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Abstract
Large Language Models (LLMs) have showcased
remarkable performance across a range of tasks
but are hindered by their massive parameter sizes,
which impose significant computational and stor-
age demands. Pruning has emerged as an effec-
tive solution to reduce model size, but traditional
methods often involve inefficient retraining or rely
on heuristic-based one-shot approaches that lack
theoretical guarantees. In this paper, we refor-
mulate the pruning problem as an ℓ0-penalized
optimization problem and propose a monotone
accelerated Iterative Hard Thresholding (mAIHT)
method. Our approach combines solid theoretical
foundations with practical effectiveness, offering
a detailed theoretical analysis that covers conver-
gence, convergence rates, and risk upper bounds.
Through extensive experiments, we demonstrate
that mAIHT outperforms state-of-the-art pruning
techniques by effectively pruning the LLaMA-7B
model across various evaluation metrics.

1. Introduction
Large Language Models (LLMs) have demonstrated ex-
ceptional capabilities in tasks such as reasoning, question
answering, text generation, and sentiment analysis (Kojima
et al., 2022; Wei et al., 2022; Achiam et al., 2023). How-
ever, the growing size of these models, with ever-increasing
parameter counts, imposes substantial demands on the com-
putational and storage resources of hardware devices. For
example, running the LLaMA 3.1 405B model (Dubey et al.,
2024) requires a minimum of 486GB of GPU memory in
8-bit mode, demanding at least eight 80GB A100 GPUs.
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Network pruning (LeCun et al., 1989; Hassibi & Stork,
1992) is a well-established method for addressing these
challenges by removing redundant parameters while pre-
serving model performance. Early pruning techniques often
involved retraining after pruning (Han et al., 2015; Liu et al.,
2018), a process that became increasingly inefficient as
model size grew. Moreover, efficient fine-tuning methods
like LoRA (Hu et al., 2021) cannot be easily applied to
pruned sparse models.

To mitigate these issues, recent research has shifted to-
wards one-shot pruning methods, which eliminate parame-
ters based on calibration data while retaining performance.
These methods often view pruning as a layer-wise subset
selection problem, leading to the development of various
optimization-based approaches (Frantar & Alistarh, 2022;
Benbaki et al., 2023). However, the sheer scale of modern
LLMs makes many traditional pruning methods impractical,
and most current approaches rely on heuristic methods. For
instance, SparseGPT (Frantar & Alistarh, 2023) leverages
the Optimal Brain Surgeon (OBS) framework (Hassibi &
Stork, 1992) and relies on heuristic approximations of the
loss change, while Wanda (Sun et al., 2023) uses the product
of weight magnitude and input activation norms to guide
pruning. Although these methods are efficient, they lack
theoretical guarantees of optimality due to their reliance on
intuition and approximations.

Some recent studies have also explored efficient
optimization-based approaches like ADMM (Alter-
nating Direction Method of Multipliers)-based pruning
(Boža, 2024; Meng et al., 2024a) and FISTA (Fast Iterative
Shrinkage-Thresholding Algorithm)-based Pruning (Zhao
et al., 2024). However, these approaches still lack theoreti-
cal guarantees or introduce bias by relaxing the ℓ1-norm
problem (Bertsimas et al., 2016).

In this paper, we introduce mAIHT Pruner, a novel one-shot
layer-wise pruning method based on ℓ0-penalized optimiza-
tion. Our contribution are as follows:

1. We reformulate the pruning problem as an ℓ0-penalized
optimization problem and propose a monotone accel-
erated iterative hard thresholding (mAIHT) algorithm
to solve it. This technique not only accelerates the
convergence of the traditional iterative hard threshold-
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ing (IHT) method but also significantly improves the
solution quality in practice. Furthermore, we design an
adaptive selection of the penalty coefficient, allowing
our algorithm to control the sparsity of the solution
precisely.

2. We conduct rigorous theoretical analysis to explore the
convergence and statistical properties of our algorithms.
Specifically, We establish both the convergence and
the rate of convergence. Furthermore, we analyze the
risk upper bounds of the algorithms, bridging the gap
between the experimental results and the theoretical
analysis.

3. In our experiments, we benchmark mAIHT against the
latest state-of-the-art methods through the pruning of
the LLaMA-7B model (Touvron et al., 2023). The find-
ings indicate that mAIHT outperforms its counterparts,
delivering superior pruning performance across low to
moderate sparsity levels.

Notations. Denote by [n] = {1, . . . , n} for a positive inte-
ger n. Denote the cardinality of a set S by |S|. We use bold
uppercase and lowercase letters to represent matrices and
vectors, respectively. For a vector a, denote the ℓp norm
of a = (a1, . . . , an)

T as ∥a∥p = (
∑n

i=1 a
p
i )

1
p , where 0 ≤

p ≤ ∞. For a matrix A = (aij) ∈ Rm×n, we denote the
ℓ0 pseudo-norm as ∥A∥0, which is equal to the number of
non-zero entries, Frobenius norm as ∥A∥F = (

∑
ij a

2
ij)

1
2 ,

the spectral norm as ∥A∥2 = σmax(A), where σmax(A)
is the largest singular value of matrix A, and ℓ1 norm as
∥A∥1 = max1≤j≤n

∑m
i=1 |aij |. The support of A is de-

noted by Supp(A) which is the index set {(i, j) : aij ̸= 0}.
Given i ∈ [m], j ∈ [n] and a set S ⊂ [m] × [n], Aij or
Ai,j denote aij . AS and PS(A) denote projection of A
onto S, which means retaining the components of A in-
dexed by S and zeroing out the remaining components of
A. Denote In as the identity matrix of dimension n. Let
A ∈ Rma×na and B ∈ Rmb×nb . We define the Kronecker
product of A and B as A ⊗ B ∈ Rmamb×nanb such that
(A ⊗ B)(ia−1)mb+ib,(ja−1)nb+jb , is equal to AiajaBibjb

with ia ∈ [ma], ja ∈ [na], ib ∈ [mb], jb ∈ [nb]. For two
positive sequences {an} and {bn}, write an = O(bn) if
there exists some constant C > 0 such that an ≤ Cbn for
all n. Write an = o(bn) if an/bn → 0 as n→∞.

2. Method and Algorithm
2.1. Model formulation

Post-training compression is typically achieved by dividing
the full-model compression problem into smaller, layer-
wise subproblems. Given a calibration input, we evaluate
the quality of the solution using the residual sum of squares
between the pruned and original outputs. To be specific, let

Ŵl ∈ Rd1×d2 denote the pre-trained weight matrix of layer
ℓ, where d1 and d2 denote the input and output dimension of
layer ℓ. For simplicity, we write Ŵl as Ŵ in what follows.
Given a calibration input X ∈ RN×d1 of size N and a pre-
specified sparsity level k, the layer-wise pruning problem
can be formulated as a ℓ0-constrained optimization problem:

min
W∈Rd1×d2

1

2
∥XŴ −XW∥2F , s.t. ∥W∥0 ≤ k,

(1)

where ∥W∥0 =
∑

ij I(|wij | > 0) is the ℓ0 norm count-
ing the number of nonzero elements in W = (wij). This
formulation is first introduced in (Meng et al., 2024a) and
an operator-splitting technique is employed to solve the
optimization problem.

Rather than directly optimizing problem equation 1, we
consider the associated Lagrangian formulation as follows

min
W∈Rd1×d2

L(W) :=
1

2
∥XŴ −XW∥2F + λ∥W∥0,

(2)

where λ ≥ 0 is the regularization parameter controlling the
sparsity of the solution.

2.2. Naive iterative hard-thresholding algorithm

To solve the optimization problem equation 2, the most
tricky component is to deal with the ℓ0-regularized term,
a non-convex and non-smooth function. To overcome the
computational difficulty, we consider using the proximal
gradient method (Parikh et al., 2014), which updates the
weight matrix via a proximal operator. In particular, for
any function g(·) defined on W ∈ Rd1×d2 , the proximal
operator of g(·) is defined by

Proxg(·)(W) = arg min
V∈Rd1×d2

{
g(V) +

1

2
∥W −V∥2F

}
.

Denote f(W) = 1
2∥XŴ−XW∥2F and h(W) = λ∥W∥0,

then the objective function in equation 2 can be rewritten
as L(W) = f(W) + h(W). The main challenge in ap-
plying the proximal gradient method in solving equation 2
is handling the function h(·). Therefore, we first present
the proximal operator of h(W) = λ∥W∥0 in the following
proposition.

Proposition 2.1. For any nonnegative real number λ, the
proximal operator of h(W) = λ∥W∥0 can be expressed as

H√
2λ(W) ∈ Proxλ∥·∥0

(W),

where H√
2λ(·) is the element wise hard thresholding op-

erator, i.e., H√
2λ(W)ij = wij if |wij | >

√
2λ and

H√
2λ(W)ij = 0 otherwise.
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Based on Proposition 2.1, given the current estimate Wk

at the k-th iteration, we can derive the proximal gradient
update of L(W) as

Wk+1 = H√
2αλ(W

k − α∇f(Wk))

= H√
2αλ(W

k + αXTX(Ŵ −Wk)),
(3)

where α denotes the step size. The update scheme in (3) is
related to the well-known iterative hard-thresholding (IHT)
algorithm (Blumensath & Davies, 2008; 2009).

Remark 2.2. By setting W0 = Ŵ, we have W1 =
H√

2αkλ
(W0), which is the magnitude pruning proposed

by (Han et al., 2015), a well-estabilishing pruning technique
in neural networks. (Frantar & Alistarh, 2023) finds that
magnitude pruning fails dramatically on LLMs even with
relatively low levels of sparsity.

2.3. Monotone accelerated iterative hard-thresholding
algorithm

In practice, the convergence rate of the naive IHT algorithm
is relatively slow, leading to significant computational over-
head when pruning LLMs. To address this, we employ the
monotone accelerated technique (Li & Lin, 2015) by intro-
ducing a momentum term. Following (Beck & Teboulle,
2009), we define the momentum term as a very specific
linear combination between the previous two points and
the corresponding proximal gradient map. At the (k + 1)-
th iteration, this momentum term is added to the current
solution Wk before performing the proximal gradient de-
scent step. Furthermore, to determine when to acceler-
ate and guarantee the loss function does not increase at
the (k + 1)-th iteration, we use a proximal gradient step
as a monitoring variable, denoted as Vk+1. The acceler-
ation step is accepted only when L(Zk+1) ≤ L(Vk+1).
This monitoring mechanism ensures the sufficient descent
property, meaning there exists a small constant δ such that
L(Wk+1) ≤ L(Vk+1) ≤ L(Wk) − δ∥Wk − Vk+1∥2F .
We summarise this monotone accelerated update for the
(k + 1)-th iteration as follows:

Yk = Wk +
tk−1

tk
(Zk −Wk) +

tk−1 − 1

tk
(Wk −Wk−1),

Zk+1 = H√
2α1λ

(Yk − α1∇f(Yk)),

Vk+1 = H√
2α2λ

(Wk − α2∇f(Wk)),

tk+1 =

√
4(tk)2 + 1 + 1

2
,

Wk+1 =

{
Zk+1, if L(Zk+1) ≤ L(Vk+1),
Vk+1, otherwise.

}
(4)

Here Yk represents the momentum term, Zk+1 denotes the
proximal gradient map of the momentum term, and Vk+1

is the monitoring variable. Since the proximal gradient step
essentially serves as a hard-threholsing rule, we refer to this
proposed algorithm as the monotone accelerated iterative
hard-thresholding (mAIHT) algorithm.

2.4. Adaptive IHT/mAIHT algorithm

Due to the non-convexity of problems in (1) and (2), they are
not equivalent. However, in the context of one-shot pruning
for neural networks, our primary target is to directly control
the sparsity of the solution, as formulated in problem (1). To
address this, we propose an adaptive method for determin-
ing an optimal λ corresponding to a pre-specified sparsity
level. To be specific, we increase λ when the sparsity of
the current solution, Wk, is below the desired sparsity, and
decrease it when the sparsity exceeds the target. Addition-
ally, the magnitude of increase or decrease is designed to be
positively correlated with the difference between the current
and desired sparsity levels. At the (k + 1)-th iteration, the
update rule for λ is given by

λk+1 = λk

(
1 +
∥Wk∥0 − s

d1d2

)
,

where s denotes the target sparsity level. The initial
value of λ can be set to retain 99% of the elements, i.e.
λinit = Q2

0.01(|Ŵ|)/2α, where Q0.01(|Ŵ|) represents the
0.01 quantile of the absolute values of all elements in Ŵ
and α is the input step size. With this initialization and adap-
tive updating process, a gradual and controlable pruning can
be achieved.

Upon terminating the mAIHT or IHT iteration, we obtain
the selected support through a single projection operation
Ps(W

k), where Ps(W) represents the operation of retain-
ing the largest s elements of the absolute values from W
and setting the remaining elements to zero. At this stage,
the optimal strategy at this point is to backsolve for the least
squares solution on the current support. However, solving
this exactly is computational expensive, as it requires com-
puting the inverse of the S × S submatrix of XTX for each
column support S of Wk. This results in a time complexity
of O(d2d

3
1). To mitigate this issue, we adopt the projected

gradient descent algorithm (Frantar & Alistarh, 2023) to
refine the final solution. This strategy proves to be highly
efficient, as the proximal gradient process already provides
a solution that is close to the optimum.

The detailed steps of the adaptive algorithm are outlined
in Algorithm 1, which summarizes the process described
above.

Remark 2.3. (Stability improvement) In practical applica-
tions, we observe that modifying the problem (2) to the
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Algorithm 1 Adaptive IHT/mAIHT algorithm for layer-
wise pruning

1: Input: step size α > 0, λinit, sparsity level s, maximum
iteration time k1max, k2max.

2: Initialize: W0 = W1 = Z1 = Ŵ, t1 = 1, t0 = 0,
λ0 = λinit.

3: for k = 1, 2, · · · , k1max − 1 do
4: λk+1 ← λk(1 + ∥Wk∥0−s

d1d2
).

5: Update Wk+1 by (3) or (4) with λ = λk+1.
6: end for
7: T ← Supp(Ps(W

t1)).
8: for k = 0, 1, 2, · · · , k2max − 1 do
9: Wt1+k+1 ← PT (W

t1+k − α∇f(Wt1+k)).
10: end for
11: Output: Wk1

max+k2
max

following formulation

min
W∈Rd1×d2

L(W) :=
1

2
∥XŴ −XW∥2F+

µ

2
∥Ŵ −W∥2F + λ∥W∥0

(5)

can improve the quality of the solution, where µ is a small
positive constant. The additional ℓ2 regularization term
can adjust the trade-off between bias and variance, which
can enhance predictive accuracy by preventing overfitting.
Moreover, this modified problem is equivalent to the original
problem (2) taking X← (XTX+ µI)

1
2 , and therefore the

theoretical properties of the problem (2) can be directly
transferred to this modified problem.

3. Theoretical Analysis
In the following discussion, we consider the step size α
and λ to be fixed across the implementation. Let α < 1/L,
where L = ∥X∥22 is the Lipschitz constant of the gradient
of f . We use IHT representing the iteration (3) and mAIHT
representing the iteration (4).

3.1. Convergence and convergence rate

Intuitively, motivated by equation (3), we define W as an
α-fixed point if Wk = W leads to Wk+1 = W. This
can be regarded as a characterization of the stationarity of
Problem (2). The formal definition of an α-fixed point is
presented as follows.

Definition 3.1. Given an α > 0, the matrix W ∈ Rd1×d2 is
said to be an α-fixed point of Problem (2) if it satisfies the
following fixed point equation

W ∈ Proxαλ∥.∥0
(W + αXT(XŴ −XW)).

We denote the set of all α-fixed points as F (α).

It is important to note that W is an α-fixed point if and only
if
(XTX(Ŵ −W))ij = 0 , |Wij | ≥

√
2αλ,

for (i, j) ∈ Supp(W),

|(XTX(Ŵ −W))ij | ≤
√

2λ
α ,

for (i, j) /∈ Supp(W).

Then for any 0 ≤ α1 ≤ α2, we have

F (α1) ⊃ F (α2).

This implies that a larger step size can reduce the size of the
fixed point set, leading to a more concentrated accumulation
points. As a result, the algorithm may converge to a more
stable solution, as the fixed points will be less spread out.
Based on the above definition, we establish the convergence
properties of the two algorithms. We first present a lemma
to highlight the key descent property of the algorithms.

Lemma 3.2. Let α, α1, α2 < 1
L and {Wk}∞k=0 be the

sequence generated by IHT or mAIHT. Then L(Wk) is a
descent sequence.

Now we present the convergence results for both IHT and
mAIHT algorithms.

Theorem 3.3 (Convergence Theorem).

1. Let α < 1
L and {Wk}∞k=0 be the sequence generated

by IHT. Then there is a α-fixed point W∗, such that
Wk →W∗.

2. Let α1, α2 < 1
L . {Wk}∞k=0 and {Vk}∞k=0 generated

by mAIHT are bounded and any accumulation point of
{Wk}∞k=0 is an α2-fixed point.

Li & Lin (2015) proved that for the general mAIHT al-
gorithm, any accumulation point W∗ of {Wk}∞k=0 will
satisfy 0 ∈ ∂L(W∗), where ∂L denotes the sub-gradient
set of L. The condition 0 ∈ ∂L(W∗) is equivalent to
(XTX(Ŵ −W∗))ij = 0 for (i, j) ∈ Supp(W∗). By
comparing this condition with ours, we observe that the set
composed of all α2-fixed points is a subset of the points
whose subgradients contain 0. This indicates that our result
cannot be simply viewed as a special case of theirs, but
rather a stronger result.

Next, we present the convergence rates of the two al-
gorithms. According to Lemma 3.2, the sequences
{L(W k)}∞k=0 generated by both algorithms are decreasing
sequences, and thus have limits L∗. Therefore, we proceed
to analyze the convergence rates of these sequences.

Theorem 3.4 (Convergence rate).
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1. Let W∗ be the limit of {Wk}∞k=0 generated by IHT,
then L(Wk) is a descent sequence with limit L∗ and
there exists a k1 such that for all k > k1, we have

L(Wk)− L∗ ≤ ∥W
k1 −W∗∥2F

2α(k − k1)
.

2. Let {Wk}∞k=0 be generated by mAIHT, then L(Wk)
is a descent sequence that converges to its limit L∗

at least in the sub-linear convergence rate after finite
iterations, i.e. there exist k2 > 0 and a constant C,
such that for all k > k2, we have

L(Wk)− L∗ ≤
(

C

(k − k2)d(1− 2θ)

) 1
1−2θ

,

where θ ∈ (0, 1
2 ) and d =

min
{

α2(1−Lα2)

4C(1+Lα2)
2 ,

C
1−2θ

(
2

2θ−1
2θ−2 − 1

)
(L(V1)− L∗)2θ−1

}
.

Theorem 3.4 states that the theoretical asymptotic conver-
gence rate of IHT is O(1/k), while that of mAIHT is
O((1/k)β), where β ∈ (1,∞) is a constant. This shows
that the theoretical convergence rate of mAIHT is not be
worse than that of IHT. In addition, Theorem 3.4 suggests
that a larger step size can lead to a faster convergence rate.
As mentioned earlier, a larger step size can help reduce the
size of the fixed point set. Combining these insights, we can
conclude that a larger step size will endow the stable points
with better theoretical properties. Hence, it is necessary
to choose a relatively large step size in practice to exploit
these benefits and improve the overall performance of the
algorithm. However, one must also consider practical con-
straints such as potential instability or overshooting when
setting the step size too large.

3.2. Risk upper bounds

Since reconstruction error is a crucial metric in the prun-
ing task, we define the population risk as R(W) =

Ex∼Dx
(∥xTW − xTŴ∥2), where Dx is the distribution

of the calibration data. The goal of this section is to study
the population risk of Wk obtained by IHT or mAIHT with
finite calibration samples. In the following discussion, we
assume that Dx is a bounded distribution i.e. there exists
a Mx such that P(∥x∥2 ≤ Mx) = 1. We first define the
restricted isometry property (RIP) introduced by Candes &
Tao (2005b).

Definition 3.5. (Candes & Tao, 2005b; Candes, 2008) For
a matrix A ∈ Rm×n, the Kth restricted isometry constant
(RIC), denoted by δK , is the smallest number δ ≥ 0 such
that

(1− δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ)∥x∥22
holds for all K-sparse vector x ∈ Rn

We now present the risk upper bounds for the IHT and
mAIHT methods under RIP assumption.

Theorem 3.6 (Risk upper bound for IHT). Let X =
1√
n
(x1,x2, . . . ,xn)

T, x1,x2, . . . ,xn
i.i.d.∼ Dx and

P(∥x1∥2 ≤ Mx) = 1. For {Wn} generated by IHT with
step size α < 1

L and λ. Assume α = O(1) , λ = O(1) and
δ satisfies log(1/δ) = O(n). For integer s, assume with
probability 1 − ζ: (1) W∗ = limWn, s∗ = ∥W∗∥0 and
s∗ ≥ s; (2) the restricted isometry constant of the matrix
Id2
⊗
√
αX satisfies δs∗+s ≤ τ < 0.5. Then with probabil-

ity at least 1− δ − ζ, there exists a K. For any k > K, it
holds that,

R(Wk) ≤ C2 min
W,∥W∥0≤s

R(W) +O

(
1

1− 2τ

)
(2δs∗+s)

k−K

+O

(√
log(2d21/δ)

n(1− 2τ)4

)
,

where C = 1 +
2(1+δs∗+s)

1−2δs∗+s
.

Corollary 3.7. In Theorem 3.6, suppose log(1/δ) = o(n),
δ = o(1), ζ = o(1) and 1

1−2τ = O(1), then for any ε > 0,

after O
(
K + log((1−2τ)ε)

log(2δs∗+s)

)
iterations of IHT, Wk satisfies

R(Wk) ≤ C2 min
W,∥W∥0≤s

R(W) + ε+ o(1)

with probability 1− o(1).

Theorem 3.8 (Risk upper bound for mAIHT). Let X =
1√
n
(x1, . . . ,xn)

T, x1, . . . ,xn
i.i.d.∼ Dx and P(∥x1∥2 ≤

Mx) = 1. For {Wn} generated by mAIHT with step size
α < 1

L and λ. Assume α1 = α2 = O(1), λ = O(1) and
δ satisfies log(1/δ) = O(n). For integer s, assume with
probability 1− ζ:

1. all of {Wn}’s accumulation points have support size
of s∗ and s∗ ≥ s;

2. the restricted isometry constant of the matrix Id2
⊗√

αX satisfies δs∗+s ≤ τ < u ≈ 0.3478, where u is
real root of equation 4u3 + 4u2 + u = 1;

Then with probability at least 1 − δ − ζ, there exists a K.
For any k > K, it holds that

R(Wk) ≤ C2 min
W,∥W∥0≤s

R(W) +O

(
1

1− ρτ

)
ρk−K

+O

(√
log(2d21/δ)

n(1− ρτ )4

)
,

where ρ =
2δs∗+s

√
1+δs∗+s√

1−δs∗+s

< 1 , ρτ = 2τ
√
1+τ√

1−τ
< 1 and

C = 1 +

√
1+δs∗+s(4+2δs∗+s)√

1−δs∗+s(1−ρ)
.

5



An Efficient Pruner for LLM

Corollary 3.9. In Theorem 3.8, suppose log(1/δ) = o(n),
δ = o(1), ζ = o(1) and 1

1−ρτ
= O(1), then for any ε >

0, after O
(
K + log((1−ρτ )ε)

log(ρ)

)
iterations of mAIHT, Wk

satisfies

R(Wk) ≤ C2 min
W,∥W∥0≤s

R(W) + ε+ o(1)

with probability 1− o(1).

Under proper assumptions, the upper bounds of the ex-
cess risks R(Wk) − minW,∥W∥0≤s R(W) for IHT and
mAIHT are composed of three terms. The first term
(C2 − 1)minW,∥W∥0≤s R(W) represents the unavoided
optimization error caused by the non-convexity of the prob-
lem. Luckily, this error is controlled by the optimal risk,
i.e. if the model has an intrinsic sparse structure, this error
would be small. In practice, if the underlying problem is
sparse, the algorithm is more likely to find a solution close
to the optimal one, and this error becomes negligible. The
second term is a non-sufficient optimization error caused by
the finite time iterations of the algorithm. The bounds for
this error show that the convergence rate is asymptotically
linear under stronger assumptions than those discussed in
section 3.1. The last term is the standard generalization
error, which reflects how well the learned model can be
generalized to the unseen data.

These two theorems suggest that mAIHT shares a similar
risk upper bound with IHT. Both of them can be controlled
by a constant multiple of the optimal risk with high proba-
bility. The detailed proofs can be found in Appendix C.

4. Numerical Experiments
4.1. Experimental setup

Pre-processing. Like Wanda (Sun et al., 2023), we ran-
domly utilize 128 calibration samples drawn from the C4
training dataset (Raffel et al., 2020). For each layer ℓ,
the calibration data X for ℓ is the output of the previous
ℓ − 1 pruned layers. For better scaling, we normalize X
before pruning (Meng et al., 2024a). Specifically, we let
E = Diag(XTX)−

1
2 , Ŵ ← E−1Ŵ and X ← XE. This

technique can improve the pruning performance in practice.
Notice that all the computations only need XTX, so we
only need to compute it once per layer and store it.

Hyperparameters choice. We set the step size α = α1 =
α2 = 0.95/∥XTX∥2, the ℓ2 penalty coefficient µ = 0.1 (as
defined in (5)), the number of mAIHT iterations t1 = 50,
and the number of weight refining iterations t2 = 30.

4.2. Efficiency of the acceleration

We first use a single-layer experiment to demonstrate the
efficiency of the acceleration, using reconstruction error as

a metric. Specifically, we measure the reconstruction error
as ∥XŴ−XWk∥2F /∥XŴ∥2F , where Ŵ is the estimated
weight matrix and Wk is the true weight matrix at the k-th
iteration. We also report the estimated sparsity level in each
iteration. We apply both IHT and mAIHT to several layers
of the LLaMA-7B model. The results are shown in Figure 1.
It can be observed that the iterative process of our algorithm
is divided into two stages. In the first stage, the support
gradually shrinks to the desired sparsity level, with the spar-
sity schedule naturally adopting an exponential shape. As
shown in (Benbaki et al., 2023), such an exponential-shaped
shrinking schedule is relatively advantageous. In the second
stage, proximal gradient descent is used to optimize the re-
construction error. Comparing IHT and mAIHT, we can see
that mAIHT achieves faster convergence and significantly
improves the quality of the final stable solution.
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Figure 1. Reconstruction Process for IHT and mAIHT in One
Layer.

4.3. Pruning LLaMA-7B model

In this section, we compare different methods by pruning
the LLaMA-7B model at various levels of sparsity.

First, we train the LLaMA-7B model on the WikiText2
dataset (Merity et al., 2016) and perform weight pruning
using different methods. We compare our method with
one-shot pruning methods for LLMs, including (i) Mag-
nitude Pruning (MP) (Han et al., 2015), (ii)Wanda (Sun
et al., 2023), (iii) SparseGPT (Frantar & Alistarh, 2023),
and (iv)ADMM-based Pruning (Boža, 2024; Meng et al.,
2024a). We use the original settings of these algorithms in
the codebase released by Sun et al. (2023) and Boža (2024).
For each method, we measure the perplexity, the exponential
of the loss function. Table 1 showcases that mAIHT Pruner
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outperforms all other methods in 0.2 to 0.5 sparsity. When
the sparsity is 0.1, mAIHT is slightly inferior to ADMM but
superior to other methods.

Table 1. Perplexity at different sparsity levels in WikiText2
Sparsity level

Method 0.1 0.2 0.3 0.4 0.5
MP 5.8061 6.0206 6.6685 8.6012 17.2857
Wanda 5.6962 5.8229 5.9951 6.3970 7.2588
Sparsegpt 5.6972 5.8084 5.9730 6.3415 7.2397
ADMM 5.6925 5.8045 5.9586 6.3268 7.0826
mAIHT 5.6928 5.8042 5.9565 6.3240 7.0720

Then we compare our proposal with other existing methods
in the zero-shot tasks. We compare the methods on seven
zero-shot tasks which are the same as those selected by (Sun
et al., 2023). The tasks include BoolQ (Clark et al., 2019),
RTE (Wang, 2018), HellaSWAG (Zellers et al., 2019), Wino-
Grande (Sakaguchi et al., 2021), ARC easy and challenge
(Clark et al., 2018), and OpenbookQA (Mihaylov et al.,
2018) . Table 2 presents the accuracy of pruned models
across various datasets, showcasing the performance of dif-
ferent pruning methods at different sparsity levels.

Our results reveal that within the low to moderate sparsity
range (from 0.2 to 0.5), our method demonstrates accuracy
among the top two on the majority of test datasets, and
achieves the best mean accuracy across all sparsity levels.

5. Conclusion
In this paper, we introduce the mAIHT Pruner, an efficient
layerwise one-shot pruning method for LLMs based on
ℓ0-penalized optimization. In our theoretical analysis, we
prove the convergence of the algorithm and provide its con-
vergence rate and risk upper bounds. The mAIHT Pruner is
capable of finding high-quality solutions in practical prun-
ing tasks. Through extensive experiments, we verify its
superiore pruning performance at low to moderate sparsity
levels.

Future works will consider extending this method to other
various kinds of pruning strategies, such as structured prun-
ing (Meng et al., 2024b) and nonuniform layerwise pruning
(Yin et al., 2023), since they can all be formulated or ap-
proximately formulated as a variant of problem (1).
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A. Properties of the Optimization Function
In this section, we analyze the theoretical properties of the optimization function (2). Recall that we define f(W) =
1
2∥XŴ−XW∥2F , h(W) = λ∥W∥0 and L(W) = f(W)+h(W), where Ŵ ∈ Rd1×d2 ,W ∈ Rd1×d2 , and X ∈ RN×d1 .

A.1. Derivations of f(W)

We first introduce some definitions of tensor trick (Diao et al., 2019), an instrument to compute gradients in a clean and
tractable fashion:

Definition A.1 (Vectorization). For any matrix X ∈ Rm×n, we define X := vec(X) ∈ Rmn, such that Xij = X(i−1)n+j

for all i ∈ [m] and j ∈ [n].

Lemma A.2 (Tensor Trick(Diao et al., 2019)). For any A ∈ Rma×na ,B ∈ Rmb×nb and X ∈ Rna×nb , it holds
vec(AXBT) = (A⊗B)X ∈ Rmamb .

Hence, we can compute the gradient f as

df

dW
= XTX(W − Ŵ), (6)

and the Hessian matrix of f is given by

d2f

dW2 =
dvec(XTX(W − Ŵ))

dW
=

d((Id2 ⊗XTX)(W − Ŵ))

dW
= Id2

⊗XTX. (7)

The second equation relies on the tensor trick (Lemma A.2). The Hessian matrix of f implies that the gradient of f is
Lipschitz continuous with a Lipschitz constant of L = ∥XTX∥2 = ∥X∥22, i.e. ∥∇f(W)−∇f(V)∥F ≤ L∥W −V∥F .

A.2. Proof of Proposition 2.1

The proximal operator of λ∥.∥0 is given by

Proxλ∥.∥0
(W) = arg min

V∈Rd1×d2

{
λ∥V∥0 +

1

2
∥W −V∥2F

}
By taking condition on support size s, we can decompose the optimization as

min
V∈Rd1×d2

{
λ∥V∥0 +

1

2
∥W −V∥2F

}
= min

0≤s≤d1d2

min
V,∥V∥0=s

{
λ∥V∥0 +

1

2
∥W −V∥2F

}
= min

0≤s≤d1d2

min
V,∥V∥0=s

{
λs+

1

2
∥W −V∥2F

}
= min

0≤s≤d1d2

{
λs+

1

2
∥W − Ps(W)∥2F

}
,

where Ps(W) denotes the operation of retaining the largest s elements of the absolute values from W and setting the others
to 0.

Consider arranging all entries of W in ascending order of their absolute values as w1, w2, · · · , wd1d2
. For a given support

size s, denote

A(s) = λs+
1

2
∥W − Ps(W)∥2F = λs+

1

2

d1d2−s∑
i=1

|wi|2

then
A(s)−A(s− 1) = λ− 1

2
|wd1d2−s+1|2

Hence, we have for |wd1d2−s+1| ≤
√
2λ, A(s) ≥ A(s − 1), while for |wd1d2−s+1| >

√
2λ, A(s) < A(s − 1). Denote

s∗ = |Supp(H√
2λ(W))|, then we have |wd1d2−s∗+1| >

√
2λ, and |wd1d2−s∗ | ≤

√
2λ. This suggests that

A(s∗) < A(s∗ − 1) < · · · < A(0)
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and
A(s∗) ≤ A(s∗ + 1) ≤ · · · ≤ A(d1d2).

Since H√
2λ(W) = Ps∗(W), then we have

H√
2λ(W) ∈ Proxλ∥·∥0

(W).

A.3. Kurdyka-Lojasiewicz (KL) properties

In the subsequent proof of our main results, we will leverage the Kurdyka-Lojasiewicz (KL) property of the optimization
functions f and h. For details on the KL property, please refer to Bolte et al. (2014). Here, we will prove the KL property by
showing that the optimization functions are semi-algebraic (Attouch & Bolte, 2009). We begin by defining the semi-algebraic
function.

Definition A.3. (Bolte et al., 2014) A subset S of Rn is called the semialgebraic set if there exists a finite number of real
polynomial functions gij , hij such that

S =
⋃
j

⋂
i

{u ∈ Rn : gij(u) = 0, hij(u) < 0}.

A function f(u) is called the semi-algebraic function if its graph {(u, t) ∈ Rn × R, t = f(u)} is a semi-algebraic set.

Next, we will prove that f and h are semi-algebraic functions and provide some function properties that are needed in the
subsequent proofs.

Proposition A.4.

1. f and h are semi-algebraic function.

2. h is proper and lower semi-continuous.

3. L is coercive i.e., L is bounded from below and L(W )→∞ when ∥W∥2F →∞.

Proof. The proofs of 2 and 3 are trivial, thus we only need to check 1:

For f(W) = 1
2∥XŴ −XW∥2F is a real polynomial function, it is a semi-algebraic function.

For h(W) = λ∥W∥0, the graph of h is:

G =

d1d2⋃
i=0

{(W, λi) : ∥W∥0 = i} =
d1d2⋃
i=0

⋃
S∈2[d1d2],∥S∥0=i

{(W, λi) : Supp(W) = S}.

Since {(W, λi) : Supp(W) = S} is a semi-algebraic set, G is a semi-algebraic set and h is a semi-algebraic function.

B. Proof of Optimization Results
B.1. Technical lemmas and some properties

We first define L-smooth functions.

Definition B.1. A function f : Rn → R is called the L-smooth function if f is differentiable and it satisfies

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2.

for every x,y ∈ Rn.

Then we give some important lemmas for L-smooth functions and the proximal operator.
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Lemma B.2 (Quadratic upper bound). Let f : Rn → R be a L-smooth function. Then,

f(x) ≤ f(y) + ⟨x− y,∇f(y)⟩+ L

2
∥x− y∥22 for every x,y ∈ Rn.

Lemma B.3 (Convergence rate for convex proximal gradient method). Let f be convex and L-smooth. Let g be convex.
Assume then proximal gradient method applied to minimize h = f + g with step size α ≤ 1

L generates {xt}. Then there
exists a x∗ such that xt → x∗ and

h(xt)− h(x∗) ≤ ∥x1 − x∗∥22
2α(t− 1)

.

Lemma B.4 (Sufficient descent lemma). Denote f(W) = 1
2∥Y −XW∥2F and h(W) = λ∥W∥0. Let α < 1

L . Then for
any W ∈ Rd1×d2 , and V defined by

V ∈ Proxαh(.)(W − α∇f(W)).

We have

f(V) + h(V) ≤ f(W) + h(W)− 1

2

(
1

α
− L

)
∥V −W∥2F .

Proof. By the definition of the proximal operator, we can get

V = arg min
U∈Rd1×d2

1

2
∥U−W + α∇f(W)∥2F + αh(U).

Taking U = W, we can get:

1

2
∥V −W + α∇f(W)∥2F + αh(V) ≤ 1

2
∥α∇f(W)∥2F + αh(W),

1

2α
∥V −W∥2F + ⟨V −W,∇f(W)⟩+ h(V) ≤ h(W).

By using the quadratic upper bound inequality (Lemma B.2) and the above inequality, we can obtain

f(V) + h(V) ≤ f(W) + ⟨∇f(W),V −W⟩+ L

2
∥W −V∥2F + h(V)

≤ f(W) +
L

2
∥W −V∥2F + h(W)− 1

2α
∥W −V∥2F

= f(W) + h(W)− 1

2

(
1

α
− L

)
∥V −W∥2F .

Based on this lemma, we give some direct properties of IHT and mAIHT.

Proposition B.5. Let αk = α < 1
L and {Wk}∞k=0 be the sequence generated in (3). Then we have

(1) The sequence L(Wk) satisfies

L(Wk−1)− L(Wk) ≥ 1

2
(
1

α
− L)∥Wk −Wk−1∥2F ,

and is decreasing and converges to a positive number L∗.

(2) ∥Wk −Wk−1∥F → 0 as k →∞.

(3) For any positive integer M , we have:

min
k=1,...,M

∥Wk −Wk−1∥2F ≤
2(L(W0)− L∗)

M( 1
α − L)

.

(4) There exists a positive integer K, such that for all integer k > K, Wk has the same support.

12
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Proof. (1) By using Lemma B.4 and the iteration (3), for any integer k > 0, we have

1

2
(
1

α
− L)∥Wk −Wk−1∥2F ≤ L(Wk−1)− L(Wk).

This indicates that sequence L(Wk) is a positive decreasing sequence, so there exists a positive real number L∗, such that
lim
k→∞

L(Wk) = L∗.

(2) For any M ≥ 0, we have

M∑
k=1

∥Wk −Wk−1∥2F ≤
2(L(W0)− L(WM ))

1
α − L

≤ 2L(W0)
1
α − L

.

Let M →∞, this indicates that
∥Wk −Wk−1∥F → 0 as k →∞.

(3) For any positive integer M , we have

min
k=1,...,M

∥Wk −Wk−1∥2F ≤
2(L(W0)− L(WM ))

M( 1
α − L)

≤ 2(L(W0)− L∗)

M( 1
α − L)

.

(4) We will prove (4) by contradiction. Suppose for any integer K > 0, there exists a k > K, such that Wk and Wk−1

have different supports.

By the definition of Wk, the absolute value of any of its non-zero elements is greater than
√
2αλ, which implies that

∥Wk −Wk−1∥2F ≥ 2αλ, (8)

if Wk and Wk−1 have different supports.

From the assumption, we know that there are infinitely many k such that (8) holds, which implies that

∞ =

∞∑
k=1

∥Wk −Wk−1∥2F ≤
2(L(W0)− L∗)

1
α − L

.

This leads to a contradiction. So there exists a positive integer K, such that for all integers k > K, Wk has the same
support.

Proposition B.6. Let α1, α2 < 1
L and {Wk}∞k=0 be the sequence generated in mAIHT(4). Then we have

(1) The sequence L(Wk) satisfies

L(Wk+1) ≤ L(Vk+1) ≤ L(Wk)− 1

2
(
1

α2
− L)∥V k+1 −Wk∥2F .

and is decreasing and converges to a positive number L∗.

(2) ∥Vk −Wk−1∥F → 0 as k →∞.

(3) For any positive integer M , we have:

min
k=1,...,M

∥Vk −Wk−1∥2F ≤
2(L(W0)− L∗)

M( 1
α2
− L)

.

This proposition’s proof is essentially the same as Proposition B.5, so we omit its proof.

13
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B.2. Proof of Theorem 3.3

Proof. (1) After a finite number of steps, the support of Wk remains unchanged(see Theorem B.5(4)). Consequently, the
algorithm’s iteration is equivalent to performing projected gradient descent over the support set. Since projected gradient
descent over a closed convex set converges when αk < 1

L , there exists a W∗ such that Wk →W∗. Moreover, Since the
absolute value of all nonzero entries of Wk is greater than

√
2αλ, W∗ retains the same support as Wk for sufficiently large

k.

Hence, ∥Wk∥0 → ∥W∗∥0 as k →∞. This implies that L(Wk)→ L(W∗).

The remaining proof only needs to verify that W∗ satisfies the equivalent condition for α-fixed points.

For (i, j) ∈ Supp(W∗) and sufficiently large k, Wk
ij = Wk−1

ij + (αXT(Y − XWk−1))ij and |Wk
ij | ≥

√
2αλ. Let

k →∞, we can obtain
(XT(Y −XW∗))ij = 0 and |W∗

ij | ≥
√
2αλ.

For (i, j) /∈ Supp(W∗) and sufficiently large k, |(αXT(Y −XWk−1))ij | <
√
2αλ. Let k →∞, we can get

|(XT(Y −XW∗))ij | ≤
√

2λ

α
.

(2) Since L(Wk) ≤ L(Vk) ≤ L(W0) for k = 1, 2, · · · and L is coercive, {Wk}∞k=0 and {Vk}∞k=0 generated by (4)
are bounded; otherwise, L(Wk) or L(Vk) will tend to positive infinity, which contradicts the boundedness of L(Wk) or
L(Vk).

By proposition B.6 , we know that Vk+1 −Wk → 0 as k →∞. Suppose {Wk}∞k=0 has a accumulation point W∗ and
its sub-sequence {Wkj}∞j=0 satisfy lim

j→∞
Wkj = W∗. Then we have lim

j→∞
Vkj+1 = W∗. Since the absolute value of any

non-zero elements of Vk,Wk, k = 2, 3, · · · is greater than min{
√
2α1λ,

√
2α2λ}, there exists a J > 0, such that for every

j > J , Wkj and Vkj+1 have the same support as W∗. Hence, similar to (1) above, the remaining proof only needs to
verify that W∗ satisfies the equivalent condition of a α2-fixed point.

For (i, j) ∈ Supp(W∗) and sufficiently large k, Vkn+1
ij = Wkn

ij + (α2X
T(Y −XWkn))ij and |Vkn

ij | ≥
√
2α2λ. Let

n→∞, We can obtain
(XT(Y −XW∗))ij = 0 and |W∗

ij | ≥
√

2α2λ.

For (i, j) /∈ Supp(W∗) and sufficiently large n, |(α2X
T(Y −XWkn))ij | <

√
2α2λ. Let k →∞, we can get

|(XT(Y −XW∗))ij | ≤
√

2λ

α2
.

This completes the proof.

B.3. Proof of Theorem 3.4

(1) From proposition B.5, the support of Wk will stabilize after finite iterations. Suppose after k1’s iteration the support
stabilizes, denoted as S. Then the iteration is equivalent to

Wk = PS(W
k−1 − αk∇f(Wk−1)),

where PS(W) project W to S. By using Lemma B.3 with f = f(W) and

g = IS(W) =

{
0, Supp(W) ⊂ S

∞, Supp(W) ̸⊂ S.

14
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We have

L(Wk)− L∗ ≤ ∥W
k1 −W∗∥2F

2α(k − k1)
.

(2) We first illustrate that our optimization function satisfies the KL property through the following theorem:

Theorem B.7 ((Bolte et al., 2014; Attouch & Bolte, 2009)). For a semi-algebraic function f(x), if it is a proper and lower
semicontinuous, then f satisfies the KL property and the desingularising function has the form of φ (s) = cs1−θ where c is
positive real number and θ ∈ [0, 1).

The proof of Theorem 3.4 is a direct application of the following theorem established by Li & Lin (2015).

Theorem B.8 ((Li & Lin, 2015)). Let f be a proper function with Lipschitz continuous gradients and h be proper and lower
semicontinuous. Assume that L is coercive, f and h satisfy the KL property and the desingularising function has the form of
φ(t) = C

θ t
θ for some C > 0, θ ∈ (0, 1], then the monotone accelerated proximal gradient methods satisfies:

1. If θ = 1, then there exists k1 such that L(W k) = L∗ for all k > k1 and the algorithm terminates in finite steps.

2. If θ ∈ [ 12 , 1), then there exists k2 such that for all k > k2,

L(W k)− L∗ ≤
(

d1C
2

1 + d1C2

)k−k2

rk2
.

3. If θ ∈ (0, 1
2 ), then there exists k3 such that for all k > k3,

L(W k)− L∗ ≤
(

C

(k − k3)d2(1− 2θ)

) 1
1−2θ

,

where L∗ is the same function value at all the accumulation points of {W k}, rk = L(V k) − L∗, d1 =(
1
α2

+ L
)2

/
(

1
2α2
− L

2

)
and d2 = min

{
1

2d1C
, C
1−2θ

(
2

2θ−1
2θ−2 − 1

)
r2θ−1
1

}
Theorem 3.4.2 is a direct consequence of combining Theorem B.7, Theorem B.8, and Proposition A.4.

C. Proof of Statistical Results
C.1. Technical lemmas

Recall that we denote R(W) = E(∥xTW − xTŴ∥2) = Tr((W − Ŵ)TΣ(W − Ŵ)), where Σ = E(xTx). We denote
the empirical risk as R̃(W) = ∥XW − XŴ∥2F = Tr((W − Ŵ)TΣ̃(W − Ŵ)), where X = 1√

n
(x1,x2, . . . ,xn)

T,

x1,x2, . . . ,x3
i.i.d.∼ Dx and Σ̃ = XTX. Then we offer a lemma to give a generalization risk bound.

Lemma C.1. Let Dx be a distribution over x ∈ Rd1 which is bounded, i.e. there exits a Mx, such that Px∼Dx
(∥x∥F ≤

Mx) = 1. Assume X = 1√
n
(x1,x2, . . . ,xn)

T, x1,x2, . . . ,x3
i.i.d.∼ Dx.Then for any W ∈ Rd1×d2 , we have

|R(W)− R̃(W)| ≤

√
2M4

x∥W − Ŵ∥41d22 log(
2d2

1

δ )

n

with probability at least 1− δ,

Proof. By using Hoeffding’s inequality, for any j, k ∈ 1, · · · , d1 we can get

|Σjk − Σ̃jk| = |
1

n

n∑
i=1

xijxik − E(x1jx1k)| ≤

√
2M4

x log(
2d2

1

δ )

n

with probability at least 1− δ/d21.
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Denote ∆ =

√
2M4

x log(
2d21
δ )

n . Then we have,

P(∥Σ− Σ̃∥∞ ≤ ∆) = 1− P(
d1⋃

j,k=1

{|Σjk − Σ̃jk| ≥ ∆}) ≥ 1−
d1∑

j,k=1

P(|Σjk − Σ̃jk|) ≥ ∆) ≥ 1− δ

Hence, with probability at least 1− δ, for any W , we have

|R(W)− R̃(W)| = |Tr((W − Ŵ)T(Σ− Σ̃)(W − Ŵ))|

≤
d2∑
i=1

d1∑
j=1

d1∑
k=1

|((W − Ŵ)T)ij(Σ− Σ̃)jk(W − Ŵ)ki|

≤ ∆

d2∑
i=1

d1∑
j=1

d1∑
k=1

|(W − Ŵ)ji(W − Ŵ)ki|

≤ ∆d2∥W − Ŵ∥21.

We then give a useful lemma for RIP and extend it to a matrix version.

Lemma C.2. (Candes & Tao, 2005a) Suppose matrix A satisfies the RIP of order k. Given a vector u ∈ Rn and a set
Ω ∈ [N ], one has

1.
∥∥((I−ATA

)
u
)
Ω

∥∥
2
≤ δt∥u∥2 if |Ω ∪ Supp(u)| ≤ t.

2.
∥∥(ATu)Ω

∥∥
2
≤
√
1 + δt∥u∥2 if |Ω| ≤ t.

Corollary C.3. For a matrix A ∈ Rn×d1 and matrix W ∈ Rd1×d2 , suppose matrix Id2 ⊗A satisfy the RIP of order k.
Given a and a set Ω ∈ [d1]× [d2], one has

1.
∥∥((I−ATA

)
W
)
Ω

∥∥
F
≤ δt∥W∥F if |Ω ∪ Supp(W)| ≤ t.

2.
∥∥(ATW)Ω

∥∥
F
≤
√
1 + δt∥W∥F if |Ω| ≤ t.

C.2. Proof of Theorem 3.6

Notice that by taking X
′
=
√
αX, α

′
= 1, λ

′
= αλ. , the IHT iteration remains the same. Without loss of generality, we

first consider α = 1.

Since from Proposition B.5, there exists a K, such that for any k ≥ K, Wk have the same support as W∗. Denote the
support as S∗, and by the asumption, |S∗| = s∗. For k > K and any W such that ∥W∥0 ≤ s, we denote Y = XŴ,
Φ = Y −XW, S = Supp(W) and Gk = Wk−1 +XT(Y −XWk−1). Then by triangular inequality, we have

∥Wk −W∥F = ∥(Gk)S∗ −WS∪S∗∥F
≤ ∥(Gk)S∗ − (Gk)S∗∪S∥F + ∥(Gk)S∗∪S −WS∪S∗∥F
≤ 2∥(Gk)S∗∪S −WS∪S∗∥F .

(9)

The second inequality is due to (Gk)S∗ is the best s∗-sparse approximation of (Gk)S∗∪S and ∥W∥0 ≤ s ≤ s∗.

∥Wk −W∥F ≤ 2∥(Wk−1 +XT(Φ+XW −XWk−1))S∪S∗ −WS∪S∗∥F
≤ 2∥((I−XTX)(Wk−1 −W))S∗∪S∥F + 2∥(XTΦ)S∗∥F
≤ 2δs∗+s∥Wk−1 −W∥F + 2

√
1 + δs∗+s∥Φ∥F .

(10)

16



An Efficient Pruner for LLM

The third inequality is from Corollary C.3. Then by induction, it’s easy to get

∥Wk −W∥F ≤ (2δs∗+s)
K−k∥WK −W∥F +

2
√
1 + δs∗+s

1− 2δs∗+s
∥Φ∥F .

From Proposition B.5, we have L(WK) ≤ L(W0) = L(Ŵ) ≤ λd1d2. Hence, we have√
1− δs∗+s∥W −WK∥F ≤ ∥X(W −WK) +Φ∥F + ∥Φ∥F

≤ ∥Y −XWK∥F + ∥Φ∥F

≤
√
2L(WK) + ∥Φ∥F

≤
√
2λd1d2 + ∥Φ∥F

(11)

and

∥Y −XWk∥F ≤ ∥Φ∥F + ∥X(W −Wk)∥F ≤ ∥Φ∥F +
√
1 + δs∗+s∥Wk −W∥F (12)

Hence by combining (10), (11) and (12), we have

R̃(Wk) = ∥Y −XWk∥2F

≤ ((1 +
2(1 + δs∗+s)

1− 2δs∗+s
)∥Φ∥F +

√
1 + δs∗+s(2δs∗+s)

k−K∥WK −W∥F )2

≤ ((1 +
2(1 + δs∗+s)

1− 2δs∗+s
)∥Φ∥F +

√
3(2δs∗+s)

k−K(
√
2λd1d2 + ∥Φ∥F ))2

=

(
C

√
R̃(W) +

√
3(
√

2λd1d2 + ∥Φ∥F )(2δs∗+s)
k−K

)2

(13)

where C = 1 +
2(1+δs∗+s)

1−2δs∗+s
. It’s easy to see that C ≤ 1 + 4

1−2τ = O
(

1
1−2τ

)
.

Denote B(W) =

√
2M4

x∥W−Ŵ∥4
1d

2
2 log(

2d21
δ )

n . We choose a fixed W+ ∈ argminW,∥W∥0≤s E(∥xTW − xTŴ∥2) and let

W in (13) equals to W+. Then B(W+) = O(

√
log(2d2

2/δ)
n ). Since we assume log(1/δ)

n = O(1), with probability at least

1− δ, |R̃(W+)−R(W+)| ≤ O(1). Hence we have
√
3(
√
2λd1d2 + ∥Φ∥F ) = O(

√
λ+

√
R̃(W+)) ≤ O(

√
λ+ 1).

Similar to (11), we also have

∥W+ −Wk∥F ≤
√
2λd1d2 +

√
R̃(W+)√

1− δs∗+s

≤
√
2λd1d2 +

√
R(W+) +O(1)√
1/2

= O(
√
λ+ 1). (14)

Hence, we have
∥Wk − Ŵ∥1 ≤ ∥Wk −W+∥1 + ∥Ŵ −W+∥1

≤
√
d1∥Wk −W+∥F + ∥Ŵ −W+∥1

= O(
√
λ+ 1)

This shows that

B(Wk) = O

√ (
√
λ+ 1)4 log(2d21/δ)

n

 . (15)
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Then we have

R(Wk) ≤ R̃(Wk) + B(Wk)

≤
(
C

√
R̃(W+) +O

(√
λ+ 1

)
(2δs∗+s)

k−K

)2

+ B(Wk)

≤
(
C
√
R(W+) + B(W+) +O

(√
λ+ 1

)
(2δs∗+s)

k−K
)2

+ B(Wk)

= C2R(W+) +O
(
C(
√
λ+ 1)

)
(2δs∗+s)

k−K +O
(
(
√
λ+ 1)2

)
(2δs∗+s)

2(k−K)

+ C2B(W+) + B(Wk)

≤ C2R(W+) +O

(√
λ+ 1

1− 2τ
+ (
√
λ+ 1)2

)
(2δs∗+s)

k−K +O

(
(
√
λ+ 1)2

(1− 2τ)2

√
log(2d21/δ)

n

)
(16)

Hence, for any α ≤ 1/L, when Id2
⊗
√
αX satisfies δs+s∗ ≤ τ , take λ in (16) equal to αλ. Since we assume α = O(1)

and λ = O(1), we have

R(Wk) ≤ C2R(W+) +O(
1

1− 2τ
)(2δs∗+s)

k−K +O

(
1

(1− 2τ)2

√
log(2d21/δ)

n

)
.

with probability 1− δ − ξ. This completes the proof.

C.3. Proof of Theorem 3.8

Since we assume that all accumulation points of {Wk} have the same support size s∗, there exists a K, such that for k > K,
∥Wk∥0 = s∗, ∥Vk+1∥0 = s∗. Otherwise, for any N ∈ N, there exists a kN , such that ∥WkN ∥0 ̸= s∗ or ∥VkN ∥0 ̸= s∗.
From Proposition B.6 and Theorem 3.3, we know that Vk and Wk are bounded and share the same accumulation points. .
Since the absolute value of any non-zero entries of Wk and Vk is greater than

√
2λmin{α1, α2}, we conclude that there

exists an accumulation point W∗ of either WkN or VkN , and we have ∥W∗∥0 ̸= s∗, which leads to a contradiction.

Denote α = α1 = α2. Notice that by taking X
′
=
√
αX, α

′
= 1, λ

′
= αλ, , the mAIHT iteration also remains the same.

Without loss of generality, we first consider α = 1. For any W such that ∥W∥0 ≤ s, we denote Y = XŴ, Φ = Y−XW,
Sk = Supp(Vk) and S = Supp(W). Then for any k > K, we have

∥Y −XWk+1∥F = ∥X(W −Wk+1) +Φ∥F
≥
√

1− δs∗+s∥W −Wk+1∥F − ∥Φ∥F .
(17)

Similar to (9), we also have

∥Vk+1 −W∥F ≤ 2∥(Wk −W +XT(Φ+XW −XWk))Sk+1∪S∥F
≤ 2∥((I−XTX)(Wk −W))Sk+1∪S∥F + 2∥(XTΦ)Sk+1∪S∥F
≤ 2δs∗+s∥Wk −W∥F + 2

√
1 + δs∗+s∥Φ∥F .

(18)

The second inequality is due to Corollary C.3. By repeatedly applying the definition of RIP, we have

√
1− δs∗+s∥W −Wk+1∥F ≤ ∥X(W −Wk+1)∥F

≤ ∥Y −XWk+1∥F + ∥Φ∥F
≤ ∥Y −XVk+1∥F + ∥Φ∥F
≤ ∥X(W −Vk+1)∥F + 2∥Φ∥F
≤
√

1 + δs∗+s∥W −Vk+1∥F + 2∥Φ∥F

(19)
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The third inequality is due to L(Wk+1) ≤ L(Vk+1) and ∥Wk+1∥0 = ∥Vk+1∥0 = s∗. Combine (18) and (19), we have√
1− δs∗+s∥W −Wk+1∥F ≤ 2

√
1 + δs∗+sδs∗+s∥W −Wk∥F + (4 + 2δs∗+s)∥Φ∥F .

We denote ρ = 2

√
1+δs∗+sδs∗+s√

1−δs∗+s

. Since we assume that δs∗+s ≤ τ < u ≈ 0.34781, where u is the real root of

4u3 + 4u2 + u = 1, we have ρ ≤ ρτ < 1, where ρτ = 2
√
1+ττ√
1−τ

. Then we can get

∥Wk −W∥F ≤ ρk−K∥WK −W∥F +
4 + 2δs∗+s√

1− δs∗+s(1− ρ)
∥Φ∥F .

Similar to analysis of IHT, by (12) and (11), we have

R̃(Wk) = ∥Y −XWk∥2F
≤ (
√

1 + δs+s∗∥Wk −W∥F + ∥Φ∥F )2

≤ ((1 +

√
1 + δs∗+s(4 + 2δs∗+s)√

1− δs∗+s(1− ρ)
)∥Φ∥F +

√
1 + δs∗+sρ

k−K∥WK −W∥F )2

≤ (C∥Φ∥F +
2(
√
2λd1d2 + ∥Φ∥F )√

1− τ
ρk−K)2

(20)

where C = 1 +

√
1+δs∗+s(4+2δs∗+s)√

1−δs∗+s(1−ρ)
. It’s easy to see that

C ≤ Cτ = 1 +

√
1 + τ(3 + τ)√
1− τ(1− ρτ )

= O(
1

1− ρτ
)

Denote B(W) =

√
2M4

x∥W−Ŵ∥4
1d

2
2 log(

2d21
δ )

n . We choose a fixed W+ ∈ argminW,∥W∥0≤s E(∥xTW − xTŴ∥2). Take

W in (20) equal to W+. Since we assume log(1/δ)
n = O(1), from Lemma C.1, with probability at least 1− δ, R̃(W+) ≤

R(W+) + O(1). Hence we have 2(
√
2λd1d2 + ∥Φ∥F ) = O(

√
λd1d2 +

√
R̃(W+)) ≤ O(

√
λ + 1) and B(Wk) ≤

O

(√
(
√
λ+1)4 log(2d2

1/δ)
n

)
(similar to (15)). Then we have

R(Wk) ≤ R̃(Wk) + B(Wk)

≤
(
C

√
R̃(W+) +O

(√
λ+ 1

)
ρk−K

)2

+ B(Wk)

≤
(
C
√
R(W+) + B(W+) +O

(√
λ+ 1

)
ρk−K

)2
+ B(Wk)

≤ C2R(W+) +O
(
Cτ (
√
λ+ 1)

)
ρk−K +O

(
(
√
λ+ 1)2

)
ρ2(k−K) + C2

τB(W+) + B(Wk)

≤ C2R(W+) +O(
(
√
λ+ 1)2

1− ρτ
)ρk−K +O

(
(
√
λ+ 1)2

√
log(2d21/δ)

n(1− ρτ )4

)
.

(21)

Hence, for any 0 < α ≤ 1/L, when Id2
⊗
√
αX satisfies δs+s∗ ≤ τ , since we assume α = O(1), λ = O(1), we have

R(Wk) ≤ C2R(W+) +O(
(
√
αλ+ 1)2

1− ρτ
)ρk−K +O

(
(
√
αλ+ 1)2

√
log(2d21/δ)

n(1− ρτ )4

)

= C2 min
W,∥W∥0≤s

R(W) +O(
1

1− ρτ
)ρk−K +O

(√
log(2d21/δ)

n(1− ρτ )4

)
,

with probability 1− δ − ξ.

This completes the proof.
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D. Additional Experiments
In this section, we present experiments comparing the pruning time and performance of mAIHT with Wanda and SparseGPT.
We also evaluate how the number of iterations in mAIHT affects both runtime and perplexity, showing its flexibility in
balancing speed and accuracy.

D.1. Results on Larger Model

We conducted additional experiments on the LLaMA-13B model with 50% sparsity, evaluating its performance on Wikitext-2
perplexity as well as zero-shot tasks. The results are summarized in the tables below:

Table 3. Perplexity on Wikitext-2 (LLaMA-13B, 50% Sparsity)

Method Perplexity

SparseGPT 6.2535
mAIHT 6.1336

Table 4. Zero-Shot Downstream Task Accuracy (%, LLaMA-13B, 50% Sparsity)

Method BoolQ RTE HellaSwag ARC-e ARC-c WinoGrande OBQA Mean

SparseGPT 76.06 60.28 74.00 67.55 41.89 71.98 44.20 62.28
mAIHT 75.47 60.28 75.08 70.03 44.88 71.42 44.80 63.14

These results indicate that mAIHT outperforms SparseGPT both in terms of Wikitext-2 perplexity and the average per-
formance across downstream tasks. mAIHT also achieves higher performance on individual tasks, demonstrating its
effectiveness for model pruning.

D.2. Runtime Comparison

We compare the pruning times (including activation collection) for the LLaMA-7B model across three methods. All
experiments were performed with an A100 GPU.

Table 5. Pruning Time on LLaMA-7B (in Seconds)

Method Time (s)

Wanda 148.55
SparseGPT 609.04
mAIHT (50 iters) 1370.79

Although mAIHT incurs higher pruning times due to its iterative gradient-based optimization process, it remains significantly
more efficient than full model fine-tuning. For instance, the Wanda paper (Sun et al., 2023) reports that LoRA fine-tuning on
LLaMA-7B takes approximately 24 hours on a single V100 GPU, and full fine-tuning can take up to 24 days. In contrast,
mAIHT completes pruning in under 30 minutes on an A100 GPU, offering a practical and efficient alternative to fine-tuning.

Importantly, mAIHT also provides a controllable trade-off between pruning time and performance. As discussed in Remark
2.2, a single iteration of mAIHT is equivalent to magnitude pruning, and with pre-pruning normalization, this reduces to
Wanda. Thus, mAIHT can be seen as a natural generalization of one-shot methods like Wanda and SparseGPT. By increasing
the number of iterations, mAIHT improves performance progressively while keeping the computational cost manageable.

The following table illustrates how performance improves with more iterations of mAIHT when pruning LLaMA-7B to 50%
sparsity:
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Table 6. mAIHT Runtime and Perplexity at 50% Sparsity on LLaMA-7B

Method Wanda (1 iter) 20 iters 50 iters 100 iters

Perplexity 7.2588 7.1876 7.0720 7.0765
Time (s) 148 860 1370 2286

These results show that mAIHT steadily improves performance as the number of iterations increases, reaching the best
perplexity at 50 iterations. The slight increase in perplexity at 100 iterations is likely due to overfitting to the calibration
data. Runtime scales approximately linearly with the number of iterations, enabling users to balance speed and accuracy
based on their computational budget. Therefore, mAIHT provides a flexible and effective pruning strategy that offers much
of the performance benefits of fine-tuning with only a fraction of the computational cost, and clear advantages over static
one-shot methods.

D.3. Support for Structured Pruning

The mAIHT framework can be extended to support structured sparsity constraints. Specifically, n:m sparsity can be
incorporated by replacing the λ∥W∥0 term in the optimization objective with an indicator function IS(W ), where S denotes
the set of matrices that satisfy the n:m sparsity pattern. The indicator function IS takes a value of 0 when W ∈ S and +∞
otherwise. In this case, the proximal step in mAIHT reduces to a projection onto S, replacing the standard hard-thresholding
operator.

Empirical results on LLaMA-7B with 2:4 sparsity are provided in the following tables. As shown, mAIHT outperforms
SparseGPT in terms of Wikitext-2 perplexity and achieves competitive or superior performance across zero-shot tasks.

Table 7. Perplexity on Wikitext-2 (LLaMA-7B, 2:4 Sparsity)

Method Perplexity

SparseGPT 7.2933
mAIHT 7.2606

Table 8. Zero-Shot Downstream Task Accuracy (%, LLaMA-7B, 2:4 Sparsity)

Method BoolQ RTE HellaSwag ARC-e ARC-c WinoGrande OBQA Mean

SparseGPT 73.79 54.51 69.28 66.75 39.33 68.42 38.60 58.67
mAIHT 72.96 60.28 69.56 64.89 40.27 67.48 39.40 59.26

Additionally, the mAIHT framework is compatible with various other structured sparsity patterns, including hierarchical
sparsity (Wu et al., 2023), block sparsity (Gray et al., 2017), and row sparsity (Meng et al., 2024b). For each of these
sparsity patterns, the optimization objective is modified by replacing the ℓ0 term with the indicator function IS(W ), and the
projection step is adapted accordingly.

Although the current theoretical analysis of mAIHT is focused on unstructured sparsity and does not directly extend to
structured sparsity due to the geometric and combinatorial differences in the sparsity set S, future work will aim to extend
these theoretical guarantees to structured sparsity.

D.4. Effect of Gradient-Based Refinement

We conducted an ablation study on LLaMA-7B at 50% sparsity to evaluate the effect of the gradient-based refinement step
on Wikitext-2 perplexity. The results are shown below:
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Table 9. Ablation Study on Refinement (Wikitext-2 PPL, LLaMA-7B, 50% Sparsity)

Method Perplexity

SparseGPT 7.2397
mAIHT (w/o Refinement) 7.0843
mAIHT (Full) 7.0720

Even without explicit refinement, mAIHT achieves lower perplexity than SparseGPT, indicating that the proximal gradient
steps implicitly refine the retained weights. The explicit refinement step further improves performance, confirming the
effectiveness of the gradient-based refinement mechanism in mAIHT.
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