:

Case (i) where ||θ∗h||2 ≥ ηn. Let r = ηn/(2||θ∗h||2). As r ∈ [0, 1/2] and Θ is star-shaped, rθ∗h ∈
Θ. Thus

Ln(h) ≥ En [W (D;h)rθ∗h(X,Z)]−
1

2
||rθ∗h||2n,2

On the event E , for the second term on the RHS,

1

2
||rθ∗h||2n,2 ≤ r2

2

[
3

2
||θ∗h||22 + η2n

]
≤
[
η2n/(4||θ∗h||22)

]
· 1
2

[
3

2
||θ∗h||22 + η2n

]
≤ O(η2n),

for the first term regarding the empirical norm of the θ∗h,

En [W (D;h)rθ∗h(X,Z)] ≥ E [W (D;h)rθ∗h(X,Z)]− ηn(||rθ∗h||2 + ηn)

≥ rE [W (D;h)θ∗h(X,Z)]−O(η2n)

= rE [T h(X,Z)θ∗h(X,Z)]−O(η2n).

By adding and subtracting θ∗h(X,Z), we further have

En [W (D;h)rθ∗h(X,Z)] ≥ rE [(T h(X,Z)− θ∗h(X,Z) + θ∗h(X,Z))θ
∗
h(X,Z)]−O(η2n)

≥ ηn
2
||θ∗h||2 −O(η2n)

≥ ηn
2
||T h||2 −O(η2n),

where the second inequality follows by Assumption 4.2. Combining both terms, we have

Ln(h) = sup
θ∈Θ

En [W (D;h)θ(X,Z)]− 1

2
||θ||2n,2 ≥ ηn

2
∥T h∥2 −O(η2n).

Case (ii) where ||θ∗h||2 < ηn. We simply choose r = 1 :

Ln(h) ≥ En [W (D;h)θ∗h(X,Z)]−
1

2
||θ∗h||2n,2

We can upper bound the second term by

1

2
||θ∗h||2n,2 ≤ 3

2
||θ∗h||22 + η2n ≤ O(η2n),

Thus the first term can be lower bounded by

En [W (D;h)θ∗h(X,Z)] ≥ E [W (D;h)θ∗h(X,Z)]− ηn(||θ∗h||2 + ηn)

≥ E [W (D;h)θ∗h(X,Z)]−O(η2n).

By add and subtracting θ∗h(X,Z), we have

= E [(T h(X,Z)− θ∗h(X,Z) + θ∗h(X,Z))θ
∗
h(X,Z)]−O(η2n)

≥ ||θ∗h||22 −O(η2n)

≥ ||T h||22 −O(η2n).

We then complete the proof by combining the above two cases.
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H.2 PROOF OF LEMMA G.3

Proof By definition of ĥπR, we have

v(ĥπR, π) + λnEn(ĥπR) = inf
h∈H

{v(h, π) + λnEn(h)}

≤ v(h∗α, π) + λnEn(h∗α).

The inequality holds as h∗α ∈ H Assumption 4.1. After rearranging the terms and note that by
Theorem 4.5(ii), En(h∗α) ≤ Ln(h

∗
α) ≤ 13

4 η
2
n, we have

En(ĥπR) ≤
1

λn

[
v(h∗α, π)− v(ĥπR, π)

]
+ En(h∗α)

≤ 2Lh

λn
+

13

4
η2n

≤ 2Lhη
1+ϵλn
n +

13

4
η2n.

Then by Assumption C.2, we have Ln(ĥ
π
R) = O(η

1+ϵλn
n ).

H.3 PROOF OF LEMMA G.2

Proof Recall the definition of T

T h(X,Z) = E [W (D;h) |X,Z]
= E [1{Y ≤ h(X,A)} − α |X,Z]

= E

[∫ h(A,X)

−∞
pY |A,X,Z(y)dy |X,Z

]
− α.

Thus for any h1, h2 ∈ H, by the mean value theorem and the Assumption 4.7 we have

|T h1 − T h2| ≤ E

[
sup

t∈[0,1]

pY |A,X,Z(h1(X,A) + t [h2(X,A)− h1(X,A)]) [h2(X,A)− h1(X,A)] |X,Z

]

≤ E

[
sup

t∈[0,1]

pY |A,X,Z(h1(X,A) + t [h2(X,A)− h1(X,A)]) |X,Z

] [
sup
y

|h2(y)− h1(y)|
]
.

Then by observing that sup(X,Z)∈X×Z,h∈H |T h| ≤ 1, we have

∥T h1∥22 − ∥T h2∥22 ≤ 2E [|T h2 − T h1|]

≤ 2E

[
sup

t∈[0,1]

pY |A,X,Z(h1(X,A) + t [h2(X,A)− h1(X,A)]) |X,Z

] [
sup
y

|h2(y)− h1(y)|
]

≤ 2E

[
sup

t∈[0,1]

pY |A,X,Z(h1(X,A) + t [h2(X,A)− h1(X,A)]) |X,Z

]
∥h2 − h1∥∞ .

The Assumption 4.7 now implies the continuity result.

I EXPERIMENT DETAILS

In this section, we detail the data-generating process and the implementation of the algorithm used
in the simulation experiment discussed in section 5.
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Data Generating Process

• We set the context X ∼ N(0, 1) to be a one-dimensional Normal random variable.
• We set the instumental variable Z ∼ N(0, 1) to be a one-dimensional Normal random

variable.
• We set the quantile of interest to be α = 0.2.

• We set the error term induced by the unmeasured confounders U to be ϵ ∼
N(−Φ−1(α), 1), where Φ(·) is the CDF of a standard Normal distribution.

• To generate the binary action A, we first set t to be a variable such that with p% of the n
samples, it is a random noise: t ∼ N(0, 1). With the other samples, we let t = X + Z +
ϵ+ γ1{X>0}, where we will specify the value of γ later.

• We generate A ∼ Bernoulli(q), where q = exp(t)
1+exp(t) .

• We set the reward to be Y = X + 3XA+ ϵ.

It is easy to see that the oracle policy π∗ is given by π∗(A = 1 |X) = 1{X>0}. Hence the value
of γ determines the level of concentration of the ODCP around the oracle policy. We set γ = 8,
so that around (100 − p)% of the samples are concentrated around the optimal policy. We choose
p ∈ {20, 50, 70} in the experiments.

Algorithm Implementation Recall that given the offline dataset, we learn the policy by solving
the following optimization problem:

π̂R = arg sup
π

inf
h∈H

{
v(h, π) + λn sup

θ∈Θ

{
En [W (D;h)θ(X,Z)]− 1

2
||θ||2n,2

}}
. (I.1)

Since the solution does not admit a closed form, we perform gradient descent when optimizing over
h ∈ H. As W (D;h) is not differentiable, we first smooth it by replacing the indicator function
1{Y ≤ h(A,X)} with 1+ exp(−5[h(A,X)−Y ]). We denote W the vector in Rn such that Wi =
1+ exp(−5[h(Ai, Xi)−Yi])−α for a fixed h. We choose H and Θ to be the linear function classes
so that condition 4.4 holds by the results shown in §E. In particular, since h∗α(A,X) = X +AX by
our choice, we can choose the feature map of H = {X × A → β⊤

1 ϕ(·)} to be ϕ(x, a) = (x, xa).
Hence the realizability assumption in Assumption 4.1 holds. We also choose the feature map of the
test function class Θ to contain more polynomial features to ensure that the compatibility assumption
4.2 holds. For Θ = {X ×Z → β⊤

2 ψ(·)}, we let ψ(x, z) = (x, z, xz, x2, z2, xz2, zx2, x3, z3, x2z2).
We denote Ψ(X,Z) the d by n matrix such that its i-th column is ψ(Xi, Zi). As the condition of
Theorem C.4 requires that λn to be roughly Õ(η−1

n ) and that §E shows that ηn = Õ(n−1/2), we set
λn = 1.6n1/2. After a random initialization of π and h ∈ H, we repeatedly carry out the following
procedures to update π :

• By setting the gradient to 0, we derive that θ∗ := β∗Tϕ(·) ∈ Θ solves

sup
θ∈Θ

{
En [W (D;h)θ(X,Z)]− 1

2
||θ||2n,2

}
,

where β∗ := ψ(X,Z)(ψ(X,Z)Tψ(X,Z))−1W.

• We perform gradient descent on h ∈ H to minimize v(h, π) +
λn
{
En [W (D;h)θ∗(X,Z)]− 1

2 ||θ
∗||2n,2

}
. Let h∗ be the argmin .

• We then update π by solving the linear programming problem that maximizes v(h∗, π) with
respect to π, subject to the constraint that each of π(Xi, Zi) is a probability distribution over
A.

J NEGATIVE CONTROLS

In this section, our focus shifts to the scenario where, instead of the instrumental variables, we
observe the negative controls as the side observations in the offline dataset. The structure of this
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section is parallel to Section 2 - Section 4. Each subsection within this section is designed to mirror
the corresponding sections for IVs in the main text of the paper, providing a parallel exploration
and analysis framework. Unless otherwise specified, the notations in this section are consistent with
those used previously.

J.1 ODCP AND INTERVENTIONAL PROCESS FOR NEGATIVE CONTROLS

Offline Data Collection Process for NCs Suppose we observe the NCE and the NCO instead of
the IV. In the i-th sample, the environment generates (ui, xi, ei, vi) ∼ (U ,X , E ,V) that is jointly
distributed as p(ui, xi, ei, vi). The environment then selects an action following p(ai |ui, xi, ei, vi).
Given (ui, xi, ei, vi, ai), the reward yi is generated. The joint distribution of the variables in the
observational process is hence given by

p(u, x, e, v, a, y) = p(u, x, e, v) · p(a |u, x, e, v) · p(y |u, x, e, v, a).

The left figure of Figure 3 illustrates a possible causal DAG of the ODCP when the NCE and the
NCO are observed. Note that we have V ⊥⊥ A | (U,X) and E ⊥⊥ (Y, V ) | (A,X,U). As the
confounders U are unobserved, the offline dataset consists of {ai, xi, ei, vi, yi}ni=1 .

Interventional Process for NCs Same as the IV case, the context X follows a different marginal
distribution from that in ODCP, denoted by p̃(x). We assume p̃(x) is known. The action a is chosen
by the agent based on the context x and the learned policy π. Given a policy π, the joint distribution
of random variables in the interventional process is

pπin(u, x, v, e, a, y) = p̃(x)p(u, v, e |x)π(a |x)p(y |u, x, z, a).

The DAG of the interventional process is formed by eliminating any arrow coming into the node of
A except the one that comes from the context X in the DAG of ODCP. The right figure of Figure 3
illustrates the possible DAG of the interventional process.

Figure 3: Left: A DAG illustrating the causal relationship between random variables of the ODCP
when the NCs are observed. The dashed edge implies that the causal relationship may be absent.
Right: A DAG encoding the causal relationship between random variables in the interventional
process. All arrows coming into the node A have been removed other than the one from the node
X. Note in addition to U, E and V are also not observed, indicated by the grey nodes.

Motivated Example Consider the scenario of reducing extreme hospital readmission times for
patients post-surgery. Here, Yi represents the post-surgery readmission time for the i-th patient.
Ai represents the type of post-surgery care provided, such as intensive monitoring or a routine
discharge process. Xi is a set of pre-surgery covariates of the patient. Ei could be the patient’s
location, which is known not to causally affect the readmission time. Vi could be the length of initial
hospital stay, which is causally unaffected by the post-surgery care. In this case, the goal of the
health system is not just to reduce the average readmission time but to reduce the extreme cases
where patients experience the longest delays before being readmitted, as these cases often indicate
poor post-surgical outcomes. Thus, the focus is on reducing the higher quantiles of the readmission
time distribution.
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J.2 CONDITIONAL MOMENT RESTRICTIONS FOR NEGATIVE CONTROLS

During the ODCP, we now observe the negative control exposure (NCE) denoted as E and the
negative control outcome (NCO), represented by V. The NCE are variables known to not causally
affect the reward Y. The NCO are variables known to be causally unaffected by either the action A
or the NCE E. Formally, the following conditions for V and E hold in ODCP:

Assumption J.1 (Negative Controls Assumption) For the action A, unmeasured confounder U,
and the context X,

(i) Latent Unconfoundedness: V ⊥⊥ A | (U,X) and E ⊥⊥ (Y, V ) | (A,X,U);

(ii) Completeness Condition: for any a ∈ A, x ∈ X ,

E [σ(U,A,X) |E = e,A = a,X = x] = 0

holds for any e ∈ E if and only if σ(U,A,X)
a.s.
= 0. For simplicity, we omit the notation of

a.s. in the rest of the paper.

Here Assumption J.1 (i) formalizes the conditional dependence criteria of the negative controls.
Assumption J.1 (ii) is the completeness condition that implies that E captures the variability of
the unmeasured confounders U . This condition appears extensively in the NC literature (Tchetgen
et al., 2020). Note we slightly abuse the notation here: W (D;h) continues to denote the nonlinear
functional 1{Y ≤ h(A,X)} − α while V along refers to NCO. The meaning should be clear from
the context. We can now encode the causal structural quantile function into conditional moment
restrictions via Assumption J.1.

Theorem J.2 (Conditional Moment Restrictions for Negative Controls) Suppose Assumption
J.1 holds. If there exists bridge functions h∗1 : A×X and h∗2 : V ×A× X → R such that,

E [W (D;h∗1)− h∗2(V,A,X) |E = e,A = a,X = x] = 0, (J.1)

E [h∗2(V, a
′, X) |X = x] = 0, (J.2)

for any (e, a, x, a′) ∈ E × A× X ×A, then it follows that

P [Y ≤ h∗1(X,A) |X = x, do(A = a)] = α.

Therefore, h∗1 is the structural quantile function. We will henceforth refer to h∗1 and h∗α interchange-
ably.

Proof From equation J.1, we have

0 = E [W (D;h∗1)− h∗2(V,A,X) |E = e,A = a,X = x]

= E [E [W (D;h∗1)− h∗2(V,A,X) |U,E,A,X] |E = e,A = a,X = x]

= E [E [W (D;h∗1)− h∗2(V,A,X) |U,A,X] |E = e,A = a,X = x] ,

where the last equality holds by the Assumption J.1 (i). Now by Assumption J.1 (ii), we have

E [W (D;h∗1) |U,A,X] = E [h∗2(V,A,X) |U,A,X] . (J.3)

From equation J.2, ∀a′ ∈ A, ∀a ∈ A, we have

0 = E [h∗2(V, a
′, X) |X = x]

= E [E [h∗2(V, a
′, X) |U,X] |X = x]

= E [E [h∗2(V, a
′, X) |U,A = a′, X] |X = x] , (J.4)

where the third equality holds by Assumption J.1 (i). Now by combining equation J.3 and equa-
tion J.4, we have

0 = E [E [W (D;h∗1) |U,A = a,X] |X = x]

= E [W (D;h∗1) | do(A = a), X = x] .

By the definition of W (D;h∗1), we conclude that

P [Y ≤ h∗1 |X = x, do(A = a)] = α.

Therefore, we complete the proof.
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Data Augmentation In the conditional moment restriction equation J.2, the equality holds point-
wise for any a′ ∈ A. However, solving this equation becomes computationally intractable if either
|A| is large or the action space A is continuous. To address this issue, we augment the offline
dataset by introducing a random variable A′ that is distributed uniformly over A and is independent
of (U,X,E,A, Y ). Since

E [h∗2(V, a
′, X) |X = x] = E [h∗2(V,A

′, X) |A′ = a′, X = x] ,

we can replace equation J.2 with

E [h∗2(V,A
′, X) |A′ = a′, X = x] = 0. (J.5)

In practice, we integrate A′ into the offline dataset by appending a′i ∼ Unif(A) to
each sample (ai, xi, ei, vi, yi) in ODCP. Consequently, the offline dataset is expanded to
{ai, xi, ei, vi, yi, a′i}

n
i=1 . We can then estimate h∗2 by solving Equation (J.2) using the augmented

offline dataset.

J.3 MINIMAX ESTIMATION FOR NEGATIVE CONTROLS

Denote h = (h1, h2). Based on equation J.1 and equation J.5, we aim to solve simultaneously for h
that satisfies:

E [W (D;h1)− h2(V,A,X) |E,A,X] = 0 and (J.6)

E [h2(V,A
′, X) |A′, X] = 0. (J.7)

We can define the RMSE on equation J.6 and equation J.7 with respect to h as

∥T h∥22,2 := E
[(
T1h(E,A,X)

)2]
+ E

[(
T2h(A′, X)

)2]
, (J.8)

where the operators T1h and T2h denote

T1h(·) := E [W (D;h1)− h2(V,A,X) | (E,A,X) = ·] ,
T2h(·) := E [h2(V,A

′, X) | (A′, X) = ·] .
We then choose the hypothesis function space H = H1 × H2 and the test function space Θ =
Θ1×Θ2.Motivating by the Fenchel duality of the function x2/2,we can then minimize the empirical
loss function Ln(h) := L1,n(h) + L2,n(h) where we define L1,n and L2,n as

L1,n(h) := sup
θ1∈Θ1

{
1

n

n∑
i=1

{[W (Di;h1)− h2(Vi, Ai, Xi)] θ1(Ei, Ai, Xi)} −
1

2n

n∑
i=1

θ21(Ei, Ai, Xi)

}
,

(J.9)

L2,n(h) := sup
θ2∈Θ2

{
1

n

n∑
i=1

[h2(Vi, A
′
i, Xi)] θ2(A

′
i, Xi)−

1

2n

n∑
i=1

θ22(A
′
i, Xi)

}
. (J.10)

Since both L1,n(h) and L2,n(h) can be evaluated from the offline data, we can obtain an estimator
of h1, h2 by minimizing Ln(h) = L1,n(h) + L2,n(h) over H.

J.4 ALGORITHM OF POLICY LEARNING VIA NEGATIVE CONTROLS

We now present the solution set version algorithm for policy learning via negative controls. We also
provide the regularized version of the algorithm in §J.4. The underlying concept of the algorithms
closely mirrors that of the instrumental variables. The primary caveat is that we are now simultane-
ously solving two conditional moment equations, with our focus primarily on h1, as it represents the
estimated structural quantile function of interest. Consequently, this necessitates a minor modifica-
tion to the definition of the solution set. Apart from this adjustment, the foundational ideas remain
consistent.

The Solution Set Algorithm for the Negative Controls We build the solution set for h based on
the empirical loss function Ln(h) and the threshold en:

S(en) :=
{
h ∈ H : Ln(h) ≤ inf

h∈H
Ln(h) + en

}
. (J.11)
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As we are only interested in h1, we additionally define the projection of S(en) onto its first coordi-
nate:

S1(en) := {h1 ∈ H1 : ∃(h1, h2) ∈ S(en)} .

We then select the policy π that optimizes the pessimistic average reward function v(h1, π) over the
solution set S1(en). The full algorithm is summarized in Algorithm 2.

Algorithm 2 Quantile action Effect Policy Learning for Negative Controls
Input: Offline dataset {ai, xi, ei, vi, yi, a

′
i}

n
i=1 from ODCP, hypothesis space H, test function space Θ, and

threshold en.
(i) Construct the solution set S(en) as the level set of H with respect to metric Ln(·) and threshold en.
(ii) π̂ = arg supπ infh1∈S1(en) v(h1, π).

Output: π̂.

The Regularized Algorithm for the Negative Controls Similar to the instrumental variables
case, the solution set algorithm faces the computational challenges of solving an optimization prob-
lem with data-dependent constraints. We introduce a more practical, regularized version of the
algorithm. We denote En(h) = Ln(h)− infh∈H Ln(h). The regularized version of the algorithm is
summarized in Algorithm 3.

Algorithm 3 The Regularized Policy Learning Algorithm for Negative Controls
Input: Offline dataset {ai, xi, ei, vi, yi, a

′
i}

n
i=1 , hypothesis space H, test function space Θ, and regularization

parameter λn.
π̂R = arg supπ infh1∈H1{v(h1, π) + λnEn(h)}.

Output: π̂R.

J.5 THEORETICAL RESULTS FOR POLICY LEARNING ALGORITHM VIA THE NEGATIVE
CONTROLS

For the negative controls, we are solving two conditional moment equations simultaneously in con-
trast to solving one equation in the case of instrumental variables. Consequently, the underlying
assumptions and theoretical results are analogous to those in Section 4. Thus, in this section, we
confine our discussion only to the main assumptions and theorems that directly characterize the rate
of convergence of regret of π̂ and π̂R. See §K for a complete derivation of the theoretical results.

A crucial assumption unique to the negative control case is Assumption J.3, which parallels the
change of measure Assumption 4.10. However, in this instance, we require the existence of two
change-of-measure functions, with each corresponding to one of the two conditional moment equa-
tions.

Assumption J.3 (Change of Measure for Negative Controls) For the marginal distribution of
context p̃ in the interventional process and the optimal interventional policy π∗,

(i). There exists a function b1 : E × A× X → R such that E
[
b21(E,A,X)

]
<∞ and

E
[
b1(E,A,X)py |E,A,X(h∗α(A,X)) |A = a,X = x

]
=
p̃(x)π∗(a |x)
p(x, a)

. (J.12)

(ii). Define b2 : V × E ×A× X ×A → R by

b2(v, e, a, x, a
′) =

ĥπ
∗

2 (v, a, x)p(v | e, a, x)
ĥπ

∗
2 (v, a′, x)p(v |x)

. (J.13)

We assume ∥b2∥∞ <∞.
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Remark on Assumption J.3 Beyond the change of measure condition outlined in Assumption
4.10 for the instrumental variables, which requires the function of b to have a finite L2 norm, As-
sumption J.3 (ii) incorporates a more stringent requirements. First, since we now have to solve two
conditional moment restrictions, we now need two change of measure functions, b1 and b2. Sec-
ond, the assumption asserts the change of measure function b2 to have a finite L∞ norm. This is a
stricter condition as L∞ is a stronger norm than L2. Practically, this implies the necessity for the
offline dataset to uniformly cover the covariate space X , and the negative control outcome space W.
In addition, to ensure that ĥπ

∗

2 (v, a′, x) is bounded away from 0, we can do a location shift on the
reward.

Theorem J.4 (Regret of Solution Set Algorithm for the NC; Informal Version of Theorem K.9)
Under appropriate conditions, if the threshold en for the solution set is set to en > (2L2

h + 5
4 )η

2
n,

then with probability 1− 5ξ, the regret corresponding to π̂ is bounded by
Regret(π̂)≲c1(1 + ∥b2∥∞) ∥b1∥2 ·

(
O (

√
en) +O (ηn)

)
.

Proof See Theorem K.9 for the complete statement of the theorem and §L.1 for a detailed proof.

Theorem J.5 (Regret of Regularized Algorithm for the NC; Informal Version of Theorem K.12)
Under appropriate conditions, foy any 0 < ϵλn < 1, if the regularized parameter λn is set to
λn = η

−(1+ϵλn )
n , then with probability 1− 5ξ, the regret corresponding to π̂R is upper bounded by

Regret(π̂R)≲O(η
1−ϵλn
n ).

Proof See Theorem K.12 for the complete statement of the theorem and §L.3 for a detailed proof.

K THEORETICAL ANALYSIS FOR ALGORITHM VIA NEGATIVE CONTROLS

The structure of this section is parallel to that of Section 4. The ultimate goal is to link the regret of
π̂ and π̂R to ∥T h∥22,2 . We first construct two events of high probability that bridges the empirical
loss Ln to ∥T h∥22,2 .

Ẽ1 :=

{∣∣∣En {[W (D;h1)− h2(V,A,X)] θ1(E,A,X)} − E {[W (D;h1)− h2(V,A,X)] θ1(E,A,X)}
∣∣∣

≤ ηn (∥θ1∥2 + ηn) ,
∣∣||θ1||2n,2 − ||θ1||22

∣∣ ≤ 1

2

(
||θ1||22 + η2n

)
,∀h ∈ H,∀θ1 ∈ Θ1

}
.

Ẽ2 :=

{
|En {[h2(V,A′, X)] θ2(V,A

′, X)} − E {[h2(V,A′, X)] θ2(V,A
′, X)}|

≤ ηn (∥θ2∥2 + ηn) ,
∣∣||θ2||2n,2 − ||θ2||22

∣∣ ≤ 1

2

(
||θ2||22 + η2n

)
,∀h ∈ H,∀θ2 ∈ Θ2

}
.

Assumption K.1 (Regularity of Function Classes for Negative Controls) We assume H is com-
pact with respect to the norm ∥·∥sup and Θ is star-shaped. We also assume suph∈H ∥h∥sup ≤ LH .

Condition K.2 Suppose that Assumption K.1 holds. For any ξ > 0, there exists ηn > 0 that
decreases with n such that the event Ẽ = Ẽ1 ∩ Ẽ2 holds with probability at least 1− 4ξ.

Note each Ẽi bridges Tih(·) to ∥Tih∥22 . Hence we denote Ẽ = Ẽ1 ∩ Ẽ2, so that Ẽ is an event
that controls the difference between the empirical loss function Ln(h) and ∥T h∥22,2 . If we choose

H1,H2,Θ1 and Θ2 to be linear function classes, Condition K.2 holds for some ηn = Õ(n−1/2).

The reason is that by applying a similar strategy as in Appendix E, we can show that each Ẽi holds
with probability at least 1 − 2ξ. Taking the union bound gives us 1 − 4ξ. We define a norm ∥·∥sup
on H = H1 ×H2 as ∥h∥sup = ∥h1∥∞ + ∥h2∥∞ .
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Assumption K.3 (Identifiability and Realizability for the Negative Controls) Suppose
(h∗1, h

∗
2) ∈ H. For any h ∈ H that satistfies the equations equation J.6 and equation J.7,

we have ||h− h∗1||sup = 0.

Assumption K.3 ensures that the structural quantile function is uniquely identified through the con-
ditional moment restrictions. Consequently, we can substitute h∗1 with h∗α without any ambiguity.

Assumption K.4 (Compatibility of Test Function Class) For any h ∈ H, infθ∈Θ ∥θ − T h∥2 =

ϵΘ, and ϵΘ = Õ(n−1/2).

K.1 SOLUTION SET ALGORITHM FOR THE NEGATIVE CONTROLS

We introduce an analogue to Theorem 4.5 tailored for negative controls. This demonstrates that
within the event Ẽ , the solution set S1(en) exhibits several favorable properties.

Theorem K.5 (Uncertainty Quantification for Negative Controls) Suppose that Assumptions
K.3, K.4 and K.1 hold.

(i). On Ẽ , Ln(h
∗) ≤ (2L2

h+
5
4 )η

2
n where h∗ = (h∗α, h

∗
2).Moreover, if we set en > (2L2

h+
5
4 )η

2
n,

then h∗α ∈ S1(en).

(ii). On Ẽ , for all h ∈ S1(en), we have,

∥T h∥2
Ẽ
≲ O (

√
en) +O (ηn) .

Proof This is identical to the proof of Theorem 4.5, which is in §G.1.

Assumption K.6 (Regularity of density for Negative Controls) We assume that py | e,a,x the con-
ditional density of Y given (E,A,X) exists. Moreover, py | e,a,x(y) is continuous in (y, e, a, x) and
supy py | e,a,x(y) <∞ for almost all (y, e, a, x).

Theorem K.7 (Consistency of the Solution Set Version Algorithm for Negative Controls)
Suppose that Assumptions K.3, K.4, K.1 and K.6 hold. If we set en = O(η2n, ) then on the event Ẽ ,
for any h ∈ S(en), ∥h1 − h∗α∥∞ = op (1) and hence ∥h1 − h∗α∥2 = op (1) .

Proof Given Lemma M.3, this is identical to the proof of Theorem 4.8, which is in §G.2.

Assumption K.6 ensures that the conditional density of the reward Y given (E,A,X) is well-defined
and bounded away from infinity. Note we only present the result of consistency of h1 in theorem
4.8. This focus is deliberate, as the upper bound of regret of the negative controls case is the same
as that detailed in Corollary 4.6. Thus, the upper bound only concerns with the conditional average
difference between h1 and h∗α. Therefore, a local expansion of h1 around h∗α suffices to serve our
purpose.

let H1ϵ := {h1 ∈ H1 : ||h1 − h∗α||2 ≤ ϵ} ∩ S1(en) where ϵ is a sufficiently small positive number
such that P(Ẽ ∩

{
ĥπ

∗

1 ∈ H1ϵ

}
) ≥ 1 − 5ξ. Such ϵ is guaranteed to exist by Condition K.2 and

Theorem K.7.

Assumption K.8 (Local Curvature of the Solution Set Estimator via Negative Controls) If we
set en > (2L2

h + 5
4 )η

2
n, then there exists a finite constant c1 > 0 such that

(i) H1ϵ is convex and E[W (D;h1) |E,A,X] is continuously pathwise differentiable with re-
spect to h1 ∈ H1ϵ.

(ii) For any h1 ∈ H1ϵ, ||h1 − h∗α|| ≤ c1 ∥E[W (D;h1) |E,A,X]∥2. Note

||h1 − h∗α|| =
√
E[(py |E,A,X(h∗α(A,X)) {h1(X,A)− h∗α(A,X)})2].
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Theorem K.9 (Regret of the Solution Set Version Algorithm for the Negative Controls)
Suppose that the negative controls conditions Assumption J.1 holds. Suppose that Assumptions
K.3, K.4, and K.1 for function classes H and Θ hold. Suppose also that the Assumptions K.8
and J.3 hold. If the threshold en for the solution set is set to en > (2L2

h + 5
4 )η

2
n, then the regret

corresponding to π̂ is bounded on event Ẽ ∩
{
ĥπ

∗

1 ∈ H1ϵ

}
by

Regret(π̂)≲c1(1 + ∥b2∥∞) ∥b1∥2 ·
(
O (

√
en) +O (ηn)

)
,

Proof See §L.1 for a detailed proof.

K.2 REGULARIZED ALGORITHM FOR NEGATIVE CONTROLS

We now detail the theoretical analysis for the regularized algorithm for negative controls. We define
ĥπR = (ĥπR1, ĥ

π
R2) = arg infh∈H{v(h1, π) + λnEn(h)}.

Assumption K.10 (Sample Criterion for Negative Controls) We assume infh∈H Ln(h) =
O(η2n).

Theorem K.11 (Consistency of the Regularized Algorithm for Negative Controls) Suppose
that Assumptions K.3, K.4, K.1, K.6 and K.10 hold. For any ϵλn

> 0. For any ϵλn
> 0, if

we set λn ≥ η
−(1+ϵλn )
n , then on the event Ẽ , for any π,

∥∥∥ĥπR1 − h∗α

∥∥∥
∞

= op (1) and hence∥∥∥ĥπR1 − h∗α

∥∥∥
2
= op (1) .

Proof See §L.2 for a detailed proof.

Given the consistency result, we then perform local expansion of ĥπ
∗

R1 around h∗α. We now define a
restricted space of H. For a fixed λn ≥ η

−(1+ϵλn )
n , let H1ϵ := {h1 ∈ H1 : ||h1 − h∗α||2 ≤ ϵ} . We

then fix a sufficiently small positive number ϵ such that the event ẼRϵ = Ẽ ∩
{
ĥπ

∗

R1 ∈ H1ϵ

}
occurs

with probability at least 1− 5ξ by Condition K.2.

Theorem K.12 (Regret of the Regularized Algorithm for Negative Controls) Suppose that the
conditions for negative controls Assumption J.1 holds. Suppose that Assumptions K.3, K.4, and
K.1 for function classes H and Θ hold. Suppose also that the Assumptions K.10, K.8, and J.3 hold.
Foy any 0 < ϵλn

< 1, if the regularized parameter λn is set to λn = η
−(1+ϵλn )
n , then the regret

corresponding to π̂R is bounded on event ẼRϵ by

Regret(π̂R)
ẼRϵ

≲ O(η
1−ϵλn
n ).

Proof See §L.3 for a detailed proof.

L PROOF OF MAIN RESULTS OF §K

In this section, we give the proofs of the main theorems in section §K. The goal is to establish the
convergence rate of the regret for the policy learning algorithms in the case that we observe negative
controls in ODCP.

L.1 PROOF OF THEOREM K.9

In this section, we analyze the convergence rate of the regret of the solution set algorithm for the
negative controls.
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Proof We firs note that the regret decomposition for the case of negative control is exactly the same
as that of the instrumental variable. Therefore, we begin by considering the term (i) in equation G.18.
By the change of measure Assumption J.3, we have:

vπ
∗

α − v(ĥπ
∗

1 , π∗) = Epπ∗
in

[
h∗α(A,X)− ĥπ

∗

1 (A,X)
]

= E
[
(h∗α(A,X)− ĥπ

∗
(A,X)1)E

[
b1(E,A,X)py |E,A,X(h∗α(A,X)) |A,X

]]
.

Then by Tower property,

vπ
∗

α − v(ĥπ
∗

1 , π∗) = E
[
E
[
(h∗α(A,X)− ĥπ

∗

1 (A,X))b1(E,A,X)py |E,A,X(h∗α(A,X)) |A,X
]]

= E[py |E,A,X(h∗α(A,X))(h∗α(A,X)− ĥπ
∗

1 (A,X))b1(E,A,X)]

= E
[
E
[
py |E,A,X(h∗α(A,X))(h∗α(A,X)− ĥπ

∗

1 (A,X)) |E,A,X
]
b1(E,A,X)

]
.

Now let Ẽϵ := Ẽ ∩
{
ĥπ

∗

1 ∈ H1ϵ

}
. By Cauchy-Schwart and the form of directional derivative in

Lemma H.1 (with a slight change of the conditional variables), we have

Regret(π̂)
Ẽϵ

≲ ||ĥπ
∗

1 − h∗α|| · ∥b1∥2
≤ c1 ∥b1∥2 ·

∥∥∥E[W (D; ĥπ
∗

1 ) |E,A,X]
∥∥∥
2
, (L.1)

where the last inequality holds by the local curvature Assumption K.8. We now obtain an upper
bound for

∥∥∥E[W (D; ĥπ
∗

1 ) |E,A,X]
∥∥∥
2
:∥∥∥E[W (D; ĥπ

∗
) |E,A,X]

∥∥∥
2
=
∥∥∥T1ĥπ∗

+ E
[
ĥπ

∗

2 (V,A,X) |E,A,X
]∥∥∥

2

≤ ∥T1ĥπ
∗
∥2 +

∥∥∥E [ĥπ∗

2 (V,A,X) |E,A,X
]∥∥∥

2

= ∥T1ĥπ
∗
∥2 +

∥∥∥∥∫
V
ĥπ

∗

2 (v,A,X)p(v |E,A,X)dv
∥∥∥∥
2

.

By Assumption J.3 (ii), we have∥∥∥E[W (D; ĥπ
∗
) |E,A,X]

∥∥∥
2
≤ ∥T1ĥπ

∗
∥2 +

∥∥∥∥∫
W
ĥπ

∗

2 (v,A′, X)p(v |X)b2(v,E,A,X,A
′)dv

∥∥∥∥
2

≤ ∥T1ĥπ
∗
∥2 + ∥b2∥∞

∥∥∥∥∫
V
ĥπ

∗

2 (v,A′, X)pob(v |A′, X)dv
∥∥∥∥
2

= ∥T1ĥπ
∗
∥2 + ∥b2∥∞ ∥T2ĥπ

∗
∥2.

Substitute the above result back to equation L.1, we complete the proof:

Regret(π̂)
Ẽϵ

≲ c1 ∥b1∥2 · ∥T1ĥ
π∗
∥2 + c1 ∥b1∥2 · ∥b2∥∞ ∥T2ĥπ

∗
∥2

= c1(1 + ∥b2∥∞) ∥b1∥2 ·
(
O (

√
en) +O (ηn)

)
,

where the equality holds by Theorem K.5 (ii).

L.2 PROOF OF THEOREM K.11

We show that our estimated structural quantile function ĥπR1 is consistent to h∗α in l2 norm. The proof
is similar to the proof of Theorem C.3, except that the dimension of ĥπR is now two. We deduce the
result by first showing that ĥπR = (ĥπR1, ĥ

π
R2) is consistent to h∗ = (h∗α, h2

∗) in ∥ · ∥sup.
Proof For any ϵ > 0, we have

P
[
∥ĥπR − h∗∥sup > ϵ

]
≤ P

[
inf

h∈H,∥h−h∗∥sup>ϵ
L1,n(h) ≤ O(η1+ϵλ

n )

]

≤ P

[
min

{
inf

h∈H,∥h−h∗∥sup>ϵ

ηn
2

∥T1h∥2 , inf
h∈H,∥h−h∗∥sup>ϵ

∥T1h∥22

}
≤ O(η1+ϵλ

n )

]
,
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Denote φϵ := infh∈H,∥h−h∗∥∞>ϵ ∥T1h∥2 . Since Lemma M.3 states that ∥T1h∥2 is continuous on
(H, ∥·∥sup), φϵ is strictly positive. We then have

P
[
∥ĥπR − h∗∥sup > ϵ

]
≤ P

[
min

{ηn
2
φϵ, φ

2
ϵ

}
≤ O(η1+ϵλ

n )
]
,

which converges to zero as n goes to infinity. The result follows from the fact that the supremum
norm is stronger than the L2 norm under a finite measure:

P
[
∥ĥπR − h∗∥2 > ϵ

]
≤ P

[
∥ĥπR − h∗∥∞ > ϵ

]
,

which converges to one as n goes to infinity. Hence, ∥ĥπR1 − h∗α∥∞ = op (1) and
∥ĥπR1 − h∗α∥2 = op (1) .

L.3 PROOF OF THEOREM K.12

In this section, we analyze the rate of convergence of the regret of the regularized algorithm for
negative controls. The proof is similar to the proof of Theorem C.4.

Proof We first decompose the regret corresponding to π̂R as:
Regret(π̂R) = vπ

∗

α − vπ̂R
α

=
[
vπ

∗

α + λnEn(h∗)
]
−
[
v(ĥπ̂R

R1, π̂R) + λnEn(ĥπ̂R

R )
]
+
[
v(ĥπ̂R

R1, π̂R) + λnEn(ĥπ̂R

R )
]

− [v(h∗α, π̂R) + λnEn(h∗)]
By the optimality of ĥπ̂R, we can drop the last two terms. It follows that

Regret(π̂R) ≤
[
vπ

∗

α + λnEn(h∗)
]
−
[
v(ĥπ̂R

R1, π̂R) + λnEn(ĥπ̂R

R )
]

≤
[
vπ

∗

α + λnEn(h∗)
]
− sup

π
inf
h∈H

{v(h1, π) + λnEn(h)}

≤
[
vπ

∗

α + λnEn(h∗)
]
−
[
v(ĥπ

∗

R1, π
∗) + λnEn(ĥπ

∗

R )
]
.

. Then by rearranging terms, we have

Regret(π̂R) = Epπ∗
in

[
h∗α(A,X)− ĥπ

∗

R1(A,X)
]
+ λnEn(h∗)− λnEn(ĥπ

∗

R )

≤ Epπ∗
in

[
h∗α(A,X)− ĥπ

∗

R1(A,X)
]
+ λnEn(h∗). (L.2)

Following the same argument as in the proof of Theorem K.9, we conclude that for the first term,

Epπ∗
in

[
h∗α(A,X)− ĥπ

∗

R1(A,X)
] ẼRϵ

≲ c1 ∥b1∥2 · ∥T1ĥ
π∗
∥2 + c1 ∥b1∥2 · ∥b2∥∞ ∥T2ĥπ

∗
∥2 (L.3)

For the second term, we have by Theorem K.5 (ii) that

λnEn(h∗) ≤ λnLn(h
∗) ≤ O(η

1−ϵλn
n ). (L.4)

Moreover, using the fact that Regret(π̂R) ≥ 0 and rearranging terms, we have

Epπ∗
in

[
h∗α(A,X)− ĥπ

∗

R1(A,X)
]
≥ λnEn(ĥπ

∗

R )− λnEn(h∗)

Ẽϵ

≳ λnLn(ĥ
π∗

R )− λnO(η2n).

We can further lower bound it as
λn min{ηn

2
∥T1ĥπ

∗

R ∥2, ∥T1ĥπ
∗

R }22∥+ λn min{ηn
2
∥T2ĥπ

∗

R ∥2, ∥T2ĥπ
∗

R ∥22} − λnO(η2n). (L.5)

Then by following a similar step as in the proof of Theorem C.4, it follows that

∥T1ĥπ
∗
∥2 + ∥T2ĥπ

∗
∥2 = O(ηn).

Then combining this result with equation L.2, equation L.3 and equation L.5, we conclude that

Regret(π̂R)
ẼRϵ

≲ O(η
1−ϵλn
n ).

Therefore, we complete the proof.
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M SUPPORTING LEMMAS FOR SECTION J.5

In what follows, we present the statement and proofs of the supporting lemmas used in §J.5.

Lemma M.1 (Upper Bound of the Empirical Loss of Negative Controls) If we set λn ≥
η
−(1+ϵλn )
n where 0 < ϵλn

< 1 is arbitrary, then on the event Ẽ , En(ĥπR) = O(η
1+ϵλn
n ) and

Ln(ĥ
π
R) = O(η

1+ϵλn
n ).

Proof By definition of ĥπR, we have

v(ĥπR1, π) + λnEn(ĥπR) = inf
h∈H

{v(h1, π) + λnEn(h)}

≤ v(h∗α, π) + λnEn(h∗).

After rearranging the terms and note that by Theorem 4.5(ii), En(h∗) ≤ Ln(h
∗) ≤ (2L2

h + 5
4 )η

2
n,

we have

En(ĥπR) ≤
1

λn

[
v(h∗α, π)− v(ĥπR1, π)

]
+ En(h∗)

≤ 2Lh

λn
+

13

4
η2n

≤ 2Lhη
1+ϵλn
n + (2L2

h +
5

4
)η2n.

Then by Assumption K.10, we have Ln(ĥ
π
R) = O(η

1+ϵλn
n ).

Lemma M.2 (Lower Bound of the Empirical Loss for Negative Controls) Suppose that As-
sumptions K.1 and K.4 hold. On the event Ẽ , for all h ∈ H, k = 0, 1 we have

Lk,n(h) ≥ min{ηn
2

∥Tkh∥2 , ∥Tkh∥
2
2} − O(η2n).

Proof This lemma is a direct variation of Lemma G.1. The proofs are almost the same.

Lemma M.3 (Continuity of the Operator for Negative Controls) ∥T1h∥22 is continuous on
(H, ∥·∥sup).

Proof Recall that T1h := E [W (D;h1)− h2(V,A,X) | (E,A,X)] , Thus for any h1 =

(h
(1)
1 , h

(2)
1 ), h2 = (h

(1)
2 , h

(2)
2 ) ∈ H, we have

|T1h1 − T1h2| =
∣∣E [W (D;h

(1)
1 )− h

(2)
1 (V,A,X) | (E,A,X)

]
− E

[
W (D;h

(1)
2 )− h

(2)
2 (V,A,X) | (E,A,X)

] ∣∣
≤
∣∣E [W (D;h

(1)
1 )−W (D;h

(1)
2 ) | (E,A,X)

] ∣∣
+
∣∣E [h(2)1 (V,A,X)− h

(2)
2 (V,A,X) | (E,A,X)

] ∣∣. (M.1)

Also, recall that

E [W (D;h1) |E,A,X] = E [1{Y ≤ h1(X,A)} − α |E,A,X]

=

∫ h(A,X)

−∞
p(y|E,A,X)dy − α.
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Thus by the mean value theorem, we have∣∣E [W (D;h
(1)
1 )−W (D;h

(1)
2 ) | (E,A,X)

]
| ≤ sup

t∈[0,1]

{∣∣∣pY |E,A,X

(
h
(1)
1 (X,A) + t[h

(1)
2 (X,A)− h

(1)
1 (X,A)]

)
|

· |h(1)2 (X,A)− h
(1)
1 (X,A)|

}
≤ sup

t∈[0,1]

∣∣∣pY |E,A,X

(
h
(1)
1 (X,A) + t[h

(1)
2 (X,A)− h

(1)
1 (X,A)]

)∣∣∣
· sup
x,a

|h(1)1 (x, a)− h
(1)
2 (x, a)|,

which is upper bounded by

sup
t∈[0,1]

∣∣∣pY |E,A,X

(
h
(1)
1 (X,A) + t[h

(1)
2 (X,A)− h

(1)
1 (X,A)]

)∣∣∣ · ||h(1)1 − h
(1)
2 ||∞. (M.2)

Then by observing that the |T1h1 + T1h2| is upper bounded by 2Lh + 2, we have

∥T h1∥22 − ∥T h2∥22 ≤ (2Lh + 2)E [|T h1 − T h2|]

≤ (2Lh + 2) sup
t∈[0,1]

∣∣∣pY |E,A,X

(
h
(1)
1 (X,A) + t[h

(1)
2 (X,A)− h

(1)
2 (X,A)]

)∣∣∣ · ||h(1)1 − h
(2)
1 ||∞

+ (2Lh + 2)||h(2)1 − h
(2)
2 ||∞,

where the last inequality holds by Equation (M.1) and Equation (M.2). Hence we complete the
proof.

N DISCUSSION OF ASSUMPTIONS AND CONDITIONS IN SECTION 4

A. Assumption 4.1 (Identifiability and Realizability). This assumption, often referred to as a
global identification assumption, is commonly made in nearly all nonparametric quantile IV litera-
ture. For instance, see Assumption 3.2(ii) in Chen & Pouzo (2012), Assumption 1 in Gagliardini &
Scaillet (2012), and Assumption 1 in Horowitz & Lee (2007).

Regarding sufficient conditions for this assumption to hold, Chernozhukov & Hansen (2005) pro-
vides such conditions in the case where the context X is discrete. For more general setups, Chen
et al. (2014) discusses conditions for local identification in detail The only study we are aware of that
carefully outlines conditions for global identification is Wong (2022). However, Wong’s approach
relies on a set of strong regularity conditions to establish these results.

C. Condition 4.4: We only verify that Condition 4.4 holds true for linear function classes be-
cause they already encompass a wide variety of functions, including polynomial splines, B-splines,
wavelets, and Fourier series basis functions. These function classes can be represented as linear
combinations of basis functions, making them instances of the linear function class. By examining
our proof in Appendix E, we rely only on the property that linear function classes have a covering
number and bracketing number bounded by An log(

C3

t ) where An is the dimension of the linear
function classes. Therefore, we can actually obtain different convergence rates ηn under the supre-
mum norm for the chosen function classes. The bracketing and covering numbers of various function
classes can be found in different books. For example, van der vaart & Wellner (2013) provides an
extensive treatment of covering numbers, and bracketing numbers in their book Weak Convergence
and Empirical Processes. They discuss these concepts for a variety of function classes, including:
Sobolev spaces, Besov spaces, Holder classes and reproducing kernel Hilbert spaces.

B. Assumption 4.7 (Regularity of Conditional Density). This paper assumes that the outcome
variable Y is continuous. The primary reason is that we are dealing with a nonlinear functional
T h. To link the regret to T h, we conduct a local expansion of T h around the neighborhood of the
structural quantile function h∗α. For this expansion, it is essential that the density of Y is continuous
and bounded, ensuring that the pathwise derivative T h at h = h∗α exists. We remark that this as-
sumption is needed in most of the nonparametric quantile IV literature. For instance, see Condition
6.1(i), (iv) in Chen & Pouzo (2012), Theorem 3.1 in Abadie et al. (2002), Condition A.1 in Cher-
nozhukov & Hansen (2005), Assumption A.1 in Gagliardini & Scaillet (2012). While our paper does
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not address discrete outcomes due to this constraint, we believe a similar algorithm could be applied
in this case by first convolving the discrete outcome with Gaussian noise, which would smooth the
distribution of Y. This smoothing allows for the use of techniques designed for continuous outcomes.

D. Assumption 4.9 (Local Curvature for the Estimator of the Solution Set Algorithm). In the
initial version of our submission, this assumption was divided into two components. Upon reexam-
ining the proof, we made slight modifications that allowed us to eliminate the need for Assumption
4.9 (i). As a result, only Assumption 4.9 (ii) is required, which asserts that the weaker pseudo metric
||h − h∗α|| is Lipschitz continuous with respect to the population criterion function ∥T h∥2 within a
small neighborhood around h∗α. This condition is relatively mild and is commonly employed in the
nonlinear functional analysis literature (Chen & Pouzo, 2012; Miao et al., 2023). Condition 6.3 (i)
in Chen & Pouzo (2012) provides a sufficient condition for the assumption to hold in a broad class
of functional spaces H, including the linear function spaces we consider in Appendix E.

E. Assumption 4.10 (Change of Measure). The Change of Measure Assumption 4.10 is actually
a weaker substitute of the standard concentrability assumption commonly used in the RL literature.
In the tabular setting, Assumption 4.10 is satisfied when the right-hand side of the assumption is
uniformly bounded, and the Moore-Penrose inverse of the probability mass matrix P (Z |A,X)+

exists. This condition holds if the instrumental variable (IV) satisfies the standard completeness
assumption: rank[P (Z |A,X)] ≥ |A| × |X |. We note that Theorem 4.11 and Theorem 4.13 remain
valid if Assumption 4.10 is replaced with the usual single-policy concentrability assumption: there
exists of a constant c̃ > 0 such that supx∈X ,a∈A

p̃(x)π∗(a | x)
p(x,a) ≤ c̃. Note p̃(x)π∗(a | x)

p(x,a) represents the
density ratio of the distribution under the interventional process with the oracle policy π∗ over that
of the offline data collection process.
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