

000 M E T A B E T A

001
002
003
004
005
006 **A FAST NEURAL MODEL FOR BAYESIAN**
007 **MIXED-EFFECTS REGRESSION**

008
009
010
011
012
013 **Anonymous authors**
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1

054 1.1 RELATED WORK
055

056 Neural posterior estimation (NPE) — the simulation-based amortization of a neural network posterior
057 — has a long and well-established history. Early work by Papamakarios & Murray (2016) introduced
058 neural conditional density estimators for directly approximating posteriors from simulations. This
059 approach was extended by Lueckmann et al. (2017), who incorporated importance weighting to enable
060 sequential refinement of posterior approximations, and by Greenberg et al. (2019), who proposed au-
061 tomatic posterior transformation, increasing flexibility in proposal adaptation and posterior modeling.
062 These methods form the core foundations of amortized simulation-based Bayesian inference.

063 Rezende & Mohamed (2015) pioneered the use of conditional normalizing flows (Papamakarios et al.,
064 2021; Kobyzev et al., 2021) for amortized inference. Together with Gordon et al. (2018), they laid
065 the groundwork for BayesFlow (Radev et al., 2020; 2023), which introduced a practical workflow for
066 globally amortized Bayesian inference using summary encoders and normalizing flows. Subsequent
067 extensions adapted BayesFlow to hierarchical Bayesian models (Habermann et al., 2024) and to
068 non-linear mixed-effects models for cell biology and pharmacology (Arruda et al., 2023). In both
069 cases, the prior distribution is fixed at training time, requiring retraining whenever a user wishes
070 to change the prior. This off-loads the amortization process to potential end-users, which strongly
071 diminishes the runtime advantage of NPE for practical purposes.

072 More recently, transformer-based architectures have emerged as a distinct line of research for
073 amortized Bayesian inference. For instance Distribution Transformers (Whittle et al., 2025) represent
074 prior and posterior as Gaussian Mixture Models whose parameters are mapped by transformers. A
075 thorough comparison of transformer-based NPE methods was recently conducted by Mittal et al.
076 (2025). These works demonstrate that transformer-based NPE can adapt efficiently to varying priors
077 and heterogeneous datasets. However, they have not been tailored specifically to mixed-effects
078 regression, and explicit incorporation of priors in NPE remains an active field of research.

079 2 METHODS
080

081 We briefly formalize mixed-effects regression (Section 2.1) and define a synthetic distribution over
082 hierarchical datasets representative of scenarios practitioners care about (Section 2.2). We then
083 present a neural network architecture that takes an entire dataset and priors as inputs and returns
084 posterior distributions over all regression parameters (Section 2.3). This model is trained on synthetic
085 datasets with available ground truth to perform accurate posterior inference (Section 2.4). In a final
086 post-training step, we refine the model’s outputs using importance sampling and conformal prediction
087 (Section 2.5). All our code is implemented in PyTorch 2.7.1 (Paszke et al., 2019) and openly
088 available at <https://github.com/censored-for-review>.

089 2.1 MIXED-EFFECTS REGRESSION
090

091 Mixed-effects regression extends traditional regression by explicitly accounting for within-group
092 dependency in hierarchical data (Gelman & Hill, 2007; Brown, 2021; Fahrmeir et al., 2013). To
093 model this dependency, mixed-effects regression distinguishes between two effect types:
094

- 095 • **Fixed effects** $\beta \in \mathbb{R}^d$ capture the general, group-independent relation between predictor
096 variables $\mathbf{X}_i \in \mathbb{R}^{n_i \times d}$ and the regression output variable $\mathbf{y}_i \in \mathbb{R}^{n_i}$.
- 097 • **Random effects** $\alpha_i \in \mathbb{R}^q$ capture additional, group-specific variations for $q \leq d$ predictors.
098 For each group $i = 1, \dots, m$, we treat α_i as samples from $\mathcal{N}_q(\mathbf{0}, \mathbf{S})$ ¹

100 This yields the model:

$$101 \quad \mathbf{y}_i = \mathbf{X}_i \beta + \mathbf{Z}_i \alpha_i + \varepsilon_i, \quad (1)$$

102 with independent additive noise $\varepsilon_i \sim \mathcal{N}_{n_i}(\mathbf{0}, \sigma_\varepsilon^2 \mathbf{I}_{n_i})$. The random effect predictor matrix \mathbf{Z}_i is
103 typically a submatrix of \mathbf{X}_i .

104 ¹ $\mathbf{S} \in \mathbb{R}^{q \times q}$ is generally symmetric positive-definite, but for practical purposes it is often additionally
105 constrained to be diagonal and we include this constraint in our model.

108 Note, that the n_i observations are *conditionally independent* given some fixed α_i but *marginally dependent* over α_i :
 109
 110

$$111 \quad \mathbf{y}_i | \alpha_i \sim \mathcal{N}_{n_i}(\mathbf{X}_i \beta + \mathbf{Z}_i \alpha_i, \sigma_\varepsilon^2 \mathbf{I}_{n_i}) \quad \Rightarrow \quad \mathbf{y}_i \sim \mathcal{N}_{n_i}(\mathbf{X}_i \beta, \mathbf{Z}_i \mathbf{S} \mathbf{Z}_i^\top + \sigma_\varepsilon^2 \mathbf{I}_{n_i}).$$

113 The goal of Bayesian mixed-effects modeling is to obtain posteriors for all unobserved global
 114 ($\beta, \sigma_\varepsilon^2, \mathbf{S}$) and local (α_i) regression parameters, conditioned on the observed predictors, outcomes
 115 and priors of the global parameters.
 116

117 2.2 DATA SIMULATION AND PREPROCESSING

119 To train our neural posterior estimator, we simulate hierarchically structured datasets as shown in
 120 Figure 1A.

121 *Priors*: For each dataset, we sample hyper-parameters that specify each multidimensional prior.
 122 That is, for d fixed effects, we first sample a d -dimensional prior, from which the d fixed effects are
 123 sampled later.
 124

125 *Regression parameters*: We use the default prior families of `Bambi` (Capretto et al., 2022). (1) q
 126 random effect variance parameters are sampled from half-normal distributions, (2) then, $m \times q$ random
 127 effect vectors are sampled from a diagonal Gaussian using these variance parameters. Independently,
 128 d fixed effects are sampled from another diagonal Gaussian. (3) Noise variance is sampled from
 129 a half- t -distribution, and then independent noise is sampled from a normal distribution with this
 130 variance.
 131

132 *Observations*: The predictors \mathbf{x}_{ij} are sampled from two sources: Synthetic distributions and real
 133 datasets. The random effects predictors are set to $\mathbf{z}_{ij} = \mathbf{x}_{ij}$ for $j \leq q$ and 0 otherwise. Predictors
 134 are standardized and passed through equation 1 with the regression parameters and noise to generate
 135 outcomes \mathbf{y}_i for each group i . Further details on the simulation procedure can be found in Appendix A.
 136

137 For the test sets, we use `Bambi` on top of `PyMC` (Abril-Pla et al., 2023) to estimate all posteriors
 138 with the No-U-Turn sampler (a variant of HMC) (Hoffman & Gelman, 2011). We run four chains
 139 with 2500 tuning iterations and 1000 posterior draws each. For the MCMC model, we supply the
 140 true priors and the generative model used in the simulation. For a fair comparison, we exclude
 141 datasets with divergent MCMC samples from the test set. We additionally fit a variational inference
 142 (VI) approximation of the probabilistic model (Kucukelbir et al., 2016; Blei et al., 2017), which
 143 is typically the preferred computationally cheaper alternative to MCMC. We use the same model
 144 specification and the ADAM optimizer Kingma & Ba (2017) with learning rate $\eta = 0.005$, 50000
 145 training iterations and 4000 draws. MCMC and VI fit diagnostics are included in Appendix F.
 146

147 2.3 MODEL ARCHITECTURE

148 The model architecture takes inspiration from `BayesFlow` (Radev et al., 2020; Habermann et al.,
 149 2024) and `TabPFN` (Hollmann et al., 2025) and has two main parts: (1) a *summary network* that
 150 computes a maximally informative dataset statistic over observations, and (2) a *posterior network*
 151 that uses the summary and priors to propose a joint posterior over regression parameters. Both are
 152 trained end-to-end. Since mixed-effect datasets are hierarchically structured, we use two summary
 153 and posterior networks, one for the global parameters (fixed effects and variance parameters) and
 154 one for the local parameters (group-specific random effects). The training and inference pipeline is
 155 visualized in Figure 1B. Data preprocessing is detailed in Appendix B and Appendix C.
 156

157 SUMMARY NETWORK

158 Datasets vary in the number of groups and observations per group. A summary network f_Σ extracts
 159 information for the posterior by pooling over all instances in a dataset. Since the data is structured
 160 hierarchically, it needs to be summarized accordingly over all exchangeable instances: In a first step,
 161 we pool over observations per group, generating m local summaries $\mathbf{s}_1, \dots, \mathbf{s}_m$. In a second step, we
 162 pool the local summaries over groups, generating a global summary \mathbf{s} . For summarization, we opted
 163 for a set transformer (Lee et al., 2019). Our implementation consists of multiple transformer encoder
 164 blocks (Vaswani et al., 2017), followed by averaging over the resulting sequence of transformer
 165 blocks.
 166

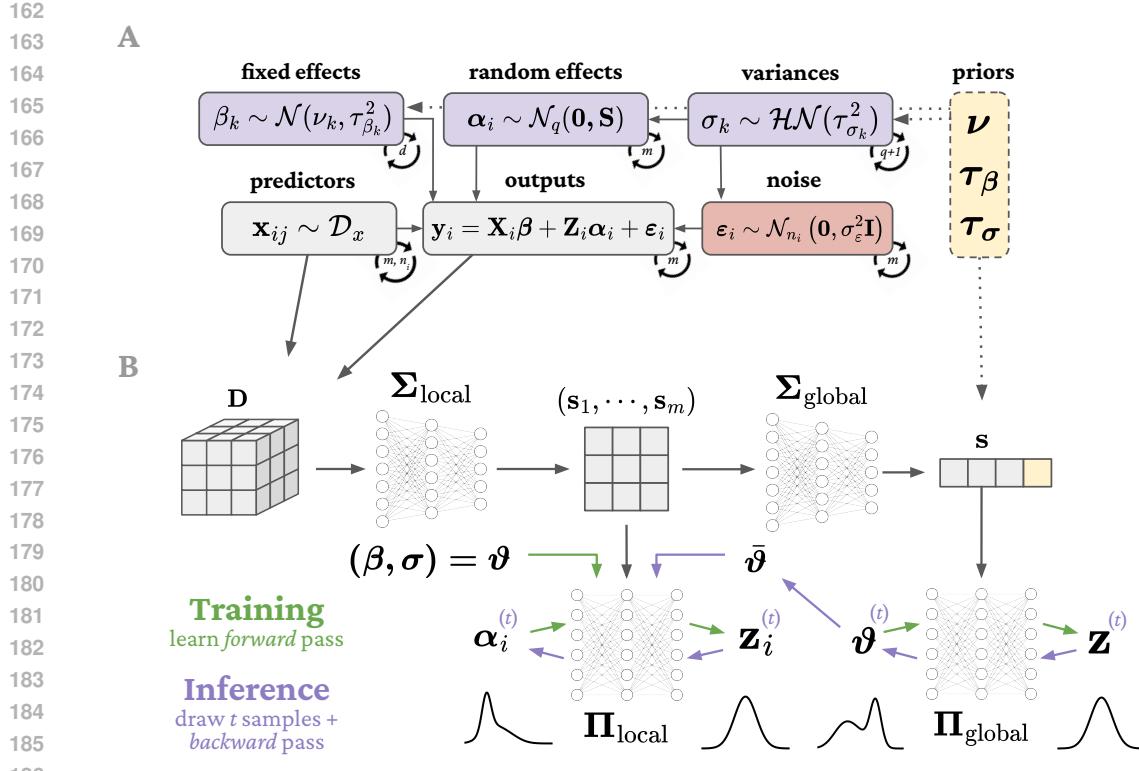


Figure 1: (A) *Dataset Simulation*. Given a set of priors, we sample regression parameters and noise in a cascading way. Predictors are sampled from various distributions for training and from real datasets for testing, and outcomes are generated according to equation 1. (B) *Model Pipeline*. Observed data are summarized locally (per group) and globally (across groups). During training, the posterior networks learn the forward mapping from the true regression parameters to a simple multivariate base distribution, conditioned on the respective summaries and priors. During inference, we draw k samples from the base distribution, and apply the implicitly learned backward mapping to them, approximating sampling from the unknown target posterior.

outputs. This yields the important property of permutation invariance, i.e. the summary stays the same regardless of the input ordering along the sequence dimension. The local and global summary network both consist of 3 transformer encoder blocks with 128 units, equally large feedforward layers, 8 attention heads, 1% dropout and GELU activations (Hendrycks & Gimpel, 2023).

POSTERIOR NETWORK

Posterior networks f_{Π} take the dataset summaries and priors as inputs and propose a joint posterior for a set of parameters. Inference on global and local parameters is separated for hierarchical NPE (Rodrigues et al., 2021; Heinrich et al., 2023; Habermann et al., 2024). Inference on global parameters $\vartheta = (\beta, S, \sigma^2_\epsilon)$ is conditioned on the global summary and the parameter priors. Inference on local variables (α_i) is conditioned on the separate local summaries and the global parameters (the true ones during training, and the inferred ones during validation). We opted for a normalizing flow (Papamakarios et al., 2021) as our posterior network:

A normalizing flow learns an invertible mapping from a d -dimensional random variable \mathbf{z}_n with a complex distribution to a d -dimensional random variable \mathbf{z}_0 with a regular distribution (e.g. a multivariate normal). The flow consists of a finite composition T of continuously differentiable and invertible transforms T_i with triangular Jacobians, $T = T_n \circ \dots \circ T_1$. For some random variable $\mathbf{z}_0 \sim \mathcal{N}_d(\mathbf{0}, \mathbf{I})$, we model $T(\mathbf{z}_n) = \mathbf{z}_0 \iff T^{-1}(\mathbf{z}_0) = \mathbf{z}_n$ with $p_n(\mathbf{z}_n) = p_0(\mathbf{z}_0) |\det J_T(\mathbf{z}_0)|$. Each invertible transform T_i is parameterized by a neural network that takes part of the current hidden state \mathbf{z}_t and the summary \mathbf{s} as inputs. Because of their efficiency, we opted for conditional affine coupling as our normalizing flow architecture (Dinh et al., 2014; 2017). For the base distribution we use a diagonal multivariate location-scale t distribution with learnable parameters for each dimension

(Alexanderson & Henter, 2020). For both posterior networks, we use 8 affine coupling flow blocks parameterized by MLPs with three 256-unit feedforward layers, skip connections (He et al., 2016), 1% dropout and ReLU activations.

2.4 LEARNING

To calculate the loss for the global parameters, we use the forward Kullback-Leibler divergence between the unknown true posterior $p(\vartheta|\mathbf{s})$ and its flow-based approximation $p_{\Pi}(\vartheta|\mathbf{s}) := p_n(\mathbf{z}_n|\mathbf{s})$,

$$\ell_{\Pi}(\vartheta, \mathbf{s}) \propto -\mathbb{E}_{\vartheta, \mathbf{s}} [\log p_{\Pi}(\vartheta|\mathbf{s})] = -\mathbb{E}_{\vartheta, \mathbf{s}} [\log p_0(T(\vartheta|\mathbf{s})) + \log |\det J_T(\vartheta|\mathbf{s})|],$$

where T and thereby the approximation $p_{\Pi}(\vartheta|\mathbf{s})$ depend on the posterior network. Since the summary \mathbf{s} of data \mathbf{D} is itself depending on the summary network, the end-to-end loss can be written as

$$\ell_{\Pi, \Sigma}(\vartheta, \mathbf{D}) \propto -\mathbb{E}_{\vartheta, \mathbf{D}} [\log p_{\Pi}(\vartheta|f_{\Sigma}(\mathbf{D}))] = -\mathbb{E}_{\vartheta, \mathbf{D}} [\log p_0(T(\vartheta|f_{\Sigma}(\mathbf{D}))) + \log |\det J_T(\vartheta|f_{\Sigma}(\mathbf{D}))|].$$

The objective for the local parameters is completely analogous. We sum the local losses over groups and add the result to the global loss, which follows a potential factorization of the joint posterior over both types of regression parameters (see Appendix D). The expectation is approximated by averaging over the batch. Model weights are updated using the Schedule-Free AdamW optimizer (Defazio et al., 2024). We train separate models for different numbers of fixed effects and random effects until convergence, which requires between 10^5 and 10^6 training sets in our case.

2.5 POST-HOC REFINEMENT

IMPORTANCE SAMPLING

In the idealized limit of infinite network capacity, neural posterior flexibility, infinite simulations, and perfectly converged optimization, our model would not require any further correction. However, in practice these conditions are never fully met. Learning p_{Π} by minimizing the forward Kullback-Leibler Divergence naturally forces p_{Π} to be positive wherever p is positive, making p_{Π} mass-covering (Jerfel et al., 2021). Thus, we can use importance sampling to improve posterior estimation (Tokdar & Kass, 2010; Dax et al., 2023) to correct for inaccuracies of the amortized estimator. For each sample $\vartheta_k \sim p_{\Pi}(\vartheta|\mathbf{D})$ we assign an importance weight,

$$w_k = \frac{p(\mathbf{D}|\vartheta_k)p(\vartheta_k)}{p_{\Pi}(\vartheta_k|\mathbf{D})},$$

which is well-defined, as p_{Π} is only zero if the numerator is zero. We use the weights to refine statistics of the samples (e.g. the posterior mean or empirical CDFs). Since we have two posterior networks and the local posterior is conditioned on the global estimates, we perform alternating importance sampling for both. For more details, please see Appendix E.

CALIBRATION WITH CONFORMAL PREDICTION

Uncertainty quantification is a hallmark of Bayesian inference, making the fidelity of the approximate posterior's credible intervals a critical concern. Posterior samples can be used to calculate empirical quantiles and thus also intervals that contain $c\%$ of the posterior density. Due to the mass-covering property of p_{Π} , the learned posteriors tend to be too wide – i.e. the true parameter is inside the $c\%$ credible interval in more than $c\%$ of the cases. This can be quantified with the coverage error

$$\text{CE}(\alpha) = \frac{1}{B} \sum_{b=1}^B \mathbb{1} \left(\vartheta^{(b)} \in C_{\alpha}^{(b)} \right) - (1 - \alpha),$$

which should asymptotically approach 0 under perfect coverage. Too liberal coverage is a commonly known issue of normalizing flows (Chen et al., 2025; Dheur & Taieb, 2025). Conformal prediction (Vovk et al., 2022; Shafer & Vovk, 2008; Angelopoulos & Bates, 2022) is a general-purpose method that constructs distribution-free prediction sets \hat{C}_{α} such that $\mathbb{P}(\vartheta \in \hat{C}_{\alpha}) \geq 1 - \alpha$. To construct \hat{C}_{α} , we use a calibration set to calculate the difference between the true ϑ and the closest border of the proposed $1 - \alpha$ credible interval C_{α} . The $1 - \alpha$ quantile of these differences is then added to the proposed interval borders, widening them if the value is positive and narrowing them otherwise. Importantly, this does not require retraining but efficiently refines credible intervals post-hoc.

270 **3 RESULTS**

271
 272 We test our model against HMC on a toy dataset with highly constrained parameters and uncorrelated
 273 normal data (Section 3.1), in-distribution test sets with predictors \mathbf{X} sampled from real datasets
 274 (Section 3.2), and out-of-distribution test sets containing subsets of real data where the parameters $\boldsymbol{\vartheta}$
 275 are unknown and the outcomes \mathbf{y} are kept original (Section 3.3). Each test set has a batch size of 128
 276 regression datasets with varying numbers of observations and signal-to-noise ratios.

277 We use the following evaluation metrics: We quantify the *posterior predictive accuracy* with the
 278 negative log likelihood (NLL), $-\log p(\mathbf{y}|\hat{\boldsymbol{\vartheta}})$, which measures how well the fitted model describes
 279 the observed data. We calculate the mean NLL over sampled parameters and the median over the test
 280 batch. We gauge *parameter recovery* (true parameters vs. posterior means) with Pearson’s correlation
 281 r and RMSE. We check *posterior calibration* by averaging coverage errors over a set of alpha
 282 levels, $CE = \frac{1}{|A|} \sum_{\alpha \in A} CE(\alpha)$. Median run times per single dataset are measured in seconds on a
 283 MacBook Air M2 with 24GB of RAM using Metal Performance Shaders (MPS) where possible.
 284

285 We gauge simulation-based calibration (SBC, Talts et al., 2020; Säilynoja et al., 2022; Deistler et al.,
 286 2025) using empirical CDF plots, comparing the parameter rank statistics against a theoretical uniform
 287 CDF. Finally, we plot posterior predictive distributions (Gelman et al., 2013), which visualize how
 288 much the posterior predictive samples $\tilde{\mathbf{y}}_t \sim p(\mathbf{y}|\hat{\boldsymbol{\vartheta}}_t)$ match the actual \mathbf{y} . All metrics are calculated
 289 for metabeta, HMC and VI posterior samples.

290 **3.1 TOY EXAMPLE**

291 To gauge if the pipeline works for both our model and HMC, we first test both on a toy example with
 292 $d = 2$ and $q = 1$, where the observed single predictor is sampled from a standard normal distribution.
 293 Result figures can be found in Appendix G. All models reach almost perfect parameter recovery
 294 correlation for fixed effects ($r = 0.999$ each), variance parameters ($r_{MB} = 0.995$ vs. $r_{HMC} = 0.991$
 295 vs. $r_{VI} = 0.991$), and random effects ($r = 0.959$ each). The same pattern arises for recovery
 296 error for fixed effects ($RMSE_{MB} = 0.023$ vs. $RMSE_{HMC} = 0.021$ vs. $RMSE_{VI} = 0.030$), variance
 297 parameters ($RMSE_{MB} = 0.022$ vs. $RMSE_{HMC} = 0.025$ vs. $RMSE_{VI} = 0.034$), and random effects
 298 ($RMSE_{MB} = 0.108$ vs. $RMSE_{HMC} = 0.108$ vs. $RMSE_{VI} = 0.109$). Posterior coverage is good
 299 for metabeta ($CE_{MB} = 0.007$), whereas HMC’s marginal posterior for the variance parameters
 300 tend to be slightly too wide ($CE_{HMC} = 0.094$) and the ones of VI too narrow ($CE_{VI} = -0.053$).
 301 The median posterior fits are in the same neighborhood ($NLL_{MB} = 805.1$ vs. $NLL_{HMC} = 829.0$
 302 vs. $NLL_{VI} = 802.6$) and posterior fits are highly correlated ($r_{MB,HMC} = 0.940$, $r_{MB,VI} = 0.940$,
 303 $r_{HMC,VI} = 0.999$). Overall, all models perform excellently on the toy problem and make very similar
 304 predictions. This shows that the pipeline is in principle correctly specified for each approach.
 305

306 **3.2 REAL PREDICTORS, SIMULATED PARAMETERS**

307 To get a better estimate for model performance under more realistic conditions, we sample predictors
 308 (\mathbf{X}) from a large set of real datasets and combine them with synthetically sampled regression
 309 parameters ($\boldsymbol{\vartheta}$) to produce regression outcomes (\mathbf{y}). The test sets were constructed using the same
 310 simulation pipeline as the training sets, but with different random seeds. Please find the details of
 311 this approach in Appendix A. This approach of testing on semi-synthetic datasets has the following
 312 considerable benefits over evaluation on purely real data: (1) The regression models are always
 313 correctly specified, (2) we know the ground truth parameters and can thus evaluate parameter recovery
 314 and coverage, (3) we can compare the results to in-distribution test data and gauge how well the
 315 model transfers to realistic predictors (Lueckmann et al., 2021; Ward et al., 2022).

316 Table 1 shows model performance for hierarchical regression problems with increasing numbers of
 317 fixed and random parameters. Recovery and coverage per parameter type are visualized in Figure 2
 318 for $d = 5, q = 2$. Median model fits of metabeta and HMC are very similar: While HMC generally
 319 explains the outcomes better, our model outperforms VI in this regard. Over the test batch, the average
 320 model fits are highly correlated between metabeta and HMC ($r = 0.94$), indicating overall high
 321 agreement between both methods. Similarly, parameter recovery is best for HMC, but its advantage
 322 over metabeta is very small. VI performs similarly well for the two smaller problems but struggles
 323 more with the latter two. Posterior coverage is generally best for metabeta, as its CE is closest

324 to 0 in all cases. In comparison, HMC has unstable coverage and VI tends towards too narrow
 325 posteriors. Lastly, the median run time for a single dataset is almost instantaneous for metabeta,
 326 strongly outperforming both other methods. Overall, our model appears to have comparably stable
 327 performance to HMC and outperforms VI, which marks metabeta as a strong alternative to HMC if
 328 practitioners are willing to accept a minor reduction in accuracy for a substantial boost in speed.
 329

330 **Table 1:** Performance evaluation for metabeta, HMC and VI on semi-synthetic test sets with d fixed effects and
 331 q random effects. The test sets contain real predictors \mathbf{X} and simulated regression parameters. The evaluation
 332 metrics are negative log-likelihood (NLL = $-\log p(\mathbf{y}|\hat{\boldsymbol{\theta}})$), Pearson’s correlation-coefficient r , root mean
 333 squared error RMSE, and coverage error CE(α) averaged over $\alpha \in \{0.05, 0.1, 0.2, 0.32, 0.5\}$, as well as
 334 median runtimes in seconds. Bold formatting indicates better performance.

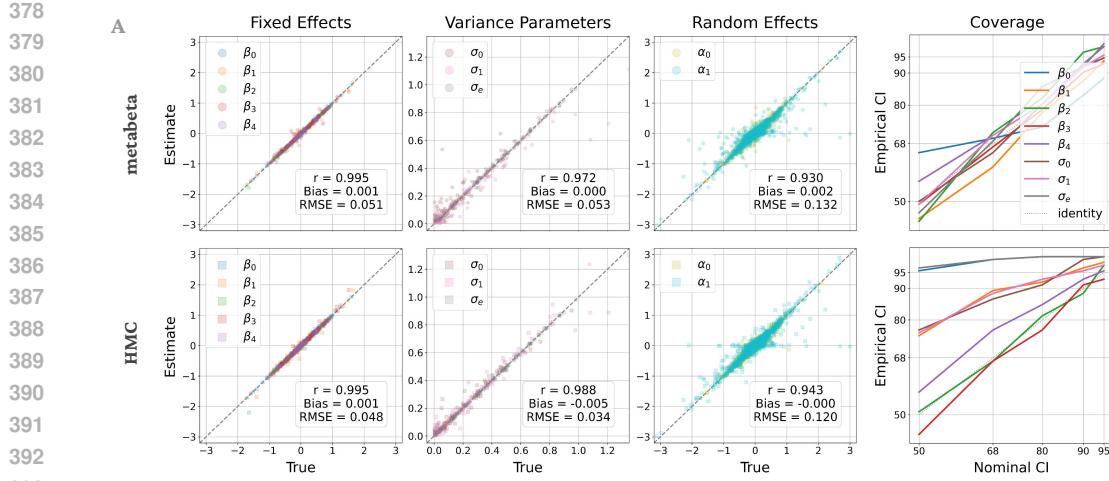
d	q	model	NLL	r	RMSE	CE	seconds
3	1	metabeta	456.1	0.987	0.059	0.028	0.01
		HMC	423.7	0.987	0.058	0.046	12.48
		VI	528.7	0.983	0.089	-0.161	4.49
5	2	metabeta	355.5	0.966	0.079	0.014	0.01
		HMC	351.7	0.976	0.067	0.037	13.68
		VI	479.8	0.967	0.092	-0.224	9.41
8	3	metabeta	438.3	0.977	0.048	-0.037	0.01
		HMC	417.8	0.964	0.092	-0.138	15.59
		VI	642.2	0.883	0.405	-0.347	12.75
12	4	metabeta	534.1	0.938	0.106	0.040	0.01
		HMC	504.7	0.945	0.099	-0.205	36.96
		VI	757.2	0.849	0.511	-0.398	21.58

347
 348 **Table 2:** Performance evaluation for metabeta, HMC and VI on various subsets of real hierarchical datasets
 349 with unknown regression parameters. Performance is evaluated on in-sample posterior accuracy as measured by
 350 median negative log-likelihood, $-\log p(\mathbf{y}|\hat{\boldsymbol{\theta}})$. Bold formatting indicates better performance.

	Sleep	Gcsemv	Exam	Math	Titanic	Schooling	News
metabeta	109.4	390.9	784.8	883.2	810.8	738.2	540.3
	HMC	115.2	389.2	773.5	856.4	788.7	640.9
	VI	105.3	403.3	782.2	869.1	787.6	661.9

358 3.3 REAL DATASETS

359 We gathered 7 canonical datasets that are often used for demonstration purposes of mixed-effects
 360 regression and ran each model on multiple subsets thereof. No parameters are simulated for these test
 361 sets and we use the default prior specification of Bambi for posterior estimation. To gauge model
 362 fits, we compare in-sample posterior accuracy with the same methods as above. Table 2 lists model
 363 performance for all datasets. Overall, the median NLL of our model is very similar to that of HMC
 364 and VI, which also shows in the average correlation over batches, ($r_{MB,HMC} = 0.880$, $r_{MB,VI} = 0.876$,
 365 $r_{HMC,VI} = 0.951$). This indicates general agreement posterior inference, even on out-of-distribution
 366 data with likely miss-specified priors and model structure.



394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 2: Model performance for $d = 5$ and $q = 2$. Results for other regression problems are depicted in Appendix G. (A) *Parameter Recovery*. Our model reaches similar performance to HMC in terms of r , bias and RMSE for all parameter types. (B) *Coverage*. Our model’s posterior credible intervals are on average more faithfully tuned, whereas the HMC posteriors tend to be unnecessarily broad.

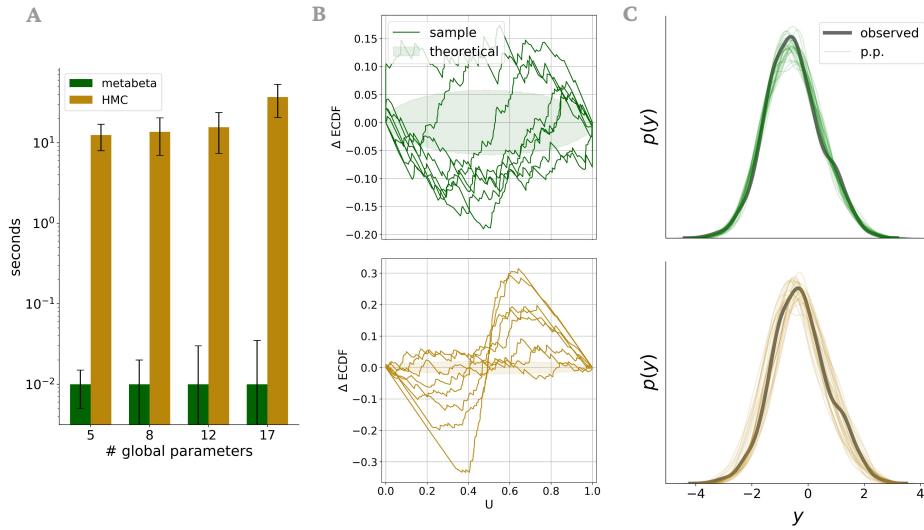


Figure 3: (A) Median runtimes per dataset for metabeta and HMC. Error bars symbolize standard deviations. Our model is orders of magnitudes faster than MCMC. (B) Simulation based calibration (SBC) comparing the sample distributions of parameter rank statistics against the uniform distribution. Plots are stacked for multiple parameters. Calibration is closer to the optimum for our model. (C) Example posterior predictive distributions based on samples from both models.

4 DISCUSSION

In this paper we present metabeta, a probabilistic transformer-based model that performs efficient approximate Bayesian inference for mixed-effects regression. We trained metabeta on simulated datasets with varying ranges for predictors, regression parameters, and outcomes. Most importantly, these datasets incorporate varying priors and we condition the model outputs on them, which not only amortizes the high computational costs encountered when using MCMC for parameter estimation, but also generalizes previous neural posterior estimation (NPE) techniques that are trained on a fixed prior. We show that our model has favorable and robust performance on in-distribution and out-of-distribution test sets, based on real hierarchical datasets practitioners care about. In each experiment, we compare the results of our model with Hamiltonian Monte Carlo (HMC) and variational inference

(VI), the gold-standard methods for Bayesian mixed-effects regression, and show that `metabeta` generally approaches HMC in model fit, accuracy, and fidelity of credible intervals and outperforms VI in most. Most importantly, it does that at a small fraction of the time required for parameter estimation with conventional methods.

The high speed and explicit incorporation of priors opens new avenues for Bayesian mixed-effects regression: Analysts can now specify multiple priors simultaneously and check how robust the model posteriors are to varying a priori assumptions. Furthermore, it is straightforward to extend our model to a mixture of experts by passing the same dataset multiple times with different permutations of the design matrix columns, and then aggregating the resulting back-permuted posterior samples (Hollmann et al., 2025).

4.1 LIMITATIONS AND OUTLOOK

Our choice of model architecture trades off posterior expressivity for computation speed: Other normalizing flow methods like Neural Spline Flows (Durkan et al., 2019), Flow Matching (Wildberger et al., 2023), Conditional Diffusions (Chen et al., 2025; Reuter et al., 2025) or TarFlow (Zhai et al., 2025) offer more flexible posterior shapes, but posterior sampling is considerably more expensive than for Affine Coupling Flows, often involving numerical integration or solving a stochastic differential equation. The relative simplicity of affine coupling posteriors can be seen as implicit regularization, preventing overly irregular quantification of regression parameter uncertainty.

Each trained version of `metabeta` is currently tailored to the size of the regression problem in terms of the number of fixed effects (d) and the number of random effects (q). The GitHub repository provides pretrained versions of `metabeta` for several relevant parameter combinations. Together this collection of models acts like a single pretrained model, as each size can be pulled quickly from the repo for immediate deployment. That is, from the practitioners perspective it makes no difference if there is a single or multiple pretrained models for different regression problem sizes.

Currently, the prior families are fixed. The parameters of the priors are concatenated to the summary vector s before being passed to the MLPs inside the normalizing flow. This approach could be generalized to varying prior families, whose identity can be embedded and simply added to the summary vector. We plan to eventually extend `metabeta` to even more flexible prior specification. Similarly, our framework is currently specialized on Bayesian linear mixed effects regression, but the required steps to generalized mixed-effects models are in parts small: Data simulation would require an additional response function around the linear term. The response function type could be passed to the model along with the priors. Extending importance sampling for non-linear cases is non-trivial, however. Finally, hierarchical NPE is well suited for mixed-effects regression with one grouping factor: Multiple parallel grouping factors would require non-trivial extensions to dataset summarization and integration of multiple summaries. However, it is conceptually straightforward to extend the framework to multiple nested grouping factors (e.g. schools and classrooms within schools). Overall, these extensions are worthwhile avenues for future developments.

4.2 CONCLUSION

Our model brings Bayesian mixed-effects regression closer to practical usability in real-world applications. In its current form, it already enables rapid prototyping – practitioners can quickly test different model specifications and validate findings using conventional tools if needed. Our analyses highlight that `metabeta` is immediately applicable to such use cases. Looking ahead, we envision scaling our model to larger and non-linear regression problems. This would open the door to entirely new applications of Bayesian mixed-effects regression that are currently out of reach.

486 REFERENCES
487

488 Oriol Abril-Pla, Virgile Andreani, Colin Carroll, Larry Dong, Christopher J. Fonnesbeck, Maxim
489 Kochurov, Ravin Kumar, Junpeng Lao, Christian C. Luhmann, Osvaldo A. Martin, Michael Os-
490 thege, Ricardo Vieira, Thomas Wiecki, and Robert Zinkov. PyMC: A modern, and comprehensive
491 probabilistic programming framework in Python. *PeerJ Computer Science*, 9:e1516, September
492 2023. ISSN 2376-5992. doi: 10.7717/peerj-cs.1516.

493 Simon Alexanderson and Gustav Eje Henter. Robust model training and generalisation with Studen-
494 tising flows, July 2020.

495 Anastasios N. Angelopoulos and Stephen Bates. A Gentle Introduction to Conformal Prediction and
496 Distribution-Free Uncertainty Quantification, December 2022.

497 Jonas Arruda, Yannik Schälte, Clemens Peiter, Olga Teplytska, Ulrich Jaehde, and Jan Hasenauer.
498 An amortized approach to non-linear mixed-effects modeling based on neural posterior estimation,
499 August 2023.

500 David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational Inference: A Review for
501 Statisticians. *Journal of the American Statistical Association*, 112(518):859–877, April 2017.
502 ISSN 0162-1459, 1537-274X. doi: 10.1080/01621459.2017.1285773.

503 Violet A. Brown. An Introduction to Linear Mixed-Effects Modeling in R. *Advances in Methods
504 and Practices in Psychological Science*, 4(1):2515245920960351, January 2021. ISSN 2515-2459,
505 2515-2467. doi: 10.1177/2515245920960351.

506 Paul-Christian Bürkner. Advanced Bayesian Multilevel Modeling with the R Package brms. *The R
507 Journal*, 10(1):395, 2018. ISSN 2073-4859. doi: 10.32614/RJ-2018-017.

508 Tomás Capretto, Camen Piho, Ravin Kumar, Jacob Westfall, Tal Yarkoni, and Osvaldo A. Martin.
509 Bambi: A Simple Interface for Fitting Bayesian Linear Models in Python. *Journal of Statistical
510 Software*, 103:1–29, August 2022. ISSN 1548-7660. doi: 10.18637/jss.v103.i15.

511 Tianyu Chen, Vansh Bansal, and James G. Scott. Conditional diffusions for amortized neural posterior
512 estimation. In *The 28th International Conference on Artificial Intelligence and Statistics*, February
513 2025.

514 Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Pürer, Jonas Wildberger, Jakob H.
515 Macke, Alessandra Buonanno, and Bernhard Schölkopf. Neural Importance Sampling for Rapid
516 and Reliable Gravitational-Wave Inference. *Physical Review Letters*, 130(17):171403, April 2023.
517 ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.130.171403.

518 Aaron Defazio, Xingyu Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and Ashok
519 Cutkosky. The Road Less Scheduled. *Advances in Neural Information Processing Systems*, 37:
520 9974–10007, December 2024.

521 Michael Deistler, Jan Boelts, Peter Steinbach, Guy Moss, Thomas Moreau, Manuel Gloeckler, Pedro
522 L. C. Rodrigues, Julia Linhart, Janne K. Lappalainen, Benjamin Kurt Miller, Pedro J. Gonçalves,
523 Jan-Matthis Lueckmann, Cornelius Schröder, and Jakob H. Macke. Simulation-Based Inference:
524 A Practical Guide, August 2025.

525 Victor Dheur and Souhaib Ben Taieb. Multivariate Latent Recalibration for Conditional Normalizing
526 Flows, May 2025.

527 Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear Independent Components
528 Estimation. *arXiv: Learning*, October 2014.

529 Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. In
530 *International Conference on Learning Representations*, February 2017.

531 Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural Spline Flows,
532 December 2019.

540 Ludwig Fahrmeir, Thomas Kneib, Stefan Lang, and Brian Marx. *Regression: Models, Methods and*
 541 *Applications*. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-34332-2
 542 978-3-642-34333-9. doi: 10.1007/978-3-642-34333-9.

543

544 Jorge I. Figueroa-Zúñiga, Reinaldo B. Arellano-Valle, and Silvia L. P. Ferrari. Mixed beta regression:
 545 A Bayesian perspective. *Computational Statistics & Data Analysis*, 61:137–147, May 2013. ISSN
 546 0167-9473. doi: 10.1016/j.csda.2012.12.002.

547

548 Andrew Gelman and Jennifer Hill. *Data Analysis Using Regression and Multilevel/Hierarchical*
 549 *Models*. Analytical Methods for Social Research. Cambridge Univ. Press, Cambridge, 23rd printing
 550 edition, 2007. ISBN 978-0-521-68689-1 978-0-521-86706-1.

551

552 Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin.
 553 *Bayesian Data Analysis*. Texts in Statistical Science Series. CRC Press, Taylor & Francis Group,
 554 Boca Raton London New York, third edition edition, 2013. ISBN 978-1-4398-4095-5.

555

556 Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard Turner. Meta-
 557 Learning Probabilistic Inference for Prediction. In *International Conference on Learning Representations*, September 2018.

558

559 Katherine R. Gordon. How Mixed-Effects Modeling Can Advance Our Understanding of Learning
 560 and Memory and Improve Clinical and Educational Practice. *Journal of Speech, Language, and*
 561 *Hearing Research : JSLHR*, 62(3):507–524, March 2019. ISSN 1092-4388. doi: 10.1044/2018_JSLHR-L-ASTM-18-0240.

562

563 David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic Posterior Transformation
 564 for Likelihood-Free Inference. In *Proceedings of the 36th International Conference on Machine*
 565 *Learning*, pp. 2404–2414. PMLR, May 2019.

566

567 Daniel Habermann, Marvin Schmitt, Lars Kühmichel, Andreas Bulling, Stefan T. Radev, and Paul-
 568 Christian Bürkner. Amortized Bayesian Multilevel Models, August 2024.

569

570 Xavier A. Harrison, Lynda Donaldson, Maria Eugenia Correa-Cano, Julian Evans, David N. Fisher,
 571 Cecily E. D. Goodwin, Beth S. Robinson, David J. Hodgson, and Richard Inger. A brief introduction
 572 to mixed effects modelling and multi-model inference in ecology. *PeerJ*, 6:e4794, May 2018.
 573 ISSN 2167-8359. doi: 10.7717/peerj.4794.

574

575 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
 576 Recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 577 770–778, June 2016. doi: 10.1109/CVPR.2016.90.

578

579 Lukas Heinrich, Siddharth Mishra-Sharma, Chris Pollard, and Philipp Windischhofer. Hierarchical
 580 Neural Simulation-Based Inference Over Event Ensembles. *Transactions on Machine Learning*
 581 *Research*, October 2023. ISSN 2835-8856.

582

583 Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs), June 2023.

584

585 Matthew D. Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adaptively Setting Path
 586 Lengths in Hamiltonian Monte Carlo, November 2011.

587

588 Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
 589 Robin Tibor Schirrmeyer, and Frank Hutter. Accurate predictions on small data with a tabular
 590 foundation model. *Nature*, 637(8045):319–326, January 2025. ISSN 0028-0836, 1476-4687. doi:
 591 10.1038/s41586-024-08328-6.

592

593 Ghassen Jerfel, Serena Wang, Clara Wong-Fannjiang, Katherine A. Heller, Yian Ma, and Michael I.
 594 Jordan. Variational refinement for importance sampling using the forward Kullback-Leibler diver-
 595 gence. In *Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence*,
 596 pp. 1819–1829. PMLR, December 2021.

597

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.

594 Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing Flows: An Introduction and
 595 Review of Current Methods. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43
 596 (11):3964–3979, November 2021. ISSN 0162-8828, 2160-9292, 1939-3539. doi: 10.1109/TPAMI.
 597 2020.2992934.

598 Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M. Blei. Automatic
 599 Differentiation Variational Inference, March 2016.

601 Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
 602 Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks. In
 603 *Proceedings of the 36th International Conference on Machine Learning*, pp. 3744–3753. PMLR,
 604 May 2019.

606 Daniel Lewandowski, Dorota Kurowicka, and Harry Joe. Generating random correlation matrices
 607 based on vines and extended onion method. *Journal of Multivariate Analysis*, 100(9):1989–2001,
 608 October 2009. ISSN 0047259X. doi: 10.1016/j.jmva.2009.04.008.

609 Jan M. Lichtenberg and Özgür Şimşek. Simple Regression Models. In *Proceedings of the NIPS 2016*
 610 *Workshop on Imperfect Decision Makers*, pp. 13–25. PMLR, August 2017.

612 Jan-Matthi Lueckmann, Pedro J Goncalves, Giacomo Bassetto, Kaan Öcal, Marcel Nonnenmacher,
 613 and Jakob H Macke. Flexible statistical inference for mechanistic models of neural dynamics. In
 614 *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.

615 Jan-Matthi Lueckmann, Jan Boelts, David Greenberg, Pedro Goncalves, and Jakob Macke. Bench-
 616 marking Simulation-Based Inference. In *Proceedings of The 24th International Conference on*
 617 *Artificial Intelligence and Statistics*, pp. 343–351. PMLR, March 2021.

619 Junwei Ma, Apoorv Dankar, George Stein, Guangwei Yu, and Anthony Caterini. TabPFG – Tabular
 620 Data Generation with TabPFN, June 2024.

621 Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and
 622 Edward Teller. Equation of State Calculations by Fast Computing Machines. *The Journal of*
 623 *Chemical Physics*, 21(6):1087–1092, June 1953. ISSN 0021-9606. doi: 10.1063/1.1699114.

625 Sarthak Mittal, Niels Leif Bracher, Guillaume Lajoie, Priyank Jaini, and Marcus Brubaker. Amortized
 626 In-Context Bayesian Posterior Estimation, February 2025.

627 Radford M. Neal. *MCMC Using Hamiltonian Dynamics*. May 2011. doi: 10.1201/b10905.

629 George Papamakarios and Iain Murray. Fast λ epsilon -free Inference of Simulation Models with
 630 Bayesian Conditional Density Estimation. In *Advances in Neural Information Processing Systems*,
 631 volume 29. Curran Associates, Inc., 2016.

633 George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
 634 Lakshminarayanan. Normalizing Flows for Probabilistic Modeling and Inference. *Journal of*
 635 *Machine Learning Research*, 22, 2021.

636 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 637 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
 638 Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasan Chilamkurthy, Benoit Steiner, Lu Fang,
 639 Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning
 640 Library, December 2019.

641 Stefan T. Radev, Ulf K. Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich Kothe. BayesFlow:
 642 Learning Complex Stochastic Models With Invertible Neural Networks. *IEEE Transactions on*
 643 *Neural Networks and Learning Systems*, 33(4):1452–1466, 2020. ISSN 2162-237X, 2162-2388.
 644 doi: 10.1109/TNNLS.2020.3042395.

646 Stefan T. Radev, Marvin Schmitt, Lukas Schumacher, Lasse Elsemüller, Valentin Pratz, Yannik
 647 Schälte, Ullrich Köthe, and Paul-Christian Bürkner. BayesFlow: Amortized Bayesian Workflows
 With Neural Networks, July 2023.

648 Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via Stochastic
 649 Gradient Langevin Dynamics: A nonasymptotic analysis. In *Proceedings of the 2017 Conference*
 650 *on Learning Theory*, pp. 1674–1703. PMLR, June 2017.

651 Arik Reuter, Tim G. J. Rudner, Vincent Fortuin, and David Rügamer. Can Transformers Learn Full
 652 Bayesian Inference in Context? In *Forty-Second International Conference on Machine Learning*,
 653 June 2025.

654 Danilo Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows. In *Proceedings*
 655 *of the 32nd International Conference on Machine Learning*, pp. 1530–1538. PMLR, June 2015.

656 Pedro Rodrigues, Thomas Moreau, Gilles Louppe, and Alexandre Gramfort. HNPE: Leveraging
 657 Global Parameters for Neural Posterior Estimation. In *Advances in Neural Information Processing*
 658 *Systems*, volume 34, pp. 13432–13443. Curran Associates, Inc., 2021.

659 Joseph D. Romano, Trang T. Le, William La Cava, John T. Gregg, Daniel J. Goldberg, Natasha L.
 660 Ray, Praneel Chakraborty, Daniel Himmelstein, Weixuan Fu, and Jason H. Moore. PMLB v1.0:
 661 An open source dataset collection for benchmarking machine learning methods, April 2021.

662 Teemu Säilynoja, Paul-Christian Bürkner, and Aki Vehtari. Graphical Test for Discrete Uni-
 663 formity and its Applications in Goodness of Fit Evaluation and Multiple Sample Compari-
 664 son. *Statistics and Computing*, 32(2):32, April 2022. ISSN 0960-3174, 1573-1375. doi:
 665 10.1007/s11222-022-10090-6.

666 Glenn Shafer and Vladimir Vovk. A Tutorial on Conformal Prediction. *Journal of Machine Learning*
 667 *Research*, 9(12):371–421, 2008. ISSN 1533-7928.

668 Sean Talts, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew Gelman. Validating
 669 Bayesian Inference Algorithms with Simulation-Based Calibration, October 2020.

670 Surya T. Tokdar and Robert E. Kass. Importance sampling: A review. *WIREs Computational*
 671 *Statistics*, 2(1):54–60, January 2010. ISSN 1939-5108, 1939-0068. doi: 10.1002/wics.56.

672 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 673 Kaiser, and Illia Polosukhin. Attention is All you Need. In *Advances in Neural Information*
 674 *Processing Systems*, volume 30. Curran Associates, Inc., 2017.

675 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic Learning in a Random World*.
 676 Springer International Publishing, Cham, 2022. ISBN 978-3-031-06648-1 978-3-031-06649-8.
 677 doi: 10.1007/978-3-031-06649-8.

678 Daniel Ward, Patrick Cannon, Mark Beaumont, Matteo Fasiolo, and Sebastian Schmon. Robust
 679 Neural Posterior Estimation and Statistical Model Criticism. *Advances in Neural Information*
 680 *Processing Systems*, 35:33845–33859, December 2022.

681 Larry Wasserman. *All of Statistics: A Concise Course in Statistical Inference*. Springer Texts in
 682 Statistics. Springer, New York Berlin Heidelberg, corr. 2. print., [repr.] edition, 2010. ISBN
 683 978-1-4419-2322-6.

684 Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynamics.
 685 In *Proceedings of the 28th International Conference on International Conference on Machine*
 686 *Learning*, ICML’11, pp. 681–688, Madison, WI, USA, June 2011. Omnipress. ISBN 978-1-4503-
 687 0619-5.

688 George Whittle, Juliusz Ziomek, Jacob Rawling, and Michael A. Osborne. Distribution Transformers:
 689 Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation, October 2025.

690 Jonas Bernhard Wildberger, Maximilian Dax, Simon Buchholz, Stephen R. Green, Jakob H. Macke,
 691 and Bernhard Schölkopf. Flow Matching for Scalable Simulation-Based Inference. In *Thirty-*
 692 *Seventh Conference on Neural Information Processing Systems*, November 2023.

693 Zhaoxia Yu, Michele Guindani, Steven F. Grieco, Lujia Chen, Todd C. Holmes, and Xiangmin Xu.
 694 Beyond t test and ANOVA: Applications of mixed-effects models for more rigorous statistical
 695 analysis in neuroscience research. *Neuron*, 110(1):21–35, January 2022. ISSN 1097-4199. doi:
 696 10.1016/j.neuron.2021.10.030.

702 Shuangfei Zhai, Ruixiang Zhang, Preetum Nakkiran, David Berthelot, Jiatao Gu, Huangjie Zheng,
703 Tianrong Chen, Miguel Angel Bautista, Navdeep Jaitly, and Josh Susskind. Normalizing Flows are
704 Capable Generative Models, June 2025.
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

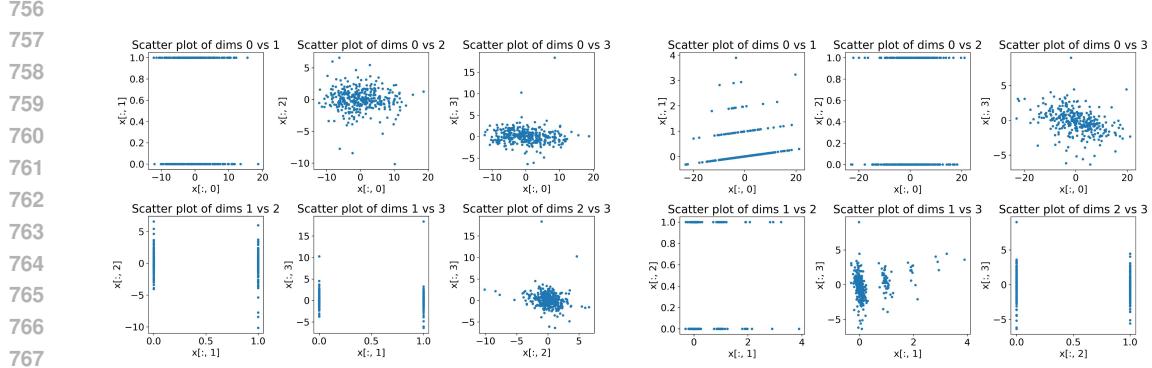


Figure 4: Scatter plots of sampled synthetic predictors for two datasets.

A DATASET SIMULATION

All simulated or sampled datasets have $5 \leq m \leq 30$ groups and each group has $10 \leq n_i \leq 70$ observations, making n range from 50 to 2100.

A.1 SYNTHETIC PREDICTORS

We sample n_i observations of predictor j , x_{ij} , from the following distributions: Normal, Student- t , continuous uniform, log-Normal, Bernoulli, negative binomial, and scaled Beta. All distributions have varying parameters and include random truncations. Correlation is induced by sampling $\mathbf{L}\mathbf{L}^\top = \mathbf{R} \sim \text{LKJ}(10)$ and multiplying \mathbf{L} with the design matrix \mathbf{X} (Lewandowski et al., 2009). For binary variables, we induce correlation with another variable using the following approach:

Algorithm 1: Sample correlated binary variable

Data: $\mathbf{x} \in \mathbb{R}^n$, $r \in (-1, 1)$
Result: $\mathbf{z} \in \{0, 1\}^n$
 $\mathbf{y} \sim \mathcal{N}_n(0, 1)$;
 $\mathbf{y} \leftarrow r \cdot \mathbf{x} + (1 - r^2)^{\frac{1}{2}} \cdot \mathbf{y}$;
 $\mathbf{p} \leftarrow (1 + e^{-\mathbf{y}})^{-1}$;
 $\mathbf{z} \sim \text{Bernoulli}(\mathbf{p})$;

An example of generated training data is visualized in Figure 8.

A.2 REAL PREDICTORS

We use 271 real datasets from the PMLB (Romano et al., 2021) and SRM (Lichtenberg & Şimşek, 2017) benchmarks as additional sources for realistic predictors, and preserve hierarchical grouping structure when present. Existence of grouping structure is automatically checked by checking every non-continuous predictor for its number of unique values, as well as their spread. When such grouping factors are present, data is separately sampled per group, otherwise groups are randomly assigned. To further increase variability, we pass the sampled real data through Stochastic Gradient Langevin Dynamics (SGLD, Welling & Teh, 2011; Raginsky et al., 2017; Ma et al., 2024). This generates structurally equivalent data instead of just using subsets. The training sets receive a mix of synthetic and emulated predictors, the test sets receive only real data subsets. The in-distribution test sets rely on samples from the 271 datasets, the out-of-distribution sets rely on 7 additional hierarchical datasets not used in the training data.

810 A.3 PRIORS AND RESCALING
811812 Priors for parameters are sampled using the following approach:
813814 **Algorithm 2:** Sample priors
815816 **Data:** $b \in \mathbb{N}, d \in \mathbb{N}, q \in \mathbb{N}$
817 **Result:** $\nu_\beta \in \mathbb{R}^{b \times d}, \tau_\beta \in \mathbb{R}^{b \times d}, \tau_\sigma \in \mathbb{R}^{b \times q}, \tau_\varepsilon \in \mathbb{R}^b$
818 $\nu_\beta \sim \mathcal{U}_{b \times d}(-3, 3);$
819 $\tau_\beta \sim \mathcal{U}_{b \times d}(0.01, 3);$
820 $\tau_\sigma \sim \mathcal{U}_{b \times q}(0.01, 3);$
821 $\tau_\varepsilon \sim \mathcal{U}_{b \times 1}(0.01, 3);$
822823 In a first forward pass, the standardized predictors and sampled parameters are projected to \mathbf{y} . Then
824 all parameters (and their corresponding prior parameters) are rescaled such that $\mathbb{V}(\mathbf{y}) = 1$. This is
825 without loss of generality, as posterior samples can trivially be brought back to the original scale of \mathbf{y}
826 by rescaling (see below). However, the advantage of this approach is that this covers a very wide
827 range of potentially observable combinations of \mathbf{X} and ϑ .
828829 B STANDARDIZATION
830831 Before entering the neural model, all observable data is normalized to zero mean and unit standard
832 deviation over groups and observations. To keep the dependence structure intact, we also analytically
833 standardize the regression parameters during training and un-standardize them after sampling, using
834 the following equalities:
835

836
$$\beta_k^* = \beta_k \frac{\sigma_{x_k}}{\sigma_y}$$

837
$$\alpha_{ik}^* = \alpha_{ik} \frac{\sigma_{z_k}}{\sigma_y} \sim \mathcal{N}(0, \sigma_k^{*2})$$

838
$$\sigma_k^{*2} = \sigma_k^2 \frac{\sigma_{z_k}^2}{\sigma_y^2}, \quad \sigma_\varepsilon^{*2} = \frac{\sigma_\varepsilon^2}{\sigma_y^2}$$

839 where σ_{x_k} resp. σ_y are the k th predictor's resp. the outcome's standard deviation, and β_k^* is the k th
840 slope after z-standardizing predictors and outcomes. The intercepts require special care:
841

842
$$\beta_0^* = \frac{\beta_0 + \sum_{k=1}^d \mu_{x_k} \beta_k - \mu_y}{\sigma_y}$$

843
$$\alpha_{i0}^* = \frac{\alpha_{i0} + \sum_{k=1}^q \mu_{z_k} \alpha_{ik}}{\sigma_y} = \frac{\sum_{k=1}^q \mu_{z_k} \alpha_{ik}}{\sigma_y} \sim \mathcal{N}(0, \sigma_0^{*2}),$$

844 where μ_{x_k} is the mean of the k th predictor over all observations. Due to the sum term in the latter,
845

846
$$\sigma_0^{*2} = \mathbb{V}(\alpha_{i0}) + \mathbb{V}\left(\sum_{k=1}^q \mu_{z_k} \alpha_{ik}\right) + 2 \cdot \text{Cov}\left(\alpha_{i0}, \sum_{k=1}^q \mu_{z_k} \alpha_{ik}\right),$$

847 which is equivalent to summing up the covariance matrix of the random vector $\mu_z \odot \alpha_i$.
848849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864
865*Proof:*

866

867
868

$$\begin{aligned}
y_{ij}^* &= \frac{y_{ij} - \mu_y}{\sigma_y} \\
&= \frac{1}{\sigma_y} \left(\beta_0 + \sum_{k=1}^d x_{ijk} \beta_k + \alpha_{i0} + \sum_{k=1}^q z_{ijk} \alpha_{ik} + \varepsilon_{ij} - \mu_y \right) \\
&\stackrel{!}{=} \beta_0^* + \sum_{k=1}^d x_{ijk}^* \beta_k^* + \alpha_{i0}^* + \sum_{k=1}^q z_{ijk}^* \alpha_{ik}^* + \varepsilon_{ij}^* \\
&= \beta_0^* + \sum_{k=1}^d \left(\frac{x_{ijk} - \mu_{x_k}}{\sigma_{x_k}} \right) \beta_k^* + \alpha_{i0}^* + \sum_{k=1}^q \left(\frac{z_{ijk} - \mu_{z_k}}{\sigma_{z_k}} \right) \alpha_{ik}^* + \varepsilon_{ij}^* \\
&= \beta_0^* + \sum_{k=1}^d \left(\frac{x_{ijk} - \mu_{x_k}}{\sigma_{x_k}} \right) \left(\beta_k \frac{\sigma_{x_k}}{\sigma_y} \right) + \alpha_{i0}^* + \sum_{k=1}^q \left(\frac{z_{ijk} - \mu_{z_k}}{\sigma_{z_k}} \right) \left(\alpha_{ik} \frac{\sigma_{z_k}}{\sigma_y} \right) + \frac{\varepsilon_{ij}}{\sigma_y} \\
&= \beta_0^* - \sum_{k=1}^d \left(\frac{\mu_{x_k} \beta_k}{\sigma_y} \right) + \sum_{k=1}^d \left(\frac{x_{ijk} \beta_k}{\sigma_y} \right) + \alpha_{i0}^* - \sum_{k=1}^q \left(\frac{\mu_{z_k} \alpha_{ik}}{\sigma_y} \right) + \sum_{k=1}^q \left(\frac{z_{ijk} \alpha_{ik}}{\sigma_y} \right) + \frac{\varepsilon_{ij}}{\sigma_y} \\
&= \frac{\beta_0 - \mu_y}{\sigma_y} + \sum_{k=1}^d \left(\frac{x_{ijk} \beta_k}{\sigma_y} \right) + \frac{\alpha_{i0}}{\sigma_y} + \sum_{k=1}^q \left(\frac{z_{ijk} \alpha_{ik}}{\sigma_y} \right) + \frac{\varepsilon_{ij}}{\sigma_y}
\end{aligned}$$

887

888

The distributions of the standardized random effects and noise follow from the scaling of normal random variables, and the variance of the random intercept follows from the variance of sums of random variables (Wasserman, 2010).

892

893

C DATA REPRESENTATION AND EMBEDDING

894

895

Group-membership is represented implicitly by a separate tensor dimension, e.g. \mathbf{X} has the shape $(batch, m, n, d)$. For PyTorch dataloader compatibility, all tensors are zero-padded and corresponding masks are stored. To spread the learning signal evenly across the network, all slope-related variables are randomly permuted separately per regression dataset, using the same permutation for $\mathbf{X}, \mathbf{Z}, \boldsymbol{\beta}, \mathbf{b}_i$, and \mathbf{S} .

901

902

Observable data is concatenated along the last dimension to $\mathbf{D} = [\mathbf{y}, \mathbf{X}, \mathbf{Z}]$, and linearly projected to a higher-dimensional space (e.g. 128 dimensions). Since mixed-effects regression must be permutation invariant (wrt. to groups and observations per group), no positional encoding or explicit group identity information is passed as input, and instead group identity is represented implicitly by a separate tensor dimension, e.g. \mathbf{X} has the shape $(batch, m, n, d)$.

906

907

D POSTERIOR FACTORIZATION

908

909

Let the joint distribution over all regression parameters and the data be

910

911

$$p(\boldsymbol{\vartheta}, \boldsymbol{\alpha}, \mathbf{D}),$$

912

913

where $\boldsymbol{\alpha} = \{\boldsymbol{\alpha}_i\}_{i=1,\dots,m}$ and $\mathbf{D} = \{\mathbf{D}_i\}_{i=1,\dots,m}$.

914

915

916

917

$$\frac{p(\boldsymbol{\vartheta}, \boldsymbol{\alpha}, \mathbf{D})}{p(\mathbf{D})} = p(\boldsymbol{\vartheta}, \boldsymbol{\alpha} \mid \mathbf{D}) = p(\boldsymbol{\vartheta} \mid \mathbf{D}) p(\boldsymbol{\alpha} \mid \boldsymbol{\vartheta}, \mathbf{D}) = p(\boldsymbol{\vartheta} \mid \mathbf{D}) \prod_{i=1}^m p(\boldsymbol{\alpha}_i \mid \boldsymbol{\vartheta}, \mathbf{D}_i),$$

918 where we use the conditional independence of the local parameters in the last step. This translates
 919 naturally to the loss calculation:
 920

$$921 \ell = \ell_{\Pi_g, \Sigma_g} + \sum_{i=1}^m \ell_{\Pi_l, \Sigma_l}^{(i)} \propto -\mathbb{E}_{\boldsymbol{\vartheta}, \boldsymbol{\alpha}, \mathbf{D}} \left[\log p_{\Pi_g}(\boldsymbol{\vartheta} | f_{\Sigma_g}(f_{\Sigma_l}(\mathbf{D}))) + \sum_{i=1}^m \log p_{\Pi_l}(\boldsymbol{\alpha}_i | \boldsymbol{\vartheta}, f_{\Sigma_l}(\mathbf{D}_i)) \right].$$

924 Similar derivations can be found in Heinrich et al. (2023) and Habermann et al. (2024).
 925
 926

927 E ALTERNATING IMPORTANCE SAMPLING

929 For numerical stability, we compute
 930

- 931 1. $\log w_i \leftarrow \log p(\mathbf{D} | \boldsymbol{\vartheta}_i) + \log p(\boldsymbol{\vartheta}_i) - \log q(\boldsymbol{\vartheta}_i | \mathbf{D})$
- 932 2. $\log w_i \leftarrow \min(\log w_i, \log w^\dagger)$, where $\log w^\dagger$ is the 98th percentile over i
- 933 3. $w_i \leftarrow \exp(\log w_i - \max_j \log w_j)$, such that $w_i \leq 1$ for all i
- 934 4. $\tilde{w}_i \leftarrow \frac{w_i}{\sum_{i=1}^s w_i}$ such that $\sum_{i=1}^s \tilde{w}_i = s$.

937 Since we have two approximate posteriors (one for the global parameters, one for the random
 938 effects), we have two sets of samples which require separate importance weights (IW). For the global
 939 parameters posterior, the numerator can either use the *marginal* likelihood,

$$940 \quad 941 \quad 942 p(\mathbf{D} | \boldsymbol{\vartheta}) p(\boldsymbol{\vartheta}) = \prod_{i=1}^m p(\mathbf{y}_i | \mathbf{X}_i, \boldsymbol{\beta}, \boldsymbol{\sigma}_\alpha^2, \sigma_\varepsilon^2) p(\boldsymbol{\beta}) p(\boldsymbol{\sigma}_\alpha^2) p(\sigma_\varepsilon^2),$$

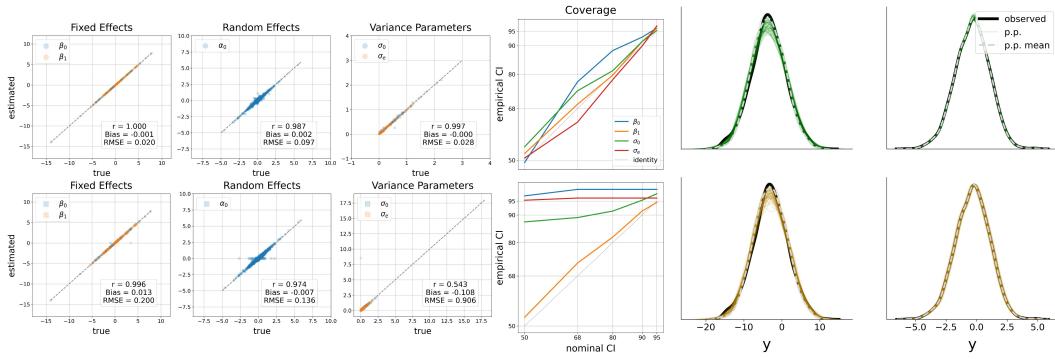
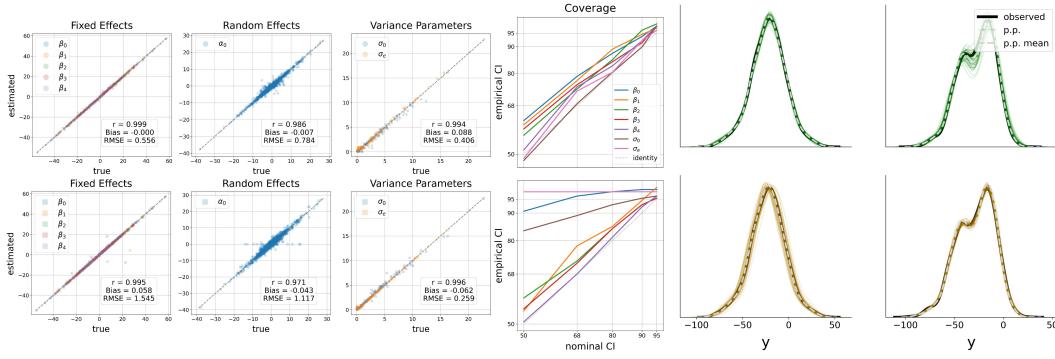
943 or the *conditional* likelihood,
 944

$$945 \quad 946 \quad 947 p(\mathbf{D} | \boldsymbol{\vartheta}) p(\boldsymbol{\vartheta}) = \prod_{i=1}^m p(\mathbf{y}_i | \mathbf{X}_i, \boldsymbol{\alpha}_i, \boldsymbol{\beta}, \sigma_\varepsilon^2) p(\boldsymbol{\alpha}_i | \boldsymbol{\sigma}_\alpha^2) p(\boldsymbol{\sigma}_\alpha^2) p(\boldsymbol{\beta}) p(\sigma_\varepsilon^2).$$

948 The marginal likelihood may seem more appropriate, because the global posterior does not receive
 949 any explicit information about the random effects, i.e. it is not conditioned on them. However,
 950 calculating the marginal likelihood is inefficient, as it requires a matrix inversion for each sample.
 951 Empirically, parameters recovery also suffers from using marginal likelihood IW. Instead, we plug in
 952 the posterior mean of the random effects for the conditional likelihood IW. The IW for the random
 953 effects posterior is calculated accordingly, this time using the importance-weighted means of the
 954 global parameters. We alternate the two steps 3 times, starting with the local samples.
 955
 956

957 F FIT DIAGNOSTICS

958 To do
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 **G RESULT FIGURES**
973974 Descriptors are the same as in Figure 2 and Figure 3B.
975976 **G.1 TOY EXAMPLE**
977990 **Figure 5:** Results based on the toy example.
991992 **G.2 EXAM**
9931007 **Figure 6:** Results based on Exam.
1008

1026

1027
1028

G.3 GCSEMV

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

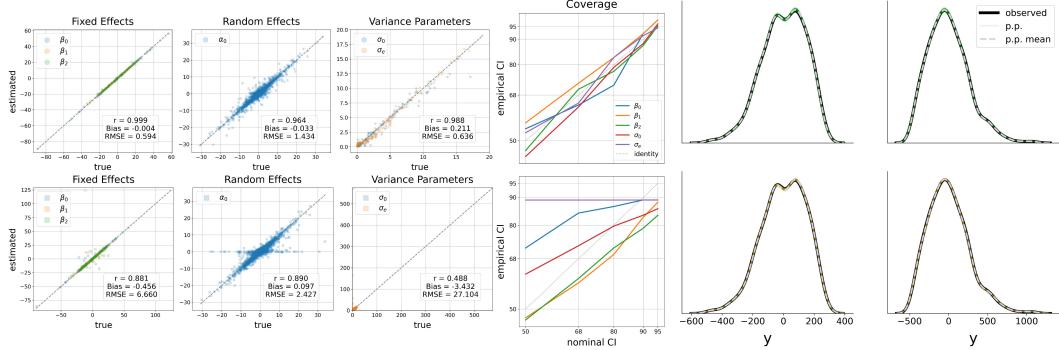


Figure 7: Results based on Gcsemv.

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

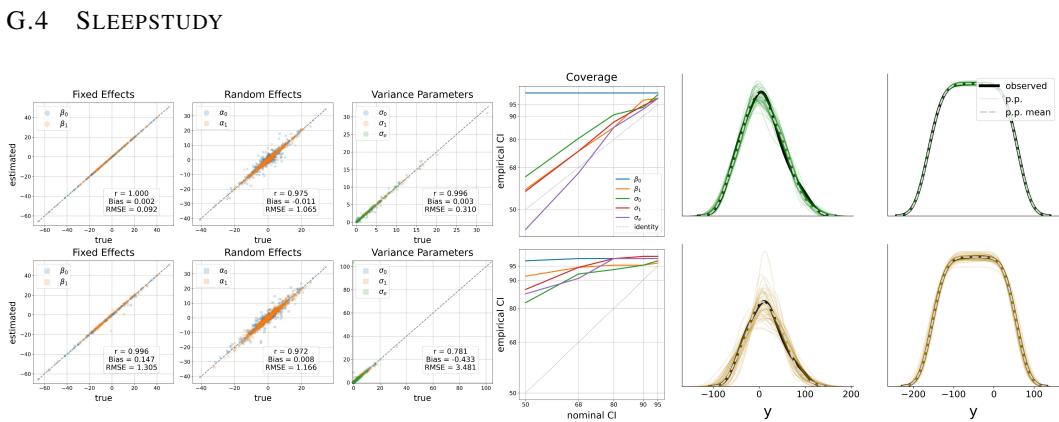


Figure 8: Results based on Sleepstudy.