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Fig. 1: Human2LocoMan is a framework for enabling flexible data-collection of (a) human demonstrations and (b)
teleoperated robot trajectories, and for performing cross-embodiment training to synthesize (c) versatile quadrupedal
manipulation skills.

Abstract— Quadrupedal robots have demonstrated impres-
sive locomotion capabilities in complex environments, but
equipping them with autonomous versatile manipulation skills
in a scalable way remains a significant challenge. In this
work, we introduce a system that integrates data collection
and imitation learning from both humans and LocoMan, a
quadrupedal robot with multiple manipulation modes. Specifi-
cally, we introduce a teleoperation and data collection pipeline,
supported by dedicated hardware, which unifies and modular-
izes the observation and action spaces of the human and the
robot. To effectively leverage the collected data, we propose an
efficient learning architecture that supports co-training and pre-
training with multimodal data across different embodiments.
Additionally, we construct the first manipulation dataset for
the LocoMan robot, covering various household tasks in both
single-gripper and bimanual modes, supplemented by a cor-
responding human dataset. Experimental results demonstrate
that our data collection and training framework significantly
improves the efficiency and effectiveness of imitation learning,
enabling more versatile quadrupedal manipulation capabili-
ties. Our hardware, data, and code will be open-sourced at:
https://human2bots.github.io.

I. INTRODUCTION

While quadrupedal robots have demonstrated impressive
locomotion capabilities in complex environments [1]–[7],
it remains challenging to endow them with autonomous,
versatile manipulation skills in a scalable way. In this work,

we take inspiration from the open-source LocoMan hardware
platform [8], which is a quadrupedal robot equipped with
two leg-mounted manipulators. We focus on LocoMan as it
is a versatile platform and allows for learning manipulation
skills in multiple operating modes. Imitation learning has
been a long-standing approach to teach robots complex
skills through human demonstrations [9]. A key challenge
in efficiently transferring skills from humans to quadrupedal
robots lies in their embodiment gap, which leads to difficul-
ties in both data collection and transfer learning. To bridge
this gap, we develop Human2LocoMan, leveraging a novel
teleoperation and data collection system to align human and
robot data, and a modular Transformer architecture for cross-
embodiment learning.

To collect data at scale, our data-collection system lever-
ages an extended reality (XR) headset to capture human
motions, and streams first-person or first-robot (during tele-
operation) view to the human operator. To collect human
data, the human operator simply wears the XR headset
while performing any task. During teleoperation, we map
the human and the quadruped to a unified frame to bridge
the embodiment gap. In addition to mapping human hand
motions to the grippers, we map human head motions to
the robot’s torso to expand the workspace and enhance
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Fig. 2: Human2LocoMan framework. (a) The teleoperation system leverages a XR headset to collect human data and robot
data via teleoperation. Human and robot data are mapped to a unified coordinate frame. (b) The dataset consists of aligned
vision and proprioception from human and robot. (c) During training, the network is first pretrained on easy-to-collect human
data, and then fine-tuned on a small amount of robot teleoperation data. (d) We evaluate the autonomous Human2LocoMan
policies on three household tasks in single-gripper and bimanual mode.

active sensing. The target poses are passed to a whole-body
controller to coordinate the robot motions.

In contrast to works that use egocentric human data to
pretrain vision encoders [10] or learn high-level intent [11],
we treat human as another embodiment and use human
data for cross-embodiment learning. Despite mapping human
and robot data to a unified frame, there exists obvious
gaps ranging from dynamics to extra wrist cameras on the
robot. Thus, we design a modular transformer architecture,
Modularized Cross-embodiment Transformer (MXT), which
shares the transformer trunk, but has embodiment-specific
tokenizers/detokenizers. To achieve positive transfer, the
transformer-based policy is first pre-trained on human data,
and then fine-tuned on a small amount of robot data.

We evaluate the trained polices on three household tasks
under both unimanual and bimanual mode. We observe
strong performance of MXT in comparison to strong base-
lines, positive transfer from human to robot, and that
Human2LocoMan is more robust to out-of-distribution
(OOD) scenarios.

In summary, our paper provides the following contribu-
tions:

• We propose Human2LocoMan, a framework that en-
ables flexible data-collection of human demonstra-
tions and teleoperated robot trajectories of versatile
quadrupedal manipulation skills.

• We design a modular transformer architecture, MXT, to
facilitate effective cross-embodiment learning even with
a large embodiment gap.

• We introduce the first VR-based teleoperation system
and manipulation dataset for the open-source LocoMan
[8] hardware platform.

• We evaluate our policies on challenging household
tasks across both unimanual and bimanual manipulation
modes, demonstrating positive transfer from human to
robot with high task success rates, strong performance
scores, and robustness to OOD scenarios across five

household manipulation tasks.

II. METHODOLOGY

In this section, we describe the design and implementation
of our system Human2LocoMan, which integrates teleop-
eration, data collection, and neural architecture for cross-
embodied learning.

A. Human2LocoMan System Overview

We utilize the Apple Vision Pro headset and the Open-
Television system [12] to capture human motions and stream
first-person or first-robot video to the human operator. A
lightweight stereo camera with a 120-degree horizontal field-
of-view is mounted on both the VR headset and the LocoMan
robot to provide ego-centric views, while additional cameras,
such as RGB wrist cameras, can be optionally attached to the
robot. Through the Human2LocoMan teleoperation system
(Section II-B), the human operator can control the LocoMan
robot to perform versatile manipulation tasks in both uni-
manual and bimanual modes. In the uni-manual mode, we
also map human head motions to the robot’s torso move-
ments to expand the teleoperation workspace and enhance
active sensing. The Human2LocoMan system enables the
collection of both human and robot data, transforming them
into a shared space. Masks are applied to distinguish across
different embodiments and manipulation modes. The col-
lected human data are used to pretrain an action model called
the Modularized Cross-embodiment Transformer (MXT).
The in-domain robotic data collected via teleoperation are
used to fine-tune the pretrained model to learn a manipulation
policy that predicts the 6D poses of LocoMan’s end effectors
and torso, as well as gripper actions.

B. Human2LocoMan Teleoperation and Data Collection

A unified frame for both human and LocoMan. To map
human motions to LocoMan’s various operation modes via
VR-based teleoperation—and to enhance the transferability
of motion data across different embodiments—we establish a
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Fig. 3: Modularized Cross-embodiment Transformer (MXT) architecture. The inputs are organized as a list of modalities
and encoded each by a separate tokenizer into a fixed number of tokens. The transformer trunk handles decision making by
consuming the concatenated encoded tokens and producing a fixed number of raw output tokens. Each of the detokenizers
at the end decodes a fixed subset of the output tokens into a modality of the final actions.

unified reference frame, Fu, to align motions across embodi-
ments. As shown in Figure 2(a), this unified frame is attached
to the rigid body where the main camera is mounted. At the
embodiment’s reset pose, the x-axis points forward, aligned
with the workspace and parallel to the ground; the y-axis
points leftward; and the z-axis points upward, perpendicular
to the ground.
Motion mapping. We map the human wrist motions to Lo-
coMan’s end-effector motions, map the human head motions
to LocoMan’s torso motions, and hand poses to LocoMan’s
gripper actions. The 6D poses of the human hand, head,
and wrist poses in SE(3) in the VR-defined world frame
are streamed from the VR set to the Human2LocoMan
teleoperation server. The human head pose is represented as
(xhead

vr ,Rhead
vr ), and the wrist poses are (xr-wrist

vr ,Rr-wrist
vr ) and

(xl-wrist
vr ,Rl-wrist

vr ), where x·
vr denotes the translation and R·

vr
defines the rotation in the VR-defined world frame. Then,
the 6D poses can be transformed into the unified frame Fu
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uni,R

·
uni) = (Rvr
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·
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·
vr), where Rvr

uni is the rotation
matrix of the VR-defined frame relative to the unified frame
Fu.

To initialize the teleoperation for each manipulation
mode, the robot is transferred to a reset pose ran-
domly initialized within a small range, termed as p0 =
(xtorso
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ing the 6D poses of the torso and both end ef-
fectors, and the gripper angles. The human operator
starts to teleoperate the robot after a initializing pos-
ture. The target pose for the robot at time step t,
pt
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Here, αtorso, αr-eef, and αl-eef, are the scaling factors to map
human’s motions to robot’s torso, right end effector, and
left end effector, respectively. xgripper

max and xgripper
min are the

maximum and minimum gripper angles, respectively. dtip
t

represents the distances between the reference finger tips of
both human hands at time step t, and dtip

max is the maximum
finger tip distance for the human operator.
Whole-body controller. The robot target pose at time t,
pt
t, is calculated from the teleoperation server, and sent to

the whole-body controller of the LocoMan robot, which
is adapted from the one introduced in [8]. Please refer to
Appendix Section IV-A for more details.
Data Collection. The details of Human2LocoMan data
collection can be found in Appendix Section IV-B. We ensure
that human and robot data are unified in both format and
spatial interpretation, and can be used to train our proposed
Modularized Cross-Embodiment Transformer introduced in
Section II-C.

C. Modularized Cross-embodiment Transformer
To train a policy on LocoMan that benefits from heteroge-

neous human data, we opt for task-space control in this work,
where the actions predicted by the policy are represented as
key pose parameters of the physical embodiment, such as
the end effector 6D pose and the body 6D pose. Given our
unified multi-embodiment data collection pipeline, we aim to
train a cross-embodiment policy where the overall structure
and the majority of parameters are transferrable. To this end,
we propose a modularized design called Modularized Cross-
embodiment Transformer (MXT). MXT consists mainly
of three groups of modules: tokenizers, transformer trunk,
and detokenizers. The tokenizers act as encoders and map
embodiment-specific observations to tokens in the latent
space, and the detokenizers translate the output tokens from
the trunk to actions in the action space of each embodi-
ment. The tokenizers and detokenizers are specific to one
embodiment and are reinitialized for each new embodiment,
while the trunk is shared across all embodiments and reused
for transferring the policy among embodiments. Figure 3
illustrates the architecture of our network. The design details
and training paradigm of MXT are elaborated in Appendix
Section IV-C and IV-D, respectively.



TABLE I: Result Summary. We report success rate ↑ (SR) in % and task score ↑ (TS) for each task.
Toy Collection Shoe Rack Organization Pouring

Unimanual Bimanual Unimanual Bimanual Bimanual
In-distribution OOD In-distribution OOD In-distribution OOD In-distribution OOD In-distribution OOD

Method Pre-trained Data SR TS SR TS SR TS SR TS SR TS SR TS SR TS SR TS SR TS SR TS

HIT - smaller 54.2 42 41.6 15 45.8 37 41.6 16 87.5 110 50.0 34 66.7 52 25.0 14 66.7 66 8.33 8
HIT - larger 79.2 57 58.3 23 58.3 47 58.3 21 70.8 92 41.7 40 83.3 63 33.3 15 87.5 84 0 4

MXT N smaller 70.8 56 33.3 20 66.7 54 41.7 15 87.5 107 33.3 27 66.7 52 33.3 14 87.5 85 75 38
MXT N larger 87.5 67 83.3 31 70.8 53 41.7 16 83.3 107 25.0 15 75.0 60 58.3 23 79.2 79 66.7 33
MXT Y smaller 91.7 66 83.3 30 83.3 62 83.3 31 87.5 109 58.3 35 79.2 61 58.3 24 91.7 88 83.3 42
MXT Y larger 95.8 67 91.7 34 91.7 67 100 36 100 120 83.3 56 83.3 63 75.0 29 87.5 87 91.7 45

III. EXPERIMENTS

In this section, we aim to answer the following research
questions: (1) How does MXT compare to state-of-the-art
imitation learning architectures? (2) How does human data
collected by Human2LocoMan help with the performance
of imitation learning with regards to its efficiency, robustness,
and generalizability? (3) Do the design choices in MXT
facilitate positive transfer from Human to LocoMan?

A. Experimental Setup
We evaluate MXT on five diverse household manipu-

lation tasks—unimanual and bimanual toy collection, uni-
manual and bimanual shoe rack organization, and bimanual
pouring—under both in-distribution and out-of-distribution
(OOD) settings (Figure 5), using the LocoMan robot and data
collected via the Human2LocoMan system. Success rates
and task scores are used as evaluation metrics, with HIT [13]
and HPT [14] serving as baselines. For detailed information
on the experimental setups, including data statistics, model
hyperparameters, masking strategies for embodiment align-
ment, and training configurations for MXT and the baselines,
please refer to Appendix Section IV-G.

B. Results and Analysis
(1) How does MXT compare to state-of-the-art imitation
learning architectures? We summarize the success rate (SR)
and task score (TS) of our method and HIT across all tasks
in Table I. In most evaluated tasks, spanning both unimanual
and bimanual modes and across both in-distribution and out-
of-distribution inference scenarios, MXT without pretraining
achieves comparable or superior performance relative to HIT.
Moreover, pretrained MXT consistently outperforms the HIT
baseline in terms of both success rate and task score.
(2) How does human data collected by Human2LocoMan
help with the performance of imitation learning with re-
gards to its efficiency, robustness, and generalizability? As
depicted in Table I, the pretraining on human data had a
largely positive effect on Human2LocoMan’s downstream
task performance—when the model is further finetuned on
robot data. The policy can maintain strong performance
when the robot data is scarcer, underscoring its efficiency
and robustness. Our intuition is that the MXT is able to
learn helpful complementarities (positive transfer artifacts)
between the human and LocoMan data. The superior perfor-
mance on OOD objects in tasks including TC-Bi, SO-Uni,
and Pouring indicates that MXT is capable of adapting to
scenarios unseen in the robot training data by learning from
the human data on those scenarios in the pretraining stage.
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Fig. 4: Ablation study on unimanual and bimanual toy
collection. We compare MXT, its ablation MXT-Agg, and
baseline HPT on SR and TS. Here, 100 denotes the larger
training set (40 trajectories for TC-Uni, 60 for TC-Bi), while
50 denotes the smaller set (20 for TC-Uni, 30 for TC-Bi).

(3) Do the design choices in MXT facilitate positive transfer
from Human to LocoMan? Our framework presents positive
cross-embodiment transfer despite substantial embodiment
gaps. For comparisons, we provide SR and TS results from
36 trials in Fig. 4(b). HPT performs consistently worse than
MXT, both when finetuned and trained from scratch. We at-
tribute part of this performance gap to HPT using frozen im-
age encoders by default. We also provide additional ablations
of MXT where we aggregate the input modalities, tokenize
them with a single tokenizer, and decode actions with a single
detokenizer; this baseline (marked with “Agg” in Fig. 4(b))
incorporates the key HPT designs, while finetuning the vision
encoders and remaining architecturally comparable to MXT.
MXT consistently benefits from pretraining and outperforms
this baseline when both are finetuned, highlighting the ad-
vantage of modularized tokenization for leveraging human
data. Notably, MXT-Agg sometimes transfers suboptimally,
likely due to the lack of modular design and the trade-off
between improved performance from adaptive tokenization
(image encoder finetuning) and reduced trunk transferability.

IV. CONCLUSIONS

In this paper, we presented Human2LocoMan, a frame-
work for flexible data-collection via human demonstrations,
teleoperation, and cross-embodiment training for versatile
quadrupedal manipulation skills on the open-source Loco-
Man platform. Our data-collection framework unifies the
action space of both human and robot, enabling the system to
bridge the gap between diverse agent morphologies; with this
framework we provide the first quadrupedal manipulation
dataset for the LocoMan platform, which we use for policy
training across different embodiments (human, LocoMan)
and different operating modes (unimanual, bimanual). We
demonstrated the effectiveness of our framework on five
challenging household tasks with significant performance
improvements compared to strong baselines.
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APPENDIX

A. Human2LocoMan Whole-Body Controller

The robot target pose at time t, pt
t, is calculated from the

teleoperation server, and sent to the whole-body controller
of the LocoMan robot, which is adapted from the one
introduced in [8], a unified whole-body controller designed
to track the desired poses of the torso, end effectors, and
feet across multiple operation modes. We employ null-space
projection for kinematic tracking and quadratic programming
for dynamic optimization to compute the desired joint posi-
tions, velocities, and torques. To handle the large embod-
iment gap between the human and the LocoMan robots,
and facilitate smooth teleoperation of a dynamic quadrupedal
platform with whole-body motions, we consider the handle
and recovery from robot’s joint limits, singularity, and self-
collision, and fast motions. We compute the manipulability
index as:

Imani =
√

det(JJ⊤) (2)

to assess the proximity of the target pose to singularity, where
J represents the Jacobian of the robot’s manipulator at the
target pose. If Imani falls below a predefined threshold τmani,
the target pose is considered near singularity. To detect self-
collisions, we utilize the Pinocchio library [15] to compute
collision pairs among the robot’s body parts. If any of the
following conditions are met—joint limit violation, singu-
larity, or self-collision—the whole-body controller tracks
pt
t−1 instead of pt

t. To mitigate rapid movements, we apply
linear interpolation between xtorso,t

uni,t and xtorso,t
uni,t−1, xr-eef,t

uni,t and
xr-eef,t

uni,t−1, xl-eef,t
uni,t and xl-eef,t

uni,t−1, as well as θgripper,t
t and θgripper,t

t−1 .
Additionally, quaternion interpolation is applied between
Rtorso,t

uni,t and Rtorso,t
uni,t−1, Rr-eef,t

uni,t and Rr-eef,t
uni,t−1, and Rl-eef,t

uni,t and
Rl-eef,t

uni,t−1 to smooth large action variations.

B. Human2LocoMan Data Collection

We record the robot data {DR
t }Tt=1 during teleoperation,

where DR
t = {oR

t ,a
R
t } is the robot data at time step t

including the robot observations oR
t and robot actions aR

t , and
T is the episode length. We define the IR

main,t and IR
wrist,t are

images obtained from the robot’s main stereo camera and the
wrist camera, respectively. Then, we can formulate oR

t and
aR
t in the dataset as follows.

oR
t [main image] := Imain,t,

oR
t [wrist image] := Iwrist,t,

oR
t [body pose] := [xtorso

uni,t,R
torso
uni,t],

oR
t [EEF pose] := [xr-eef

uni,t,R
r-eef
uni,t,x

l-eef
uni,t,R

l-eef
uni,t],

oR
t [EEF to body pose] := [xr-eef

uni,t − xtorso
uni,t, (R

torso
uni,t)

⊤Rr-eef
uni,t

xl-eef
uni,t − xtorso

uni,t, (R
torso
uni,t)

⊤Rl-eef
uni,t],

oR
t [gripper angles] := θgripper

t ,

aR
t [body pose] := [xtorso, t

uni,t ,Rtorso, t
uni,t ],

aR
t [EEF pose] := [xr-eef, t

uni,t ,Rr-eef, t
uni,t ,xl-eef, t

uni,t ,Rl-eef, t
uni,t ],

aR
t [gripper angles] := θgripper, t

t
(3)

We record the human data {DH
t }Tt=1 in real time during

human’s manipulation. Similarly, the human data at time step
t DH

t = {oH
t ,a

H
t } can be defined by human observations oH

t

and human actions aH
t as follows.

oH
t [main image] := IHmain,t,

oH
t [body pose] := [xhead

uni,t,R
head
uni,t],

oH
t [EEF pose] := [xr-wrist

uni,t ,Rr-wrist
uni,t ,xl-wrist

uni,t ,Rl-wrist
uni,t ],

oH
t [EEF to body pose] := [xr-wrist

uni,t − xhead
uni,t, (R

head
uni,t)

⊤Rr-wrist
uni,t

xl-wrist
uni,t − xhead

uni,t, (R
head
uni,t)

⊤Rl-wrist
uni,t ],

oH
t [grasping states] := θgripper

t ,

aH
t [body pose] := [xhead, t

uni,t ,Rhead, t
uni,t ],

aH
t [EEF pose] := [xr-wrist, t

uni,t ,Rr-wrist, t
uni,t ,

xl-wrist, t
uni,t ,Rl-wrist, t

uni,t ],

aH
t [grasping actions] := θgripper, t

t
(4)

C. Design Details of MXT
Tokenizers. The tokenizers T transform raw observations
into tokens for the transformer trunk. Drawing from the
design in previous works [16], we use a cross attention
layer to format observational features into a fixed number
of tokens. For image inputs, the features are obtained from
a pre-trained ResNet encoder that can be fine-tuned during
training; for proprioceptive or state-like inputs, the features
are computed by passing the raw input through a trainable
MLP network.
Detokenizers. The detokenizers D serve as action decoder
heads and map output tokens from the trunk to actions
in each embodiment’s action space. We adopt the action
chunking technique [17]. At each inference step, the detok-
enizers predict an action sequence of h steps and temporal
ensembling is applied to the outputs, following [17]. Within
each detokenizer, we use a cross attention layer to transform
the latent action tokens output by the trunk to a sequence of
actions with length h and appropriate action dimensions.
Trunk. The trunk is an encoder-decoder transformer, where
the input sequence length and the output sequence length
are both fixed, as the number of tokens for each input or
output modality is fixed by design. By sharing the trunk
weights across the human and robot embodiments, the trunk
is trained to capture the common decision making patterns
across different embodiments.
Modality Decomposition in Tokenizers / Detokenizers.
Due to the aligned data format and the unified observation
and action spaces across embodiments, we are able to
separately transform each semantically distinct component
of the observational input and the action output, which
we refer to as modality, and specify the compositional
structure at the interface of the transformer trunk and the
tokenizers / detokenizers. This design provides another layer
of modularization to training and is core to the effectiveness
of our method.

Concretely, for tokenization in the embodiment e, we
encode the input observation ot with multiple tokenizers



{Te,mi
} at the finer granularity of modalities denoted by

ot[mi]. For instance, instead of aggregating all image inputs
before passing through the vision tokenizer, we use separate
tokenizers for each camera view. All the encoded modalities
are concatenated to compose the input tokens to the trans-
former trunk.

Similarly, for detokenization, we specify the subset of
the transformer output tokens corresponding to each action
modality, e.g. body pose, end effector pose, and gripper
angles, and decode the selected tokens to yield each modality
with separate detokenizers {De,mi}. For convenience, we use
the set of observation and action modalities as defined by the
data collection formats in (3) and (4).

By explicitly decomposing the input and output modalities
and encoding them separately, we are leveraging the innate
structure of observations and actions and imposing such a
structure on the tokens processed by the transformer. Conse-
quently, the knowledge of how to process different modalities
learned during training can be shared across embodiments,
fostering efficient transfer of the policy.

Although we employ a consistent data format and
aligned input/output representations across embodiments,
some modalities are not present or available for all embod-
iments. For example, the human operator is not equipped
with a wrist camera, while the LocoMan robot has a wrist
camera in some tasks to improve manipulation accuracy. In
this case, we use masks defined during data collection to
signify redundant dimensions in the observations as well as
in the action labels. We refer the reader to Section IV-H for
more implementation details.

In general, the highly modularized design of our learning
framework offers great flexibility in handling all types of
manipulation tasks across different embodiments, and effec-
tively enhances the learning performance by capturing the
common patterns in manipulation problems.

D. MXT Training Paradigm

We leverage the human data to pretrain the network for
versatile manipulation policies. Specifically, for a given task,
we first pretrain our network with the human dataset, and
then finetune it with the LocoMan dataset (Algorithm 1).
Only the transformer trunk weights are loaded from the
pretrained checkpoint for finetuning. For certain tasks that
are similar in nature but with different manipulation modes,
we also collectively pretrain the model on the human datasets
from these tasks, and then finetune on each task with the
corresponding LocoMan dataset.
Learning Objective. We use the behavioral cloning objective
for both pre-training and fine-tuning. In general, given a
dataset De on an embodiment e and aligned action modalities
m1, ...,mk, the total loss to optimize when training on e is:

Le(θ) =

k∑
i=1

Le,mi
(θ), (5)

where Le,mi
is the ℓ1 loss of the action modality mi with

respect to the dataset of embodiment e.

Algorithm 1 Pretraining MXT on human data and finetuning
on LocoMan data
Require: Human dataset Dhuman, LocoMan dataset
DLocoMan

Ensure: Policy π for versatile LocoMan manipulation
Initialize the MXT policy network π
for n = 1, 2, ... do ▷ Pretraining Stage

Sample a batch from Dhuman

Optimize the MXT policy π with the BC objective 5
on the batch
Reinitialize the tokenizers and detokenizers of π
for n = 1, 2, ... do ▷ Finetuning Stage

Sample a batch from DLocoMan

Optimize the MXT policy π with the BC objective 5
on the batch

E. Human2LocoMan Embodiments

Notably, the unimanual and bimanual modes represent
distinct embodiments, each differing in morphology, obser-
vations, and action spaces (Table II).
TABLE II: Human2LocoMan embodiments
(LM=LocoMan).

Embodiments Head Wrist Body R-EEF L-EEF Body R-EEF L-EEF R-Grasp L-Grasp
Images Image Priop. Priop. Priop. Pose Pose Pose Action Action

Human-Uni (R) ✓ × ✓ ✓ × ✓ ✓ × ✓ ×
Human-Uni (L) ✓ × ✓ × ✓ ✓ × ✓ × ✓
Human-Bi ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
LM-Uni (R) ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ×
LM-Uni (L) ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × ✓
LM-Bi ✓ × ✓ ✓ ✓ × ✓ ✓ ✓ ✓

F. Related Work

Embodiments for Diverse Loco-Manipulation Skills:
Learning manipulation skills on quadrupedal robots has
shown promise and popularity in recent years, due to the
versatility and mobility of the platforms. Many manipula-
tor configurations and capabilities have been proposed for
quadrupeds, including non-prehensile manipulation using the
quadruped’s legs or body (e.g., dribbling a soccer ball,
pressing buttons, closing appliance doors, etc.) [18]–[25],
using a back-mounted arm for tabletop tasks [26], [27], or us-
ing leg-mounted manipulators for spatially-constrained (e.g.,
reaching toys underneath furniture) or bi-manual manipula-
tion tasks [8]. In this work, we take inspiration from the
open-source LocoMan hardware platform [8], with two leg-
mounted manipulators, which enable the training of policies
across challenging tasks and multiple operating modes.
Learning Versatile Quadrupedal Manipulation: Rein-
forcement learning (RL) has been used for training indi-
vidual non-prehensile manipulation skills [18], [19], [21]–
[25], [28]–[33] and for training whole-body controllers to
track end-effector poses for uni-manual grasping [27], [34]–
[39]; here, policies are trained in simulation then transferred
to the real robot platform, often with high cost in training
complexity and training time. To mitigate some of these
issues, imitation learning (IL) allows robots to directly learn
from expert demonstrations [9], [40]–[42] and thus provides
an alternative approach for efficiently acquiring more general



manipulation skills [43]–[47]. However, collecting robot data
for quadrupedal platforms remains challenging, due to their
high degrees of freedom and the need for stable whole-
body controllers. Prior works have trained non-prehensile
quadrupedal manipulation policies by learning from demon-
strations collected in simulation [48], or grasping policies
for a top-mounted arm using data collected from real-
world demonstrations [38], [49], [50]. Our work introduces a
scalable way of achieving more versatile manipulation skills
on quadrupedal platforms encompassing both single-gripper
and bi-manual manipulation tasks, using a small amount of
robot data combined with human demonstrations collected
via our novel teleoperation and data collection system.
Data Collection for Imitation Learning: Various methods
have been utilized to collect data for imitation learning.
Joysticks and spacemouses [51]–[53] are commonly used to
directly teleoperate the robot for data collection. Cameras are
employed to capture human motions and map them to the
robot [11], [13], [54]–[56]. VR controllers provide a more
intuitive way for the human to teleoperate the robot with
visual or haptic feedback for dexterous manipulation tasks
on robot arms, quadrupeds, and humanoid robots [12], [50],
[57]–[61]. While most above works teleoperate the robot
in task space, other works employ ex-skeleton or leader-
follower systems to collect robot demonstrations by mapping
the joint positions of the leader system to the robot [17], [58],
[62]–[64]. To ease the burdens of teleoperating real robots
and to scale up data collection, recent works have achieved
success by collecting human demonstrations in the wild with
AR-assist [65] or hand-held grippers [49], [66], although
these are constrained to a specific robot or end-effector
type. Other works enable more ergonomic data collection
with body-worn cameras [67], [68] or VR glasses [58]. We
introduce a unified framework to collect cross-embodiment
data including both robot and human demonstrations, where
the teleoperation system considers the whole-body motions
of the embodiments to extend its workspace and actively
sense the environment. The different manipulation modes
of both the robot and human are regarded as different
embodiments and the collected data can be used for model
pre-training.
Cross-Embodiment Learning: Drawing from the success
of foundation models in computer vision and natural lan-
guage, there are many endeavors to replicate the success
in robotics by training generalist policies on large-scale
data from different embodiments [16], [69]–[73]. However,
this remains an open challenge due to the heterogeneity
of robot embodiments, and gaps in kinematics, vision, and
proprioception.

Different neural architecture were proposed to handle the
heterogeneity. CrossFormer [73] formulated policy learning
as a sequence-to-sequence problem, so that any number of
camera views or proprioceptive sensors can be handled as
sequence of tokens, and add special readout tokens as part
of the input sequence. In comparison, HPT [16] features a
modularized structure and maps the variable observations to
a fixed number of number tokens. In our work, we propose

Fig. 5: Objects utilized in our experiments. The highlighted
objects are out-of-distribution (OOD) objects for robot fine-
tuning, while all the objects are utilized for human pretrain-
ing and real-robot evaluation. (a) Toy collection. (b) Shoe
rack organization. (c) Pouring.

Modularized Cross-embodiment Transformer (MXT) that
also employs a modularized design, but further enhances
the modularity by identifying fine-granular alignment of data
modalities between embodiments.

Notably, EgoMimic [58] proposed the idea that human
be treated as another embodiment and demonstrated posi-
tive transfer by co-training on human and robot data. To
achieve such positive transfer, EgoMimic minimizes human
and robot kinematic gap by choosing a human-like robot
embodiment, proprioception gap by normalizing and align
action distributions, and appearance gap with visual masking.
In comparison, Human2LocoMan is more flexible and scal-
able, transferring from human to quadruped without explicit
domain alignment.

G. Experiment Setups

1) Tasks: We evaluate MXT on five household tasks of
varying difficulty, across unimanual and bimanual manipu-
lation modes of the LocoMan robot, with data collected by
the Human2LocoMan system:

• Unimanual Toy Collection (TC-Uni). In this task, the
robot must pick up a toy randomly positioned within a
rectangular area and place it into a designated basket
on the ground. Completing this task requires the robot
to coordinate its whole-body motions to efficiently and
accurately reach various locations on the ground and
above the basket. As shown in Figure 5, we use 10
objects for robot finetuning and all objects for human
pretraining and real-robot evaluation.

• Bimanual Toy Collection (TC-Bi). Similar to Unimanual
Toy Collection, this task requires the robot to pick up
a toy randomly placed within two rectangular areas on
either side of a basket. We use 10 objects for robot
finetuning, while all objects are included in human
pretraining and real-robot evaluation.

• Unimanual Shoe Rack Organization (SO-Uni). This
longer-horizon task involves organizing two shoes
placed on different levels of a shoe rack. The robot must



TABLE III: Records of data collection for different tasks.

Task # human traj. human time (min) # robot traj. robot time (min)

TC-Uni 240 20 160 16
TC-Bi 315 22 100 10
SO-Uni 240 34 90 23
SO-Bi 200 20 120 15
Pouring 210 40 70 25

coordinate whole-body motions to reach various rack
levels and utilize both prehensile and non-prehensile
manipulation skills. As shown in Figure 5, this task
involves three pairs of shoes, with one pair being out-
of-distribution (OOD).

• Bimanual Shoe Rack Organization (SO-Bi). One pair of
shoes is randomly placed at the edge of the third level
of the shoe rack. The robot must push one shoe inward
and align it with the other.

• Pouring. The robot performs bimanual manipulation
to pour a Ping Pong ball from one cup to another.
This longer-horizon task requires the robot to accurately
reach both cups, which are randomly placed within a
rectangular area on a table, lift one cup, pour the ball
into the other, and then place both cups back on the
table. This task evaluates the coordination and precision
of the robot’s bimanual manipulation.

2) Data collection: For each task, we collect vari-
ous numbers of human and robot trajectories with the
Human2LocoMan system. The details of the collected data
are demonstrated in Table III. About 10% data of each task
is used for validation.

3) Training details.: We pretrain a model for TC that
utilizes the human data of both unimanual TC and bimanual
TC, then we finetune the model on each TC task with its
robot data. Similarly, we pretrain a model for SO that utilizes
the human data of both unimanual SO and bimanual SO, then
we finetune the model on each SO task with its robot data.
For each task, we choose a set of training hyperparameters
(e.g. batch size, chunk size) that are kept the same for
all methods (see Section IV-L.) We also listed the model
hyperparameters we use for our method and the baselines in
the Section IV-H and IV-I.

4) Baselines: We compare Human2LocoMan to the fol-
lowing SOTA imitation learning baselines:

• Humanoid Imitation Transformer (HIT): HIT [13] is
an imitation learning framework designed for humanoid
skill learning that also extends to any robot embodiment.
It builds upon ACT [17] and employs a decoder-only
architecture that simultaneously predict the future action
sequence and future image features. It discourages the
vision-based policy to ignore the visual input and overfit
on proprioceptive states by introducing a L2 image
feature loss to the original behavioral cloning policy.
HIT itself is not capable of handling data from different
domains and embodiments, and we position HIT as a
reference implementation that efficiently learns from in-
domain robot demonstrations.

• Heterogeneous Pretrained Transformer (HPT):

HPT [16] is a framework for learning from vast
amounts of data collected from humans, teleoperation,
simulation, and real-life robots. HPT also has a
modularized design and consists of the stems, the
trunk, and the head, where the stems and heads
are similar to our tokenizers and detokenizers. The
trunk is designed to capture the complex mapping
between the input and output in a unified latent
space through large-scale pretraining. Note that
HPT is established in a different context than ours:
while HPT focuses on scaling up robot imitation
learning, our work emphasizes transferring from one
embodiment to another on a given task. Consequently,
the implementation of HPT differs from our framework
in several key aspects. Firstly, we leverage the unified
observation and action frames to align data from
different embodiments on the modality level, while
HPT can only construct tokenizers for all image or
proprioceptive data, and one detokenizer for all action
dimensions. The ResNet image encoder in HPT is also
frozen to achieve efficient learning with large models,
while we opt to finetune the ResNet encoder along
with the whole network end-to-end to better account
for the visual gap between embodiments.

More implementation details of these baselines can be found
in Section IV-I. For the HPT baseline, we train with several
different settings: training with only LocoMan data, pre-
training with our human data and finetuning on LocoMan
data, and directly finetuning the released HPT checkpoints
with LocoMan data. For the HIT baseline, we only train on
LocoMan data, as it is unable to incorporate human data.

5) Evaluation Metrics: We present the evaluation results
using three metrics: i) success rate (SR), ii) task score (TS),
and iii) validation loss.

To calculate the success rate and task score, we perform
a fixed number of real world rollouts using the evaluated
method for one task. The policy is rolled out for a fixed
number of times with in-distribution (ID) objects or out-of-
distribution (OOD) objects, as shown in Table IV.

For each task, we specify a few critical subgoals in order
to complete the task in full. When calculating the task score,
reaching each intermediate subgoal counts as 1 point, and
reaching the final goal, i.e., completing the task, rewards 2
points. The final task score is summed over all the rollouts
on this task. The success rate for one method on one task
with either the in-distribution or OOD setting is computed as
the ratio of successful (i.e., where all subgoals are reached)
rollouts in all performed rollouts.

In addition, we report the best validation loss as another
metric for training performance. Because it is much easier to
evaluate validation loss, we are able to conduct more ablation
on how the performance scales with the data size.

H. Implementation and Training details of MXT

Training Details. We list the training optimizer and the
transformer trunk hyperparamters in Table V. These hyper-
parameters are kept the same for all our experiments.



TABLE IV: Number of rollouts for each task on in-
distribution (ID) objects and out-of-distribution (OOD) ob-
jects.

Task # ID rollouts # OOD rollouts

Unimanual Toy Collection 24 12
Bimanual Toy Collection 24 12
Unimanual Shoe Rack Organization 10 5
Bimanual Shoe Rack Organization 24 12
Pouring 8 4

TABLE V: MXT trunk and training hyperparameters

Hyperparameters Value

optimizer AdamW

learning rate 5e-5 (finetuning/from scratch)
1e-4 (pretraining)

scheduler constant
weight decay 1e-4

trunk encoder layers 4
trunk decoder layers 4
hidden dim 128
transformer feedforward dim 256
#attention heads 16

Cross Attention in Tokenizers and Detokenizers. In the to-
kenizers of MXT, we use a simple cross attention mechanism
to transform the input feature of indefinite length into a fixed
number of tokens. For the attention layer in all tokenizers,
the hidden dim is 128, the number of attention heads is 4,
each with a head dimension of 32, and the dropout rate is
0.1. Other hyperparameters of each tokenizer are shown in
Table VI.

Similarly, we also use cross attention to decode the action
modalities in detokenizers from a fixed number of output
transformer tokens. For the attention layer, the number of
attention heads is 4, each with a head dimension of 16,
and the dropout rate is 0.1. Other hyperparameters of each
detokenizer are shown in Table VII
Masks for aligning embodiment modalities. We mentioned
that masks are needed to exclude redundant dimensions or
modalities that are not present in some embodiment, and
here we give a more detailed description of our implemented

TABLE VI: MXT tokenizer hyperparameters

Modality Input dimensions #tokens MLP widths

main image (3, 480 1280) 16 N/Awrist image (3, 480, 640) 8

body pose (6,) 4

[128, 128]EEF pose (12,) 4
EEF to body pose (12,) 4
gripper angles (2,) 4

TABLE VII: MXT detokenizer hyperparameters

Modalities Output dimensions #tokens

body pose (6,) 6
EEF pose (12,) 6
gripper angle (2,) 6

masks.
a) Masks on images. We recognize that some image view

are not available for all embodiments and tasks. In our
current framework, we assume there are at most two camera
views (or image modalities): the main camera and the wrist
camera. However, this can be easily extended within our
framework to cater to any number of camera views. When
one of these camera views is not present, we directly mark
this in the transformer mask of the trunk and fill in dummy
tokens in the corresponding positions, so that the positions
associated with this image modality will not be attended on.

b) Masks on proprioceptive states. In some cases, the
proprioceptive states may have some or all dimensions that
should not be considered for the task. For example, in single-
arm tasks, the poses of the left end effector, or the last half
of the end effector pose modality, will not be considered, and
in bimanual tasks where the LocoMan body is upright, the
body pose is fixed and therefore redundant in the observa-
tions. When part of a proprioception modality are redundant
dimensions, we apply zero padding on these dimension and
perform encoding through the tokenizer as usual. Different
from how we treated masked image modalities, this has no
effect on the transformer mask of the trunk. When an entire
proprioception modality should be disregarded, however, we
handle this modality in a similar to the image modalities and
apply the transformer mask accordingly.
Data Normalization. For both human and LocoMan data,
we apply data normalization on observations and action
labels. For non-image data, we estimate the per-dimension
mean the standard deviation from the dataset, and normalize
the data with the usual approach:

x̄t =
xt − mean

std
.

For image data, the mean and standard deviation are set as
the ImageNet statistics for the RGB channels: mean = [0.485,
0.456, 0.406], and std = [0.229, 0.224, 0.225]. The images
are normalized in the same way with these parameters.
Dropout in Pretraining. We discover that increasing the
dropout in transformer trunk can improve the finetuning
performance for MXT. In general, we find that setting
the pretraining dropout rate to 0.4 yields reasonably good
performance on all tasks. When training with LocoMan
data, including training from scratch and finetuning, the
transformer trunk dropout rate is reverted to 0.1.

I. Implementation details of baselines

HIT. Our implementation of Humanoid Imitation Trans-
former [13] is based on the released codebase, with only
minor modifications to accommodate our data format. The
hyperparameters used for training are summarized in Table
VIII.
HPT. We follow the original implementation of HPT [16],
with the main exception that we changed the data normal-
ization method so as to align with the approach of other
frameworks and to have a fair comparison of the validation
loss. The hyperparameters we used when training HPT are
summarized in Table IX.



TABLE VIII: HIT hyperparameters

Hyperparameters Value

optimizer AdamW
learning rate 2e-5
scheduler constant
weight decay 1e-4
encoder layers 4
decoder layers 4
hidden dim 128
#attention heads 8
feature loss weight 0.001
image backbone ResNet18

TABLE IX: HPT hyperparameters

Hyperparameters Value

optimizer AdamW

learning rate 5e-5 (finetuning/from scratch)
1e-4(pretraining)

scheduler constant
weight decay 1e-4

trunk
#transformer blocks 16

hidden dim 128
feedforward dim 256
#attention heads 8

action head
#attention heads 8

head dim 64
dropout 0.1

output dim 20

image stem
encoder ResNet18

MLP widths [128]
#tokens 16

state stem
MLP widths [128]

#tokens 16

J. OOD Analysis

Figure 6 showcases different subtask success rates for
subtasks of various manipulation skills, including picking,
pouring, placing for pouring, and pushing, tapping, and
transferring for SO-Uni. MXT maintains the performance
consistently for most subtasks, indicating its robustness to
unseen task settings.

K. Validation Loss Analysis

From Figure 7, we find that MXT demonstrates lower
validation loss compared to HIT on most tasks, indicating
superior training convergence. The performance improve-
ment is particularly evident in tasks with larger datasets,
suggesting that MXT scales more effectively with increasing
data availability. For the more complex Shoe Rack Organi-
zation task, MXT achieves validation loss on par with HIT
despite the challenge of whole-body coordination. It shows
that MXT achieves better or equivalent training efficiency
compared to HIT across various household tasks.

We also provide validation loss results, in comparison
with HPT in Figure 8, which shows strong performance
of our method in the Toy Collection (TC) and Pouring

TABLE X: Global training parameters for each task

Task Mode Batch Size Training Steps Chunk Size

Toy Collection Single 16 60000 60
Bimanual 16 60000 60

Shoe Organization Single 24 80000 180
Bimanual 24 100000 120

Pouring Bimanual 24 80000 180

(Pour) and equivalent performance in the challenging Shoe
Organization (SO) task in greater number of demonstrations.
It is worth noting that we observe severe overfitting in HPT
experiments when training on our own datasets, which is
not observed in MXT. This further suggests that the MXT
architecture induces better generalization by leveraging a
more modularized design. However, we do observe that the
performance advantage is not consistent across all tasks, and
the relative performance of MXT, in either the in-distribution
or OOD case, is strongly correlated with the task type.
This suggests that the data quality could play an important
role in the effectiveness of our method, which we intend to
investigate as part of our future work.

From Figure 8, we find that the MXT-Finetuned model
shows a significant reduction in validation loss compared to
MXT-FromScratch, highlighting the benefits of pretraining
on human demonstrations. Similarly, HPT-Finetuned out-
performs HPT-FromScratch, but MXT-Finetuned achieves
lower validation loss than all HPT models. The HPT-Small
and HPT-Base models do not generalize as well as MXT-
Finetuned. By comparing HPT-From Scratch with HPT-
Finetuned, we find that the performance is not improved by
pretraining with our collected human data on HPT. These
indicate the benefits of the modularized design of MXT to
consume human data which has a large embodiment gap
from the LocoMan data.

L. Global task-specific training parameters

We choose a set of training parameters for each specific
task, and we keep these settings aligned across all methods
as listed in Table X.
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Fig. 6: This figure illustrates the performance of MXT on the pouring (upwards) and unimanual SO-Uni (downwards) tasks
with OOD settings respectively. The right figures demonstrate the success rates of the subtasks for each task.
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Fig. 7: Best validation loss of our method and HIT on
all our tasks. MXT-FromScratch: Ours, trained only on
LocoMan data. MXT-Finetuned: Ours, pretrained on human
dataset (including unimanual and bimanual if applicable),
then finetuned on LocoMan data. Task and mode identifiers:
TC - Toy Collection, SO - Shoe rack Organization, Pour -
Pouring, Uni - Unimanual mode, Bi - Bimanual mode. The
number suffix denotes the number of demonstrations in the
LocoMan training set.
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Fig. 8: Best validation loss of our method and HPT on
the unimanual Toy Collection task. MXT-FromScratch:
Ours, trained only on LocoMan data. MXT-Finetuned:
Ours, pretrained on human dataset (including unimanual and
bimanual if applicable), then finetuned on LocoMan data.
HPT-FromScratch: HPT network trained only on LocoMan
data. HPT-Finetuned: HPT trunk pretrained on our human
data, then finetuned on LocoMan data. HPT-Small: Finetune
with our LocoMan data with HPT trunk initialized with
released HPT-Small weights. HPT-Base: Finetune with
our LocoMan data with HPT trunk initialized with released
HPT-Base weights. See Fig. 7 for task identifiers.
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