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Figure 1: The proposed algorithm facilitates effortless and interactive creation of high-quality 3D
meshes from natural language descriptions, which can then be utilized for 3D printing. The six
images at the right show the corresponding physical 3D printed model from multiple perspectives.
Our output meshes are ready for 3D printing. (We add the book and mouse as the size reference.)

ABSTRACT

The challenge of text-to-3D generation lies in accurately and efficiently crafting
3D objects based on natural language descriptions, a capability that promises sub-
stantial reduction in manual design efforts and offers an intuitive interface for user
interaction with digital environments. Despite recent advancements, effective re-
covery of fine-grained details and efficient optimization of high-resolution 3D out-
puts remain critical hurdles. Drawing inspiration from the efficacious paradigm
of progressive learning, we present a novel Multi-scale Triplane Network (MTN)
architecture coupled with a tailored progressive learning strategy. As the name
implies, the Multi-scale Triplane Network consists of four triplanes transitioning
from low to high resolution. This hierarchical structure allows the low-resolution
triplane to serve as an initial shape for the high-resolution counterparts, easing the
inherent complexity of the optimization process. Furthermore, we introduce the
progressive learning scheme that systematically guides the network to shift its at-
tention from prominent coarse-grained structures to intricate fine-grained patterns.
This strategic progression ensures that the focus of the model evolves towards
emulating the subtlest aspects of the described 3D object. Our experiment veri-
fies that the proposed method performs favorably against contemporary methods.
Even for the complex and nuanced textual descriptions, our method consistently
excels, delivering robust and viable 3D shapes where other methods falter.

1 INTRODUCTION

Designing digital models for manufacturing (Drotman et al., 2017; Fujii et al., 2023) is often time-
consuming and labor-intensive. To streamline this process, researchers are developing more intuitive
methods for 3D object generation, such as using text prompts (see Figure 10). The aim of the text-
to-3D generation task is to automatically create a 3D object draft from a natural description, thus
cutting down the design efforts from the ground up.

In recent years, text-to-3D generation has reported rapid development due to the breakthrough of
text-to-image diffusion models (Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021; Song et al.,
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Figure 2: Our method is able to generate high-quality 3D outputs from various text prompts using the
proposed Multi-scale Triplane Network (MTN). We display both mesh normals and the generated
results obtained from texts of varying lengths. Specifically, our approach showcases the ability to
create animal meshes and industrial products. Moreover, automatic color rendering is applied when
a common color is applicable for such a category.

2021). For instance, the pioneer work DreamFusion (Poole et al., 2023) leverages the 2D Stable
Diffusion and proposes Score Distillation Sampling (SDS) algorithm to generate a variety of 3D
objects using only text prompts. However, there remain two problems: 1) The inherent optimization
complexity of 3D high-resolution objects. It is hard to directly map one sentence to one high-
dimension 3D object, especially in the form of Neural Radiance Fields (NeRF) (Mildenhall et al.,
2021). This leads to either generation collapse or extended training duration for model convergence.
2) Lack of fine-grained details. We notice that some works report blurred results (Poole et al., 2023;
Wang et al., 2023a; Metzer et al., 2023). This is due to the use of a fixed training strategy, i.e.,
focusing on global fidelity all the time while ignoring local parts.

In an attempt to overcome the above-mentioned challenges, we propose a progressive text-to-3D
generation model that can gradually refine details to produce high-quality 3D objects (see Figure 2).
1) For the first problem, we introduce a novel network structure, namely, Multi-scale Triplane Net-
work (MTN) consisting of four triplanes ranging from low to high resolution. In the initial phases
of training, we sample low-resolution features from the corresponding low-resolution triplane to
capture the basic global geometric shape. As training advances, we fix the former low-resolution
triplanes and gradually shift our focus to triplanes with a higher resolution. Such a progressive
structure facilitates the model to capture different-level features in a step-by-step manner and thus
enhances the geometric and textural nuances of the 3D model, such as color and texture. 2) For the
second problem, we adopt a progressive learning strategy focusing on two key factors, i.e., time step
t and camera radius. In particular, unlike existing 2D diffusion models that utilize random sampling,
we adopt a large t during the initial stages to guide the global structure. As the training progresses,
we transition to a smaller t to refine visual details. Meanwhile, we gradually adjust the radius of the
camera to approach the object more closely. This enables the camera to initially focus on capturing
the global structure and later shift its attention to the local details. Our contributions are as follows:

• We introduce a Multi-scale Triplane Network (MTN) to effectively tackles the challenge
of text-to-3D generation in a bottom-up manner. This hierarchical structure progresses
from rough to fine-grained details, leveraging initial low-resolution shapes to streamline
the high-resolution optimization, overcoming complexities faced by prior methods.

• We propose a progressive learning strategy tailored for the Multi-scale Triplane Network.
It simultaneously reduces the camera radius and time step t in diffusion to refine details of
the 3D model in a coarse-to-fine manner, ensuring superior capture of subtle details in the
generated 3D models.

• Albeit simple, extensive experiments show that the proposed method could achieve high-
resolution outputs that align closely with natural language descriptions. We expect this
work to pave the way for automatic 3D printing via intuitive human-machine interaction.

2 RELATED WORK

3D Generative Modeling The realm of 3D generative modeling has seen extensive exploration
across diverse representation types, including voxel grids (Tatarchenko et al., 2017; Li et al., 2017),
point clouds (Luo et al., 2021; Zhou et al., 2021; Vahdat et al., 2022), meshes (Gao et al., 2019; 2021;
Nash et al., 2020; Henderson et al., 2020; Gupta, 2020; Rosinol et al., 2019), implicit fields (Cheng
et al., 2022; Wu et al., 2020; Wu & Zheng, 2022; Zheng et al., 2022a), and octrees (Ibing et al.,
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2023). While many traditional approaches hinge on 3D assets as training data, the challenge of
acquiring such data at scale has spurred alternative strategies. Addressing the inherent challenge
of obtaining 3D assets for training, some recent endeavors have turned to 2D supervision. Lever-
aging ubiquitous 2D images, models, e.g., pi-GAN (Chan et al., 2021), EG3D (Chan et al., 2022),
MagicMirror (Zheng et al., 2022b), and GIRAFFE (Niemeyer & Geiger, 2021) have supervised 2D
renderings of 3D models through adversarial loss against 2D image datasets. While these approaches
hold potential, a recurring challenge is that they are often restricted to specific domains, e.g., human
faces (Karras et al., 2019), limiting their versatility and hindering expansive creative freedom in
3D design. In our study, we pivot towards text-to-3D generation, with the goal of crafting visually
favorable 3D objects guided by diverse text prompts.

Text-to-3D Generation The success of text-to-image generation models has driven substantial
progress in the emerging field of text-to-3D object generation. Notably, the integration of CLIP into
models, e.g., CLIP-forge (Sanghi et al., 2022), Dream Fields (Jain et al., 2022), Text2Mesh (Michel
et al., 2022), CLIPmesh (Mohammad Khalid et al., 2022), and CLIP-NeRF (Wang et al., 2022) has
been a significant advancement. These approaches harness CLIP to optimize 3D representations,
ensuring that 2D renderings resonate with textual prompts. A defining advantage of such techniques
is their ability to bypass the need for costly 3D training data, though a trade-off in terms of the
realism of the resultant 3D models has been observed. More recent advancements, such as Dream-
Fusion (Poole et al., 2023), which proposes Score Distillation Sampling (SDS) Loss, SJC (Wang
et al., 2023a), Magic3D (Lin et al., 2023), and Latent-NeRF (Metzer et al., 2023), have showcased
the merits of employing robust text-to-image diffusion models as a robust 2D prior, elevating the
quality and realism of text-to-3D generation. Such a visual prior, capitalizing on the potential of
diffusion models, has led to outcomes with higher fidelity and diversity, as well as reduced gen-
eration time. Along this line, Fantasia3D (Chen et al., 2023) employs disentangled modeling of
geometry and appearance, enhancing fidelity and realism while offering better control over both
properties. Meanwhile, ProlificDreamer (Wang et al., 2023b) introduces Variational Score Distilla-
tion (VSD) Loss, serving as a replacement for SDS Loss. This enhancement has resulted in outputs
characterized by higher resolution and increased diversity in 3D representations. Despite these ad-
vances, the multi-face (Janus) problem remains. To address this, Zero-1-to-3 (Liu et al., 2023),
Image-Dream (Wang & Shi, 2023), and MVDream (Shi et al., 2024) introduce multi-view diffusion
models trained on extensive multi-view datasets to ensure multi-view consistency. Additionally,
Bidiff (Ding et al., 2024) presents a unified framework integrating 3D and 2D diffusion processes to
preserve both 3D fidelity and 2D texture richness. While substantial, these contributions differ from
our focus on enhancing 3D representation quality and can complement our method. Triplane-based
methods, such as Instant3D (Li et al., 2023), DIRECT-3D (Liu et al., 2024), and TPA3D (Wu et al.,
2025) represent a promising alternative within the NeRF-based text-to-3D landscape. By leveraging
efficient Triplane representations, these approaches achieve a balance between computational effi-
ciency and output quality. These methods reveal the potential of Triplane representations to elevate
text-to-3D generation tasks and align closely with the principles of our approach. Recently, 3D
Gaussian Splatting (Kerbl et al., 2023) has emerged as an alternative to NeRF. Methods like Dream-
Gaussian (Tang et al., 2024), GSGEN (Chen et al., 2024), GaussianDreamer (Yi et al., 2024), and
LucidDreamer (Liang et al., 2024) have applied this representation to text-to-3D generation. Though
faster, these approaches often compromise the high quality characteristic of NeRF-based methods
and require post-processing to convert Gaussian representations into NeRF or meshes, adding com-
putational overhead. Therefore, we focus on NeRF-based methods for their superior quality and
fidelity, building upon the principles of this line of research and introduce novel techniques to effec-
tively enhance the quality of 3D outputs.

3 METHOD

3.1 MULTI-SCALE TRIPLANE

An overview of our Multi-scale Triplane Network (MTN) is shown in Figure 3 (a). In particular,
MTN is composed of four triplanes (Chan et al., 2022) ranging from low to high resolutions. Each
triplane leverages three axis-aligned 2D feature planes Fm

xy,F
m
xz,F

m
yz ∈ RNm×Nm×C ,m = 1, 2, 3.

Nm denotes spatial resolution, while C is the dimension of the channels and m represents the train-
ing stage. Note that a large Nm results in a substantial GPU memory cost. Therefore, for the last
triplane, we essentially employ a trivector instead to optimize memory usage and support higher
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Figure 3: Overview of the proposed Multi-scale Triplane Network (MTN). (a) Given the text
prompts, e.g., “a tiger cub”, MTN generates 3D representations using Multi-scale Neural Fields,
utilizing four triplanes varying in resolution. To save memory costs and enable the highest resolu-
tion, we make a trade-off to deploy the high-dimension trivector format as the triplane alternative.
First, by casting rays from a random camera position and view, we can sample a lot of 3D points
along each ray and then encode their corresponding features by projecting them onto triplanes. After
the 3D input encoding, the network uses a Fourier transform, a triplane decoder, and volume render-
ing. The Fourier feature transform (Tancik et al., 2020) enables the triplane decoder to learn high-
frequency information. The network employs Fourier transform, a shallow MLP triplane decoder,
and volume rendering to convert the 3D representation into RGB images. Training progresses in
four stages, starting with low-resolution triplanes for global geometric insights, and gradually shift-
ing to higher-resolution triplanes for detailed refinement. (b) Concurrently, as training proceeds,
the time step t undergoes progressive adjustments, and the camera also approaches the neural field
progressively, emphasizing the refinement of local features. To update the parameters, we employ a
frozen Stable Diffusion model to estimate the injected noise on the rendered image (e.g., tiger) and
then backpropagate the gradient.

resolution. This trivector configuration leverages the axis-aligned vectors F4
x,F

4
y,F

4
z ∈ RN4×1×C

with a resolution of N4 × 1 and C.

Given any 3D coordinate point p ∈ R3, we project this coordinate onto each of these orthogo-
nal feature planes and sample feature vectors via interpolation. We then sum these three vectors
fm(p) = Fm

xy(p)+Fm
xz(p)+Fm

yz(p) for m = 1, 2, 3 as position features for the first three triplanes,
while f4(p) = F4

x(p) + F4
y(p) + F4

z(p) for the last trivector. To aggregate multi-scale features, we
further fuse the different level position features together as hm(p) =

∑m
k=1(f

k(p)). After obtaining
the multi-scale representation, we follow Tancik et al. (2020) to transform the summed position fea-
tures into the Fourier domain. Subsequently, the Fourier features are fed forward into a lightweight
triplane decoder to estimate color and density (Mildenhall et al., 2021). We deploy a Multi-Layer
Perceptron (MLP) as the triplane decoder. Finally, to calculate the loss, we apply neural volume
rendering techniques (Mildenhall et al., 2021) to project the 3D representation onto an RGB image
I , which is the input of the Diffusion model.

Discussion. Why is a multi-scale structure crucial? As shown in Figure 3, we apply triplanes
with different resolutions to capture features at multiple scales. This approach is designed to mimic
the human recognition system, which transitions from recognizing basic elements to more intricate
details when observing 3D objects. For example, when a person sees a new object, they first perceive
its overarching structure and then refine the details through foveal vision. During the early stages
of training, we extract low-resolution features from the corresponding low-resolution triplane. Each
point on the low-resolution triplane, obtained through interpolation from a coarse grid, encompasses
a broader field of view, providing global geometric insights. As training progresses, we gradually
shift our focus to higher-resolution triplanes, which can capture intricate features and refine details
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such as subtle shading and texture nuances. This process facilitates the optimization of high-scale
features, especially when low-scale features have already been well-optimized. This multi-scale
approach is conceptually similar to curriculum learning (Bengio et al., 2009), where the model starts
with simpler tasks and gradually advances to more complex ones. In the experiments, we observe
that the proposed method achieves visual enhancements in both shape and texture of the model, even
for complex descriptions.

Optimization objective. Given the projected image I , we apply Score Distillation Sampling
(SDS) (Poole et al., 2023) to distill 2D image priors from the pretrained 2D diffusion model ϵϕ.
The loss on 2D projection is then back-propagated to update differentiable 3D representations. In
particular, the proposed 3D model can be typically depicted as a parametric function I = gθ(P ),
where I represents the images produced at distinct camera poses, and P is the set of multiple posi-
tions p. Here, g denotes the volumetric rendering mechanism, and θ embodies a coordinate-based
MLP and triplanes that portray a 3D scene. To estimate the projection quality, we adopt the pre-
trained diffusion model, which is well aligned with text prompts y. The one-time denoising forward
can be formulated as ϵϕ(It; y, t) to predict the noise ε given the noisy image It, time step t, and text
embedding y. Therefore, the gradient of the SDS loss can be formulated as:

∇θLSDS(ϕ, gθ(P )) = Et,ϵ

[
(ϵϕ (It; y, t)− ϵ)

∂It
∂θ

]
,

where ϵ is a noise term following a standard normal distribution and It denotes the noisy image.
Following the setting in the diffusion model (Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021;
Song et al., 2021), the noisy image can be formulated as a linear process It =

√
ᾱtI +

√
1− ᾱtϵ,

where ᾱt is a predefined time-dependent constant. Besides, it is worth noting that the diffusion
model parameter ϕ is frozen. The purpose of this denoising function is to offer the text-aware
guidance to update θ. If the projection I is well-aligned with the text y, the noise on It is easy to
predict. Otherwise, we will punish the 3D model.

3.2 PROGRESSIVE LEARNING STRATEGY

Another essential element underlying the proposed method is the employment of a progressive learn-
ing strategy, focusing on two critical parameters, i.e., the time step t and camera radius.

Progressive time step sampling. We first introduce a progressive time step (t) sampling approach.
It is motivated by the observation that the default uniform t-sampling in SDS training often results in
inefficiencies and inaccuracies due to the broad-range random sampling. Our approach, therefore,
emphasizes a gradual reduction of the time step, directing the model to transition from coarse to
detailed learning (See Figure 3 (b)). In the early phases of training, we adopt larger time steps to
add a substantial amount of noise into the image. During the noise recovery process, the network
is driven to focus on the low-frequency global structure signal. As training advances and the global
structure stabilizes, we decrease to smaller time steps. In this stage, the network is demanded to
recover the high-frequency fine-grained pattern according to the context. It facilitates the model in
refining local details, such as textures and shades. We define the rate of change of variable t as:

dt

di
= βv(t), (1)

where v(t) controls how t changes with respect to the training iteration i and is manually designed.
β is a positive constant. We define v(t) piece-wise:

v(t) =


− exp( t−n2

m2
) if t > n2

−1.0 if n1 ≤ t ≤ n2

− exp( t−n1

m1
) if t < n1,

. (2)

Here, v(t) < 0 implies dt
di < 0, indicating that t decreases as training progresses. Our design

ensures that t decreases rapidly at the beginning (t > n2), linearly in the middle (n1 ≤ t ≤ n2), and
more mildly towards the end (t < n1). After the time step t decreases to tmin, we revert to random
sampling from a uniform distribution as: t ∼ U(tmin, tmax), where U(tmin, tmax) denotes uniform
sampling within the interval from tmin to tmax. It reintroduces randomness to maintain the vibrancy of
the coloration of the 3D model. We notice that a concurrent work, Dreamtime (Huang et al., 2024),
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also employs a similar non-increasing t-sampling strategy. However, such a strategy sometimes
tends to overfit the local details, and inadvertently change the global illumination. Therefore, it is
crucial to avoid the consistent use of extremely small time steps at the end of training. Different from
Dreamtime (Huang et al., 2024), our method decreases t with the training step at a much steeper pace
and employs a mixture of both deterministic and random sampling as shown in Figure 3 (b).

Progressive radius. Simultaneously, our approach also incorporates a dynamic camera radius con-
sidering the camera movements in the real world. Typically, eyes will move closer for detailed object
observation. Motivated by this behavior, we dynamically adjust the camera radius during the multi-
scale learning. During the low-scale triplane stage, which focuses on broader geometric structures,
we utilize a large camera radius to cover the entire object. As we move to the high-scale triplane
stage, which refines local model details, the camera radius is reduced to closely focus on finer details
of the 3D scene. This progressive radius strategy is intuitive and directly impacts resolution, aiding
in feature learning across varying scales. In the ablation study, we also verify the effectiveness of
this strategy (See Section 4.3).

3.3 IMPLEMENTATION DETAILS

Neural field rendering structure. The proposed MTN consists of three triplanes and one trivector
varying in resolution. The resolutions of the triplanes N1, N2, N3 = 64, 128, 256, and the number of
channels C = 32. For the trivector, we set N4 = 512. During the Neural Field optimization, camera
positions are randomly sampled in spherical coordinates. The azimuth angles, polar angles and fovy
range are randomly sampled between [−180◦, 180◦], [45◦, 105◦], and [10◦, 30◦], respectively. For
spherical radius of the camera, the initial R ∈ [3.0, 3.5] and gradually decreases to R ∈ [1.8, 2.1].

Prompts. For prompt augmentation, the default view-dependent prompt augmentation appends cor-
responding view, e.g., “ front view”, “back view”, and “side view” according to the camera position.
However, we adopt the strategy from Perp-Neg (Armandpour et al., 2023), leveraging geometric
properties to enhance the diffusion model’s alignment with user prompts. This approach enriches
original prompts with view-dependent conditional text embeddings based on sampled camera posi-
tions, ensuring the rendered image adheres to the desired view. Specifically, if the azimuth angle
ϕ ∈ [−90◦, 90◦], a soft embedding is interpolated between “front view” and “side view” based on
ϕ and appended to the original text embedding. Conversely, for ϕ /∈ [−90◦, 90◦], the algorithm in-
terpolates between “back view” and “side view” embeddings. This nuanced addition ensures more
accurate and user-aligned renderings.

Diffusion model. We deploy DeepFloyd-IF (Konstantinov, 2023) as the guidance model to provide
2D image priors. For time step (t) sampling in SDS, the Stable-DreamFusion uses random sampling
t ∼ U(20, 980). In our proposed approach, the time step t is set to decrease from 980 to 20.
Through a grid search, we empirically set an optimal prior weight configuration as {m1 = 50,m2 =
150, n1 = 500, n2 = 800} to control the rate of decrease. Following existing works (Poole et al.,
2023; Lin et al., 2023; Armandpour et al., 2023), we also adopt the viewpoint-aware prompts by
appending prompts such as “front view”, “side view”, and “back view”.

Optimization. The number of total iterations is 6000 and the batch size is 1. We employ the Adan
optimizer (Xie et al., 2022) with learning rate of 1×10−3, weight decay of 2×10−5. Following the
existing work (Chan et al., 2022), we apply two regularization terms, i.e., TV regularization and L2
regularization, to prevent floating clouds. The model can converge within one hour on a V100 GPU.
Specifically, we configure the training process with 3,000 iterations for the first stage, followed by
1,000 iterations each for the second, third, and final stage, respectively.

4 EXPERIMENT

In this section, we assess the capability of our method to produce high-fidelity 3D objects accord-
ing to natural language prompts. We primarily consider three key evaluation aspects: (1) align-
ment with the text, particularly focusing on key words in the sentence; (2) intricate texture details;
and (3) consistent geometric shape, especially in localized parts, e.g., ears and tails. Due to the
space limitation, we mainly compare our approach against four widely-used text-to-3D frameworks.
Since DreamFusion (Poole et al., 2023) is not publicly available, we utilize the open-source variant,
Stable-DreamFusion (Tang, 2022). Besides, we also compare the proposed method with other three
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Figure 4: Qualitative comparisons for text-to-3D generation among our method, Latent-NeRF (Met-
zer et al., 2023), Stable-DreamFusion (Tang, 2022), ProlificDreamer (Wang et al., 2023b), and
DreamGaussian (Tang et al., 2024). Here we show the 2D projection of the front view and side
view of the 3D model. We observe that the proposed method could generate a higher-fidelity 3D
representation aligned with the given description, reducing the extra post-processing costs. In the
last row, despite ProlificDreamer (Wang et al., 2023b) and Latent-NeRF (Metzer et al., 2023)
achieves good visual quality, they generally miss the keyword “cheesecake” and “ice cream”.

competitive works, i.e., Latent-NeRF (Metzer et al., 2023), ProlificDreamer (Wang et al., 2023b),
and DreamGaussian (Tang et al., 2024).

4.1 QUALITATIVE EVALUATION

As shown in Figure 4, we could observe that our method outperforms prior competitive approaches
in terms of text alignment, texture details, and geometric precision. The qualitative analysis re-
veals the superior performance of our method in generating realistic and accurate 3D representations
aligned with textual prompts. In the first row, we observe notable deficiencies in Latent-NeRF (Met-
zer et al., 2023), which struggles to produce a coherent 3D model. While Stable-DreamFusion (Tang,
2022) manages to generate a tiger avatar, it fails to incorporate the crucial keyword “doctor”. Pro-
lificDreamer (Wang et al., 2023b), despite its high output resolution, erroneously includes unrelated
elements, such as a camera, on the tiger’s hand, which is obviously inconsistent with the specified
theme of “a tiger doctor.” DreamGaussian (Tang et al., 2024), on the other hand, successfully iden-
tifies the “tiger face” element but falters in rendering the rest of the model, resulting in an overall
geometry that appears unconventional. In contrast, our proposed method seamlessly integrates the
textual cues to craft a detailed representation of a tiger doctor, complete with a book in its hands.
In the second row, our method presents a refined geometric shape with correct shading on the bust,
surpassing Stable-DreamFusion (Tang, 2022), which erroneously places a tail on the head. Sim-
ilarly, the outputs from Latent-NeRF (Metzer et al., 2023), ProlificDreamer (Wang et al., 2023b),
and DreamGaussian (Tang et al., 2024) display inaccuracies in head shape, notably featuring three
ears and multi-face. Additionally, DreamGaussian (Tang et al., 2024) shows discrepancies in color
saturation, resulting in outputs that are excessively vibrant. Simultaneously, our method distin-
guishes itself by depicting nuanced features such as the necktie and buttons on the mouse. In the
third row, our method accurately captures the keyword “baby bunny”, showcasing a natural geomet-
ric shape with clear edges and appropriate features. Conversely, both Latent-NeRF (Metzer et al.,
2023) and Stable-DreamFusion (Tang, 2022) continue to struggle with the multi-face and multi-ear
issue. ProlificDreamer (Wang et al., 2023b), and DreamGaussian (Tang et al., 2024), while offer-
ing high-resolution outputs, fall short in aligning their geometric shapes and color fidelity with the
textual prompt, underscoring the critical balance between resolution and semantic coherence. In the
last row, our method aligns well with the given text prompt, accurately capturing the three keywords
“castle”, “cheesecake”, and “ice cream”, and generates high-quality 3D outputs with exquisite tex-
tures. In contrast, other methods primarily focus on the keyword “castle” and overlook the additional
critical details. Although ProlificDreamer (Wang et al., 2023b) produces a visually appealing scene
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Figure 5: User study on visual quality.
The proposed method excels in 3D geom-
etry, closely aligns with user prompts, and
outperforms two competitive approaches
in overall quality.

Figure 6: Ablation study of the primary components.
(a) Single triplane; (b) add MTN architecture; (c) add
Progressive time step strategy; (d) add Progressive ra-
dius, which is our full method. Our full model crafts a
delicate geometric shape and achieves accurate texture.

with diverse features, its output appears foggy and cloud-filled, which deviates noticeably from the
given prompt. In summary, our method excels in producing reliable and precise 3D models that
align seamlessly with textual prompts, reflecting naturally intuitive geometric shapes that resonate
well with human intuition.

User Study. For a more comprehensive evaluation, we conduct a user study with 96 participants.
We evaluate our model against three prevailing and basic approaches, e.g., Latent-NeRF (Metzer
et al., 2023), Stable-DreamFusion (Tang, 2022), and DreamGaussian (Tang et al., 2024) in three
key aspects: 3D geometry, prompt consistency, and overall quality. We randomly select 96 prompts
from the standard set of 153 prompts and generate 3D models, using Stable-DreamFusion (Tang,
2022), Latent-NeRF (Metzer et al., 2023), DreamGaussian (Tang et al., 2024), and our approach.
Participants are then asked to rank the models based on the aforementioned criteria. As shown in
Figure 5, our visual results outperform other methods across multiple metrics, attracting preferences
from 56.25% of participants for overall quality, 54.17% for 3D geometry, and 47.92% for prompt
consistency. This highlights the efficacy of our approach across various evaluation criteria.

4.2 QUANTITATIVE EVALUATION

Table 1: Quantitative comparisons with com-
petitive methods. The best precision in every
column is in bold. We do not include Pro-
lificDreamer (Wang et al., 2023b) in this table,
since it is extremely time-consuming, requir-
ing about 11 hours per prompt for just the first
training stage.

Method
R-Precision (%) ↑

CLIP B/32 CLIP B/16 CLIP L/14
RGB DEPTH RGB DEPTH RGB DEPTH

GT images 77.1 - 79.1 - - -
Latent-NeRF 48.4 37.1 52.9 40.6 59.5 40.9
Stable-Dreamfusion 56.4 45.9 60.3 45.8 58.3 42.9
DreamGaussian 61.3 48.7 61.9 49.2 61.7 45.8
Ours 62.6 53.1 62.6 51.9 64.8 47.6

Since our task is a generation problem, we lack 3D
ground-truth meshes for direct quantitative com-
parison of differences. Therefore, we follow the
existing work, i.e., DreamFusion (Poole et al.,
2023), to evaluate the alignment between 2D pro-
jected images and the text prompt. In particular,
we adopt the CLIP R-Precision (Radford et al.,
2021) to evaluate the retrieval performance for
both RGB images and depth maps. The RGB im-
ages serve as an indicator of texture quality, while
the depth maps represent the geometric shape. A
higher score indicates better performance. This
evaluation is conducted using three pre-trained
CLIP models with different model sizes, i.e., CLIP
B/32, CLIP B/16, and CLIP L/14. For a fair com-
parison, we also adopt 153 standard prompts from Dreamfields (Jain et al., 2022). As shown in
Table 1, we observe that our method consistently achieves the highest R-Precision scores across all
three metrics in terms of both RGB texture and depth, indicating a significant advantage.
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Table 2: The ablation study investigates the impact of different components, with the best precision
highlighted in bold for each column. The ablation study validates the effectiveness of the proposed
MTN architecture, progressive time step, and progressive radius. Notably, the full model (MTN-
full) achieves the highest level of text-visual semantic alignment.

Method MTN Progressive Progressive
R-Precision (%) ↑

CLIP B/32 CLIP B/16 CLIP L/14 Mean
Time Step Radius RGB DEPTH RGB DEPTH RGB DEPTH RGB DEPTH

Single triplane 46.8 38.4 51.8 41.1 53.9 41.4 50.8 40.3
MTN ✓ 57.8 46.7 58.2 46.2 62.2 42.8 59.4 45.2
MTN-t ✓ ✓ 60.2 52.7 61.2 51.0 63.5 43.5 61.6 49.1
MTN-r ✓ ✓ 57.9 48.5 60.4 48.8 62.4 42.7 60.2 46.7
MTN-full ✓ ✓ ✓ 62.6 53.1 62.6 51.9 64.8 47.6 63.3 50.9

4.3 ABLATION STUDY AND FURTHER DISCUSSION

Effectiveness of Multi-scale Triplanes. We first investigate the impact of the multi-scale triplane
architecture to substantiate its advantages. As shown in Table 2, we could observe that the multi-
scale architecture facilitates both texture and geometric shape learning. Specifically, the RGB R-
Precision is improved with a large margin +8.6% on average, while the mean depth R-Precision
increases +4.9%. We also provide a visualization result in Figure 6 (b). The basic single-scale
triplane structure results in a 3D output that misses intricate details both texturally and geometri-
cally, evident in incomplete hands, tails, and the presence of floating points. (Noted that for the
single-triplane baseline, we use a resolution of 512 × 512, the same as the final resolution in our
progressive multi-scale approach. This ensures that the single-triplane setup has comparable ca-
pacity to represent high-resolution details, allowing for a meaningful comparison.) In contrast, the
multi-scale network gradually leverages the multi-scale information, yielding a more smooth geo-
metric shape with clear edges. While there are still imperfections, the rabbit now possesses a more
complete form, particularly noticeable in its overall silhouette.

Effectiveness of Progressive Learning. Here we further evaluate the impact of progressive time
step sampling and progressive radius. (1) As shown in the third row of Table 2, the MTN with
only progressive time step strategy could further improve the text alignment by +2.2% texture and
+3.9% geometry quality on average. This is because the small time step towards the end of learning
shifts the focus to high-frequency details, significantly improving the overall visual quality. (2)
Similar to how humans often take a closer look to examine object details, our model, when applying
the progressive radius approach, performs even better, showing a +1.7% improvement on the local
texture details. As the camera gets closer, the 2D projection and the optimization objects both
emphasize local quality, resulting in a refined 3D model. As a result, the culmination of these
strategies leads to a final output that is both detailed and visually appealing (see Figure 6 (d)).

Compatibility and Scalability. The proposed method is compatible with various pre-trained diffu-
sion models as supervision, and can be easily extended to further improve the quality of generation.
For instance, our approach can integrate seamlessly with the state-of-the-art multi-view diffusion
model MVDream (Shi et al., 2024), which effectively tackles the multi-face problem by empha-
sizing multi-view consistency. The combination enables a superior 3D consistency and exquisite
textures and verifies the compatibility and scalability of our method (see Figure 7).

3D Printing. Our method provides a practical solution by directly converting the generated 3D out-
put into a printable mesh format. The quality of these exported meshes is highlighted in Figure 10,
which shows the uniformity of triangulation and the smoothness of surfaces. Such characteristics
are crucial for the direct and efficient transmission of data to 3D printers. This is further evidenced
by the six images on the right of Figure 10, showcasing the physical 3D products derived from
these meshes. Our method significantly reduces the need for manual adjustments or additional post-
processing steps, thereby streamlining the printing process.
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Figure 7: Compatibility of the proposed method. Our method is highly compatible and can be easily
scaled to other competitive multi-view diffusion models, such as MVDream (Shi et al., 2024), to
further enhance the fidelity of 3D generation.

5 CONCLUSION

In this work, inspired by the bottom-up spirit, we introduce the Multi-scale Triplane Network (MTN)
and a progressive learning strategy, both of which effectively ease the optimization difficulty dur-
ing high-fidelity generation. The Multi-scale Triplane Network operates at the structure level to
aggregate the multi-scale representation, while the progressive learning strategy functions at the
recognition level to gradually refine high-frequency details. Extensive experiments verify the effec-
tiveness of every component. We envision our approach offers a preliminary attempt for automatic
3D printing, bridging the gap between natural language descriptions and intricate 3D design. In
the future, we will continue to explore the potential to complete occluded 3D objects (Mohammadi
et al., 2023) via language prior and discriminative language guidance (Matsuzawa et al., 2023).
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A APPENDIX

A.1 MORE RESULTS

Qualitative Comparisons. Figure 8 and 9 present additional qualitative comparisons, including
recently introduced methods such as GSGEN and LucidDreamer, evaluated across a diverse set of
prompts. As illustrated in these figures, our method consistently outperforms others in terms of
visual quality, demonstrating sharper details and higher fidelity. Notably, both GSGEN and Lucid-
Dreamer exhibit the multi-head (Janus) problem, leading to inconsistencies in multi-view rendering.
Additional results can be found in the Supplemental Material.

Furthermore, Figure 10 provides a detailed comparison of the generated meshes rendered in Blender.
Our method produces meshes with the most accurate geometric structure, achieving a high level of
detail and realism. In contrast, other methods display significant distortions or geometric inaccura-
cies, further highlighting the robustness of our approach.

Figure 8: More qualitative comparisons.

Figure 9: Qualitative comparisons with GSGEN and LucidDreamer.
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Figure 10: Comparison of generated meshes (ready for print).

Comparison with original MVDream. We present the comparison between MTN + MVDream
and the original MVDream in Table 3. Our MTN outperforms the NeRF component in MVDream,
while requiring less training time and fewer parameters. It is important to note that we did not
tune the hyperparameters for MTN, instead directly using those optimized for NeRF in the original
MVDream.

Table 3: Comparison of NeRF backbone.
NeRF Backbone Diffusion R-Precision (%) ↑ Training Time ↓ #Params↓
NeRF (from MVDream) MVDream 67.1 1.5 hours 12.6M
MTN (Ours) MVDream 67.9 1.3 hours 8.3M

Time cost. Details are presented in Table 4. All experiments are performed on a V100 GPU. Our
model has the fastest convergence among NeRF-based methods. While Gaussian Splatting-based
techniques converge quickly, they compromise on the quality of the generated results. Additionally,
they require extra time for post-processing to make the generated objects ready for 3D printing.

Table 4: Comparison of methods (averaged on 153 prompts).

Method Type R-Precision (%) ↑ Training Time ↓
Latent-NeRF NeRF-based 53.6 ∼ 1 hour
Stable-DreamFusion NeRF-based 58.3 ∼ 1.5 hours
Magic3D NeRF-based 62.0 2 hours
ProlificDreamer NeRF-based -∗ > 20 hours
DreamGaussian GS-based 61.6 5 minutes
Ours NeRF-based 63.3 ∼ 50 minutes

∗: Due to the limitation of GPU resources, ProlificDreamer (153× 20 hours) precision is unavailable.

Effectiveness of the Hierarchical Triplane. Figure 11 (a) shows renderings with different combi-
nations of triplanes. For example, the first image uses only the 64-triplane, while the second adds the
128-triplane, and so on. For the final triplane, we use a trivector to optimize memory usage and sup-
port higher resolutions. The total number of training iterations is the same for all four combinations
in Figure 11 (a). This illustrates how the generation quality improves as higher-scale triplanes are
added. Sampling from higher-resolution triplanes enhances details and sharp edges. More detailed
explanations are provided in the ”Why is a multi-scale structure crucial?” section in our paper.

Effectiveness of Random Sampling in the final stage. Unlike the concurrent DreamTime strat-
egy (Huang et al., 2024), which does not use random sampling in the final stage, we adopt random
sampling. As shown in Figure 11 (b), while keeping other hyperparameters consistent, our approach
results in better illumination conditions and clearer edges compared to DreamTime (Huang et al.,
2024).

Figure 11: (a) Hierarchical outputs. (b) Ablation on strategies.
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A.2 LIMITATIONS

Dependence on Diffusion Models: The quality of the generated 3D outputs heavily depends on
the pretrained diffusion model used for guidance. Limitations in the diffusion model’s ability to
interpret complex or ambiguous text prompts can propagate to our 3D generation results, occasion-
ally leading to inaccuracies or oversimplified textures. A potential improvement is to incorporate
fine-tuned diffusion models tailored for text-to-3D tasks or explore hybrid priors that combine text
and geometry.

Memory Constraints at Higher Resolutions: While our multi-scale triplane architecture enables
efficient optimization, scaling the resolution beyond 512 introduces significant GPU memory de-
mands, making it challenging to train on consumer-grade hardware. This limits the applicability of
our approach in scenarios requiring ultra-high resolution outputs. One possible solution is to adopt
memory-efficient representations, such as compressed triplanes or mixed-resolution optimization
strategies.

Single-view SDS Framework: Although our method is compatible with multi-view approaches (as
demonstrated with MVDream in Figure 7), the experiments primarily focus on single-view SDS.
This could lead to less robust multi-view consistency compared to methods specifically designed
for multi-view supervision. Future work could incorporate multi-view consistency losses or explore
integrating multi-view diffusion priors to enhance robustness.
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