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Fig. 1: Human2LocoMan provides a unified framework for collecting human demonstrations and teleoperated robot whole-
body motions, enabling flexible and scalable data collection. Human data is used for cross-embodiment model pretraining,
while robot data is leveraged for policy finetuning. Human2LocoMan achieves positive transfer from human to quadrupedal
embodiments, facilitating versatile quadrupedal manipulation.

Abstract— Quadrupedal robots have demonstrated impres-
sive locomotion capabilities in complex environments, but
equipping them with autonomous versatile manipulation skills
in a scalable way remains a significant challenge. In this work,
we introduce a system that integrates data collection and imita-
tion learning from both humans and LocoMan, a quadrupedal
robot with multiple manipulation modes. Specifically, we intro-
duce a teleoperation and data collection pipeline, supported by
dedicated hardware, which unifies and modularizes the observa-
tion and action spaces of the human and the robot. To effectively
leverage the collected data, we propose an efficient learning
architecture that supports co-training and pretraining with
multimodal data across different embodiments. Additionally, we
construct the first manipulation dataset for the LocoMan robot,
covering various household tasks in both unimanual and biman-
ual modes, supplemented by a corresponding human dataset.
Experimental results demonstrate that our data collection and
training framework significantly improves the efficiency and
effectiveness of imitation learning, enabling more versatile
quadrupedal manipulation capabilities. Our hardware, data,
and code will be open-sourced at: https://human2bots.github.io.

I. INTRODUCTION

While quadrupedal robots have demonstrated impressive
locomotion capabilities in complex environments [1]–[7],

and recent advances have extended their abilities to manip-
ulation tasks [8]–[14], enabling autonomous and versatile
quadrupedal manipulation at scale remains a major chal-
lenge. In this work, we take inspiration from the open-source
LocoMan platform [14], a quadrupedal robot equipped with
two leg-mounted loco-manipulators, which offers a versatile
foundation for learning manipulation skills across multiple
operating modes. Imitation learning has long been a funda-
mental approach for teaching robots complex skills through
demonstrations [15], with the acquisition of high-quality data
being critical for achieving efficient and effective learning.
Prior works have explored various strategies for collecting
in-domain robot data, primarily focusing on robot arms [16]–
[19], humanoid robots [20]–[22], and quadrupeds equipped
with top-mounted arms [10], [11], [23]. However, collecting
egocentric manipulation data on a quadrupedal platform like
LocoMan remains underexplored. To scale up data collec-
tion for imitation learning, recent works propose leveraging
simulation data [24]–[26] or human data [17], [27]–[31].
Human data, in particular, have been used to provide high-
level task guidance [17], [28], improve visual encoders [29],
simulate in-domain robot data [27], [30], or serve as ad-
ditional training data by treating humans as an alternative
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Fig. 2: Human2LocoMan framework. (a) The data collection system leverages an XR headset to collect egocentric human
data and teleoperated robot data. Human and robot data are mapped to a unified coordinate frame. (b) The dataset consists of
aligned vision, proprioception, and actions from the human and the robot. (c) During training, the network is first pretrained
on easy-to-collect human data, and then finetuned on a small amount of robot data. (d) We evaluate the autonomous
Human2LocoMan policies on six household tasks in unimanual and bimanual modes.

embodiment with similar kinematic structures [31]. How-
ever, transferring skills from humans to quadrupedal robots
remains challenging due to the substantial embodiment gap,
which complicates both data collection and policy transfer.
To address these challenges, we propose Human2LocoMan,
a unified framework that bridges the human-to-quadruped
gap. Human2LocoMan introduces a novel teleoperation and
data collection system that aligns human and robot data,
coupled with a modular transformer-based architecture for
robust cross-embodiment learning. Together, these compo-
nents enable scalable learning of versatile manipulation skills
on quadrupedal robots.

Specifically, to enable scalable data collection, our system
leverages an extended reality (XR) headset to capture human
motions while streaming a first-person or first-robot (during
teleoperation) view to the operator. For human data collec-
tion, the operator simply wears the XR headset and performs
tasks naturally. During teleoperation, we align the human
and quadruped into a unified coordinate frame to bridge
the embodiment gap. In addition to mapping human hand
motions to the robot’s grippers, we map human head motions
to the robot’s torso, expanding the robot’s workspace and
enhancing active sensing capabilities. Target poses are then
passed to a whole-body controller to generate coordinated
robot motions.

In contrast to works that use egocentric human data to pre-
train vision encoders [29] or learn high-level intent [17], we
treat the human as another embodiment and use human data
for cross-embodiment learning. Despite mapping human and
robot data to a unified frame, there exist obvious gaps ranging
from differences in dynamics to extra wrist cameras on the
robot. Thus, we design a modular transformer architecture,
Modularized Cross-embodiment Transformer (MXT), which
shares the transformer trunk, but has embodiment-specific
tokenizers / detokenizers. To enable positive transfer, the
MXT policy is first pretrained on human data and subse-
quently finetuned with a small amount of robot data. We

evaluate our approach on six household tasks, across both
unimanual and bimanual manipulation modes. Our results
demonstrate strong task performance by MXT compared to
competitive baselines, effective positive transfer from human
demonstrations to robot policies, and increased robustness
to both in-distribution (ID) and out-of-distribution (OOD)
scenarios.

II. METHODOLOGY

In this section, we present the design and implementation
of our system, Human2LocoMan, which integrates teleop-
eration, data collection, and a Transformer-based architecture
for cross-embodied learning.

A. Human2LocoMan System Overview

We utilize the Apple Vision Pro headset and the Open-
Television system [21] to capture human motions and stream
first-person or first-robot video to the human operator. A
lightweight stereo camera with a 120-degree horizontal field
of view is mounted on both the VR headset and the LocoMan
robot to provide egocentric views, while additional cameras,
such as RGB wrist cameras, can be optionally attached to the
robot. Through the Human2LocoMan teleoperation system
(Section II-B), the human operator can control the LocoMan
robot to perform versatile manipulation tasks in both uniman-
ual and bimanual modes. In the unimanual mode, we also
map human head motions to the robot’s torso movements
to expand the teleoperation workspace and enhance active
sensing. The Human2LocoMan system enables the collec-
tion of both human and robot data, transforming them into
a shared space. Masks are applied to distinguish across dif-
ferent embodiments and manipulation modes. The collected
human data are used to pretrain an action model called the
Modularized Cross-embodiment Transformer (MXT). The
in-domain robotic data collected via teleoperation are used to
finetune the pretrained model to learn a manipulation policy
that predicts the 6D poses of LocoMan’s end effectors and
torso, as well as gripper actions.
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Fig. 3: Modularized Cross-embodiment Transformer (MXT) architecture. The inputs are organized as a list of modalities
and encoded each by a separate tokenizer into a fixed number of tokens. The transformer trunk handles decision making by
consuming the concatenated encoded tokens and producing a fixed number of raw output tokens. Each of the detokenizers
at the end decodes a fixed subset of the output tokens into a modality of the final actions.

B. Human2LocoMan Teleoperation and Data Collection

A unified frame for both human and LocoMan. To map
human motions to LocoMan’s various operation modes via
VR-based teleoperation—and to enhance the transferability
of motion data across different embodiments—we establish
a unified reference frame, Fu, to align motions across
embodiments. As shown in Figure 2 (a), this unified frame
is attached to the rigid body where the main camera is
mounted. At the embodiment’s reset pose, the x-axis points
forward, aligned with the workspace and parallel to the
ground; the y-axis points leftward; and the z-axis points
upward, perpendicular to the ground.
Motion mapping. We map the human wrist motions to Lo-
coMan’s end-effector motions, map the human head motions
to LocoMan’s torso motions, and hand poses to LocoMan’s
gripper actions. The 6D poses of the human hand, head,
and wrist poses in SE(3) in the VR-defined world frame
are streamed from the VR set to the Human2LocoMan
teleoperation server. Please refer to IV-A for more details.
Whole-body controller. The robot target pose at time t,
pt
t, is calculated from the teleoperation server, and sent to

the whole-body controller of the LocoMan robot, which is
adapted from the one introduced in [14]. Please refer to
Appendix Section IV-B for more details.
Data Collection. The details of Human2LocoMan data
collection can be found in Appendix Section IV-C. We ensure
that human and robot data are unified in both format and
spatial interpretation, and can be used to train our proposed
Modularized Cross-Embodiment Transformer introduced in
Section II-C.

C. Modularized Cross-embodiment Transformer

To train a policy on LocoMan that benefits from heteroge-
neous human data, we opt for task-space control in this work,
where the actions predicted by the policy are represented as
key pose parameters of the physical embodiment, such as
the end effector 6D pose and the body 6D pose. Given our
unified multi-embodiment data collection pipeline, we aim to
train a cross-embodiment policy where the overall structure
and the majority of parameters are transferrable. To this end,
we propose a modularized design called Modularized Cross-

embodiment Transformer (MXT). MXT consists mainly
of three groups of modules: tokenizers, transformer trunk,
and detokenizers. The tokenizers act as encoders and map
embodiment-specific observations to tokens in the latent
space, and the detokenizers translate the output tokens from
the trunk to actions in the action space of each embodi-
ment. The tokenizers and detokenizers are specific to one
embodiment and are reinitialized for each new embodiment,
while the trunk is shared across all embodiments and reused
for transferring the policy among embodiments. Figure 3
illustrates the architecture of our network. The design details
and training paradigm of MXT are elaborated in Appendix
Section IV-D and IV-E, respectively.

III. EXPERIMENTS

In this section, we aim to answer the following re-
search questions: (1) Does the Human2LocoMan system
enable versatile quadrupedal manipulation capabilities? (2)
How does MXT compare to state-of-the-art imitation learn-
ing architectures? (3) How does human data collected by
Human2LocoMan contribute to imitation learning perfor-
mance? (4) Do the design choices in MXT facilitate positive
transfer from Human to LocoMan?

A. Experimental Setup

We evaluate MXT on six diverse household manipulation
tasks—unimanual and bimanual toy collection, unimanual
and bimanual shoe rack organization, unimanual scooping
and bimanual pouring—under both ID and OOD settings
(Figure 5), using the LocoMan robot and data collected
via the Human2LocoMan system. Success rates and task
scores are used as evaluation metrics, with HIT [20] and
HPT [32] serving as baselines. For detailed information
on the experimental setups, including data statistics, model
hyperparameters, masking strategies for embodiment align-
ment, and training configurations for MXT and the baselines,
please refer to Appendix Section IV-F.

B. Results and Analysis

(1) Does the Human2LocoMan system enable versatile
quadrupedal manipulation capabilities? Please refer to Ap-
pendix Section IV-G for detailed analysis.



TABLE I: Result Summary. We report success rate (SR) ↑ in % and task score (TS) ↑ for each task. We highlight the best
performance in bold and the second best in underline.

Toy Collection Shoe Rack Organization Scooping Pouring

Unimanual Bimanual Unimanual Bimanual Unimanual Bimanual
ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD

Method Pretrained Data SR TS SR TS SR TS SR TS SR TS SR TS SR TS SR TS SR TS SR TS SR TS SR TS

HIT - smaller 54.2 42 41.6 15 45.8 37 41.6 16 87.5 112 75.0 50 66.7 52 25.0 14 58.3 96 16.7 30 58.3 62 16.7 17
HIT - larger 79.2 57 58.3 23 58.3 47 58.3 21 79.2 107 83.3 52 83.3 63 33.3 15 66.7 106 33.3 34 70.8 72 8.33 7

MXT N smaller 70.8 56 33.3 20 66.7 54 41.7 15 87.5 109 16.7 10 66.7 52 33.3 14 62.5 105 16.7 30 75.0 75 33.3 24
MXT N larger 87.5 67 83.3 31 70.8 53 41.7 16 83.3 107 50.0 37 75.0 60 58.3 23 62.5 98 41.7 38 79.2 76 33.3 22
MXT Y smaller 91.7 66 83.3 30 83.3 62 83.3 31 83.3 103 75.0 47 79.2 61 58.3 24 87.5 129 25.0 35 83.3 83 58.3 33
MXT Y larger 95.8 67 91.7 34 91.7 67 100 36 95.8 116 83.3 52 83.3 63 75.0 29 87.5 129 66.7 52 91.7 88 83.3 42

* Number of trajectories: TC-Uni smaller=20, larger=40; TC-Bi smaller=30, larger=60; SO-Uni smaller=40, larger=80; SO-Bi smaller=40, larger=80;
Scoop-Uni smaller=30, larger=60; Pour-Bi smaller=30, larger=60.

(2) How does MXT compare to state-of-the-art imitation
learning architectures? Compared to HIT. As shown in
Table I, MXT without pretraining achieves comparable or
better performance than HIT across unimanual and bimanual
tasks, under both ID and OOD settings. With pretraining,
MXT consistently outperforms HIT in both success rate and
task score. From Figure 7, MXT shows lower validation loss
on most tasks, indicating better convergence and scalability
with larger datasets. Although HIT achieves lower validation
loss in some cases, it performs comparably only in tasks like
shoe organization, where limited object variation may favor
HIT despite its lack of modularity (Figure 6). Compared
to HPT. As shown in Figures 4 and 8, MXT consistently
surpasses HPT across all pretraining and data size settings
on toy collection tasks. MXT also exhibits better validation
loss trends and avoids the severe overfitting observed in
HPT, highlighting the generalization benefits of its modular
architecture.
(3) How does human data collected by Human2LocoMan
contribute to imitation learning performance? Efficiency,
robustness, and generalizability. As shown in Table I,
pretraining on human data has a substantial positive impact
on LocoMan manipulation performance. The policy main-
tains strong performance even when robot data is limited,
highlighting both its efficiency and robustness. Specifically,
comparing MXT-Pretrained to MXT-Scratch in Table I,
we observe that pretraining improves performance on TC-
Uni, TC-Bi, and Scooping tasks under ID settings, where
objects exhibit diverse locations. MXT-Pretrained tends to
produce smoother and more robust motions, enabling more
accurate localization of target objects. For instance, as
shown in Figure 6, MXT-Pretrained achieves substantially
better scooping performance—which requires precise local-
ization—compared to all other methods. Moreover, Table I
reveals large performance gaps on OOD objects in tasks
such as TC-Bi, SO-Uni, and Pouring, where OOD objects
differ significantly from ID objects in shape, texture, and
color. These results suggest that MXT, by leveraging hu-
man demonstrations during the pretraining stage, is able to
generalize effectively to novel scenarios unseen during robot
training.
(4) Do the design choices in MXT facilitate positive transfer
from Human to LocoMan? Our framework presents positive
cross-embodiment transfer despite substantial embodiment
gaps. For comparisons, we provide SR and TS results from
36 trials in Fig. 4(b). HPT performs consistently worse than
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Fig. 4: Ablation study on unimanual and bimanual toy
collection. We compare MXT, its ablation MXT-Agg, and
baseline HPT on SR and TS. Here, 100 denotes the larger
training set (40 trajectories for TC-Uni, 60 for TC-Bi), while
50 denotes the smaller set (20 for TC-Uni, 30 for TC-Bi).

MXT, both when finetuned and trained from scratch. We at-
tribute part of this performance gap to HPT using frozen im-
age encoders by default. We also provide additional ablations
of MXT where we aggregate the input modalities, tokenize
them with a single tokenizer, and decode actions with a single
detokenizer; this baseline (marked with “Agg” in Fig. 4(b))
incorporates the key HPT designs, while finetuning the vision
encoders and remaining architecturally comparable to MXT.
MXT consistently benefits from pretraining and outperforms
this baseline when both are finetuned, highlighting the ad-
vantage of modularized tokenization for leveraging human
data. Notably, MXT-Agg sometimes transfers suboptimally,
likely due to the lack of modular design and the trade-off
between improved performance from adaptive tokenization
(image encoder finetuning) and reduced trunk transferability.

IV. CONCLUSIONS

In this paper, we introduce Human2LocoMan, a unified
framework for flexible data collection and cross-embodiment
learning to enable versatile quadrupedal manipulation skills
on the open-source LocoMan platform. Our teleoperation
and human data collection systems allow efficient acquisition
of large-scale, high-quality datasets by bridging the action
spaces between human and robot embodiments. Built upon
this foundation, we propose Modularized Cross-embodiment
Transformer, a modular policy architecture that supports pos-
itive transfer from human demonstrations to robot policies.
Through extensive experiments on six challenging household
tasks, we demonstrate that Human2LocoMan enables strong
performance, efficient training, and robust generalization to
out-of-distribution scenarios, outperforming strong imitation
learning baselines. Our results highlight the effectiveness of
cross-embodiment learning and modularized policy design in
advancing scalable, versatile quadrupedal manipulation.
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APPENDIX

A. Human2LocoMan Motion Mapping

We map the human wrist motions to LocoMan’s end-
effector motions, map the human head motions to LocoMan’s
torso motions, and hand poses to LocoMan’s gripper actions.
The 6D poses of the human hand, head, and wrist poses in
SE(3) in the VR-defined world frame are streamed from the
VR set to the Human2LocoMan teleoperation server. The
human head pose is represented as (xhead

vr ,Rhead
vr ), and the

wrist poses are (xr-wrist
vr ,Rr-wrist

vr ) and (xl-wrist
vr ,Rl-wrist

vr ), where
x·

vr denotes the translation and R·
vr denotes the rotation

in the VR-defined world frame. Then, the 6D poses can
be transformed into the unified frame Fu (x·

uni,R
·
uni) =

(Rvr
unix

·
vr,R

vr
uniR

·
vr), where Rvr

uni is the rotation matrix of the
VR-defined frame relative to the unified frame Fu.

To initialize the teleoperation for each manipulation
mode, the robot is transferred to a reset pose ran-
domly initialized within a small range, termed as p0 =
(xtorso

uni, 0,R
torso
uni, 0,x

r-eef
uni, 0,R

r-eef
uni, 0,x

l-eef
uni, 0,R

l-eef
uni, 0,θ

gripper
0 ), includ-

ing the 6D poses of the torso and both end ef-
fectors, and the gripper angles. The human operator
starts to teleoperate the robot after a initializing pos-
ture. The target pose for the robot at time step t,
pt
t = (xtorso,t

uni,t ,R
torso,t
uni,t ,x

r-eef,t
uni,t ,R

r-eef,t
uni,t ,x

l-eef,t
uni,t ,R

l-eef,t
uni,t ,θ

gripper,t
t ),

can be expressed as follows.

xtorso,t
uni,t = xtorso

uni, 0 + αtorso(xhead
uni,t − xhead

uni, 0)

Rtorso,t
uni,t = Rtorso

uni, 0((R
head
uni, 0)

⊤Rhead
uni,t)

xr-eef,t
uni,t = xr-eef

uni, 0 + αr-eef(xr-wrist
uni,t − xr-wrist

uni, 0 )

Rr-eef,t
uni,t = Rr-eef

uni, 0((R
r-wrist
uni, 0 )

⊤Rr-wrist
uni,t )

xl-eef,t
uni,t = xl-eef

uni, 0 + αl-eef(xl-wrist
uni,t − xl-wrist

uni, 0 )

Rl-eef,t
uni,t = Rl-eef

uni, 0((R
l-wrist
uni, 0 )

⊤Rl-wrist
uni,t )

θgripper,t
t =

θgripper
max − θgripper

min

dtip
max

◦ dtip
t + θgripper

min

(1)

Here, αtorso, αr-eef, and αl-eef, are the scaling factors to map
human’s motions to robot’s torso, right end effector, and
left end effector, respectively. xgripper

max and xgripper
min are the

maximum and minimum gripper angles, respectively. dtip
t

represents the distances between the reference finger tips of
both human hands at time step t, and dtip

max is the maximum
finger tip distance for the human operator.

B. Human2LocoMan Whole-Body Controller

The robot target pose at time t, pt
t, is calculated from the

teleoperation server, and sent to the whole-body controller
of the LocoMan robot, which is adapted from the one
introduced in [14], a unified whole-body controller designed
to track the desired poses of the torso, end effectors, and feet
across multiple operation modes. We employ null-space pro-
jection for kinematic tracking and quadratic programming for
dynamic optimization to compute the desired joint positions,
velocities, and torques. To handle the large embodiment
gap between the human and the LocoMan robots, and to
facilitate smooth teleoperation of a dynamic quadrupedal

platform with whole-body motions, we consider the handling
and recovery from robot’s joint limits, singularity, and self-
collision, and fast motions. We compute the manipulability
index as:

Imani =
√

det(JJ⊤) (2)

to assess the proximity of the target pose to singularity, where
J represents the Jacobian of the robot’s manipulator at the
target pose. If Imani falls below a predefined threshold τmani,
the target pose is considered near singularity. To detect self-
collisions, we utilize the Pinocchio library [33] to compute
collision pairs among the robot’s body parts. If any of the
following conditions are met—joint limit violation, singu-
larity, or self-collision—the whole-body controller tracks
pt
t−1 instead of pt

t. To mitigate rapid movements, we apply
linear interpolation between xtorso,t

uni,t and xtorso,t
uni,t−1, xr-eef,t

uni,t and
xr-eef,t

uni,t−1, xl-eef,t
uni,t and xl-eef,t

uni,t−1, as well as θgripper,t
t and θgripper,t

t−1 .
Additionally, quaternion interpolation is applied between
Rtorso,t

uni,t and Rtorso,t
uni,t−1, Rr-eef,t

uni,t and Rr-eef,t
uni,t−1, and Rl-eef,t

uni,t and
Rl-eef,t

uni,t−1 to smooth large action variations.

C. Human2LocoMan Data Collection

We record the robot data {DR
t }Tt=1 during teleoperation,

where DR
t = {oR

t ,a
R
t } is the robot data at time step t

including the robot observations oR
t and robot actions aR

t , and
T is the episode length. We define the IR

main,t and IR
wrist,t are

images obtained from the robot’s main stereo camera and the
wrist camera, respectively. Then, we can formulate oR

t and
aR
t in the dataset as follows.

oR
t [main image] := Imain,t,

oR
t [wrist image] := Iwrist,t,

oR
t [body pose] := [xtorso

uni,t,R
torso
uni,t],

oR
t [EEF pose] := [xr-eef

uni,t,R
r-eef
uni,t,x

l-eef
uni,t,R

l-eef
uni,t],

oR
t [EEF to body pose] := [xr-eef

uni,t − xtorso
uni,t, (R

torso
uni,t)

⊤Rr-eef
uni,t

xl-eef
uni,t − xtorso

uni,t, (R
torso
uni,t)

⊤Rl-eef
uni,t],

oR
t [gripper angles] := θgripper

t ,

aR
t [body pose] := [xtorso, t

uni,t ,Rtorso, t
uni,t ],

aR
t [EEF pose] := [xr-eef, t

uni,t ,Rr-eef, t
uni,t ,xl-eef, t

uni,t ,Rl-eef, t
uni,t ],

aR
t [gripper angles] := θgripper, t

t
(3)

We record the human data {DH
t }Tt=1 in real time during

human’s manipulation. Similarly, the human data at time step
t DH

t = {oH
t ,a

H
t } can be defined by human observations oH

t



and human actions aH
t as follows.

oH
t [main image] := IHmain,t,

oH
t [body pose] := [xhead

uni,t,R
head
uni,t],

oH
t [EEF pose] := [xr-wrist

uni,t ,Rr-wrist
uni,t ,xl-wrist

uni,t ,Rl-wrist
uni,t ],

oH
t [EEF to body pose] := [xr-wrist

uni,t − xhead
uni,t, (R

head
uni,t)

⊤Rr-wrist
uni,t

xl-wrist
uni,t − xhead

uni,t, (R
head
uni,t)

⊤Rl-wrist
uni,t ],

oH
t [grasping states] := θgripper

t ,

aH
t [body pose] := [xhead, t

uni,t ,Rhead, t
uni,t ],

aH
t [EEF pose] := [xr-wrist, t

uni,t ,Rr-wrist, t
uni,t ,

xl-wrist, t
uni,t ,Rl-wrist, t

uni,t ],

aH
t [grasping actions] := θgripper, t

t
(4)

D. Design Details of MXT

Tokenizers. The tokenizers T transform raw observations
into tokens for the transformer trunk. Drawing from the
design in previous works [34], we use a cross attention
layer to format observational features into a fixed number
of tokens. For image inputs, the features are obtained from
a pretrained ResNet encoder that can be finetuned during
training; for proprioceptive or state-like inputs, the features
are computed by passing the raw input through a trainable
MLP network.
Detokenizers. The detokenizers D serve as action decoder
heads and map output tokens from the trunk to actions
in each embodiment’s action space. We adopt the action
chunking technique [18]. At each inference step, the detok-
enizers predict an action sequence of h steps and temporal
ensemble is applied to the outputs, following [18]. Within
each detokenizer, we use a cross attention layer to transform
the latent action tokens output by the trunk to a sequence of
actions with length h and appropriate action dimensions.
Trunk. The trunk is an encoder-decoder transformer, where
the input sequence length and the output sequence length
are both fixed, as the number of tokens for each input or
output modality is fixed by design. By sharing the trunk
weights across the human and robot embodiments, the trunk
is trained to capture the common decision making patterns
across different embodiments.
Modality Decomposition in Tokenizers / Detokenizers.
Due to the aligned data format and the unified observation
and action spaces across embodiments, we are able to
separately transform each semantically distinct component
of the observational input and the action output, which
we refer to as modality, and specify the compositional
structure at the interface of the transformer trunk and the
tokenizers / detokenizers. This design provides another layer
of modularization to training and is core to the effectiveness
of our method.

Concretely, for tokenization in the embodiment e, we
encode the input observation ot with multiple tokenizers
{Te,mi

} at the finer granularity of modalities denoted by
ot[mi]. For instance, instead of aggregating all image inputs

before passing through the vision tokenizer, we use separate
tokenizers for each camera view. All the encoded modalities
are concatenated to compose the input tokens to the trans-
former trunk.

Similarly, for detokenization, we specify the subset of
the transformer output tokens corresponding to each action
modality, e.g. body pose, end effector pose, and gripper
angles, and decode the selected tokens to yield each modality
with separate detokenizers {De,mi}. For convenience, we use
the set of observation and action modalities as defined by the
data collection formats in (3) and (4).

By explicitly decomposing the input and output modal-
ities and encoding them separately, we are leveraging the
innate structure of observations and actions and imposing
such a structure on the token sequences processed by the
transformer. Consequently, the knowledge of how to process
different modalities learned during training can be shared
across embodiments, fostering efficient transfer of the policy.

Although we employ a consistent data format and
aligned input/output representations across embodiments,
some modalities are not present or available for all embod-
iments. For example, the human operator is not equipped
with a wrist camera, while the LocoMan robot has a wrist
camera in some tasks to improve manipulation accuracy. In
this case, we use masks defined during data collection to
signify redundant dimensions in the observations as well as
in the action labels. We refer the reader to Section IV-I for
more implementation details.

In general, the highly modularized design of our learning
framework offers great flexibility in handling all types of
manipulation tasks across different embodiments, and effec-
tively enhances the learning performance by capturing the
common patterns in manipulation problems.

E. MXT Training Paradigm

We leverage the human data to pretrain the network for
versatile manipulation policies. Specifically, for a given task,
we first pretrain our network with the human dataset, and
then finetune it with the LocoMan dataset (Algorithm 1).
Only the transformer trunk weights are loaded from the
pretrained checkpoint for finetuning. For certain tasks that
are similar in nature but with different manipulation modes,
we also collectively pretrain the model on the human datasets
from these tasks, and then finetune on each task with the
corresponding LocoMan dataset.
Learning Objective. We use the behavioral cloning objective
for both pretraining and finetuning. In general, given a
dataset De on an embodiment e and aligned action modalities
m1, ...,mk, the total loss to optimize when training on e is:

Le(θ) =

k∑
i=1

Le,mi(θ), (5)

where Le,mi
is the ℓ1 loss of the action modality mi with

respect to the dataset of embodiment e. In practice, we
optimize the following batched loss for each training batch



Be = {(oj , Aj)}nj=1 as a proxy of Le,mi
(θ):

Le,mi
(Be) =

1

n

n∑
j=1

[
1

h

h∑
l=1

ℓ1 (aj,l [mi] , âj,l [mi])

]
, (6)

where aj,l [mi] = (Aj)l [mi] is the l-th step action of
modality mi in the action label sequence sample Aj =

{aj,l}hl=1; âj,l [mi] = [πθ(oj)]l [mi] is the predicted action
of modality mi at step l, and h is the chunk size or the action
horizon.

Algorithm 1 Pretraining MXT on human data and finetuning
on LocoMan data
Require: Human dataset Dhuman, LocoMan dataset
DLocoMan

Ensure: Policy π for versatile LocoMan manipulation
Initialize the MXT policy network πθ with parameters θ.
Set pretraining learning rate ηpretrain
for step = 1, 2, ... do ▷ Pretraining Stage

Sample a batch B from Dhuman

Compute Lhuman(B) =
∑

i Lhuman,mi
(B) with Eq.6

Optimize the policy weights θ with backpropagation
Reinitialize the tokenizers and detokenizers of π. Preserve
the trunk weights θtrunk learned from pretraining.
Set finetuning learning rate ηfinetune
for step = 1, 2, ... do ▷ Finetuning Stage

Sample a batch B from DLocoMan

Compute LLocoMan(B) =
∑

i LLocoMan,mi
(B) with

Eq.6
Optimize the policy weights θ with backpropagation

return π

F. Experiment Setups

1) Tasks: We evaluate MXT on six household tasks of
varying difficulty, across unimanual and bimanual manipu-
lation modes of the LocoMan robot, with data collected by
the Human2LocoMan system:

• Unimanual Toy Collection (TC-Uni). In this task, the
robot must pick up a toy randomly positioned within a
rectangular area and place it into a designated basket
on the ground. Completing this task requires the robot
to coordinate its whole-body motions to efficiently and
accurately reach various locations on the ground and
above the basket. As shown in Figure 5, we use 10
objects for robot finetuning and all objects for human
pretraining and real-robot evaluation. The substeps of
this task include: grasp the toy, and release the toy.

• Bimanual Toy Collection (TC-Bi). Similar to Unimanual
Toy Collection, this task requires the robot to pick up
a toy randomly placed within two rectangular areas on
either side of a basket. We use 10 objects for robot
finetuning, while all objects are included in human
pretraining and real-robot evaluation. The substeps of
this task include: grasp the toy, and release the toy.

• Unimanual Shoe Rack Organization (SO-Uni). This
longer-horizon task involves organizing two shoes

placed on different levels of a shoe rack. The robot must
coordinate whole-body motions to reach various rack
levels and utilize both prehensile and non-prehensile
manipulation skills. As shown in Figure 5, this task
involves three pairs of shoes, with one pair being out-of-
distribution (OOD). The substeps of this task include:
push the shoe on the higher rack, tap the shoe on the
higher rack, transfer the gripper to the lower level, and
tap the shoe on the lower rack.

• Bimanual Shoe Rack Organization (SO-Bi). One pair of
shoes is randomly placed at the edge of the third level
of the shoe rack. The robot must push one shoe inward
and align it with the other. The substeps of this task
include: push the shoe, and tap the shoe.

• Unimanual Scooping (Scoop-Uni). The robot performs
unimanual manipulation using a litter shovel to scoop a
3D-printed cat litter from varying locations and poses
within a litter box, and then dump it into a trash bin.
This long-horizon task involves both tool use and de-
formable object manipulation. The task is decomposed
into the following substeps: grasp the shovel, scoop the
litter, tilt the shovel, dump the litter, and place the shovel
back.

• Bimanual Pouring (Pour-Bi). The robot performs bi-
manual manipulation to pour a Ping Pong ball from
one cup to another. This longer-horizon task requires the
robot to accurately reach both cups, which are randomly
placed within a rectangular area on a table, lift one cup,
pour the ball into the other, and then place both cups
back on the table. This task evaluates the coordination
and precision of the robot’s bimanual manipulation. The
substeps of this task include: pick up both cups, pour
the ball, and place both cups.

2) Human2LocoMan Embodiments: As shown
in Table II, the unimanual and bimanual modes of
Human2LocoMan represent distinct embodiments, each
differing in morphology, observations, and action spaces.
In practice, we install and utilize wrist cameras on the
LocoMan robot for the three unimanual manipulation tasks.

TABLE II: Human2LocoMan embodiments (R=Right,
L=Left).

Embodiments Head Wrist Body R-EEF L-EEF Body R-EEF L-EEF R-Grasp L-Grasp
Images Image Priop. Priop. Priop. Pose Pose Pose Action Action

Human-Unimanual (R) ✓ × ✓ ✓ × ✓ ✓ × ✓ ×
Human-Unimanual (L) ✓ × ✓ × ✓ ✓ × ✓ × ✓
Human-Bimanual ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
LocoMan-Unimanual (R) ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ×
LocoMan-Unimanual (L) ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × ✓
LocoMan-Bimanual ✓ × ✓ ✓ ✓ × ✓ ✓ ✓ ✓

3) Data collection: For each task, we collect vari-
ous numbers of human and robot trajectories with the
Human2LocoMan system. The details of the collected data
are demonstrated in Table III. About 10% data of each task
is used for validation.

4) Training details.: For Toy Collection and Shoe Rack
Organzation, we pretrain a model that utilizes the human data
of both the unimanual and bimanual versions of the task,
then we finetune the model on each unimanual or bimanual
task with the corresponding robot data. For each task, we
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Fig. 5: Rollouts of the MXT policy and the objects used across manipulation tasks in our experiments. Green arrows indicate
end-effector motions, red arrows denote torso movements, and pink arrows represent gripper actions. Both unimanual
and bimanual toy collection tasks assess the robot’s ability to grasp objects of varying shapes, colors, and positions.
The unimanual variant emphasizes coordination between the torso and end-effector, while the bimanual variant highlights
synchronized control of two loco-manipulators. Unimanual and bimanual shoe rack organization tasks evaluate non-
prehensile manipulation skills such as pushing and tapping. The unimanual variant additionally requires torso articulation
to reach shoes placed at different heights. Scooping is a complex task involving tool use, deformable object manipulation,
and wide-range torso motion. Pouring is a long-horizon task that demands precise coordination of both loco-manipulators.

TABLE III: Records of data collection for different tasks.

Task # human traj. human time (min) # robot traj. robot time (min)

TC-Uni 300 25 150 15
TC-Bi 315 22 70 7
SO-Uni 240 34 90 23
SO-Bi 200 20 92 12
Scoop-Uni 340 96 66 22
Pour-Bi 210 35 64 22

choose a set of training hyperparameters (e.g. batch size,
chunk size) that are kept the same for all methods. (See
Section IV-K.) We also list the model hyperparameters we
use for our method and the baselines in the Section IV-I and
IV-J.

5) Baselines: We compare Human2LocoMan to the fol-
lowing SOTA imitation learning baselines:

• Humanoid Imitation Transformer (HIT): HIT [20] is
an imitation learning framework designed for humanoid
skill learning that also extends to any robot embodiment.
It builds upon ACT [18] and employs a decoder-only
architecture that simultaneously predict the future action
sequence and future image features. It discourages the
vision-based policy to ignore the visual input and overfit
on proprioceptive states by introducing a L2 image
feature loss to the original behavioral cloning policy.
HIT itself is not capable of handling data from different
domains and embodiments, and we position HIT as a
reference implementation that efficiently learns from in-
domain robot demonstrations.

• Heterogeneous Pretrained Transformer (HPT):
HPT [34] is a framework for learning from vast
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Fig. 6: Substep success rate. The success rate for some sub-
step is calcuated as the percentage of trials where the robot
successfully completed the substep. For each task, we cal-
culate this with 24 ID rollouts and 12 OOD rollouts. MXT-
Pretrained: MXT pretrained on human dataset (including
unimanual and bimanual if applicable), then finetuned on
the LocoMan data. MXT-Scratch: MXT trained only on
the LocoMan data. “L” denotes the larger training set (80
trajectories for SO-Uni, 60 trajectories for Pour and Scoop),
while “S” denotes the smaller training set (40 trajectories for
SO-Uni, 30 trajectories for Pour and Scoop).

amounts of data collected from humans, teleoperation,
simulation, and real-life robots. HPT also has a
modularized design and consists of the stems, the
trunk, and the head, where the stems and heads are
similar to our tokenizers and detokenizers. The trunk
is designed to capture the complex mapping between
the input and output in a unified latent space through
large-scale pretraining. The implementation of HPT
differs from our framework in several key aspects.
Firstly, we leverage the unified observation and action
frames to align data from different embodiments on
the modality level, while HPT can only construct
tokenizers for all image or proprioceptive data, and
one detokenizer for all action dimensions. The ResNet
image encoder in HPT is also frozen to achieve
efficient learning with large models, while we opt to
finetune the ResNet encoder along with the whole
network end-to-end to better account for the visual gap
between embodiments.

More implementation details of these baselines can be found
in Section IV-J. For the HPT baseline, we train with several
different settings: training with only LocoMan data, pre-
training with our human data and finetuning on LocoMan
data, and directly finetuning the released HPT checkpoints
with LocoMan data. For the HIT baseline, we only train on
LocoMan data, as it is unable to incorporate human data.
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Fig. 7: Best validation loss of our method and HIT on
all our tasks. MXT-Pretrained: MXT pretrained on human
dataset (including unimanual and bimanual if applicable),
then finetuned on the LocoMan data. MXT-Scratch: MXT
trained only on the LocoMan data. The number suffix denotes
the number of demonstrations in the LocoMan training set.

6) Evaluation Metrics: We present the evaluation results
using three metrics: i) success rate (SR), ii) task score (TS),
and iii) validation loss. To calculate the success rate and task
score, we perform a fixed number of real world rollouts using
the evaluated method for one task. The policy is rolled out
for 24 times with in-distribution (ID) objects and 12 times
with out-of-distribution (OOD) objects.

For each task, we define a set of critical substeps necessary
to fully complete the task. When calculating the task score,
successfully completing each intermediate substep earns one
point, and reaching the final goal—i.e., completing the entire
task—earns an additional point. The final task score is the
sum of points across all rollouts for that task. The success
rate of a method on a given task, under either the ID or
OOD setting, is computed as the ratio of successful rollouts
(i.e., rollouts where all substeps are completed) to the total
number of rollouts performed.

In addition, we report the best validation loss as another
metric for training performance. For all the included meth-
ods, we align how the loss is computed so that these losses
can be meaningfully compared. Note that the validation loss
is not a faithful indicator of the policy performance, but it
does reflect how well the model is optimized, especially
when there is a significant difference in the validation
loss of different policies in the same setting. We mainly
use this metric to analyze the training process of different
architectures (MXT, HIT and HPT) and to provide a separate
dimension to our evaluation.

G. Supplementary Results and Analysis

(1) Does the Human2LocoMan system enable versatile
quadrupedal manipulation capabilities? Data collection. As
shown in Table III, Human2LocoMan teleoperation enables
the collection of a substantial amount of robot data (over 50
trajectories) within 30 minutes across all tasks. Using the
Human2LocoMan human data collection system, over 200
trajectories can be gathered within the same time frame. Even
for the most challenging task, a human can collect over 300
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Fig. 8: Best validation loss of our method and HPT on the
unimanual Toy Collection task. MXT-Pretrained: MXT pre-
trained on human dataset (including unimanual and bimanual
if applicable), then finetuned on the LocoMan data. MXT-
Scratch: MXT trained only on the LocoMan data. HPT-
Pretrained: HPT trunk pretrained on our human data, then
finetuned on the LocoMan data. HPT-Scratch: HPT network
trained only on the LocoMan data. HPT-Base: Finetune
with our LocoMan data with HPT trunk initialized with
released HPT-Base weights. HPT-Small: Finetune with
our LocoMan data with HPT trunk initialized with released
HPT-Small weights.

trajectories within one and a half hours. Notably, the robot’s
manipulation speed is comparable to, and in many tasks
approaches, that of a human. These results highlight the data
collection efficiency of our system. Task versatility. As de-
picted in Figure 5, Human2LocoMan’s policy can perform
tasks across a wide range of scenarios, including unimanual
and bimanual manipulation, prehensile and non-prehensile
manipulation, deformable object manipulation, and tool use,
while also generalizing to OOD objects and conditions. Task
performance. We summarize the success rates and task
scores of our method and HIT across all tasks in Table I.
Human2LocoMan’s MXT achieves strong performance on
all tasks using a relatively small dataset. The baseline method
also attains decent performance on most tasks. These re-
sults highlight the high quality of our collected data and
demonstrate the effectiveness of Human2LocoMan’s data
collection and training pipeline.

(3) How does human data collected by Human2LocoMan
contribute to imitation learning performance? Long-horizon
performance. For a more detailed analysis on long-horizon
tasks that require multiple manipulation steps, we present
in Figure 6 how the success rate decays with each substep
in tasks including SO-Uni, Pour-Bi and Scoop-Uni. MXT-
Pretrained is shown to maintain a decent success rate as the
long-horizon task progresses, while MXT-Scratch and HIT
tend to fail more after the first substep, especially in Pouring
and Scooping tasks. We note that the second substep in these
tasks commonly involves moving and localizing an object
with precision, and pretraining with human data appears
to help with completing such challenging substeps. This
suggests that human data incorporated during pretraining can
promote manipulation accuracy, which is key to completing
a sequential long-horizon task.

H. Related Work

Embodiments for Diverse Loco-Manipulation Skills:
Learning manipulation skills on quadrupedal robots has
shown promise and popularity in recent years, due to the
versatility and mobility of the platforms. Many manipula-
tor configurations and capabilities have been proposed for
quadrupeds, including non-prehensile manipulation using the
quadruped’s legs or body (e.g., dribbling a soccer ball,
pressing buttons, closing appliance doors, etc.) [35]–[42],
using a back-mounted arm for tabletop tasks [8], [43], or us-
ing leg-mounted manipulators for spatially-constrained (e.g.,
reaching toys underneath furniture) or bi-manual manipu-
lation tasks [14]. In this work, we take inspiration from the
open-source LocoMan hardware platform [14], with two leg-
mounted manipulators, which enable the training of policies
across challenging tasks and multiple operating modes.
Learning Versatile Quadrupedal Manipulation: Rein-
forcement learning (RL) has been used for training indi-
vidual non-prehensile manipulation skills [35], [36], [38]–
[42], [44]–[49] and for training whole-body controllers to
track end-effector poses for uni-manual grasping [8]–[10],
[50]–[53]; here, policies are trained in simulation then trans-
ferred to the real robot platform, often with high cost in
training complexity and training time. To mitigate some of
these issues, imitation learning (IL) allows robots to directly
learn from expert demonstrations [15], [54]–[56] and thus
provides an alternative approach for efficiently acquiring
more general manipulation skills [26], [57]–[60]. However,
collecting robot data for quadrupedal platforms remains
challenging, due to their high degrees of freedom and the
need for stable whole-body controllers. Prior works have
trained non-prehensile quadrupedal manipulation policies by
learning from demonstrations collected in simulation [12],
or grasping policies for a top-mounted arm using data col-
lected from real-world demonstrations [10], [11], [13]. Our
work introduces a scalable way of achieving more versatile
manipulation skills on quadrupedal platforms encompassing
both single-gripper and bi-manual manipulation tasks, us-
ing a small amount of robot data combined with human
demonstrations collected via our novel teleoperation and data
collection system.
Data Collection for Imitation Learning: Various methods
have been utilized to collect data for imitation learning. Joy-
sticks and spacemouses [16], [61], [62] are commonly used
to directly teleoperate the robot for data collection. Cameras
are employed to capture human motions and map them to the
robot [17], [20], [63]–[65]. VR controllers provide a more
intuitive way for the human to teleoperate the robot with
visual or haptic feedback for dexterous manipulation tasks
on robot arms, quadrupeds, and humanoid robots [13], [21],
[22], [31], [66]–[68]. While most above works teleoperate
the robot in task space, other works employ ex-skeleton
or leader-follower systems to collect robot demonstrations
by mapping the joint positions of the leader system to the
robot [18], [19], [23], [31], [69]. To ease the burdens of
teleoperating real robots and to scale up data collection,



recent works have achieved success by collecting human
demonstrations in the wild with AR-assist [30] or hand-
held grippers [11], [70], although these are constrained to a
specific robot or end-effector type. Other works enable more
ergonomic data collection with body-worn cameras [27],
[71] or VR glasses [31]. We introduce a unified frame-
work to collect cross-embodiment data including both robot
and human demonstrations, where the teleoperation system
considers the whole-body motions of the embodiments to
extend its workspace and actively sense the environment. The
different manipulation modes of both the robot and human
are regarded as different embodiments and the collected data
can be used for model pre-training.
Cross-Embodiment Learning: Drawing from the success
of foundation models in computer vision and natural lan-
guage, there are many endeavors to replicate the success
in robotics by training generalist policies on large-scale
data from different embodiments [34], [72]–[76]. However,
this remains an open challenge due to the heterogeneity
of robot embodiments, and gaps in kinematics, vision, and
proprioception.

Different neural architecture were proposed to handle the
heterogeneity. CrossFormer [76] formulated policy learning
as a sequence-to-sequence problem, so that any number of
camera views or proprioceptive sensors can be handled as
sequence of tokens, and add special readout tokens as part
of the input sequence. In comparison, HPT [34] features a
modularized structure and maps the variable observations to
a fixed number of number tokens. In our work, we propose
Modularized Cross-embodiment Transformer (MXT) that
also employs a modularized design, but further enhances
the modularity by identifying fine-granular alignment of data
modalities between embodiments.

Notably, EgoMimic [31] proposed the idea that human
be treated as another embodiment and demonstrated posi-
tive transfer by co-training on human and robot data. To
achieve such positive transfer, EgoMimic minimizes human
and robot kinematic gap by choosing a human-like robot
embodiment, proprioception gap by normalizing and align
action distributions, and appearance gap with visual masking.
In comparison, Human2LocoMan is more flexible and scal-
able, transferring from human to quadruped without explicit
domain alignment.

I. Implementation and Training details of MXT

Training Details. We list the training optimizer and the
transformer trunk hyperparamters in Table IV. These hyper-
parameters are kept the same for all our experiments.
Cross Attention in Tokenizers and Detokenizers. In the to-
kenizers of MXT, we use a simple cross attention mechanism
to transform the input feature of indefinite length into a fixed
number of tokens. For the attention layer in all tokenizers,
the hidden dim is 128, the number of attention heads is 4,
each with a head dimension of 32, and the dropout rate is
0.1. Other hyperparameters of each tokenizer are shown in
Table V.

TABLE IV: MXT trunk and training hyperparameters

Hyperparameters Value

optimizer AdamW

learning rate 5e-5 (finetuning/from scratch)
1e-4 (pretraining)

scheduler constant
weight decay 1e-4

trunk encoder layers 4
trunk decoder layers 4
hidden dim 128
transformer feedforward dim 256
#attention heads 16

Similarly, we also use cross attention to decode the action
modalities in detokenizers from a fixed number of output
transformer tokens. For the attention layer, the number of
attention heads is 4, each with a head dimension of 16,
and the dropout rate is 0.1. Other hyperparameters of each
detokenizer are shown in Table VI

TABLE V: MXT tokenizer hyperparameters

Modality Input dimensions #tokens MLP widths

main image (3, 480 1280) 16 N/Awrist image (3, 480, 640) 8

body pose (6,) 4

[128, 128]EEF pose (12,) 4
EEF to body pose (12,) 4
gripper angles (2,) 4

TABLE VI: MXT detokenizer hyperparameters

Modalities Output dimensions #tokens

body pose (6,) 6
EEF pose (12,) 6
gripper angle (2,) 6

Masks for aligning embodiment modalities. We mentioned
that masks are needed to exclude redundant dimensions or
modalities that are not present in some embodiment, and
here we give a more detailed description of our implemented
masks.

a) Masks on images. We recognize that some image view
are not available for all embodiments and tasks. In our
current framework, we assume there are at most two camera
views (or image modalities): the main camera and the wrist
camera. However, this can be easily extended within our
framework to cater to any number of camera views. When
one of these camera views is not present, we directly mark
this in the transformer mask of the trunk and fill in dummy
tokens in the corresponding positions, so that the positions
associated with this image modality will not be attended on.

b) Masks on proprioceptive states. In some cases, the
proprioceptive states may have some or all dimensions that
should not be considered for the task. For example, in single-
arm tasks, the poses of the left end effector, or the last half
of the end effector pose modality, will not be considered, and
in bimanual tasks where the LocoMan body is upright, the



body pose is fixed and therefore redundant in the observa-
tions. When part of a proprioception modality are redundant
dimensions, we apply zero padding on these dimension and
perform encoding through the tokenizer as usual. Different
from how we treated masked image modalities, this has no
effect on the transformer mask of the trunk. When an entire
proprioception modality should be disregarded, however, we
handle this modality in a similar to the image modalities and
apply the transformer mask accordingly.
Data Normalization. For both human and LocoMan data,
we apply data normalization on observations and action
labels. For non-image data, we estimate the per-dimension
mean the standard deviation from the dataset, and normalize
the data with the usual approach:

x̄t =
xt − mean

std
.

For image data, the mean and standard deviation are set as
the ImageNet statistics for the RGB channels: mean = [0.485,
0.456, 0.406], and std = [0.229, 0.224, 0.225]. The images
are normalized in the same way with these parameters.
Dropout in Pretraining. We discover that increasing the
dropout in transformer trunk can improve the finetuning
performance for MXT. In practice, we find that setting the
pretraining dropout rate to 0.5 for scooping and 0.4 for
all other tasks yield reasonably good performance. When
training with LocoMan data, including training from scratch
and finetuning, the transformer trunk dropout rate is reverted
to 0.1.

TABLE VII: HIT hyperparameters

Hyperparameters Value

optimizer AdamW
learning rate 2e-5
scheduler constant
weight decay 1e-4
encoder layers 4
decoder layers 4
hidden dim 128
#attention heads 8
feature loss weight 0.001
image backbone ResNet18

J. Implementation details of baselines

HIT. Our implementation of Humanoid Imitation Trans-
former [20] is based on the released codebase, with only
minor modifications to accommodate our data format. The
hyperparameters used for training are summarized in Table
VII.
HPT. We follow the original implementation of HPT [34],
with the main exception that we changed the data normal-
ization method so as to align with the approach of other
frameworks and to have a fair comparison of the validation
loss. The hyperparameters we used when training HPT are
summarized in Table VIII.

TABLE VIII: HPT hyperparameters

Hyperparameters Value

optimizer AdamW

learning rate 5e-5 (finetuning/from scratch)
1e-4(pretraining)

scheduler constant
weight decay 1e-4

trunk
#transformer blocks 16

hidden dim 128
feedforward dim 256
#attention heads 8

action head
#attention heads 8

head dim 64
dropout 0.1

output dim 20

image stem
encoder ResNet18

MLP widths [128]
#tokens 16

state stem
MLP widths [128]

#tokens 16

K. Global task-specific training parameters

We choose a set of training parameters for each specific
task, and we keep these settings aligned across all methods
as listed in Table IX.

TABLE IX: Global training parameters for each task

Task Mode Batch Size Training Steps Chunk Size

Toy Collection Unimanual 16 60000 60
Bimanual 16 60000 60

Shoe Organization Unimanual 24 80000 180
Bimanual 24 100000 120

Scooping Unimanual 24 100000 120

Pouring Bimanual 24 80000 180
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