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Abstract
Diffusion models have achieved impressive re-
sults in generating content across domains like
images, videos, text, and audio. However, their
sampling speed is a practical challenge due to re-
peated evaluation of score estimation networks
during inference. To address this, we propose a
novel framework that optimizes compute alloca-
tion for score estimation, reducing overall sam-
pling time. Our key insight is that the computa-
tion required for score estimation varies at dif-
ferent time steps. Based on this observation, we
introduce an early-exiting scheme that selectively
skips the subset of parameters in the score esti-
mation network during the inference, guided by a
time-dependent exit schedule. We apply this tech-
nique to image synthesis with diffusion models
and demonstrate significantly improved sampling
throughput without compromising image qual-
ity. Moreover, our approach seamlessly integrates
with various types of solvers for faster sampling,
leveraging their compatibility to enhance overall
efficiency.

1. Introduction
Diffusion models have emerged as standard generative mod-
els due to their powerful performance across diverse do-
mains including image synthesis (Ho et al., 2020; Dhariwal
& Nichol, 2021; Ho et al., 2022a), 3D point cloud genera-
tion (Luo & Hu, 2021), text-to-image generation (Ramesh
et al., 2022; Rombach et al., 2022), text-to-speech genera-
tion (Jeong et al., 2021), and video generation (Ho et al.,
2022b). These models learn the reverse process of injecting
noise into the data and denoise inputs progressively during
sampling based on the learned model.
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A major drawback of diffusion models is their slow sam-
pling speed, as they require multiple steps of forward passes
to generate a single sample, unlike the other methods such
as GANs (Goodfellow et al., 2014) that can generate sam-
ples with only a single forward pass. To tackle this chal-
lenge, various approaches, such as enhancing ODE/SDE
solvers (Kong & Ping, 2021; Lu et al., 2022; Zhang & Chen,
2023) and distilling models that require fewer sampling
steps (Salimans & Ho, 2022; Song et al., 2023), have been
proposed to minimize the number of steps needed for sam-
pling diffusion models. Additionally, in line with the cur-
rent trend of scaling large models across different domains,
diffusion models with a substantial number of parameters
are gaining popularity due to their ability to generate high-
quality samples (Peebles & Xie, 2022). Running such large
diffusion models for a number of sampling steps results in
substantial computational overhead, underscoring the need
for additional research to optimize computations and allo-
cate resources efficiently.

In this paper, we introduce Adaptive Score Estimation (ASE)
for faster sampling from diffusion models, inspired by the
successful utilization of early-exiting schemes in Large Lan-
guage Models (LLMs) (Schuster et al., 2022; Hou et al.,
2020; Liu et al., 2021; Schuster et al., 2021). We hypoth-
esize that the difficulty of score estimation may vary at
different time steps, and based on this insight, we adapt the
computation of blocks differently for each time step. As a
result, this approach allows us the capability to dynamically
control computation time during the sampling process. To
achieve this, we introduce a time-varying block-dropping
schedule and a simple algorithm for fine-tuning diffusion
models to optimize them accordingly. ASE successfully ac-
celerates the sampling speed while preserving high-quality
samples. Furthermore, ASE is highly versatile, as it can be
applied to various backbone architectures and can be com-
bined with different solvers to further enhance sampling
speed. We validate the effectiveness of our method through
experiments on real-world image synthesis tasks.

2. Methods
This section describes our main contribution - Adaptive
Score Estimation (ASE) for diffusion models. The section
is organized as follows. We first briefly give a recap on
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how to train a diffusion model and provide our intuition on
the time-varying complexity of score estimation. Then we
propose several options for time-dependent exit schemes
of ASE, and present our main algorithm to accelerate the
inference of the diffusion model.

2.1. Time-Varying Complexity of Score Estimation

Training diffusion models Let x0 ∼ pdata(x) := q(x) be
a sample from a target data distribution. In a diffusion model,
we build a Markov chain that gradually injects Gaussian
noises to x0 to turn it into a sample from a noise distribution
p(xT ), usually chosen as standard Gaussian distribution.
Specifically, given a noise schedule (βt)

T
t=1, the forward

process of a diffusion model is defined as

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI), (1)

q(xT |x0) ≈ N (xT ; 0, I). (2)

Then we define a backward diffusion process with a param-
eter θ as,

pθ(x1:T ) := p(xT )

T∏
t=1

pθ(xt−1 |xt), (3)

so that we can start from xT ∼ N (0, I) and denoise it
into a sample x0. The parameter θ can be optimized by
minimizing the negative of the lower-bound on the log-
evidence,

Lθ := −
T∑

t=1

Eq [DKL[q(xt−1 |xt, x0)∥pθ(xt−1 |xt)]]

≥ − log pθ(x0)

(4)

where

q(xt−1|xt, x0) := N
(
xt−1; µ̃t(xt, x0), β̃tI

)
, (5)

µ̃t(xt, x0) :=
1
√
αt

(
xt −

βt√
1− ᾱt

εt

)
. (6)

When the model distribution pθ(xt−1 |xt) is chosen as a
Gaussian, then above loss function can simplify as follows:

µθ(xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

εθ(xt, t)

)
(7)

L(θ) :=
T∑

t=1

Ex0,εt

[
λ(t)

∥∥εt − εθ(
√
ᾱtx0 +

√
1− ᾱtεt, t)

∥∥2]
(8)

where λ(t) =
β2
t

2σ2
tαt(1−ᾱt)

. The neural network εθ(xt, t)

takes a corrupted sample xt and estimates the noise that
might have applied to a clean sample x0.
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Figure 1. The log SNR of the score function ∇xt log q(xt)
which is calculated with Monte-Carlo estimation of
Ex0 | xt [∇xt log q(xt |x0)] and Varx0 | xt [∇xt log q(xt |x0)]
computed with regard to CelebA.

To regard the training of diffusion models as a regression
problem, we simplify the loss function through reparameter-
ization

L(θ) =
T∑

t=1

Ex0,xt

[
λ′
t∥∇xt

log q(xt |x0)− sθ(xt, t)∥2
]
,

(9)

∇xt
log q(xt |x0) = −

εt√
1− ᾱt

≈ − εθ(xt, t)√
1− ᾱt

:= sθ(xt, t)

(10)
where sθ(xt, t) is the score estimation network. The
optimal regressor of the score function ∇xt

log q(xt) at
time step t is obtained by taking the expectation of the
conditional score function over the noiseless distribution
Ex0 | xt

[∇xt
log q(xt |x0)] = ∇xt

log q(xt).

To demonstrate the time-varying difficulty of score estima-
tion, we measure the signal-to-ratio (SNR) plot of the score
function. As depicted in the Figure 1, it unveils a clear
pattern: high-SNR near the data distribution and low-SNR
near the prior distribution. This indicates that more precise
learning of the score function is required in the vicinity of
the data distribution while it is relatively easy task to learn
the score of data distribution near prior.

Adaptive Computation for Score Estimation To get the
samples from diffusion models, we can apply Langevin
dynamics to get samples from the distribution given the
score function ∇xlog p(x). Depending on the number of
iteration N and step size β, we can iteratively update xt as
follows:

xt+1 = xt + β∇x log p(xt) +
√
2βzt, (11)

where zt ∼ N (0, I).

Due to this iterative evaluation, the total sampling time can
be roughly be computed as T × τ , where T is the number
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Figure 2. Schematic for the dropping schedules of DiT (left) and U-ViT (right). Due to the existence of residual connections in U-ViT,
dropping encoder or decoder blocks in a straightforward manner cause severe performance degradation. In the case of U-ViT, the decoder
blocks, except for the linear layer connected to encoder residual connections, are dropped.

of sampling steps and τ is the processing of diffusion model
per time step. To enhance sampling efficiency, conventional
approaches aim to reduce the number of time steps within
the constrained value of τ .

In contrast, our method focus on reducing the processing
time τ while maintaining accurate predictions within a given
time interval. To accomplish this, we introduce adaptive
score estimation, wherein the diffusion model dynamically
allocates parameters based on the time t. For challenging
task such as time t→ 0, the full parameter is utilized, while
it induces skipping the subset of parameters for easier tasks.
Additionally, we provide empirical evidence to support our
idea in the Appendix A.1.

2.2. Adaptive Score Estimation for Diffusion Models

In the context of early exiting scheme in language models,
CALM (Schuster et al., 2022) dynamically determines the
exiting block depending on the state of intermediate features
during the sampling process. On the other hand, our method
pre-determines the exiting block based on the timestep t
before sampling procedure. In particular, we have designed
schedules for dropping the subset of parameters as time
t → 1 while preserving the parameters as time t → 0. To
reduce sampling time, it is preferable to skip as many blocks
as possible. However, since we cannot determine the exact
amount of parameters required for score estimation at each
time t, we aimed to study diverse schedules that vary the
amount of parameters dropped depending on time t. More
detailed schedules that applied to both DiT and U-ViT are
provided in Appendix A.2.

Following the removal of blocks based on the pre-defined
schedule, we further fine-tune the model for a small number

of iterations. This is attributed to the early exit approach,
where the intermediate outputs of each building block are di-
rectly connected to the decoder. Consequently, the decoder
receives input values that deviate from the distribution it
observed during its initial training, necessitating adaptations.
In the Appendix A.3, we provide the detailed fine-tuning
algorithm.

During the sampling procedure, we induce early-exiting
for the iterative evaluation of the diffusion model, as de-
picted in the Figure 2. More specifically, we apply ASE
into both DiT and U-ViT architecture, considering the char-
acteristic of each architecture. For the DiT model trained
on ImageNet, consisting of 28 blocks, we designed a drop-
ping schedule starting from the final block. In U-ViT, the
dropping schedule had two main distinctions from DiT: the
selection of candidate modules to drop and the subset of
parameters to be skipped. Unlike DiT, we limited dropping
to the decoder part in U-ViT. This decision was motivated by
the presence of symmetric long skip connections between
encoder and decoder, as dropping encoder modules induce
the substantial information loss. Moreover, when dropping
the parameters in U-ViT, we preserved the nn.Linear of
a building block to retain feature information connected
through skip connections, while skipping the remaining
parameters.

3. Experiments
To verify the effectiveness of our method, we introduce a to-
tal of six early-exiting schedules as part of our experimental
setup to validate the main hypothesis of our paper: the esti-
mation of score function near the noise is relatively easy. In
order to highlight the versatility of our method, we provide
in-depth experiments where fast sampling techniques are
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Table 1. DiT results using DDPM sampler and U-ViT results using EM sampler

DDPM-250

Methods FID (↓) Accel. (↑)
DiT 9.078 -

D1-DiT 8.747 16.63%
D3-DiT 8.662 23.43%
D4-DiT 8.647 30.46%
D6-DiT 9.764 38.32%

EM-1000

Methods FID (↓) Accel. (↑)
U-ViT 4.858 -

D1-U-ViT 4.738 16.26%
D3-U-ViT 4.819 24.77%
D4-U-ViT 4.851 28.03%
D6-U-ViT 5.044 32.09%
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Figure 3. Performance with reduced timesteps when our method is combined with the fast sampling solver is shown in the first column.
The second column of the figure illustrates the comparison between our method and the baseline. Each row corresponds to the results
obtained on ImageNet and CelebA, respectively.

integrated with our fine-tuned DiT (Peebles & Xie, 2022) on
ImageNet. Furthermore, we investigate whether our method
is applicable to a different class of architecture, U-ViT (Bao
et al., 2022). In the Appendix B, we provide the detailed
setting of following experiments.

In Table 1, we observe that our approach effectively achieves
faster inference while utilizing fewer parameters, yet main-
tains the same level of performance. Moreover, in Fig-
ure 3, we demonstrate that our method can be successfully
combined with other fast sampling approaches, such as
DDIM (Song et al., 2020) and DPM solver (Lu et al., 2022)
with varying timesteps.

4. Conclusion and Limitations
In this paper, we present a novel method that effectively
reduces the wallclock time by using an early-exiting scheme
in diffusion models. Specifically, our method adaptively
selects the blocks involved in denoising the inputs at each
time step, taking into account the assumption that fewer pa-
rameters are required for early denoising steps. Surprisingly,
we demonstrate that our method maintains performance in
terms of FID scores even when reducing calculation costs
by 30%. Our approach is not limited to specific architec-
tures, as we validate its effectiveness on both U-ViT and DiT
models. One limitation of our proposed method is that we
manually design the schedule for the early-exiting scheme.
As future work, we acknowledge the need to explore auto-
mated methods for finding an optimal schedule.
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A. Adaptive Score Estimation
A.1. Empirical Validation of Our Hypothesis

To validate the hypothesis presented in Section 2.1, we devise two schedules for accelerating the inference of diffusion
models: Noisy-Easy schedule, which is aligned with intuition, and the Data-Easy schedule, which assumes that score
estimation near data is easier. The Noisy-Easy schedule allocates fewer parameters for score estimation near noise, assuming
lower complexity, while the Data-Easy schedule allocates more parameters. Using these schedules, we sample images
accordingly, as depicted in Figure 6. In Figure 4, we find that Noise-Easy schedule shows a faster and more stable generation
of the butterfly image compared to Data-Easy schedule. More specifically, in the Figure 5, it is evident that the Data-Easy
schedule faces challenges in achieving convergence, whereas the Noise-Easy schedule tends to converge successfully, as
indicated by the FID value of the baseline model. We thus can conclude that the Noise-Easy schedule, combined with an
early exiting scheme, is effective in skipping subsets of parameters in diffusion models.
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Figure 4. Snapshot samples of Noise-Easy (top) / Data-Easy (bottom) schedules when fine-tuned DiT on ImageNet. Starting from the
leftmost column, the images in each column are sampled from progressively increasing fine-tuning steps. While Data-Easy schedule
struggles to generate the image of a butterfly, Noise-Easy schedule produces the shape of a butterfly from the 40,000th step onwards.
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Figure 5. FID metric on the Noise-Easy / Data-Easy schedules fine-tuned DiT on ImageNet. The Noise-Easy schedule aligns with our
hypothesis, while the Data-Easy schedule represents the opposite effect.

A.2. Diverse Time-dependent Dropping Schedules

In the Section 2.2, we briefly introduce the concept of time-dependent dropping schedule. We hereby provide the formal
definition of D-n schedules. We refer the reader to Table 2. First, the sampling time [0, 1] is divided into five intervals with
equal length.
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Figure 6. Schematic for sampling procedure based on Noise-Easy (left) / Data-Easy (right) schedules. Noisy-Easy schedule employs
fewer blocks near the noise, i.e. earlier sampling steps, while Data-Easy schedule takes the opposite approach.

Table 2. Number of blocks used for varying dropping schedules. All schedules use the same number of blocks within a fixed time interval,
except for D6-DiT. Schedule D6-DiT employs a finer-grained dropping schedule based on sampling timestep t. Of note, n in D-n schedule
represents the acceleration scale. For instance, D3-DiT and D3-U-ViT schedules bring similar scales in terms of acceleration in sampling
speed. Reported acceleration performance is measured with DDPM and EM solver applied to DiT and U-ViT, respectively.

Schedule Acceleration Sampling timestep t

[0, 0.2] [0.2, 0.4] [0.4, 0.6] [0.6, 0.8] [0.8, 1.0]

D1-DiT 16.63% 28 26 24 22 20
D3-DiT 23.43% 28 25 22 19 16
D4-DiT 30.46% 28 24 20 16 12
D6-DiT 38.32% 28 24, 22 20, 18 12, 10 8, 6

D1-U-ViT 16.26% 6 5 4 3 2
D2-U-ViT 22.27% 6 5 3 2 1
D3-U-ViT 24.77% 6 4 3 2 1
D4-U-ViT 28.03% 5 4 2 2 1
D5-U-ViT 30.71% 5 4 2 1 1
D6-U-ViT 32.09% 5 3 2 1 1

For the DiT architecture, we designated the blocks to be dropped among the total of 28 blocks. In the case of D1-DiT, we
utilized all 28 blocks near the data. As we moved towards the noise side, we gradually discarded 2 blocks per interval,
resulting in a final configuration of using 20 blocks near the noise. The higher the number following ’D’, the greater
the amount of discarded blocks, thereby reducing the processing time of the diffusion model. For the most accelerated
configuration, D4-DiT, we designed a schedule where only 6 blocks pass near the noise. Notably, D6 schedule employs
finer-grained time intervals as shown in Table 2. For example, D6-DiT uses 24 blocks if t ∈ [0.2, 0.3] and 22 blocks if
t ∈ [0.3, 0.4].

For the U-ViT architecture, we aimed to preserve the residual connections by discarding sub-blocks other than nn.Linear,
rather than skipping the entire building block. Additionally, the target of dropping was limited to the decoder part,
distinguishing it from DiT. Similarly, for D1-U-ViT, we allowed the entire decoder consisting of 6 blocks to pass near the
data, and as we moved towards the noise side, we gradually discarded a single block per interval, resulting in only 2 blocks
passing near the noise, while the remaining blocks only passed through nn.Linear.
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A.3. How to Fine-tune Diffusion Models with Time-dependent Exit Schedule?

When provided with a pre-defined early exit schedule, fine-tuning the pre-trained model becomes necessary. To address
this issue, we propose a novel fine-tuning algorithm that focuses on updating minimal information near time t→ 0 while
updating unseen information near time t → 1. To force the differential information update, we leverage two different
techniques: Exponential Moving Average (EMA) and weighted coefficient of λ(t).

Algorithm 1 Adjusting the output of intermediate building block of diffusion models
Require: Training dataset D, Teacher parameter θT = [θ1T , . . . , θ

N
T ], Student parameter θS = [θ1S , . . . , θ

N
S ], EMA rate α,

Pre-defined Exit Schedule S(t), Time-dependent coefficient λ(t), Re-weighting cycle C, Learning rate η.

θT ← θS , t ∼ [0, 1] ▷ Initialize the EMA update.
while not converged do

Sample a mini-batch B ∼ D.
for i = 1, . . . , |B| do

Take the input xi from B.
for l = 1, . . . , N do

if l ≤ S(t) then
x̃i ← perturb(xi, t)
ℓi ← λ(t) · loss(x̃i, t) ▷ Multiply Time-dependent coefficient

else
Break for loop

end if
end for

end for
θS ← θS − η∇θS

1
|B|

∑
i ℓi.

if epoch > C then
λ(t)← 1 ▷ Re-scale Time-dependent coefficient

end if

Update θT ← αθT + (1− α)θS ▷ Update the teacher parameter.
end while

B. Experiments
B.1. Setting

Experimental details We evaluate our method across the two models: DiT XL/2 trained on ImageNet with a resolution
of 256 × 256, and U-ViT-S/4 trained on CelebA with a resolution of 64 × 64. During the fine-tuning step, we employ
AdamW (Loshchilov & Hutter, 2017) optimizer for both models. The DiT model was fine-tuned with a constant learning
rate of 2 · 10−5, while cosine annealing learning rate scheduling was employed for the U-ViT model to ensure training
stability. For the ImageNet experiments, we used a batch size of 64 and 32 for fine-tuning and sampling, respectively. In the
case of U-ViT, the batch sizes were set to 128 for fine-tuning and 250 for sampling. To fine-tune the diffusion models, we
utilized a hybrid loss (Nichol & Dhariwal, 2021) with re-weighted time coefficient and linear schedule for injecting noise.
Unless stated otherwise, we used T = 1000 timesteps for the forward diffusion process.

Evaluation Metrics To validate the effectiveness of our method, we adopt the widely used FID metric (Heusel et al.,
2017) for evaluating image generation quality. To mitigate the computational overhead of sampling, we generate 5000
images from our fine-tuned model with a diverse set of samplers. Subsequently, we compute the FID score between the
generated samples and the training dataset. Finally, we average the time taken to generate a batch on a single NVIDIA
GeForce RTX 3090 GPU in order to check the wallclock time of sampling speed.

Baselines To the best of our knowledge, Token Merging (ToMe; Bolya & Hoffman, 2023) is the only existing work
that specifically focuses on reducing the processing time of diffusion models. To ensure a fair comparison with our work,
we apply ToMe method to both the DiT and U-ViT backbones, with diverse merging schedules. In the case of stable
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diffusion (Rombach et al., 2022), ToMe was integrated into three different modules of the U-Net architecture: self-attention,
cross-attention, and MLP. However, given that both DiT and U-ViT are transformer-based architectures, we specifically
applied the token merging technique to the self-attention module.

B.2. Additional Experiments

In this section, we provide in-depth experimental results, including both qualitative and quantitative analyses. Firstly, we
show the results of repeated experiments in both Table 3 and Table 4, emphasizing the absence of selective or biased
results. Additionally, we provide visual representations of randomly generated images for each time-dependent early exiting
schedule. In the Figure 7, it illustrates the results obtained by sampling from DiT checkpoint fine-tuned with the D4 schedule
using both the DDPM and DDIM sampler. Furthermore, in the Figure 8, it exhibits the results obtained by sampling from
U-ViT checkpoint fine-tuned with the D6 schedule using both the EM and DPM sampler.

Table 3. FID evaluation for varying combinations of dropping schedules and sampling methods with DiT on ImageNet 256. Reported
values are averaged over five random seeds.

Methods
DDPM 250 DDIM 200 DDIM 100 DDIM 50

FID (↓) Accel. (↑) FID (↓) Accel. (↑) FID (↓) Accel. (↑) FID (↓) Accel. (↑)

DiT 9.171 ± 0.064 - 8.937 ± 0.109 - 9.100 ± 0.112 - 9.114 ± 0.055 -
D1-DiT 8.875 ± 0.135 16.63% 8.795 ± 0.167 14.42% 8.889 ± 0.125 14.38% 8.961 ± 0.025 14.37%
D3-DiT 8.773 ± 0.106 23.43% 8.952 ± 0.101 21.04% 8.990 ± 0.166 20.99% 9.042 ± 0.085 20.93%
D4-DiT 8.679 ± 0.070 30.46% 9.126 ± 0.170 28.61% 9.185 ± 0.059 28.70% 9.308 ± 0.073 28.67%
D6-DiT 9.683 ± 0.079 38.32% 11.427 ± 0.190 37.25% 11.414 ± 0.153 36.80% 11.618 ± 0.136 36.71%

Table 4. FID evaluation for varying combinations of dropping schedules and sampling methods with U-ViT on CelebA 64. Reported
values are averaged over five random seeds.

Methods
EM 1000 DPM 50 DPM 25

FID (↓) Accel. (↑) FID (↓) Accel. (↑) FID (↓) Accel. (↑)

U-ViT 4.874 ± 0.044 - 5.520 ± 0.198 - 5.590 ± 0.211 -
D1-U-ViT 4.692 ± 0.050 16.26% 4.8236 ± 0.075 11.07% 4.732 ± 0.076 12.16%
D2-U-ViT 4.817 ± 0.043 22.27% 5.0688 ± 0.079 14.82% 4.919 ± 0.071 16.41%
D3-U-ViT 4.775 ± 0.041 24.77% 4.9448 ± 0.070 15.72% 4.773 ± 0.065 17.60%
D4-U-ViT 4.772 ± 0.058 28.03% 5.1270 ± 0.064 21.02% 4.822 ± 0.047 22.45%
D5-U-ViT 4.746 ± 0.089 30.71% 5.1262 ± 0.057 23.03% 4.911 ± 0.057 24.27%
D6-U-ViT 4.986 ± 0.082 32.09% 5.3268 ± 0.045 23.70% 5.148 ± 0.047 25.67%

B.3. Analysis on ToMe

In this section, we conducted experiments on three different cases for applying ToMe to the building block of a given
architecture. The ‘F’ schedule denotes applying ToMe starting from the front-most block, the ‘R’ schedule denotes starting
from the back-most block, and the ‘B’ schedule represents symmetric application from both ends. To incorporate diverse
merging schedules into both DiT and U-ViT, we implemented ToMe considering the characteristics of each architecture. In
the case of DiT, ToMe was directly applied due to its similarity to the existing architecture. However, we carefully determine
the specific modules in U-ViT where ToMe should be applied. Since U-ViT treats time and condition as tokens alongside
image patches, we exclude these tokens and focus on merging tokens associated with image patches.

Firstly, we provide the experimental results of DiT combined with ToMe in the Table 5 and Table 6. Second, we also present
the results of diverse merging schedule applied on the U-ViT, as displayed in the Table 7 and Table 8. Regarding DiT, we
have observed that the ’B’ schedule proves to be the most effective strategy when combined with ToMe. Conversely, in
U-ViT, the ’R’ schedule demonstrates the most competitive performance.
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Table 5. B merging schedule experiments on DiT with DDIM solver.

DDIM-50
B2 B4 B6 B8 All

FID (↓) Accel. (↑) FID (↓) Accel. (↑) FID (↓) Accel. (↑) FID (↓) Accel. (↑) FID (↓) Accel. (↑)

attn-ratio-2-down-1 9.172 0.29% 9.421 0.37% 10.43 0.60% 13.926 0.69% 117.194 1.92%
attn-ratio-3-down-1 9.313 0.49% 9.745 0.82% 12.918 1.03% 22.495 1.45% 170.170 6.08%
attn-ratio-4-down-1 9.409 0.85% 10.314 1.59% 17.567 2.27% 37.763 2.97% 214.759 10.34%
attn-ratio-5-down-1 9.741 0.91% 11.284 2.26% 25.675 2.63% 58.550 4.07% 247.608 16.66%
attn-ratio-6-down-1 10.014 0.99% 12.441 2.34% 38.124 3.72% 81.987 5.07% 274.591 21.55%

Table 6. R merging schedule experiments on DiT with DDIM solver.

DDIM-50
R2 R4 R6 R8 R10

FID (↓) Accel. (↑) FID (↓) Accel. (↑) FID (↓) Accel. (↑) FID (↓) Accel. (↑) FID (↓) Accel. (↑)

attn-ratio-2-down-1 9.408 0.27% 9.659 0.41% 10.386 0.65% 10.436 0.69% 11.696 0.84%
attn-ratio-3-down-1 9.591 0.47% 10.455 0.92% 12.032 1.10% 12.202 1.30% 15.769 1.67%
attn-ratio-4-down-1 10.384 0.83% 11.724 1.59% 15.270 2.23% 15.937 2.40% 23.510 2.69%
attn-ratio-5-down-1 11.049 0.91% 13.764 1.89% 20.392 2.79% 22.588 3.32% 36.552 4.35%
attn-ratio-6-down-1 12.398 0.99% 17.383 2.34% 30.007 3.72% 34.078 4.39% 57.408 5.88%

Table 7. R merging schedule experiments on U-ViT with EM solver.

EM-1000
R2 R3 R4 R5 All

FID (↓) Accel. (↑) FID (↓) Accel. (↑) FID (↓) Accel. (↑) FID (↓) Accel. (↑) FID (↓) Accel. (↑)

attn-ratio-2-down-1 4.963 -1.95% 6.086 -2.27% 9.890 -4.61% 13.508 -5.71% 342.513 -17.22%
attn-ratio-3-down-1 5.643 0.63% 8.934 -0.49% 18.627 -1.86% 27.984 -3.34% 384.191 -12.75%
attn-ratio-4-down-1 6.991 1.81% 13.743 0.64% 32.183 -0.25% 52.379 -1.06% 424.751 -7.09%
attn-ratio-5-down-1 9.240 2.95% 21.429 2.19% 53.484 1.73% 100.843 1.50% 424.387 -1.17%
attn-ratio-6-down-1 13.048 3.82% 33.521 4.12% 93.509 4.43% 189.431 4.77% 419.851 6.91%

Table 8. R merging schedule experiments on U-ViT with DPM solver.

DPM-25
R2 R3 R4 R5

FID (↓) Accel. (↑) FID (↓) Accel. (↑) FID (↓) Accel. (↑) FID (↓) Accel. (↑)

attn-ratio-2-down-1 53.719 -4.21% 63.659 -6.06% 90.006 -7.78% 106.969 -9.21%
attn-ratio-3-down-1 182.380 -3.33% 204.843 -4.76% 259.479 -6.02% 281.183 -7.18%
attn-ratio-4-down-1 298.594 -2.26% 305.796 -3.02% 320.153 -3.86% 326.211 -4.74%
attn-ratio-5-down-1 323.202 -1.29% 335.627 -1.68% 353.834 -2.07% 363.732 -2.40%
attn-ratio-6-down-1 371.790 -0.10% 383.952 0.25% 393.685 0.48% 400.690 0.53%
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C. Related Work
Fast Sampling of Diffusion Models Diffusion probabilistic models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019;
Ho et al., 2020; Dhariwal & Nichol, 2021) have shown their effectiveness in modeling data distributions and have achieved
the state-of-the-art performance, especially in the field of image synthesis. These models employ a progressive denoising
approach for noisy inputs which unfortunately leads to heavy computational costs. To overcome this issue, multiple works
have been proposed for fast sampling. DDIM (Nichol & Dhariwal, 2021) accelerates the sampling process by leveraging
non-Markovian diffusion processes. FastDPM (Kong & Ping, 2021) uses a bijective mapping between continuous diffusion
steps and noises. DPM-Solver (Lu et al., 2022) analytically solves linear part exactly while approximating the non-linear
part using high-order solvers. DEIS (Zhang & Chen, 2023) utilizes exponential integrator and polynomial extrapolation
to reduce discretization errors. In addition to utilizing a better solver, alternative approaches have been proposed, which
involve training a student model using network distillation (Salimans & Ho, 2022) or token merging (Bolya & Hoffman,
2023). Our work is orthogonal to these existing approaches, as we focus on reducing the number of processed blocks for
each time step, rather than targeting a reduction in the number of sampling steps.

Architecture Design of Diffusion Models The pioneering diffusion models (Ho et al., 2020; Song & Ermon, 2019;
Dhariwal & Nichol, 2021), especially in the field of image synthesis, have adopted a U-Net (Ronneberger et al., 2015)
backbone architecture with additional modifications including the incorporation of cross- and self-attention layers. Motivated
by the recent success of transformer (Vaswani et al., 2017) networks in diverse domains (Brown et al., 2020; Devlin et al.,
2019; Xie et al., 2021; Strudel et al., 2021; Liu et al., 2022), several studies have attempted to leverage the Vision Transformer
(ViT) (Dosovitskiy et al., 2021) architecture for diffusion models. Gen-ViT (Yang et al., 2022) is a pioneering work that
shows that standard ViT can be used for diffusion backbone. U-ViT (Bao et al., 2022) enhances ViT’s performance by
adding long skip connections and additional convolutional operation. Diffusion Transformers (DiTs) (Peebles & Xie,
2022) investigate the scalability of transformers for diffusion models and demonstrate that larger models consistently
exhibit improved performance, albeit at the cost of higher GFLOPs. Our approach focuses on enhancing the efficiency
of the transformer through adaptive block selection during calculations, and can be applied to existing transformer-based
approaches, such as DiTs, to further optimize their performance.

Early Exiting Scheme for Language Modeling The recent adoption of Large Language Models (LLMs) has brought
about significant computational costs, prompting interest in reducing unnecessary computations. Among the various
strategies, an early-exiting scheme that dynamically selects computation layers based on inputs has emerged for Transformer-
based LLMs. DynaBERT (Hou et al., 2020) transfers knowledge from a teacher network to a student network, allowing for
flexible adjustments to the width and depth. Yijin et al. (Liu et al., 2021) employ mutual information and reconstruction
loss to assess the difficulty of input words. CAT (Schuster et al., 2021) incorporates an additional classifier that predicts
when to perform an early exit. CALM (Schuster et al., 2022) constrains the per-token exit decisions to maintain the global
sequence-level meaning by calibrating the early-exiting LLM using semantic-level similarity metrics. Motivated by the
aforementioned works, we propose a distinct early-exiting scheme specifically designed for diffusion models.
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Figure 7. Images sampled from the DiT model fine-tuned with D4-DiT schedule. Top: DDPM sampler-250 steps; Bottom: DDIM
sampler-50 steps.
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Figure 8. Images sampled from the U-ViT model fine-tuned with D6-U-ViT schedule. Top: EM solver-1000 steps; Bottom: DPM
solver-25 steps.
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