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ABSTRACT

Hierarchical data with multiple observations per group is ubiquitous in empirical
sciences and is often analyzed using mixed-effects regression. In such models,
Bayesian inference gives an estimate of uncertainty but is analytically intractable
and requires costly approximation using Markov Chain Monte Carlo (MCMC)
methods. Neural posterior estimation shifts the bulk of computation from inference
time to pre-training time, amortizing over simulated datasets with known ground
truth targets. We propose metabeta, a transformer-based neural network model
for Bayesian mixed-effects regression. Using simulated and real data, we show
that it reaches stable and comparable performance to MCMC-based parameter
estimation at a fraction of the usually required time.

1 INTRODUCTION

Much of the data we work with has a hierarchical structure that naturally clusters into subgroups.
When predicting the efficacy of a drug, for example, there may be subpopulation-specific effects in
addition to effects on the population as a whole. When building a movie recommendation system,
some films may be universally popular, yet individual preferences still matter. When looking at plant
growth, the same fertilizer may perform well in one field but poorly in another due to local conditions.
These challenges can be addressed using mixed-effects models, which provide a principled framework
for capturing both overall trends (fixed effects) and group-specific deviations (random effects). Mixed-
effects models have been widely adopted across disciplines — including ecology, psychology, and
education — and are by now considered a standard approach for analyzing hierarchical data (Gelman
& Hill, 2007; Harrison et al., 2018 |Gordonl, 2019; |Yu et al., [2022).

In many such applications, we would like to estimate the parameters of a mixed-effects model in
a Bayesian manner, enabling the incorporation of prior knowledge and the explicit quantification
of uncertainty (Figueroa-Zuiiga et al.|[2013; |Gelman et al.|[2013). However, closed-form solutions
are generally unavailable even for the simplest cases, necessitating computationally expensive
approximate inference methods such as Markov Chain Monte Carlo (MCMC, Metropolis et al., |1953).
From a practitioner’s perspective, this is undesirable, as MCMC typically requires significant runtime,
even for moderately sized datasets.

In this work, we introduce metabeta, a probabilistic neural network model, that is designed to
efficiently approximate Bayesian inference for mixed-effects regression. It is trained via neural
posterior estimation (Rezende & Mohamed, 2015} |Gordon et al., 2018; Wildberger et al., [2023;
Hollmann et al.||2025)), amortizing computation costs over many simulated hierarchical datasets with
available ground truth parameters. We demonstrate that met abeta achieves accuracy comparable
to Hamiltonian Monte Carlo (HMC), which is the gold-standard MCMC method for Bayesian
mixed-effects regression (Neall 2011} Biirkner, 2018 [Capretto et al.| 2022). Importantly, our model
reduces inference time by orders of magnitude, thereby greatly broadening the range of feasible
applications for Bayesian mixed-effects regression. To further facilitate met abeta’s adoption for
rapid deployment and plug-and-play compatibility, we provide open-source Python code for our
implementation and plan to release a package with pretrained models that integrates seamlessly with
existing analysis pipelines (Biirkner, 2018} |Abril-Pla et al.l 2023).
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1.1 RELATED WORK

Neural posterior estimation (NPE) — the simulation-based amortization of a neural network posterior
— has a long and well-established history. Early work by Papamakarios & Murray| (2016) introduced
neural conditional density estimators for directly approximating posteriors from simulations. This
approach was extended by|Lueckmann et al.|(2017)), who incorporated importance weighting to enable
sequential refinement of posterior approximations, and by |Greenberg et al.| (2019), who proposed au-
tomatic posterior transformation, increasing flexibility in proposal adaptation and posterior modeling.
These methods form the core foundations of amortized simulation-based Bayesian inference.

Rezende & Mohamed (2015) pioneered the use of conditional normalizing flows (Papamakarios et al.}
2021} |Kobyzev et al.|[2021) for amortized inference. Together with|Gordon et al.[(2018), they laid
the groundwork for BayesFlow (Radev et al.} [2020; 2023)), which introduced a practical workflow for
globally amortized Bayesian inference using summary encoders and normalizing flows. Subsequent
extensions adapted BayesFlow to hierarchical Bayesian models (Habermann et al., [2024) and to
non-linear mixed-effects models for cell biology and pharmacology (Arruda et al.| 2023). In both
cases, the prior distribution is fixed at training time, requiring retraining whenever a user wishes
to change the prior. This off-loads the amortization process to potential end-users, which strongly
diminishes the runtime advantage of NPE for practical purposes.

More recently, transformer-based architectures have emerged as a distinct line of research for
amortized Bayesian inference. For instance Distribution Transformers (Whittle et al.| [2025)) represent
prior and posterior as Gaussian Mixture Models whose parameters are mapped by transformers. A
thorough comparison of transformer-based NPE methods was recently conducted by [Mittal et al.
(2025)). These works demonstrate that transformer-based NPE can adapt efficiently to varying priors
and heterogeneous datasets. However, they have not been tailored specifically to mixed-effects
regression, and explicit incorporation of priors in NPE remains an active field of research.

2 METHODS

We briefly formalize mixed-effects regression (Section 2.1)) and define a synthetic distribution over
hierarchical datasets representative of scenarios practitioners care about (Section 2.2). We then
present a neural network architecture that takes an entire dataset and priors as inputs and returns
posterior distributions over all regression parameters (Section 2.3). This model is trained on synthetic
datasets with available ground truth to perform accurate posterior inference (Section 2.4). In a final
post-training step, we refine the model’s outputs using importance sampling and conformal prediction
(Section 2.5). All our code is implemented in PyTorch 2.7.1 (Paszke et al), [2019) and openly
available at https://github.com/censored-for-reviewl

2.1 MIXED-EFFECTS REGRESSION

Mixed-effects regression extends traditional regression by explicitly accounting for within-group
dependency in hierarchical data (Gelman & Hill, 2007; Brown, 2021} |[Fahrmeir et al., 2013). To
model this dependency, mixed-effects regression distinguishes between two effect types:

* Fixed effects 3 € R? capture the general, group-independent relation between predictor
variables X; € R™ *4 and the regression output variable y; € R":.

* Random effects o;; € R? capture additional, group-specific variations for ¢ < d predictors.
For each group i = 1, ..., m, we treat c; as samples from N/, (0, S)E]

This yields the model:
yi=X8+Ziai+ €, (H

with independent additive noise &; ~ N,,,(0,021,,,). The random effect predictor matrix Z; is
typically a submatrix of X;.

'S € R9*7 is generally symmetric positive-definite, but for practical purposes it is often additionally
constrained to be diagonal and we include this constraint in our model.
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Note, that the n; observations are conditionally independent given some fixed o; but marginally
dependent over o;:

vilo ~ N, (XiB + Ziaws, 021,,) = yi~ N, (XiB, Z;SZ] + 021,,).

The goal of Bayesian mixed-effects modeling is to obtain posteriors for all unobserved global
(3, ag, S) and local (a;) regression parameters, conditioned on the observed predictors, outcomes
and priors of the global parameters.

2.2 DATA SIMULATION AND PREPROCESSING

To train our neural posterior estimator, we simulate hierarchically structured datasets as shown in
[Figure TA.
Priors: For each dataset, we sample hyper-parameters that specify each multidimensional prior.

That is, for d fixed effects, we first sample a d-dimensional prior, from which the d fixed effects are
sampled later.

Regression parameters: We use the default prior families of Bambi (Capretto et al [2022)). (1) ¢
random effect variance parameters are sampled from half-normal distributions, (2) then, m x ¢ random
effect vectors are sampled from a diagonal Gaussian using these variance parameters. Independently,
d fixed effects are sampled from another diagonal Gaussian. (3) Noise variance is sampled from
a half-¢-distribution, and then independent noise is sampled from a normal distribution with this
variance.

Observations: The predictors x;; are sampled from two sources: Synthetic distributions and real
datasets. The random effects predictors are set to z;; = x;; for j < ¢q and 0 otherwise. Predictors
are standardized and passed through equation [I| with the regression parameters and noise to generate
outcomes y; for each group 4. Further details on the simulation procedure can be found in[Appendix Al

For the test sets, we use Bambi on top of PyMC (Abril-Pla et al.| [2023) to estimate all posteriors
with the No-U-Turn sampler (a variant of HMC) (Hoffman & Gelman) 2011)). We run four chains
with 2500 tuning iterations and 1000 posterior draws each. For the MCMC model, we supply the
true priors and the generative model used in the simulation. For a fair comparison, we exclude
datasets with divergent MCMC samples from the test set. We additionally fit a variational inference
(VD) approximation of the probabilistic model (Kucukelbir et al.| 2016} Blei et al., |2017), which
is typically the preferred computationally cheaper alternative to MCMC. We use the same model
specification and the ADAM optimizer Kingma & Bal (2017) with learning rate = 0.005, 50000
training iterations and 4000 draws. MCMC and VI fit diagnostics are included in [Appendix F|

2.3 MODEL ARCHITECTURE

The model architecture takes inspiration from BayesFlow (Radev et al.|[2020; [Habermann et al.,
2024) and TabPFN (Hollmann et al., [2025) and has two main parts: (1) a summary network that
computes a maximally informative dataset statistic over observations, and (2) a posterior network
that uses the summary and priors to propose a joint posterior over regression parameters. Both are
trained end-to-end. Since mixed-effect datasets are hierarchically structured, we use two summary
and posterior networks, one for the global parameters (fixed effects and variance parameters) and
one for the local parameters (group-specific random effects). The training and inference pipeline is
visualized in[Figure TB. Data preprocessing is detailed in[Appendix B|and[Appendix C}

SUMMARY NETWORK

Datasets vary in the number of groups and observations per group. A summary network fs, extracts
information for the posterior by pooling over all instances in a dataset. Since the data is structured
hierarchically, it needs to be summarized accordingly over all exchangeable instances: In a first step,
we pool over observations per group, generating m local summaries sy, . . ., S,,. In a second step, we
pool the local summaries over groups, generating a global summary s. For summarization, we opted
for a set transformer (Lee et al.,[2019). Our implementation consists of multiple transformer encoder
blocks (Vaswani et al., 2017)), followed by averaging over the resulting sequence of transformer
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Figure 1: (A) Dataset Simulation. Given a set of priors, we sample regression parameters and noise in a
cascading way. Predictors are sampled from various distributions for training and from real datasets for testing,
and outcomes are generated according to equation[T} (B) Model Pipeline. Observed data are summarized locally
(per group) and globally (across groups). During training, the posterior networks learn the forward mapping
from the true regression parameters to a simple multivariate base distribution, conditioned on the respective
summaries and priors. During inference, we draw k samples from the base distribution, and apply the implicitly
learned backward mapping to them, approximating sampling from the unknown target posterior.

outputs. This yields the important property of permutation invariance, i.e. the summary stays the
same regardless of the input ordering along the sequence dimension. The local and global summary
network both consist of 3 transformer encoder blocks with 128 units, equally large feedforward layers,
8 attention heads, 1% dropout and GELU activations (Hendrycks & Gimpel, [2023).

POSTERIOR NETWORK

Posterior networks fi1 take the dataset summaries and priors as inputs and propose a joint posterior
for a set of parameters. Inference on global and local parameters is separated for hierarchical NPE
(Rodrigues et al.;, 2021; Heinrich et al., 2023} [Habermann et al.||2024)). Inference on global parameters
9 = (83, S, 02) is conditioned on the global summary and the parameter priors. Inference on local
variables (o;) is conditioned on the separate local summaries and the global parameters (the true
ones during training, and the inferred ones during validation). We opted for a normalizing flow
(Papamakarios et al.,|2021)) as our posterior network:

A normalizing flow learns an invertible mapping from a d-dimensional random variable z,, with
a complex distribution to a d-dimensional random variable zy with a regular distribution (e.g. a
multivariate normal). The flow consists of a finite composition T" of continuously differentiable and
invertible transforms 7; with triangular Jacobians, T' = T;, o - - - o T}. For some random variable
zo ~ Ng(0,1), we model T'(z,,) = zg <= T (z¢) = 2, with p,,(z,) = po(zo) |det Jr(zo)].
Each invertible transform 7T; is parameterized by a neural network that takes part of the current hidden
state z; and the summary s as inputs. Because of their efficiency, we opted for conditional affine
coupling as our normalizing flow architecture (Dinh et al.l 2014;2017). For the base distribution we
use a diagonal multivariate location-scale ¢ distribution with learnable parameters for each dimension
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(Alexanderson & Henter) 2020). For both posterior networks, we use 8 affine coupling flow blocks
parameterized by MLPs with three 256-unit feedforward layers, skip connections (He et al.,2016),
1% dropout and ReLU activations.

2.4 LEARNING

To calculate the loss for the global parameters, we use the forward Kullback-Leibler divergence
between the unknown true posterior p(|s) and its flow-based approximation pr;(¥|s) := p,(2z,|s),

(n(9,s) o< —Eyg s [log pri(I[s)] = —Eu s [log po(T(I]s)) + log |det Jr(I[s)[],

where T and thereby the approximation pr;(19}|s) depend on the posterior network. Since the summary
s of data D is itself depending on the summary network, the end-to-end loss can be written as

n,5(9,D) o< —Ey,p [log pu(9|f=(D))] = —Es b [log po(T(¥| f=(D)) + log |det Jr (I f=(D))]] .

The objective for the local parameters is completely analogous. We sum the local losses over groups
and add the result to the global loss, which follows a potential factorization of the joint posterior over
both types of regression parameters (see[Appendix D). The expectation is approximated by averaging
over the batch. Model weights are updated using the Schedule-Free AdamW optimizer (Defazio
et al., 2024). We train separate models for different numbers of fixed effects and random effects until
convergence, which requires between 10° and 10° training sets in our case.

2.5 PoOST-HOC REFINEMENT

IMPORTANCE SAMPLING

In the idealized limit of infinite network capacity, neural posterior flexibility, infinite simulations,
and perfectly converged optimization, our model would not require any further correction. However,
in practice these conditions are never fully met. Learning pr; by minimizing the forward Kullback-
Leibler Divergence naturally forces pry to be positive wherever p is positive, making pry mass-covering
(Jerfel et al.;|2021)). Thus, we can use importance sampling to improve posterior estimation (Tokdar &
Kass, [2010; |Dax et al.|, [2023)) to correct for inaccuracies of the amortized estimator. For each sample
I ~ prr(¥|D) we assign an importance weight,

w :P(D|19k)]9(19k)
" pn(9xD)

which is well-defined, as pry is only zero if the numerator is zero. We use the weights to refine
statistics of the samples (e.g. the posterior mean or empirical CDFs). Since we have two posterior
networks and the local posterior is conditioned on the global estimates, we perform alternating

importance sampling for both. For more details, please see

CALIBRATION WITH CONFORMAL PREDICTION

Uncertainty quantification is a hallmark of Bayesian inference, making the fidelity of the approximate
posterior’s credible intervals a critical concern. Posterior samples can be used to calculate empirical
quantiles and thus also intervals that contain ¢% of the posterior density. Due to the mass-covering
property of p1, the learned posteriors tend to be too wide — i.e. the true parameter is inside the ¢%
credible interval in more than ¢% of the cases. This can be quantified with the coverage error

1 B
CE(@)= %> 1 (0<b> € C((j’)) —(1-a),
b=1

which should asymptotically approach 0 under perfect coverage. Too liberal coverage is a commonly
known issue of normalizing flows (Chen et al., 2025; [Dheur & Taieb, [2025). Conformal prediction
(Vovk et al.l|2022; [Shafer & Vovk, 2008} |Angelopoulos & Bates, |2022) is a general-purpose method
that constructs distribution-free prediction sets C’a such that P(9 € C’a) > 1 — «. To construct
CA’Q, we use a calibration set to calculate the difference between the true 19 and the closest border of
the proposed 1 — « credible interval C',. The 1 — « quantile of these differences is then added to
the proposed interval borders, widening them if the value is positive and narrowing them otherwise.
Importantly, this does not require retraining but efficiently refines credible intervals post-hoc.
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3 RESULTS

We test our model against HMC on a toy dataset with highly constrained parameters and uncorrelated
normal data (Section 3.1)), in-distribution test sets with predictors X sampled from real datasets
(Section 3.2)), and out-of-distribution test sets containing subsets of real data where the parameters 9
are unknown and the outcomes y are kept original (Section 3.3)). Each test set has a batch size of 128
regression datasets with varying numbers of observations and signal-to-noise ratios.

We use the following evaluation metrics: We quantify the posterior predictive accuracy with the
negative log likelihood (NLL), — log p(y|®), which measures how well the fitted model describes
the observed data. We calculate the mean NLL over sampled parameters and the median over the test
batch. We gauge parameter recovery (true parameters vs. posterior means) with Pearson’s correlation
r and RMSE. We check posterior calibration by averaging coverage errors over a set of alpha
levels, CE = TA] A > aca CE(a). Median run times per single dataset are measured in seconds on a

MacBook Air M2 with 24GB of RAM using Metal Performance Shaders (MPS) where possible.

We gauge simulation-based calibration (SBC, Talts et al.| 2020; Sdilynoja et al., [2022} |Deistler et al.,
2025) using empirical CDF plots, comparing the parameter rank statistics against a theoretical uniform
CDF. Finally, we plot posterior predictive distributions (Gelman et al., |2013), which visualize how
much the posterior predictive samples ¥ ~ p(y|1§t) match the actual y. All metrics are calculated
for metabeta, HMC and VI posterior samples.

3.1 Toy EXAMPLE

To gauge if the pipeline works for both our model and HMC, we first test both on a toy example with
d = 2 and q = 1, where the observed single predictor is sampled from a standard normal distribution.
Result figures can be found in All models reach almost perfect parameter recovery
correlation for fixed effects ( = 0.999 each), variance parameters (7yz = 0.995 vs. ruye = 0.991
vs. ryr = 0.991), and random effects (r = 0.959 each) The same pattern arises for recovery
error for fixed effects (Hl\l%l v = 0.023 vs. HI\ISI = 0.021 vs. RMSE,; = 0.030), variance
parameters (R\[SE , = 0.022 vs. R\ISE c ()> VS. R\ISE = 0.03 1), and random effects
(RMSEz = 0.108 vs. R\[SE,-_ . ).108 vs. RMSEy; = 0.109), Posterior coverage is good
for met abeta (CEwz = 0.007), whereas HMC’s marglnal posterior for the variance parameters
tend to be slightly too wide (CEque = 0.094) and the ones of VI too narrow (CE,; = —0.053).
The median posterior fits are in the same neighborhood (NLL,z = 805.1 vs. NLLyye = 829.0
vs. NLLy: = 802.6) and posterior fits are highly correlated (ryp e = 0.940, 13z v = 0.940,
Tove.vr = 0.999). Overall, all models perform excellently on the toy problem and make very similar
predictions. This shows that the pipeline is in principle correctly specified for each approach.

3.2 REAL PREDICTORS, SIMULATED PARAMETERS

To get a better estimate for model performance under more realistic conditions, we sample predictors
(X) from a large set of real datasets and combine them with synthetically sampled regression
parameters (1) to produce regression outcomes (y). The test sets were constructed using the same
simulation pipeline as the training sets, but with different random seeds. Please find the details of
this approach in[Appendix A] This approach of testing on semi-synthetic datsets has the following
considerable benefits over evaluation on purely real data: (1) The regression models are always
correctly specified, (2) we know the ground truth parameters and can thus evaluate parameter recovery
and coverage, (3) we can compare the results to in-distribution test data and gauge how well the
model transfers to realistic predictors (Lueckmann et al.,2021; [Ward et al., 2022]).

shows model performance for hierarchical regression problems with increasing numbers of
fixed and random parameters. Recovery and coverage per parameter type are visualized inFigure 2]
for d = 5, ¢ = 2. Median model fits of metabeta and HMC are very similar: While HMC generally
explains the outcomes better, our model outperforms VI in this regard. Over the test batch, the averge
model fits are highly correlated between metabeta and HMC (r = 0.94), indicating overall high
agreement between both methods. Similarly, parameter recovery is best for HMC, but its advantage
over metabeta is very small. VI performs similarly well for the two smaller problems but struggles
more with the latter two. Posterior coverage is generally best for metabeta, as its CE is closest
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to 0 in all cases. In comparison, HMC has unstable coverage and VI tends towards too narrow
posteriors. Lastly, the median run time for a single dataset is almost instantaneous for met abeta,
strongly outperforming both other methods. Overall, our model appears to have comparably stable
performance to HMC and outperforms VI, which marks metabeta as a strong alternative to HMC if
practitioners are willing to accept a minor reduction in accuracy for a substantial boost in speed.

Table 1: Performance evaluation for met abeta, HMC and VI on semi-synthetic test sets with d fixed effects and
q random effects. The test sets contain real predictors X and simulated regression parameters. The evaluation
metrics are negative log-likelihood (NLL = —log p(y\ﬁ)), Pearson’s correlation-coefficient r, root mean
squared error RMSE, and coverage error CE(«) averaged over o € {0.05,0.1,0.2,0.32,0.5}, as well as
median runtimes in seconds. Bold formatting indicates better performance.

d ¢ model | NLL r RMSE CE  seconds

3 1 metabeta | 456.1 0.987  0.059 0.028 0.01
HMC 4237 0987  0.058 0.046 12.48
VI 528.7 0983 0.089 -0.161 4.49
5 2 metabeta | 3555 0966 0.079 0.014 0.01
HMC 351.7 0976  0.067 0.037 13.68
VI 4798 0967 0.092 -0.224 9.41
8 3 metabeta | 4383 0977 0.048  -0.037 0.01
HMC 4178 0964 0.092 -0.138 15.59
VI 6422 0.883 0405 -0.347 12.75
12 4 metabeta | 5341 0938  0.106 0.040 0.01
HMC 5047 0945  0.099 -0.205 36.96
VI 7572 0.849 0511  -0.398 21.58

Table 2: Performance evaluation for met abeta, HMC and VI on various subsets of real hierarchical datasets
with unknown regression parameters. Performance is evaluated on in-sample posterior accuracy as measured by

median negative log-likelihood, — log p(y|1§). Bold formatting indicates better performance.

‘Sleep Gcsemv Exam Math Titanic Schooling News

metabeta 109.4 390.9 784.8  883.2 810.8 738.2 540.3
HMC 115.2 389.2 773.5 856.4 788.7 640.9 400.0
VI 105.3 403.3 7822  869.1 787.6 661.9 399.3

3.3 REAL DATASETS

We gathered 7 canonical datasets that are often used for demonstration purposes of mixed-effects
regression and ran each model on multiple subsets thereof. No parameters are simulated for these test
sets and we use the default prior specification of Bambi for posterior estimation. To gauge model
fits, we compare in-sample posterior accuracy with the same methods as above. [Table 2]lists model
performance for all datasets. Overall, the median NLL of our model is very similar to that of HMC
and VI, which also shows in the average correlation over batches, (1 e = 0.880, Typ, 0.876,
rave.vr = 0.951). This indicates general agreement posterior inference, even on out-of-distribution
data with likely miss-specified priors and model structure.
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Figure 2: Model performance for d = 5 and ¢ = 2. Results for other regression problems are depicted in
(A) Parameter Recovery. Our model reaches similar performance to HMC in terms of r, bias and
RMSE for all parameter types. (B) Coverage. Our model’s posterior credible intervals are on average more
faithfully tuned, whereas the HMC posteriors tend to be unnecessarily broad.
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Figure 3: (A) Median runtimes per dataset for metabeta and HMC. Error bars symbolize standard deviations.
Our model is orders of magnitudes faster than MCMC. (B) Simulation based calibration (SBC) comparing the
sample distributions of parameter rank statistics against the uniform distribution. Plots are stacked for multiple
parameters. Calibration is closer to the optimum for our model. (C) Example posterior predictive distributions
based on samples from both models.

4 DISCUSSION

In this paper we present metabeta, a probabilistic transformer-based model that performs efficient
approximate Bayesian inference for mixed-effects regression. We trained metabeta on simulated
datasets with varying ranges for predictors, regression parameters, and outcomes. Most importantly,
these datasets incorporate varying priors and we condition the model outputs on them, which not only
amortizes the high computational costs encountered when using MCMC for parameter estimation,
but also generalizes previous neural posterior estimation (NPE) techniques that are trained on a fixed
prior. We show that our model has favorable and robust performance on in-distribution and out-of-
distribution test sets, based on real hierarchical datasets practitioners care about. In each experiment,
we compare the results of our model with Hamiltonian Monte Carlo (HMC) and variationial inference
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(VD), the gold-standard methods for Bayesian mixed-effects regression, and show that metabeta
generally approaches HMC in model fit, accuracy, and fidelity of credible intervals and outperforms
VI in most. Most importantly, it does that at a small fraction of the time required for parameter
estimation with conventional methods.

The high speed and explicit incorporation of priors opens new avenues for Bayesian mixed-effects
regression: Analysts can now specify multiple priors simultaneously and check how robust the model
posteriors are to varying a priori assumptions. Furthermore, it is straightforward to extend our model
to a mixture of experts by passing the same dataset multiple times with different permutations of
the design matrix columns, and then aggregating the resulting back-permuted posterior samples
(Hollmann et al. [2025)).

4.1 LIMITATIONS AND OUTLOOK

Our choice of model architecture trades of posterior expressivity for computation speed: Other
normalizing flow methods like Neural Spline Flows (Durkan et al.,|2019), Flow Matching (Wildberger
et al., [2023)), Conditional Diffusions (Chen et al.| |2025; [Reuter et al., [2025)) or TarFlow (Zhai et al.|
2025) offer more flexible posterior shapes, but posterior sampling is considerably more expensive than
for Affine Coupling Flows, often involving numerical integration or solving a stochastic differential
equation. The relative simplicity of affine coupling posteriors can be seen as implicit regularization,
preventing overly irregular quantification of regression parameter uncertainty.

Each trained version of metabeta is currently tailored to the size of the regression problem in terms
of the number of fixed effects (d) and the number of random effects (¢). The GitHub repository
provides pretrained versions of metabeta for several relevant parameter combinations. Together
this collection of models acts like a single pretrained model, as each size can be pulled quickly from
the repo for immediate deployment. That is, from the practitioners perspective it makes no difference
if there is a single or multiple pretrained models for different regression problem sizes.

Currently, the prior families are fixed. The parameters of the priors are concatenated to the summary
vector s before being passed to the MLPs inside the normalizing flow. This approach could be
generalized to varying prior families, whose identity can be embedded and simply added to the
summary vector. We plan to eventually extend metabeta to even more flexible prior specification.
Similarly, our framework is currently specialized on Bayesian linear mixed effects regression, but
the required steps to generalized mixed-effects models are in parts small: Data simulation would
require an additional response function around the linear term. The response function type could be
passed to the model along with the priors. Extending importance sampling for non-linear cases is
non-trivial, however. Finally, hierarchical NPE is well suited for mixed-effects regression with one
grouping factor: Multiple parallel grouping factors would require non-trivial extensions to dataset
summarization and integration of multiple summaries. However, it is conceptually straightforward
to extend the framework to multiple nested grouping factors (e.g. schools and classrooms within
schools). Overall, these extensions are worthwhile avenues for future developments.

4.2 CONCLUSION

Our model brings Bayesian mixed-effects regression closer to practical usability in real-world
applications. In its current form, it already enables rapid prototyping — practitioners can quickly test
different model specifications and validate findings using conventional tools if needed. Our analyses
highlight that met abeta is immediately applicable to such use cases. Looking ahead, we envision
scaling our model to larger and non-linear regression problems. This would open the door to entirely
new applications of Bayesian mixed-effects regression that are currently out of reach.
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Figure 4: Scatter plots of sampled synthetic predictors for two datasets.

A  DATASET SIMULATION

All simulated or sampled datasets have 5 < m < 30 groups and each group has 10 < n; < 70
observations, making n range from 50 to 2100.

A.1 SYNTHETIC PREDICTORS

We sample n; observations of predictor j, x;;, from the following distributions: Normal, Student-¢,
continuous uniform, log-Normal, Bernoulli, negative binomial, and scaled Beta. All distributions
have varying parameters and include random truncations. Correlation is induced by sampling
LL" = R ~ LKJ(10) and multiplying L with the design matrix X (Lewandowski et al., 2009). For
binary variables, we induce correlation with another variable using the following approach:

Algorithm 1: Sample correlated binary variable
Data: x ¢ R, r € (—1,1)

Result: z € {0,1}"

y ~ Nu(0,1);

yer-x+(1—r)z.y;

p (I+e¥)7h

z ~ Bernoulli(p);

An example of generated training data is visualized in

A.2 REAL PREDICTORS

We use 271 real datasets from the PMLB (Romano et al.,[2021) and SRM (Lichtenberg & Simsek,
2017) benchmarks as additional sources for realistic predictors, and preserve hierarchical grouping
structure when present. Existence of grouping structure is automatically checked by checking every
non-continuous predictor for its number of unique values, as well as their spread. When such grouping
factors are present, data is separately sampled per group, otherwise groups are randomly assigned.
To further increase variability, we pass the sampled real data through Stochastic Gradient Langevin
Dynamics (SGLD, [Welling & Tehl [2011} Raginsky et al.| [2017; [Ma et al.| 2024). This generates
structurally equivalent data instead of just using subsets. The training sets receive a mix of synthetic
and emulated predictors, the test sets receive only real data subsets. The in-distribution test sets
rely on samples from the 271 datasets, the out-of-distribution sets rely on 7 additional hierarchical
datasets not used in the training data.
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A.3 PRIORS AND RESCALING

Priors for parameters are sampled using the following approach:

Algorithm 2: Sample priors

Data: b e N,de N,ge N
Result: v5 € RbXd, 15 € R 7, e RP4, 7. e R

vg ~ Upxa(—3,3);
T3 Nubxd(o 01 3),
TO' Nubxq(o )9

T&‘Nule(O bl )’

In a first forward pass, the standardized predictors and sampled parameters are projected to y. Then
all parameters (and their corresponding prior parameters) are rescaled such that V(y) = 1. This is
without loss of generality, as posterior samples can trivially be brought back to the original scale of y
by rescaling (see below). However, the advantage of this approach is that this covers a very wide
range of potentially observable combinations of X and .

B STANDARDIZATION

Before entering the neural model, all observable data is normalized to zero mean and unit standard
deviation over groups and observations. To keep the dependence structure intact, we also analytically
standardize the regression parameters during training and un-standardize them after sampling, using
the following equalities:

Oxy
Bi = Br

Oy

* Zk *2
Ty

2 2
g
%2 272k *2 €
O = 0k g2’ O = ?
Yy Yy

where o, resp. oy are the kth predictor’s resp. the outcome’s standard deviation, and 3;; is the kth
slope after z-standardizing predictors and outcomes. The intercepts require special care:

d
Bo + Zk:l Hay, Bre — Hy

Oy

Bo =

q q
Qa0 + - . ik - Qi
aly = i Dkt Mz Qi _ Zk—o Hzp Qi NN(QUSQ),

Oy Oy

where p1,, is the mean of the kth predictor over all observations. Due to the sum term in the latter,

q q
052 =V () +V (Z ,uzkaik> +2- Cov (aio, Z Hzy aik) ;

k=1 k=1

which is equivalent to summing up the covariance matrix of the random vector @, © ;.
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The distributions of the standardized random effects and noise follow from the scaling of normal
random variables, and the variance of the random intercept follows from the variance of sums of
random variables (Wasserman, [2010).

C DATA REPRESENTATION AND EMBEDDING

Group-membership is represented implicitly by a separate tensor dimension, e.g. X has the shape
(batch, m,n,d). For PyTorch dataloader compatiblity, all tensors are zero-padded and correspond-
ing masks are stored. To spread the learning signal evenly across the network, all slope-related
variables are randomly permuted separately per regression dataset, using the same permutation for
X,Z,3,b;,and S.

Observable data is concatenated along the last dimension to D = [y, X, Z], and linearly projected to a
higher-dimensional space (e.g. 128 dimensions). Since mixed-effects regression must be permutation
invariant (wrt. to groups and observations per group), no positional encoding or explicit group identity
information is passed as input, and instead group identity is represented implicitly by a separate
tensor dimension, e.g. X has the shape (batch,m,n,d).

D POSTERIOR FACTORIZATION

Let the joint distribution over all regression parameters and the data be
p(f"97 a? D>7
where o = {a; }i=1,..m and D = {D; }iz1, .
We can write the joint posterior as
p(¥,,D s
252 — b9, D) = (9| D) plar] 9.D) = p(#| D) [T ples| 9.

i=1
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where we use the conditional independence of the local parameters in the last step. This translates
naturally to the loss calculation:

0=t 2, +> 07 v, x ~Egap |logpn, (9] fx, (f2,(D))) + Y logpm, (ai] 9, fs,(D;))

i=1 i=1

Similar derivations can be found in|Heinrich et al.|(2023) and [Habermann et al.| (2024).

E ALTERNATING IMPORTANCE SAMPLING

For numerical stability, we compute

1. log w; <= log p(D|¥;) + log p(¥;) — log ¢(¥;|D)

2. logw; + min(log w;,logw'), where log w' is the 98th percentile over i
3. w; < exp(logw; — max; log w;), such that w; < 1 for all ¢

4. UNJZ — % such that Z’f:l 'lI)fL = S.

Since we have two approximate posteriors (one for the global parameters, one for the random
effects), we have two sets of samples which require separate importance weights (IW). For the global
parameters posterior, the numerator can either use the marginal likelihood,

i=1
or the conditional likelihood,
p(D[D)p(d) = [ [ p(yilXi, o, B, 02) plexi|o2)p(a 2 )p(B)p (o).
i=1

The marginal likelihood may seem more appropriate, because the global posterior does not receive
any explicit information about the random effects, i.e. it is not conditioned on them. However,
calculating the marginal likelihood is inefficient, as it requires a matrix inversion for each sample.
Empirically, parameters recovery also suffers from using marginal likelihood IW. Instead, we plug in
the posterior mean of the random effects for the conditional likelihood IW. The IW for the random
effects posterior is calculated accordingly, this time using the importance-weighted means of the
global parameters. We alternate the two steps 3 times, starting with the local samples.

F FiT DIAGNOSTICS

To do
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Descriptors are the same as in |Figure 2| and [Figure 3B.
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