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Abstract

It is of the utmost importance that, in both research and industry applications, results
in the field of Machine Learning are performed and presented in a fair, explainable, and
reproducible fashion. This paper uses the framework of an image classification case study
to explore the practical application of a range of fundamental approaches that can guide
effective practices. Ideas of data collection and analysis, fairness, evaluation metrics, statis-
tical interpretation, model implementation, repeatability, as well as the encouragement and
provision of necessary resources for future research and cross-checking will be discussed.

1 Introduction

The field of Machine Learning has experienced a period of unprecedented growth and development over the last
few decades. Arguably in part due to this exponential growth, there exists a plethora of issues and questions
that regularly occur in the way in which Machine Learning is utilized, analyzed, and documented. There is
a particular need to explain the process and results delivered by Neural Networks, however, there is also an
urgent need to adopt rigorous practices throughout the entire machine learning process, to apply scientific
principles to the process. This involves aspects of the reproducibility of results, which has emerged as a major
challenge for sustainable progress in the field (Semmelrock et al., 2023). Another important aspect is proper
statistical reporting of results (Benavoli et al., 2017), to not over-emphasize tiny improvements compared
to a baseline, which might simply result from noise or over-optimization. The final important issue is the
biases that can be inadvertently introduced into machine learning models through data selection and choices
of loss functions (Hort et al., 2023). In this paper, our goal is to exercise good practices of machine learning
research in a concrete use case; to provide clarity, reproducibility, and combat bias. This paper will follow
the structure of this introduction, with meta-comments, such as this, aiming to highlight the practical reasons
why we conducted our research in such a way and to provide overarching comments and recommendations
on effective machine learning research.

In this study, we explore the entire process of an image classification task: How does balancing a training
dataset affect a model and does the replacement of data with a wider variation of samples increase the
model’s ability to generalize. The specific classification task was the assignment of pictures to the country
or region they were taken in. Our experiments were conducted on fine-tuned models of the open-weights
CLIP language-image pre-trained model (Radford et al. (2021)). The datasets were composed of samples
from three different sources: images from the online Geoguessr game, Tourist photos scraped from open-
copyright sources, and Aerial images procured from openaerialmap.org. With the specific goal of employing
sound research practices, the results of this paper provide a set of comparison points for future works on
this particular classification problem. We endeavor to guarantee that our results hold the very important
properties of reproducibility and verifiability in this work.
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2 Related Work

The idea that images can be classified in regards to their geolocation is based on the assumption that photos
from around the globe capture elements that are identifiable with respect to their geographic distribution.
The elements span from natural characteristics of landscapes, i.e. fauna, flora, and geological features,
as well as man-made ones, i.e. architecture, urban organization, cultural symbols, and monuments. In
previous works, this classification task is performed on datasets annotated with precise Global Positioning
System (GPS) coordinates. In this setting, the usual approach is to find an appropriate segmentation of
the geographic space into cells that both reduce the intra-class variability of samples (as samples of one
class/cell are geographically constricted to a homogeneous area) and redistribute the samples uniformly over
the defined cells (Johns et al., 2017). Of particular interest to our study is the work from Müller-Budack et
al. that defines a hierarchical cell structure, which more accurately reflects the potential levels of geolocation
classification granularity. In our work, however, the maximum granularity level available is the country,
limiting our hierarchical levels to countries and regions as defined in the M49 standard United Nations
Statistics Division (1999).

CLIP is a pre-trained model that attempts to provide efficient, flexible, and generalized image classification
(Radford et al., 2021). Instead of being trained on a set of (image, category) pairs (as was the case for Ima-
geNet), CLIP was trained on 400 Million (image, text) pairs from publicly available sources (Radford et al.,
2021). When tested on a variety of industry standards, CLIP achieves competitive zero-shot performance on
a variety of tasks. Models like CLIP can also be used as the base to fine-tune for other tasks, as exemplified
in the work of Haas et al. (2023), who use CLIP weights as the initial state of their model and retrain it on
a large collection of (image, prompt) pairs. As in our paper, the images they used were Street View images
taken from Google Maps but, as they performed the data collection, information on the country, region, and
city of each image was available. Our classification strategy of comparing the CLIP embeddings of the image
against prompts describing the location of the image is based on the Haas et al. paper, but, contrary to
them, we do not retrain CLIP weights, instead leaving them frozen and training a smaller model that uses
its outputs to produce a classification.

3 Methodology

This study provides an ideal situation in which to emphasize the importance of reproducibility and rigorous
statistical testing, along with highlighting potential considerations for bias. We chose a machine learning task
from the image processing domain as this is a popular field with many established tools and architectures.
The selected task is, however, different as it diverges from the established benchmark data sets and provides
ample opportunity to consider aspects of biases, statistical analysis, and reproducibility. To support a goal-
directed, non-biased analysis, we started out by formulating several hypotheses about the performance of
several variants of the involved machine learning models, based on experiences with other imbalanced data
sets with high class count.

In the following sections, we will provide a detailed explanation of the acquisition of three contrasting image
datasets. Along with their acquisition, we will present their characteristics and distributions, as well as
the potential for bias and an analysis of possibly sensitive images in each dataset that could be removed
for ethical reasons. We then introduce and discuss the base model of our experiment: The open-weights
Contrastive Language-Image Pre-Training (CLIP) model provided by OpenAI 1, described above. We provide
a short overview of CLIP and the experiments we ran using the model. Following this, the architecture,
specifications, and experimental setup used in our fine-tuning approach are outlined. We aim to compare the
performance of models when they are trained using different training sets and loss configurations. Finally,
we describe the tools and techniques used in the evaluation of both CLIP and fine-tuning performance.

Before diving into the analysis and implementation of the model, we formulated a set of hypotheses that
informed our data selection, model design, and evaluation scheme, and helped to avoid the common mal-

1https://github.com/openai/CLIP
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practice of “Hypothesizing after the results are known”, referred to by HARKing Kerr (1998), which is a
source of scientific bias that is also impacting machine learning research (Gencoglu et al., 2019). In total,
we formulated five hypotheses that we aimed to test with a metric that also rewards regional accuracy.
The first two (spelled out in Section 5.1) refer to the pure CLIP model and how effective it performs with
different prompts (H1) and on different types of data (H2). The following three hypotheses (spelled out in
Section 5.2) refer to the fine-tuned model, for which we postulate that balancing will impact its performance
(H3), that diversifying will lead to better generalization (H4), and that we will observe further improvements
by incorporating a loss function that takes into account “near-misses”, i.e., wrong predictions which are still
within the same world region (H5).

4 Data Procurement and Analysis

A thorough analysis of the datasets’ characteristics and how they were gathered is integral to the creation
of hypotheses and the eventual analysis and understanding of a model’s performance and biases. While an
in-depth description of the data procurement allows the process to be scrutinized and reproduced, we also
took the time to undertake and document a thorough analysis of the data in order to assess potential biases
that may affect a model’s performance. To support this documentation, we chose to follow a developing
industry standard and create Data Nutritional Labels (as described in Holland et al. (2020)), which, like food
nutritional labels, are designed to help consumers make informed decisions about whether and how to use a
particular data set. Furthermore, to provide guaranteed long-term access to the databases, we uploaded the
two self-created databases to the Open Science Framework (OSF)(see Foster & Deardorff (2017)).

In this study, three datasets were collected and used for training and testing:

• Geoguessr: A dataset of images taken from the online game geoguessr.com

• Tourist: A dataset of photos taken by tourists and scraped from the open license website bigfoto.
com

• Aerial: A dataset of aerial images from the open-source platform openaerialmap.org

We began our exploration and analysis of each of the datasets with a data profiling report, to gain insights
into the data’s distribution and characteristics. Both the Tourist and Aerial datasets have been uploaded to
the Open Science Framework (OSF) (Foster & Deardorff, 2017) as draft projects and a draft Data Nutritional
Label (Holland et al., 2020) has also been created for the three datasets respectively (See Appendix C). It
is important to state, at this point, that we have no way of confirming the validity of the country labels
assigned in any of our datasets - the use of these images relies upon a certain level of trust in the collection
and organization strategies undertaken by the users who uploaded the files. Furthermore, when working with
images, pre-processing is an integral step to prepare them as improperly shaped or highly variable inputs of
any neural network can be the cause of instability and misrepresentation; in our work, pre-processing is done
using the code included in CLIP’s pipeline, which guarantees the proper size and resolution of files relayed
to the model. Finally, we have conducted a thorough analysis and discussion of both the possible ethical
issues within the data and the potential for bias or discrimination.

4.1 Geoguessr

The largest dataset used in this study is generated from gameplay scenarios of the Geoguessr online game2.
In this scenario, images are taken from Google Street View, overlaid with a template, and presented to a
user who has to guess where they currently find themselves. An example of such an image can be seen in
Figure 1. The dataset is available to download free of copyright from the Kaggle platform (Kaggle, 2022).
The dataset was collected and uploaded by a public user of the website, Rohan K., who is associated with

2https://www.geoguessr.com
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Figure 1: Example of a Geoguessr image.

the Capital One Software company, and is described as having been collected using ’Python selenium and
geopy libraries’ (Kaggle, 2022). The only change that was made to the dataset was to edit the country labels
to match the country denominations used for CLIP training (Radford et al., 2021) - see Appendix C.1.2) for
the specific changes.

It can be immediately observed that the data is very unevenly distributed. From the 49997 total samples, the
United States of America alone has 12014 (equivalent to almost one-quarter of the total training samples).
Furthermore, the overall distribution of the samples in terms of regions and continents is also very biased.
The data is particularly focused on North and South America, Europe, and Oceania, while samples from
Africa and central Asia are almost non-existent. This uneven distribution is clearly shown in the graphs
found in Appendix C.1.3.

The samples of the dataset all include the overlaid template displayed in Figure 1. The template consists
of 4 different element blocks. Firstly, we find in the bottom left of all samples the general controls and a
navigation panel, while a world map can be seen in the bottom right. Additionally, two arrows can be seen
in the center of the image, which are taken from Google Street View and enable camera movement along
the road. Finally, the game situation panel is found in the top right; consisting of the map style, round, and
score. All elements of this overlay are identical for all samples of the dataset, with the exception of the score
and round values. Given this constancy of overlay elements and the random sampling of country pictures
throughout the game rounds, no informational gain can be obtained from focusing on them. Nonetheless,
there is a possibility that such a dataset encourages the model to ignore the image regions where these
overlay items are positioned, which could be tested with an adversarial dataset in future works.

A variety of image irregularities can also be observed and should also be considered for their possible effects
on how the model recognizes certain countries. Firstly, vegetation, weather conditions, and the language
on signs could be seen as useful, common, everyday discriminators. However, the proliferation of English
throughout the world could lead to confusion; for example, English signs are often prominently displayed in
tourist locations (instead of signs in the native language), which could lead to misclassification. Furthermore,
the blurring of elements (particularly private dwellings) is more common in some countries (e.g. Germany)
and could lead to bias.

4.2 Tourist

The Tourist dataset was collected through the process of scraping copyright-free images from the website
https://bigfoto.com/. The dataset is a collection of personal travel photos, with a wide range of image
resolutions taken over a long period of time. However, despite these challenges, we would assume that these
images may be easier to classify as they often contain memorable/famous sites and stereotypical settings
or objects. The dataset is much more evenly distributed than the Geoguessr dataset, however, it also lacks
images from Africa and has a high concentration of images in Europe (See Appendix C.2.6).
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The images often display ethically sensitive objects or events, without the express permission of the subjects
or impacted parties (see C.2.2). Examples of such ethical grey areas are:

• The inclusion of places of remembrance.

• The depiction of culturally significant places, objects, or events.

• Images of people in potentially sensitive situations without explicit consent.

In this project we decided, despite the legitimate and important ethical questions raised above, not to
remove any images from the dataset on ethical grounds. Notwithstanding, such an ethical analysis is very
valuable to question whether certain data can be ethically used for a particular task. A list of the potentially
questionable images can be found in Appendix C.2.3.

This dataset also raised the issue of potential biases that the model could learn. Training a model on
stereotypical images could impact the way in which a user interacts with such a system; for example, in
this dataset, there could occur a bias in classifying certain countries as poor (Figures 2a, 2b and Appendix
C.2.4).

(a) Socioeconomic Status (b) Homelessness

Figure 2: Examples of images from the Tourist dataset that have the potential for discrimination & bias

Finally, the decision was made to remove some of the samples from the originally scraped data as, on
closer inspection, they were relatively indeterminant or nondescript; for example, images of a skyscape (see
Appendix C.2.5).

4.3 Aerial

Open Aerial Map is an open licensed platform and service that allows for the searching, sharing, and public
use of aerial imagery (Figures 3a, 3b). We faced a range of challenges while collecting the Aerial dataset
using the public openaerialmap.org API3. The restriction of a search to a country proved difficult, as
a search can only be restricted by a rectangle. While bounding box dimensions for countries are readily
available, they are defined so that the country is fully inscribed in them, leading to the inclusion of images
from neighboring countries and consequent false ground truths. Therefore, we wrote a script to attempt to
generate large interior boxes of each country4. We then restricted our searches so that a maximum of 20
images could be collected from each country.

In the process of examining the collected images, two obvious disturbances in the data appeared immediately:
there was high variability in the scale or altitude of the images (Figure 4a), and the images often had very
irregular shapes (Figure 4b). To address the issue of scale, we restricted our API search to ignore small-scale
images (gsd_to=0.05). However, some images that were uploaded were not labeled correctly in terms of
their scale, and, as such, some small-scale images needed to be manually removed after data collection. We

3https://docs.openaerialmap.org/api/api/
4The pseudocode of this script can be found in Appendix C.3.1
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(a) Australia (b) Brazil

Figure 3: Examples of Aerial images. The images result from the stitching of photos taken from satellites,
unmanned aerial Vehicles, and other aircraft. this results in high variability of surface-level detail resolution,
as well as irregular image borders.

were unable to completely reduce or eradicate the variability of scale within the dataset. Furthermore, there
are many images with a strange shape in the dataset; to ensure that images contain a reasonable amount
of information, we removed all images whose content comprised less than 50% of the pixels after data
collection. However, a potential topic for further exploration is whether the irregular shape of all the aerial
images may be a cause of disturbance within CLIP and necessitate further pre-processing. The resulting
dataset distribution was also unbalanced and favored Europe while ignoring Africa (Appendix C.3.2).

(a) Small Scale (b) Irregular Shape

Figure 4: Examples of unusable, discarded Aerial images given the two defined criteria with respect to (a)
scale of captured image, and (b) irregularity of resultant shape from the composition of aerial photos.

4.4 Remarks on Biases in Data Distribution

The following analysis highlights why the documentation of discovered biases, along with discussions of their
possible consequences and approaches to mitigate them, should be included in any empirical machine learn-
ing paper - even when using popular benchmark data, which has been shown to contain systematic errors
(Northcutt et al., 2021) and biases (Stock & Cisse, 2018).
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Although we have assessed and highlighted the fact that the distribution of the images amongst the countries
is unbalanced, it is unclear or undefined what should be considered a ’fair’ dataset. The following are many
possible ways to interpret the idea of fairness in this setting: should the images be equally distributed
between each country, or should it be dependent on other factors such as the number of inhabitants, the
size of the land mass, or the country’s economic situation? In such a discussion it is important to analyze
the intended use of the images. For a categorization task, we must consider the additional issue of the
distribution of images within a country. For a country like the USA, the image coverage may be very sparse
and possibly not effectively represent the extreme variety of natural and man-made landscapes that exist
within the country. We have not analyzed such intra-country distributions which have the potential to lead
to bias and misclassification. Given the insights from in-depth studies of Google StreetView data, we should
expect such biases as the data was not specifically curated for our purpose. For example, Kim & Jang
(2023) showed that coverage is sparse, even in countries like the USA (and this only accounts for parts of
the countries that are accessible through roads as a basic prerequisite for being included in the StreetView
data collection). Other research indicates strong biases in the areas that receive coverage. For example,
Umar et al. (2023) showed a stark difference in waste load between the streets covered by StreetView and
those that were not. The developers of CLIP also perform a number of explorative investigations on biases
in their model and find clues for racist, sexist, ageist biases in the model (see Radford et al. (2021)). We
should assume that any such bias also translates to downstream applications of the CLIP model.

The potential consequences of such biases can be wide-ranging and manifold. For example, let us observe
the hypothetical that such a country classification model was used in education or as a tool to support
the directing of potential tourism. If, for example, images of Khmer Architecture were entirely distributed
within Cambodia, then potential tourists interested in this topic may all be directed to Cambodia despite
the extensive existence of such architecture and cultural history in Thailand. A potentially harmful example
of biased intra-country image distribution is the reduction of a country to a few stereotypical landscapes.
For example, if we observe the way in which Mexico is often portrayed in the American film industry, then
using such images could lead to a model learning that Mexico is a dry, arid, and rural country; ignoring the
wide range of natural environments that exist in the country and the currently most populated city in North
America (Mexico City).

5 Model Architectures and Implementation

5.1 CLIP

When confronted with a fine-tuning task, it is very important to assess and analyze the results of the base
model in depth before commencing any fine-tuning explorations and discussing the effectiveness of fine-tuning
results. This includes detailing the design and training process of the base model, along with its normal usage.
Importantly, hypotheses are also presented with respect to the performance of this base model, to allow for
meaningful statistical analysis of the model’s performance and weaknesses.

As input, the CLIP model can receive both strings and images and will then generate meaningful encodings
of length 512. Calculating the normalized dot products of an image embedding and a range of prompt
embeddings can then be used to calculate the most likely classification. It was therefore considered to be a
suitable foundation model for our research task and fine-tuning exploration.

We performed two different experiments on the CLIP model, using the list of 211 countries upon which CLIP
was trained5. The first was to run each of the datasets through CLIP with the following two prompts and
compare the results:

1. Default Prompt: {country}

2. Extended Prompt: This image shows the country {country}
5See https://github.com/openai/CLIP/blob/main/data/prompts.md#country211
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Since CLIP was trained to recognize the context of sentences and phrases, we hypothesize the following:

Hypothesis 1 (H1): CLIP performs more effectively when using the Extended
Prompt in comparison to the Default Prompt.

Our second experiment was to compare how CLIP performed when categorizing the images in each dataset.
Due to the analysis conducted and discussed in Section 4, we hypothesize the following:

Hypothesis 2 (H2): CLIP is most effective on the Tourist dataset, followed by
Geoguessr, and finally Aerial.

This was our conjecture due to the nature of the datasets, as the Tourist dataset includes famous and
recognizable, stereotypical images of countries or regions, while the Aerial images arguably present less
visible cues.

5.2 Fine-tuning

When discussing the setup and performance of any model researchers must provide a detailed account of all
specifications and structures of the model. This not only provides the reader with the possibility to reproduce
the setup and experiments but also allows the statistical results to be understood and has the potential to
expose biases that were unseen or forgotten in the research. As such, the following section describes the
architecture of the fine-tuning neural network along with the various design decisions. The specific choice to
fine-tune CLIP in this way was a consequence of the lack of available time and computing power. By using
CLIP as a pre-processor of images and prompts we were able to train a separate, autonomous model and
avoid any costly adjustment of the CLIP model itself.

Figure 5: Fine-tuning model architecture. CLIP model is used to extract representations of an image and
prompts for possible classes, whose distances are the input of a trainable fully connected 3 layer neural
network.

For the task of classifying countries based on images, we decided to use CLIP as an encoder and pre-processor
and train a small, fully-connected neural network for the task of classification based on the generated
encodings. The architecture we used for this fine-tuning model is shown in Figure 5. The CLIP model is
used to generate the Extended Prompt embeddings6 for the 211 countries that CLIP already has knowledge
of, and an image embedding for the image to be classified. In order to constrain the size of our tensor input
and the number of neurons in our fully-connected model, we then reduce this input further. Instead of using
all the prompt embeddings, which would lead to an input of dimension 512 + 211 × 512 = 108, 543, we
calculate the image embeddings cosine-similarity to each country’s Extended Prompt embedding. The input
for the classifier is then the image embedding concatenated with the calculated similarity values, resulting
in an input size of 512 + 211 = 723. The classifier uses three fully connected linear layers. Both the input
layer and hidden layer have a size of 723 and use ReLU as the activation function. The output layer uses

6We used the Extended Prompt as it was the most effective in our experiments when using CLIP as a classifier (for details
refer to Section 7.1).
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a Softmax layer of size 211 to output the distribution over all possible countries. As our optimizer, we
opted for Adam due to its reliability. We set a fixed learning rate of 0.001, with the default parameters of
the PyTorch 2.1 implementation, based on preliminary experimental results that indicated reliable progress,
and this value aligns with typical settings for our chosen optimizer. For the used hardware and concrete
initialization seed(s), refer to Appendix D.

We aimed to explore and test how successful such a fine-tuning approach would be depending on the training
data and loss function used in training. In terms of the composition of the training dataset, we first
conjectured that a more evenly distributed training dataset would reduce the risk of overfitting, leading to
the following hypothesis:

Hypothesis 3 (H3): A fine-tuning model of CLIP will be more accurate if the
spread of the training data among the countries approaches a normal distribution
with low kurtosis.

The second area of training data composition that we wished to explore was the effect of the variety of
samples within the training dataset. Due to the fact that a model can only recognize or learn something
that it has been exposed to, we had the following hypothesis:

Hypothesis 4 (H4): A fine-tuning model of CLIP will be more accurate if it
receives a wider range of training data.

The second part of our fine-tuning research focused on the effect of the loss function used in training. As
stated earlier, we want to reward regional (approximate) correctness when testing a model’s performance.
We then aimed to explore, in particular, what effect a loss function has, that is not solely based on country
accuracy, but rather includes the effects of regional accuracy. We addressed this issue with the following
hypothesis:

Hypothesis 5 (H5): A fine-tuning model of CLIP will be more effective if it is
trained using a loss function that also rewards a correct regional classification.

Section 5.3 will describe the process and details involved in the setup and execution of these fine-tuning
experiments.

5.3 Fine-tuning Experiments

The duration of the training of a model is, among many other decisions, in essence, a parameter that can also
be optimized. For our task, we aimed to set up a training process that followed standard industry practices,
however, the possibility for further experimentation and optimization exists. It is important to try to actively
maintain and encourage randomness in the training process in an attempt to avoid any overfitting patterns
- this includes ensuring that optimization training steps are taken in accordance with the losses of relatively
equal batch sizes.

In order to produce results that have any kind of statistical significance and validity, it is very important
to create a balanced and independent test set before commencing any training processes. Furthermore, the
decision was made in the research project to separate the zero-shot samples of our test set. This decision
allows us to highlight the model’s ability to generalize, while also ensuring the fact that the model has seen at
least some samples of the classes that exist within the non-zero-shot set. The minimal threshold we used to
remove zero-shot samples was different for each of our three datasets (Geoguessr, Tourist, and Aerial), due
to their varying sizes.

Our process involved training each fine-tuning model for 15 epochs. Within each epoch, we employed 10-fold
cross-validation on the training set (the training set was pre-shuffled and then split evenly and identically
in each epoch). So, within each epoch, the model was trained in 10 segments - each time a single fold was
left out of the training and used as the validation set. In each segment, we split the segment training data
into 116 batches for the strongly balanced and 117 batches for the weakly balanced dataset and performed
an optimization step after running each batch. Once the last batch and step were complete, the model was
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tested on the segment’s validation data. After the 15th epoch, a test set was run through the model, with
the resulting statistical accuracy being calculated and recorded. It was necessary to set up and remove this
test set from our data before beginning any experiments so that the test samples would never be seen in the
training of any of the models, ensuring independence.

The test set was generated by first creating a zero-shot test dataset. This dataset was generated through
the removal of all samples of any classes that had a maximum of 10 images from Geoguessr and Tourist
and a maximum of 1 image for the Aerial dataset (due to its size). The resulting 83 samples make up the
Zero-Shot dataset, while we label the three reduced datasets as Geoguessr Min-Limit, Tourist Min-Limit,
and Aerial Min-Limit.

We then balanced the Geoguessr Min-Limit dataset further by randomly removing samples so that each
country has a maximum of 2000 images (5 countries exceeded this limit). We label the resulting dataset as
Geoguessr Weakly-Balanced. We generated our Trained Test dataset by removing 15% of the Geoguessr
Weakly-Balanced, Tourist Min-Limit and Aerial Min-Limit datasets, maintaining the distribution of these
datasets (through the use of stratification) during the process. These two test compositions are displayed in
Table 1.

Geoguesser Tourist Aerial Sum
Total 49905 2297 267 52469
Trained Test 5340 342 47 5729
Zero-Shot 77 4 2 83

Table 1: Data composition of the test datasets from our three source ones.

5.3.1 Comparing Training Datasets

As mentioned in the Data section above (Section 4), our base dataset (Geoguessr) was particularly poorly
balanced. Our conjecture was that this imbalance would lead to a fine-tuning model simply categorizing each
sample as the United States of America, due to its dominance of the dataset. We chose our first maximum
class sample threshold of 2000 to somewhat balance the dataset (the 5 most common countries exceed this
limit), while still retaining a large portion of the images. The second maximum threshold of 200 was then
chosen to generate a strongly balanced dataset. This enabled us to observe if a model trained on balanced
data is able to learn more about the characteristics of the images rather than the data distribution.

In generating our mixed datasets, it was of the utmost importance to keep the size of the mixed datasets the
same. This detail prevents an increase in the number of training samples from contaminating the results,
allowing us to more confidently attribute any fluctuation in results to the makeup of the training data and
not its quantity. To ensure that we did not lose too much information during the process of increasing the
training data’s variety, we made sure not to replace or reduce any classes present in Geoguessr too drastically
in the mixing process.

In approaching this hypothesis we trained our fine-tuning model on three Geoguessr datasets: Geoguessr
Min-Limit, Geoguessr Weakly-Balanced, and Geoguessr Strongly-Balanced. Whereby Geoguessr Strongly-
Balanced was generated through the sampling of a maximum of 200 images per class from the Geoguessr
Weakly-Balanced dataset.

We create mixed datasets based on the Geoguessr Weakly-Balanced and Geoguessr Strongly-Balanced
datasets. Images of each class are replaced with images from the Aerial Min-Limit and the Tourist Min-
Limit datasets, keeping the dataset size the same. We ensured that less than 50% of the images for each
class were replaced so that some part of each original Geoguesser data class is always kept. To prevent any
class clustering in the training folds, all datasets are shuffled after creation.

10



Under review as submission to TMLR

Balancing Criteria Geoguessr Tourist Aerial Sum Mixed Portion
Total - 49905 2297 267 52469 -
Min-Limit Min = 10 (1*) 44487 2293 265 47045 -
Weakly Balanced Max =2000 30256 - - 30256 -
Mixed Weakly " 28442 1627 187 " 6.0 %
Strongly Balanced Max =200 11344 - - 11344 -
Mixed Strongly " 9714 1451 179 " 14.4 %

Table 2: Data composition of the different training datasets (*For Aerial dataset)

In total, we tested the performance of models trained on the five datasets displayed in Figure 6: Geoguessr
Min-Limit, Geoguessr Weakly-Balanced, Mixed Weakly-Balanced, Geoguessr Strongly-Balanced, and Mixed
Strongly-Balanced.

Figure 6: Flowchart to display the creation process of the 5 different training datasets

5.3.2 Loss Functions

The loss function is an integral and fundamental element in the training of a neural network. The goal of
the following exploration is to attempt to observe whether the broadening of our loss function to include a
regional element will have an impact on the model’s effectiveness. A broad sketch of the desired learning
pattern is that the model will attempt to first narrow down its choice of country to a certain region of the
world, before deciding on a specific place. The implementation of our mixture of two cross-entropy losses
attempts to encourage the previously described behavior, while also not discouraging the confident prediction
of a single country.

We now introduce a new loss function RLi, which we call Regional-Loss for epoch i ∈ [0, 14]. This loss
function encourages the model to learn features that overlap for countries of one region. It is defined as:
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RLi(ρ, γ, ct, cp) = ρi · γ · CEr(rt, rp) + (1 − ρi · γ) · CEc(ct, cp) (1)

with γ ∈ [0, 1] := regional loss portion
ρ ∈ [0, 1] := reduction coefficient of regional loss portion per epoch

ct := ground truth country distribution (δdistribution)
cp := predicted country distribution
rx := regional distribution of country distribution cx

CEc and CEr are the cross-entropy losses from the Pytorch neural network functional package7. The
predicted region distribution rp of cp is calculated by summing the values of all countries that are in the
same region. This way, the region portion of the loss function encourages the model to predict a country
that is in the same region as the ground truth, without working against the country portion of the loss.
To test our hypothesis, we trained all of the datasets presented in Section 5.3.1 using the following 4 loss
configurations:

• L0: (γ = 0) Ignore the Regional Loss portion.

• L25: (γ = 0.25; ρ = 1) Static 25% Regional Loss portion.

• L50: (γ = 0.5; ρ = 1) Static 50% Regional Loss portion.

• LDYN: (γ = 0.8; ρ = 0.75) Starting with high regional loss reducing it over time.

We chose these loss configurations to see the impact of the Regional Loss and test whether focusing on learning
regional aspects might help the model to generalize. While L25 and L50 explore the hypothesis in observing
the effectiveness of a static percentage of regional loss, in LDYN we introduce ρ which reduces the regional
portion each epoch. This dynamic approach aims to initially focus on learning features shared region-wide,
followed by a refinement phase to capture country-specific features. We conjecture that this approach will
improve the model’s generalization capabilities, as observed in previous works that experimented with the
dynamic balancing of loss terms Zhang et al. (2020); Zheng et al. (2019). The scheduling-like structure of
the loss function adaptation can also be related to multi-stage learning strategies, although ours smoothes
out the multiple stages in one single training run.

6 Evaluation Techniques

When presenting and analyzing the results of a machine learning experiment, it is essential to provide the
details required to understand exactly what is being measured and how. The results should address the hypothe-
ses presented previously within the paper in a way that follows a detailed and straightforward methodology.
All symbols and terms used in the results section of a paper should be defined and introduced before they
are ever used. Furthermore, the results should be reproducible and any points where inherent inconsistency
cannot be avoided should be highlighted and the conditions or specifications of the provided results should be
effectively listed. The choice of metric strongly influences the interpretation of the results and usually, each
metric highlights a specific aspect of the evaluated model and neglects others (for example, the F1 emphasises
a balance between precision and recall of a model, but ignores “true positives” in its calculation). Therefore,
a conscious choice for an evaluation metric should be made early on in the research process - the chosen
metric should not be changed easily during the evaluation process.

7see https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
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6.1 Evaluation Metric

In order to analyze the accuracy of both the CLIP model and our resulting fine-tuning, we needed to set
a metric. The most basic idea would be an accuracy metric that measures if the country was correctly
predicted. However, countries of the same region arguably generally share similar characteristics. Therefore,
the model might learn to recognize these characteristics but mix up some countries of a particular region.
While this behavior is not perfect, it would indicate that the model learned to recognize some potentially
useful patterns. To measure this phenomenon, we created a metric that accommodates regional knowledge.
For models that have the capability to predict labels at different hierarchical levels, there exists a selection
of Hierarchical Metrics, such as those discussed in Silla & Freitas (2011). As our model always predicts a
country (maximum depth level in our hierarchy), hierarchical metrics do not bring a benefit, and instead,
we adjusted the computation of Precision, Recall, and F1 scores to better suit our intuition of proper model
behavior. To define the boundaries of our regions, we used the Intermediate Regions set in the M49 standard
(United Nations Statistics Division (1999)).

Let us define C as the set of all countries and R be the set of all Intermediate Region Names in the M49
standard. Then, for a test set X, made up of the samples x1, x2, . . . , xn, define t : X → C, and p : X → C
such that t(xi) is the ground truth label and p(xi) is the predicted label of the sample xi. We can now define
t(X) := {t(x1), t(x2), . . . , t(xn)}, p(X) := {p(x1), p(x2), . . . , p(xn)}, and the reduced set of countries:

C := {c ∈ C|c ∈ p(X) ∪ t(X)}

Define r : C → R, such that for any c ∈ C, r(c) is the regional label of the country c. Now, for any country
c ∈ C, we define True Positive (TPc), False Positive (FPc), and True Negative (TNc) samples as they are
traditionally used. However, we split False Negative samples into False Negative (FNc) and Approximately
True Positive (ATPc) samples.

An xi is a FNc sample if:
t(xi) = c & p(xi) ̸= c & r(p(xi)) ̸= r(c)

While it is a ATPc sample if
t(xi) = c & p(xi) ̸= c & r(p(xi)) = r(c)

We can then define the following metrics:

Mixed_Missed(X) :=#{c ∈ C|c ∈ C \ p(X) ∩ t(X)} (2)

Mixed_Pre(X) := 1
|C|

∑
c∈C

TPc + 1
2 ATPc

TPc + 1
2 ATPc + FPc

(3)

Mixed_Rec(X) := 1
|C|

∑
c∈C

TPc + 1
2 ATPc

TPc + 1
2 ATPc + FNc

(4)

Mixed_F1(X) :=2 · Mixed_Pre · Mixed_Rec
Mixed_Pre + Mixed_Rec (5)

Where Mixed_Missed counts the number of countries that exist in the test set but were never predicted.
We will use the Mixed_F1 metric as the standard metric to test the 5 hypotheses described in Sections 5.1
and 5.2.

6.2 Statistical Testing
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It is important that the metrics and measures of statistical significance are clearly outlined and remain
consistent throughout the entire paper and all experiments. The decision to use repeated k-fold cross-validation
for CLIP experiments was made to increase the robustness and diversity of the statistics. It did, however,
increase the complexity of the choice of statistical significance testing, as it led to data dependence within the
resulting populations. In response to this, we used a t-test method that balances this dependenceBouckaert
& Frank (2004) while observing the impact of the prompt on categorizing each dataset. In contrast, when
comparing the effectiveness of CLIP on each of the three datasets, an independent t-test was considered to
be adequate. While we are aware of the inter-populational dependence within each of the datasets (due to the
10-times repeated cross-validation method), we argue that the impact of this dependence is small enough to be
ignored. It could be argued, to cover the issue of machine inconsistency and rounding issues, that the datasets
should be run through CLIP multiple times, however, a single calculation loop was judged to be adequate in
our case.

For fine-tuning, the choice of training 10 models, each initialized with different weights, on each training
set/loss function combination, was done to generate randomness and reduce the significance of the variability
introduced by the initial state of the neural network and the potential for irregularity introduced by machine
rounding and parallelization. We also preserved the validation results from the last epoch of training of each
model. The purpose of this was to control for, among other things, overfitting. If the model performs much
more effectively on the validation sets than on the test set then it could be a symptom of overfitting. We
must never attempt to statistically compare these validation results as they are not independent.

For our research, we aimed to create more robust statistical results by conducting repeated experiments
with random initializations. To analyze statistical significance, two-tailed t-tests, with a significance level
of α = 0.05, were used for all experiments in this paper. For the CLIP experiments, to ensure fairness and
robustness, we repeatedly ran CLIP on 10 randomly generated 20 cross-validation folds for each dataset
(with sizes of 430, 115, and 14 respectively). The process of randomly selecting these folds was fixed for
repeatability through the use of the list of seeds provided in Appendix D. To test Hypothesis 1, we measured
whether the Extended Prompt was the significantly superior of the two prompts using the t-test based on
repeated k-Fold Cross Validation seen in Equation 6(Bouckaert & Frank (2004)) . When defining Xij as the
j′th fold of the i’th repetition of the Default Prompt normalized distances, and Yij being defined identically
for the Extended Prompt, we generate the t-score:

t :=
1

20·10
∑i=10

i=0
∑i=20

j=0 [Mixed_F1(Xij) − Mixed_F1(Yij)]√( 1
20·10 + 1

19
)

σ̂2
(6)

with σ̂2 = 1
20·10−1

∑i=10
i=0

∑i=20
j=0 (xi,j − m)2 and m = 1

20·10
∑i=10

i=0
∑i=20

j=0 xi,j .

Then, using an independent student’s t-test, we approached Hypothesis 2 by testing the null hypothesis that
the accuracy of CLIP was not better or worse between the datasets as surmised.

Our fine-tuning experiments revolved around comparing and analyzing models that were trained on the
differently created datasets and different loss functions described in Section 5.3.1. Each of the five training
datasets (Geoguessr Min-Limit, Geoguessr Weakly-Balanced, Mixed Weakly-Balanced, Geoguessr Strongly-
Balanced, Mixed Strongly-Balanced) were tested with every combination of the 4 loss functions defined in
Section 5.3.2. To generate robust statistical data, we trained 10 separate neural networks on each combination
of dataset and loss function, using a different fixed seed (see Appendix D) for the initialization of each neural
network. Their performance was then evaluated by testing each model (after training is completed) on the
same test sets described in Section 5.3. The resulting means of each metric over these 10 repetitions are
symbolized as follows:
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Metric :=
10∑

E=1

Metric(XE)
10 (7)

We then used the independent t-test to analyze this statistical data and test our Hypotheses. For Hypothesis
3 we compared the results of the datasets Geoguessr Min-Limit, Geoguessr Weakly-Balanced, and Geoguessr
Strongly-Balanced. For Hypothesis 4, we observed the results of Geoguessr Weakly-Balanced and Mixed
Weakly-Balanced, along with Geoguessr Strongly-Balanced and Mixed Strongly-Balanced. Finally, the results
of all experiments were analyzed to evaluate Hypothesis 5. Any reference to validation results references the
data collected in the validation steps of the last epoch of the training. They were collected and presented to
observe whether a difference between validation and test performance exists.

6.3 Explainable AI (XAI)

It is very important to reflect on the capacities and limitations of XAI techniques to avoid the possibility of
projecting biased or warped significance into the results. t-SNE (t-Distributed Stochastic Neighbor Embedding)
analysis, as described by van der Maaten & Hinton (2008), is a process of dimension reduction used to
visualize high-dimensional data; a method within the broader field of XAI. When analyzing such t-SNE
mappings, we must be aware that the mappings are not unique and that, while they are often effective at
preserving local structures, the global structures or patterns do not necessarily have any particular meaning.

A rapidly expanding field of computer science at the current time is that of Explainable AI (XAI). XAI refers
to a range of methodologies that aim to make the outputs and decision processes of models understandable
and it is crucial in the development of trust in AI systems. We ran a t-SNE analysis on both the image
embeddings generated by the CLIP model and the inputs for the fine-tuning model (a concatenation of an
image embedding and the cosine distances to the Extended Prompt - see Section 5.2). The aim was to observe
whether there were any overarching patterns or groupings within the embeddings or inputs, which may then
affect the fine-tuning training. We ran t-SNE analysis using the sklearn TSNE tool8 twice for each dataset
to observe and test any instability, however, the resulting representations remained similar.

We also generated confusion matrices to visualize the effectiveness of the model and provide a deeper insight
into the classes that the model confuses or cannot successfully distinguish between. We generated a variety
of confusion matrices for each model, with each of the following confusion matrices being generated for both
unnormalized and normalized results:

1. Alphabetic country confusion matrix

2. Ordered country confusion matrix

3. Region-ordered country confusion matrix

4. Alphabetic regional confusion matrix

5. Ordered regional confusion matrix

6. Continent-ordered regional confusion matrix

These different matrices are defined by two factors: whether they represent country or regional results, and
the way in which the classes are ordered on the x- and y-axis. While the classes are ordered alphabetically
for the alphabetic matrices, they are ordered in descending order depending on the diagonal elements in the
ordered matrices. Lastly, the region-ordered and continent-ordered matrices are generated using predefined
index arrays (See Appendix D) that group countries within regions and regions within continents respec-
tively. A confusion matrix provides a comprehensive way to evaluate model performance by breaking down

8https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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each class’s predictions, highlighting both accurate and erroneous predictions. While for the CLIP experi-
ments, the confusion matrices simply observe the entire dataset, our fine-tuning experiments are displayed
by summing over the results of all of the models initialized with different seeds. These values were then
normalized so that the summation of the values in each ground truth class column adds up to 1 over the
matrix.

7 Results

The results should be presented in a way that allows the reader to draw conclusions about the formulated
research hypotheses. All research results should be presented functionally through the use of graphs and tables
with correctly and clearly labeled axes. All symbols, hypotheses, experiments, and test procedures should be
synonymous with the descriptions and definitions provided in the previous sections of the paper. We made
the decision, for the sake of clarity and to abide by an industry standard, to follow the APA Style when
presenting any t-test results.

It is also important to note that, as in all numerical experiments, the results are not necessarily consistent
across all specifications upon which the experiments can be run, even when random seeds are fixed (see Ap-
pendix D). Possible reasons for such irregularities are machine accuracy and GPU parallelization (Nagarajan
et al., 2018).

7.1 CLIP

We now briefly outline the main results and conclusions drawn from running the datasets through CLIP. We
do not accept Hypothesis 1, as we do not see any statistically significant improvement of CLIP performance
when using the Extended Prompt in comparison to the Default Prompt. As shown in Figure 7a, there was
no significant effect on the Geoguessr dataset )(t(199) = 1.25, p = 0.11), despite the Extended Prompt (M
= 0.210, SD = 0.022) attaining higher scores than the Default Prompt (M = 0.208, SD = 0.020). Similarly
there was no significant effect on the Aerial dataset (t(199) = 0.27, p = 0.39), despite the Extended Prompt
(M = 0.68, SD = 0.052) attaining higher scores than the Default Prompt (M = 0.066, SD = 0.054). There
was also no significant effect on the Tourist dataset (t(199) = −0.056, p = 0.48), however, in contrast, the
Extended Prompt (M = 0.211, SD = 0.025) attained almost identical (although slightly worse) scores than
the Default Prompt (M = 0.211, SD = 0.025). As the performance of CLIP on the Aerial and Geoguessr
datasets is improved slightly by the Extended Prompt, and the performance is almost identical on the Tourist
dataset, we decided to use the Extended Prompt for our fine-tuning explorations.

Furthermore, we also cannot accept Hypothesis 2, as when using the Extended Prompt the CLIP Model was
not significantly more effective (t(199) = 0.53, p = 0.6) in categorizing the Tourist dataset (M = 0.211, SD
= 0.025) in comparison to the Geoguessr dataset (M = 0.210, SD = 0.022): see Figure 7b. This insignificant
result can also be found when using the Default Prompt. Admittedly, CLIP was significantly more accurate
in classifying the Tourist and Geoguessr datasets, in comparison to the Aerial dataset when using both
prompts. For the p-values for Hypothesis 2 and a full analysis of the CLIP Experiment results, see Appendix
E.1.

7.1.1 Explaining CLIP performance

We ran t-SNE on both the embeddings and the eventual model input (embedding & cosine similarities)
and our first observation was that the added similarities make very few observable differences to the t-SNE
results (Appendix E.2.1 E.2.2). Consequently, the following graphical representations are all displays of the
embedding t-SNE, which was considered sufficient for our explorations. Our first observation was that CLIP
performs extremely poorly on the Aerial dataset. We can analyze the t-SNE results of the CLIP embeddings
of the Aerial images in combination with the resulting confusion matrix to see that CLIP does not generate
any regional patterns in the data (Figures 8, 9). A possible area of future study could be to adjust the
prompt for the Aerial dataset, for example, a centered satellite photo of {country}9). We argue, however,

9This prompt is suggested in the CLIP repository https://github.com/openai/CLIP/blob/main/data/prompts.md
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(a) Geoguessr Prompt Comparison (b) Extended Prompt Dataset Comparison

Figure 7: Box plot comparisons of CLIP Performance with respect to Hypotheses 1 (a) and 2 (b)

that it would be unlikely that this increases the performance, as the t-SNE results are so scattered and void
of any regional relations.

Figure 8: t-SNE embeddings of the Aerial dataset colored by continent, showing a broad and incoherent
scattering of samples, as no clustering structure can be discerned.

17



Under review as submission to TMLR

Figure 9: The normalized, continent-ordered regions confusion matrix shows the lack of cohesion within the
Aerial dataset. Lines and columns correspond to true and predicted label, respectively.

Another interesting observation was that the CLIP model predicts images of Japan most successfully for the
Geoguessr dataset; a result that can arguably also be seen in the t-SNE graphic shown in Appendix E.2.3.
Japan is the country with the second largest number of samples behind America, containing 3,840 images.
In addition, through the geographical situation of Japan as an island that has been physically and culturally
isolated for a large portion of its history, it could be argued that there are stereotypical elements (for example
the architecture) that make images from Japan easy to categorize. This unique cultural environment, the size
of the country, and, in comparison to for example USA, the relative homogeneity of the natural landscape
may all be contributing factors to the effectiveness of CLIP. For the Geoguessr and Tourist datasets, CLIP
also appears to group images from similar climates. For example, the two main areas of Australia and
New Zealand Geoguessr samples overlap with South Africa (Figures 10a, 10b). This is arguably due to the
similarities in climate and latitude, while possibly the shared colonial histories of the areas may also be
significant. The same pattern also occurs in the Tourist dataset (Appendix E.2.4).

Our final observation is that there appears to be much variation and crossover within the European regions.
It can be argued that this could be due to the predominantly similar climate that the regions share. In
both the Geoguessr and Tourist datasets, the European regions seemed to be very mixed and confused
in the t-SNE results (Figure 12). This could be an explanation for the Geoguessr CLIP performance,
displayed in the regional confusion matrix shown in Figure 36, where the common misclassification between
Northern, Eastern, Western, and Southern Europe is highlighted. To further analyze this phenomenon,
we ran another t-SNE on the subset of Geoguessr European samples. In Appendix E.2.5 we see that the
European embeddings remain difficult to separate. We can also observe a similar pattern of confusion
occurring in the Tourist dataset (see Appendix E.2.6).
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(a) Oceania (b) Southern Africa

Figure 10: t-SNE representation of Geoguessr CLIP embeddings highlighting the similarity of samples from
Oceania and South Africa

Figure 11: t-SNE representation of Geoguessr CLIP embeddings highlighting the grouping of European sub-
regions, as these samples form defined clusters on a continental scale, but with a high level of mixture on
the sub-regional level.

7.2 Fine-tuning Results

In this section, we present the results of our fine-tuning experiments with respect to the hypotheses presented
in Section 5.2. This section is structured in terms of these hypotheses, which propose the conjectured effects
of different loss configurations, balancing data, and adding small new datasets. Conclusions are drawn
by analyzing the results of fine-tuning models on the independent test set. Before we begin our closer
examination, our first observation was that training a model on Geoguessr Min-Limit always led to the
model simply guessing the USA in every instance, regardless of configuration. This resulted in a Mixed_F1
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Figure 12: The normalized, continent-ordered regions confusion matrix shows a tendency for continental
blocks, of which the European block (highlighted) is an example.

score of 0.021 in all cases. As such, we chose to remove the Geoguessr Min-Limit from our further analysis
and only compare the Geoguessr Strongly-Balanced , Mixed Strongly-Balanced , Geoguessr Weakly-Balanced
, and Mixed Weakly-Balanced datasets in the following results. All of the experiment results are listed in
Table 3.

Hypothesis 5: Loss Configurations When observing our results we come to the conclusion that we
can accept Hypothesis 5. The loss functions with a regional component; L25, L50, and LDY N always had a
significantly higher Mixed_F1 score across all training set configurations in comparison to L0, as evident
from Figure 13.

Although the LDY N always scored significantly higher than the L0 configuration, it also consistently scored
significantly lower than both the L25 and L50 configurations. Comparing L25 and L50, L50 (M=0.429,
SD=0.013) was significantly higher than L25 (M=0.414, SD=0.016) for the Mixed_F1 score on the Geoguessr
Weakly-Balanced dataset (t(18)=2.304,p=.033) and L50 (M=0.434, SD=0.013) was significantly higher than
L25 (M=0.417, SD=0.014) for the Mixed_F1 score on the Mixed Strongly-Balanced dataset (t(18)=2.895,
p=.01). On the Mixed Weakly-Balanced dataset and the Geoguessr Strongly-Balanced dataset, there were
no significant differences between L25 and L50.

Given these findings, we concluded that we should focus subsequent comparisons on either the L50 models
or the L25 models, due to their superior performance. Since the L50 configuration was significantly better
for half of the datasets, without scoring significantly lower than any other configuration, we decided to focus
on the L50 only for our explorations of Hypotheses 3 and 4.

Hypothesis 3: Effect of Balancing Datasets We reject the hypothesis that balancing the training data
will lead to more accurate results. This is due to the fact that, as shown in Figure 14, the models trained
on the Geoguessr Weakly-Balanced dataset (M=0.404, SD=0.020) achieved significantly better Mixed_F1
(t(18)=-4.116, p=.001) compared to models trained on Geoguessr Strongly-Balanced (M=0.434, SD=0.013)
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Figure 13: The Mixed F1 results for the diffrent dataset configurations.

- when observing the L50 loss configuration as fixed above. Notably, while for Mixed_Pre, the Geoguessr
Weakly-Balanced models (M=0.623, SD=0.024) scored significantly better (t(18)=-5.370, p=.0) than the
Geoguessr Strongly-Balanced models (M=0.543, SD=0.039), the Geoguessr Strongly-Balanced models scored
significantly better for the Mixed_Rec (t(18) = 7.076, p=.0) compared to Geoguessr Weakly-Balanced models
(M=0.381, SD=0.010).

Figure 14: Comparison of measured mixed metrics for the different training datasets using the L50 configu-
ration.

Furthermore, the Geoguessr Weakly-Balanced models (M=82.000, SD=2.582) has ignored significantly more
countries, measured by the Mixed_Missed score, (t(18) = -13.752, p=.0) compared to the Geoguessr Strongly-
Balanced models (M=61.700, SD=3.889). A closer look at the confusion matrices (Figure 15, Figure 16)
reveals that the ignored classes were not only limited to countries with few images, although they were the
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Mixed_Pre Mixed_Rec Mixed_F1
Experiment
Geoguessr Min-Limit
L0 0.020 0.030 0.021
L25 0.020 0.030 0.021
L50 0.020 0.030 0.021
LDYN 0.020 0.030 0.021
Geoguessr Weakly Balanced
L0 0.591 0.328 0.355
L25 0.604 0.378 0.414
L50 0.623 0.381 0.429
LDYN 0.570 0.349 0.377
Geoguessr Strongly Balanced
L0 0.498 0.381 0.352
L25 0.528 0.425 0.407
L50 0.543 0.415 0.404
LDYN 0.482 0.402 0.366
Mixed Weakly Balanced
L0 0.586 0.336 0.361
L25 0.593 0.389 0.420
L50 0.589 0.382 0.419
LDYN 0.555 0.353 0.379
Mixed Strongly Balanced
L0 0.482 0.396 0.363
L25 0.535 0.441 0.417
L50 0.576 0.438 0.434
LDYN 0.498 0.423 0.381

Table 3: Fine-tuning Experiment results as averages of our mixed metrics over the set of runs for each
dataset/loss configuration. (For metric definitions see Equation 7)

majority. For example, the models trained on Geoguessr Weakly-Balanced never predicted South Korea.
Instead, the models predicted mostly Japan for these images. The Geoguessr Strongly-Balanced models, on
the other hand, reliably predicted South Korea.

Hypothesis 4: Effects of Adding Few New Data Hypothesis 4; that diversifying the training set
increases the accuracy of a model and its ability to generalize, must be rejected, although introducing small
amounts of additional data from different datasets had a variety of effects, as evidenced by Figure 14. On
the test set, the Geoguessr Weakly-Balanced model (M=0.429, SD=0.013) was barely affected by replacing
a percentage of its samples with additional data sources (M=0.419, SD=0.010), showing no significant dif-
ference for the Mixed_F1 score (t(18) = 1.894, p=.074). In contrast, mixing data (M=0.404, SD=0.020)
into the Geoguessr Strongly-Balanced models (M=0.434, SD=0.013) resulted in a significant improvement of
the Mixed_F1 (t(18)=-11.156,p=.000). Interestingly, the Mixed Strongly-Balanced models even had signifi-
cantly higher Mixed_F1 in comparison to the Mixed Weakly-Balanced models (t(18) = 2.944, p=.009) and
Geoguessr Weakly-Balanced models (t(18) = 2.944, p=.009).

Zero-Shot Performance All model configurations failed to predict a single country correctly on the
zero-shot test set. As shown in Figure 17, predicting the correct region was still difficult. Noticeably, both
Geoguessr Weakly-Balanced and Mixed Weakly-Balanced models had better Mixed_F1 scores compared to
their strongly balanced counterparts.
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Figure 15: Confusion matrix for the L50 Geoguessr Strongly-Balanced models, with the countries ordered
by region. Lines and columns correspond to true and predicted labels, respectively. Note the formation of
two types of structures: blocks around the diagonal, corresponding to intra-regional confusion, and vertical
concentrations, corresponding to countries that absorb the prediction outcome from several other classes.

7.2.1 Analysis of Fine-tuning Results

As stated above, we were able to confirm Hypothesis 5, as rewarding the model for predicting the
correct region did increase the models’ performance on the mixed metrics. Furthermore, in our exper-
iments, the losses with a static regional portion outperformed the dynamic configuration LDY N . This
should not be taken as a concrete final result that proves the inadequacy or lack of effectiveness of
a dynamic loss function. Our experiments in this regard should be considered preliminary and the
examination and exploration of such a complex topic could be enough to warrant its own study. We
conjecture, as discussed in Appendix F.2, that the inefficiency of LDY N may partially be due to the different
scaling of the cross-entropy country and regional loss functions, which is an area for potential future research.

Taking a closer look at the models trained using L50, it is revealed that all of the models ignored more
countries in comparison to models trained using the other loss configurations. We believe that, since the
model is rewarded a lot for predicting the correct region, it is incentivized to focus on predicting the
region, while ignoring the task of finding the correct country for difficult classes. This is further sup-
ported by the fact that L0 predicted a larger variety of classes than all other configurations (see Appendix F).

We were unable to conclusively accept the propositions of Hypothesis 3. Models trained on the Geoguessr
Min-Limit dataset did not learn anything useful other than the fact that most of the samples came from
the USA. Also, the Geoguessr Weakly-Balanced models performed significantly better than the Geoguessr
Strongly-Balanced models. Taking a closer look at the Mixed_Pre and Mixed_Rec scores for both datasets,
the Geoguessr Weakly-Balanced models had significantly higher Mixed_Pre, while the Geoguessr Strongly-
Balanced models had significantly higher Mixed_Rec (see Section F.1). We propose that these results can
be explained by the fact that the Geoguessr Strongly-Balanced models learned to predict a larger variety of
countries. We speculate that the stronger balancing criteria reduced the dataset to a point where there is
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Figure 16: Confusion matrix for the L50 Geoguessr Weakly-Balanced models, with the countries ordered
by region.Lines and columns correspond to true and predicted labels, respectively. Note the reduction of
diagonal blocks and increased prevalence of vertical concentrations compared to the Geoguessr Strongly-
Balanced case.

Figure 17: Comparison of measured mixed metric performances on the Zero-Shot test-set for the models
trained on the different training datasets

a tradeoff between the variety of countries the models learned to predict and how precise it predicts each
country. Observing the regional confusion matrices Figure 38 and Figure 39 in Appendix F, we can see that
models trained on the weakly balanced dataset were prone to predict the country with the most images for all
countries in a region. By balancing the dataset more, the model was able to partially improve in this regard.
Stronger balancing of the dataset allows for the recognition of multiple countries within a region, rather
than only identifying the country with the most images. For example, Iceland was recognized relatively well
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instead of being misclassified as Ireland (see Figure 41 and Figure 40 in Appendix F). However, this is not
always the case; for instance, Jordan was still misclassified as Israel despite having a similar image count
ratio to that of Iceland and Ireland (see Figure 42 and Figure 43 in Appendix F). We suspect that the model
has not improved in distinguishing between countries that look similar.

This regional generalizing behavior of our models should also be analyzed in terms of the potential geopo-
litical concerns that it raises. For example, our models consistently misclassified Jordan and Palestine as
Israel, as mentioned above and seen in Figure 43. While one might consider this a mild mistake from a
geographic viewpoint, it might be considered inexcusable by others from a political perspective. Especially
when deploying such a model, these errors could be seen as discriminatory or supporting specific territorial
claims and, therefore should be handled with care. We need to be aware of the impact of our design choices,
for example how training data distribution and regionally influenced loss functions could have an effect on
such patterns of regional generalization. Furthermore, classifying countries in itself includes the politically
loaded choice of what to consider a country. In our case, this was dictated by the CLIP model, but the
way in which our fine-tuning model predicts countries could raise a similar issue in, for example, the case of
Taiwan.

Finally, adding a small amount of new data to the datasets did not significantly improve the Geoguessr
Weakly-Balanced models, but it did significantly improve the Geoguessr Strongly-Balanced models to the
point that the Mixed Strongly-Balanced models have the significantly best performance of any models. This
indicates that increasing the variety of data in a training set, using a variety of different datasets that match
the data in the test set, can improve the model’s accuracy, as we expected in Hypothesis 4. We conjecture
that the portion of different data in the Mixed Weakly-Balanced models was potentially too small - that only
replacing 6% of the data meant that this data mixing had no significant impact.

8 Conclusion

The results above must be viewed as preliminary and understood within the broader context of this study. The
goal was not to train the most effective fine-tuning model but rather to explore and document the necessary
basic methods and practices required for a clear and reproducible machine learning experiment. The following
conclusions are also presented in such a manner, with the focus being on possible deductions that can be
taken from the results, along with a description of the limitations of the study and suggestions for possible
future explorations in this area. We acknowledge that even the applied “good practices” are not perfect
and suffer from limitations. For example, a proper pre-registration could have been used for a more rigorous
commitment to fixed set of hypotheses and corresponding methods Van Miltenburg et al. (2021). However, the
process also revealed limitations of a strict hypothesis-driven research design, as some aspects still required
experimentation or revealed errors which needed to be addressed for the analysis to be interpretable. For
example, while we consider it important to not select the evaluation metric which is most favorable for your
desired interpretation of the result and stick to a predetermined selection, we still went through multiple
iterations of a region-sensitive measure to find one which properly measured our definitions of proper model
behaviour. Given this explorative side of most machine learning research, a more relaxed, iterative approach
to pre-registration (Dirnagl, 2020) could be a viable compromise.

Furthermore, the transfer of the investigated pipeline to a comparable but different classification task could
have given more insights into generalization of the observed results. We believe that the presented work can
serve as an inspiration for other researchers or as a learning tool for machine learning students. As all code
and data is available and documented in this paper and its appendix, others can pick up as a baseline to
improve upon, not only in terms of the model itself, but also regarding the mentioned scientific practices of
reproducibility, statistical soundness, and awareness for, as well as mitigation of, biases.

In conclusion, our investigation into the effects of balancing and augmenting data provided valuable insights.
We have demonstrated that heavily balancing the dataset is crucial for enabling models to effectively learn
to classify a wide variety of classes, even if it involves removing significant portions of the data. However,
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it is noteworthy that despite these efforts, all trained models still struggled to predict many classes, which
may indicate underlying issues beyond the data imbalance itself.

Furthermore, our introduction of a new loss function incorporating a static regional portion made significant
improvements across most configurations, suggesting that this approach helps the model to recognize regional
patterns. While initial tests with a dynamic regional portion did not show promising results, we believe that
refining this approach with varied parameters could lead to better outcomes, such as exploring the potential
efficacy of longer step sizes and training times.

Regarding the addition of new data, our findings did reveal significant improvements in model performance.
However, this improvement is only noticeable when a slightly larger proportion of data is added, as evidenced
by the lack of improvement with the weakly balanced models. Further research is warranted to investigate
the impact of varying the amount of mixed-in data and experimenting with different test sets to validate
these observations. In essence, our study underscores the complexity of data balancing and augmentation in
training robust machine learning models and highlights avenues for future exploration and refinement.

Broader Impact Statement

In this work, our main goal was to provide a case study or good machine learning practices. While a lot of
work exists on general rules for reproducible, unbiased, and statistically sound machine learning research,
this work can serve as a starting point for other aspiring researchers to study these challenges and how to
master them. The learnings from such expositions can lead to more sound and ethical research in a wide
variety of applications.

References
Alessio Benavoli, Giorgio Corani, Janez Demšar, and Marco Zaffalon. Time for a change: a tutorial for

comparing multiple classifiers through bayesian analysis. Journal of Machine Learning Research, 18(77):
1–36, 2017.

Remco R Bouckaert and Eibe Frank. Evaluating the replicability of significance tests for comparing learning
algorithms. In Pacific-Asia conference on knowledge discovery and data mining, pp. 3–12. Springer, 2004.

Ulrich Dirnagl. Preregistration of exploratory research: Learning from the golden age of discovery. PLoS
biology, 18(3):e3000690, 2020.

MSLS Foster and MLIS Deardorff. Open science framework (osf). Journal of the Medical Library Association,
105, 04 2017. doi: 10.5195/JMLA.2017.88.

Oguzhan Gencoglu, Mark van Gils, Esin Guldogan, Chamin Morikawa, Mehmet Süzen, Mathias Gruber,
Jussi Leinonen, and Heikki Huttunen. Hark side of deep learning–from grad student descent to automated
machine learning. arXiv preprint arXiv:1904.07633, 2019.

Lukas Haas, Silas Alberti, and Michal Skreta. Learning generalized zero-shot learners for open-domain image
geolocalization, 2023.

Sarah Holland, Ahmed Hosny, Sarah Newman, Joshua Joseph, and Kasia Chmielinski. The Dataset Nutrition
Label: A Framework to Drive Higher Data Quality Standards, pp. 1–26. Computers, Privacy and data
Protection. Hart Publishing, 1 edition, 2020. ISBN 978-1-5099-3274-0. doi: 10.5040/9781509932771.ch-001.

Max Hort, Zhenpeng Chen, Jie M Zhang, Mark Harman, and Federica Sarro. Bias mitigation for machine
learning classifiers: A comprehensive survey. ACM Journal on Responsible Computing, 2023.

Jesse M. Johns, Jeremiah Rounds, and Michael J. Henry. Multi-modal geolocation estimation using deep
neural networks, 2017. URL http://arxiv.org/abs/1712.09458.

Rohan K. Kaggle. Geolocation - geoguessr images (50k). ’https://www.kaggle.com/datasets/ubitquitin/geolocation-
geoguessr-images-50k/data’, 2022.

26

http://arxiv.org/abs/1712.09458
'


Under review as submission to TMLR

Norbert L Kerr. Harking: Hypothesizing after the results are known. Personality and social psychology
review, 2(3):196–217, 1998.

Junghwan Kim and Kee Moon Jang. An examination of the spatial coverage and temporal variability of
google street view (gsv) images in small-and medium-sized cities: A people-based approach. Computers,
Environment and Urban Systems, 102:101956, 2023.

Prabhat Nagarajan, Garrett Warnell, and Peter Stone. The impact of nondeterminism on reproducibility
in deep reinforcement learning. In 2nd Reproducibility in Machine Learning Workshop at ICML 2018,
Stockholm, Sweden, 7 2018.

Curtis G Northcutt, Anish Athalye, and Jonas Mueller. Pervasive label errors in test sets destabilize machine
learning benchmarks. arXiv preprint arXiv:2103.14749, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In International Conference on Machine
Learning, 2021. URL https://api.semanticscholar.org/CorpusID:231591445.

Harald Semmelrock, Simone Kopeinik, Dieter Theiler, Tony Ross-Hellauer, and Dominik Kowald. Repro-
ducibility in machine learning-driven research. arXiv preprint arXiv:2307.10320, 2023.

Carlos N. Silla and Alex A. Freitas. A survey of hierarchical classification across different application domains.
Data Mining and Knowledge Discovery, 22:31–72, 2011. doi: 10.1007/s10618-010-0175-9.

Pierre Stock and Moustapha Cisse. Convnets and imagenet beyond accuracy: Understanding mistakes and
uncovering biases. In Proceedings of the European Conference on Computer Vision (ECCV), September
2018.

Farouk Umar, Josephine Amoah, Moses Asamoah, Mawuli Dzodzomenyo, Chidinma Igwenagu, Lorna-Grace
Okotto, Joseph Okotto-Okotto, Pete Shaw, and Jim Wright. On the potential of google street view for
environmental waste quantification in urban africa: An assessment of bias in spatial coverage. Sustainable
Environment, 9(1):2251799, 2023.

United Nations Statistics Division. Standard country or area codes for statistical use (m49). United Nations
Publications, 1999. https://unstats.un.org/unsd/methodology/m49/.

Laurens van der Maaten and Geoffrey Hinton. Viualizing data using t-sne. Journal of Machine Learning
Research, 9:2579–2605, 11 2008.

Emiel Van Miltenburg, Chris van der Lee, and Emiel Krahmer. Preregistering nlp research. arXiv preprint
arXiv:2103.06944, 2021.

Hongkai Zhang, Hong Chang, Bingpeng Ma, Naiyan Wang, and Xilin Chen. Dynamic r-CNN: Towards high
quality object detection via dynamic training. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-
Michael Frahm (eds.), Computer Vision – ECCV 2020, pp. 260–275. Springer International Publishing,
2020. ISBN 978-3-030-58555-6. doi: 10.1007/978-3-030-58555-6_16.

Feng Zheng, Cheng Deng, Xing Sun, Xinyang Jiang, Xiaowei Guo, Zongqiao Yu, Feiyue Huang, and Rongrong
Ji. Pyramidal person re-IDentification via multi-loss dynamic training. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 8506–8514. IEEE, 2019. ISBN 978-1-72813-293-8.
doi: 10.1109/CVPR.2019.00871. URL https://ieeexplore.ieee.org/document/8954272/.

27

https://api.semanticscholar.org/CorpusID:231591445
https://ieeexplore.ieee.org/document/8954272/


Under review as submission to TMLR

A Course Information

A.1 03-IMVA-GPMLR: Good Practices in Machine Learning Research

https://lvb.informatik.uni-bremen.de/imva/03-imva-gpmlr.pdf

B Source Code

B.1 Github Repository

Anonymized for review: https://anonymous.4open.science/r/good_practices_ml-062E

C Datasets

C.1 Geoguessr Dataset

C.1.1 Data Source and Analysis

• Data Source:

https://www.kaggle.com/datasets/ubitquitin/geolocation-geoguessr-images-50k/data

• Data Nutrition Label:

https://datanutrition.org/labels/v3/?id=4f69c59f-69fc-4f1b-a71a-189925a1f565

C.1.2 Folder changes to match CLIP training

Rename folders:

• Aland → Aland Islands

• Kyrgyzstan → Kyrgyz Republic

• US Virgin Islands → United States Virgin Islands

• South Georgia and South Sandwich Islands → South Georgia and South Sandwich Is.

• Svalbard and Jan Mayen → Svalbard and Jan Mayen Islands

• Macao → Macau

• Faroe Islands → Faeroe Islands

• North Macedonia → Macedonia

• Czechia → Czech Republic

Delete Folders:

• Northern Mariana Islands

• Lesotho

• American Samoa

• Pitcairn Islands
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Figure 18: Logarithmic Distribution of Image Samples per Country - Geoguessr
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Figure 19: Heat Map showing distribution of sample count per country in the Geoguessr dataset. White
space corresponds to the sea and countries which are not represented in the dataset.

C.1.3 Distribution Analysis

The heat map above ignores the following countries found in the dataset: ’Aland’, ’American Samoa’,
’Andorra’, ’Bermuda’, ’Curacao’, ’Faroe Islands’, ’Gibraltar’, ’Guam’, ’Hong Kong’, ’Isle of Man’, ’Jersey’,
’Macao’, ’Malta’, ’Martinique’, ’Monaco’, ’Northern Mariana Islands’, ’Pitcairn Islands’, ’Reunion’, ’San
Marino’, ’Singapore’, ’South Georgia and South Sandwich Islands’, ’Svalbard and Jan Mayen’, ’US Virgin
Islands’.
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C.2 Tourist Dataset

C.2.1 Data Source and Analysis

• Data Source:

https://osf.io/pe453/?view_only=d4ebd0f1fcb54dd8b24312fed3e5b722

• Data Nutrition Label:

https://datanutrition.org/labels/v3/?id=b5f18c6a-ddd3-411a-8a2e-92c84016b4dc

C.2.2 Ethically Sensitive Images

(a) Grave (b) Indigenous Art (c) Beach Scene

Figure 20: Examples of images with potential ethical issues, such as (a) sites of remembrance; (b) depictions
of culturally significant places, objects or events; (c) depictions of people in potentially sensitive situations
without their explicit consent.

C.2.3 List of Potentially Ethically Problematic Images

• Australia: australia-37.png, -82.png, -83.png, -87.png,

• Austria: austria-salzburg-8.png,

• Brazil: rio-de-janeiro-16.png, -17.png

• Canada: canada-8.png, -9.png, -33.png

• China: beijing-1.png, -4.png, -5.png, -7.png, -8.png, -10.png, -11.png, -47.png

• Croatia: croatia-9.png, -21.png, -26.png

• Czech Republic: prague-22.png, -36.png

• France: paris-43.png, -57.png

• Germany: germany-berlin-46.png, -53.png, -56.png, -57.png, -58.png, -71.png,

• Ghana: ghana-pictures-and-travel-information-32.png, -34.png, -38.png, -59.png, -67.png, -68.png,
-69.png, -72.png

• Indonesia: bali-4.png, -10.png, -11.png, -12.png, -13.png, -40.png

• Israel: israel-42.png, -44.png, -50.png

• Laos: laos-0.png, -8.png

• Netherlands: netherlands-denhaag-1.png
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• South Africa: south-africa-24.png

• South Korea: seoul-3.png

• Thailand: bangkok-47.png, -60.png, -108.png

• Turkey: turkey-39.png

• Uzbekistan: uzbekistan-6.png, -9.png, -36.png, -38.png, -40.png

• Vietnam: vietnam-21.png

C.2.4 List of Images that could lead to Stereotype Bias

• China: beijing–15.png

• Czech Republic: prague-10.png

• Egypt: egypt-36.png

• Ghana: ghana-pictures-and-travel-information-4.png, -5.png, -24.png

• Laos: laos-19.png

• Thailand: bangkok-54.png, -80.png

• Vietnam: vietnam-0.png, -20.png

C.2.5 Nondescript Images

(a) Sunset

Figure 21: Example of a non-descript image.
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C.2.6 Distribution Analysis

Figure 22: Logarithmic Distribution of Image Samples per Country - Tourist
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Figure 23: Heat Map showing distribution of sample count per country in the Tourist dataset. White space
corresponds to the sea and countries which are not represented in the dataset.

C.3 Aerial Dataset

• Data Source:

https://osf.io/wrmzx/?view_only=bbd7cf7d0f6243e7ac6b87fb45fac04a

• Data Nutrition Label:

https://datanutrition.org/labels/v3/?id=b13c1d20-181e-4e5d-b2d8-a1d48e5cb66b

C.3.1 Finding Interior Boxes for each Country

This is not the optimal method for finding the largest interior rectangle of a polygon, for example, there
are many countries where the geographical center is not situated within the borders. We took the landmass
Polygon data from Natural Earth Data10 and ran the following script on each polygon:

1. Find the center point of the polygon
2. Initialize rectangle ’x’ as the Bounding Box of the Polygon
3. Iterate: while ’x’ is not contained within the polygon

- Shrink the boundaries of ’x’

C.3.2 Distribution Analysis

10https://github.com/martynafford/natural-earth-geojson/blob/master/110m/cultural/ne_110m_admin_0_countries.
json
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Figure 24: Logarithmic Distribution of Image Samples per Country - Aerial

D Experiment Parameters

This section lists the used parameters for the experiment:

1. Dataset Creation Seed: 1234

2. Experiment Seeds: 4808,4947,5723,3838,5836,3947,8956,5402,1215,8980

3. Hardware: intel core i5-13600k, GeForce GTX 1070, 16GB RAM

4. CUDA 12.4: Enabled

5. ADAM Parameters: Learning Rate = 0.001 and the default values from pytorch 2.1

6. Neural Network Initialization: Random Initialization

7. Loading training datasets (batch size): 261 (Weakly Balanced, Unbalanced), 97 (Strongly Balanced)

The parameters for the confusion matrices:

1. Region-ordered index array: [8, 11, 144, 3, 4, 12, 16, 26, 28, 44, 46, 51, 52, 66, 74, 83, 95, 101, 105,
109, 121, 128, 153, 180, 191, 201, 202, 32, 43, 77, 81, 134, 140, 146, 179, 99, 106, 185, 187, 198, 58,
98, 122, 131, 133, 136, 159, 163, 166, 177, 178, 193, 195, 209, 210, 41, 80, 97, 102, 103, 126, 127,
192, 20, 31, 48, 84, 119, 152, 160, 162, 173, 194, 60, 137, 149, 165, 204, 78, 156, 7, 34, 35, 40, 64, 53,
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Figure 25: Heat Map showing distribution of sample count per country in the Aerial dataset. White space
corresponds to the sea and countries which are not represented in the dataset.

56, 116, 117, 167, 188, 23, 33, 72, 196, 13, 50, 55, 59, 62, 65, 69, 86, 88, 92, 94, 113, 115, 142, 168,
172, 38, 148, 189, 205, 9, 25, 27, 39, 42, 54, 61, 68, 76, 79, 147, 157, 197, 200, 24, 85, 100, 107, 125,
135, 150, 169, 184, 186, 203, 30, 138, 182, 208, 2, 17, 29, 89, 91, 111, 132, 143, 151, 0, 5, 15, 57, 71,
75, 82, 93, 120, 123, 130, 155, 161, 171, 175, 199, 206, 19, 22, 37, 45, 70, 73, 112, 124, 129, 139, 170,
174, 176, 183, 1, 6, 14, 21, 47, 67, 87, 90, 96, 104, 108, 145, 154, 158, 164, 181, 190, 207, 10, 18, 36,
49, 63, 110, 114, 118, 141]

2. Continent-ordered index array: [11, 5, 10, 17, 20, 2, 3, 15, 12, 0, 4, 6, 16, 18, 21, 7, 13, 19, 22, 1, 8,
9, 14]
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E CLIP Results

E.1 Statistical Results

These are the results of the tests described in Section 5.1. The t-tests are all one-tailed with 199 degrees of
freedom.

E.1.1 Geoguessr

Prompt Median Mean Standard Deviation t-value p-value
Default Prompt 0.206 0.208 0.022 1.25 0.107
Extended Prompt 0.208 0.21 0.027 - -

E.1.2 Tourist

Prompt Median Mean Standard Deviation t-value p-value
Default Prompt 0.213 0.21 0.025 -0.06 0.48
Extended Prompt 0.211 0.21 0.025 - -

E.1.3 Aerial

Prompt Median Mean Standard Deviation t-value p-value
Default Prompt 0.06 0.07 0.05 0.27 0.39
Extended Prompt 0.07 0.07 0.05 - -

E.1.4 Default Prompt (Comparing Tourist to other datasets)

Dataset Median Mean Standard Deviation t-value p-value
Tourist 0.213 0.21 0.025 - -
Geoguessr 0.206 0.208 0.022 1.74 0.08
Aerial 0.06 0.07 0.05 34.28 < .001

E.1.5 Extended Prompt (Comparing Tourist to other datasets)

Dataset Median Mean Standard Deviation t-value p-value
Tourist 0.211 0.21 0.025 - -
Geoguessr 0.208 0.21 0.027 0.53 0.6
Aerial 0.07 0.07 0.05 35.09 < .001
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E.2 XAI

E.2.1 CLIP t-SNE differences (Geoguessr)

As stated in the paper, the differences are negligible. Other than the small separated cluster in the bottom
right of Figure 27 which is associated with a grouping of south-eastern Asian samples.

Figure 26: t-SNE representation of CLIP embeddings of samples from the geoguessr dataset, color coded
with respect to the continent. Appart from a large european cluster on the bottom, no well separated
clusters can be easily identified, rather some regions have larger concentration of continent specific samples,
but transition rather smoothly into adjacent ones.
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Figure 27: t-SNE representation of vectors resulting from the concatenation of CLIP embeddings of samples
from the geoguessr dataset and their corresponding set of cosine similarities to the prompt embeddings. Color
coded with respect to the continent. Apart from the formation of an Asiatic cluster on the right-bottom
corner, no noticeable differences are detectable in this visualization, however, minor re-arrangements on the
intra-region structure can support increased country identification capabilities for the fine-tuned model to
exploit.

E.2.2 CLIP t-SNE differences (Tourist)

There is no obvious, visual difference in the t-SNE representations of the Tourist Embeddings (Figure 28)
and Embeddings & Cosine Similarities (Figure 29).
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Figure 28: t-SNE representation of CLIP embeddings of samples from the Tourist dataset, color coded by
continent. Some clustering is observable, corresponding to well recognized samples for some countries, but
this structuring is only partial, as many samples are simply located within a larger region of continent.

Figure 29: t-SNE representation of CLIP embeddings of samples from the Tourist dataset concatenated
with the corresponding set of cosine similarities to the prompt embeddings. Color coded by continent. No
noticeable differences can be observed in comparison to the CLIP embeddings only representation.
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E.2.3 Effective classification of Japan in Geoguessr Dataset

Figure 30: Unnormalized, ordered country confusion matrix shows how CLIP accurately classifies Japan
within the Geoguessr dataset. The confusion matrix is cropped to the top 25 countries

Figure 31: t-SNE representation of CLIP embeddings of Geoguessr samples, with those of Eastern Asia
Region highlighted. Color coded by country.
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E.2.4 Climate Similarity - Oceania and South Africa

Similar to the t-SNE representations of the Geoguessr dataset, we also see a connection between Oceania
and South Africa in the Tourist dataset representations shown below.

Figure 32: t-SNE representation of CLIP embeddings of Tourist samples, with those of Oceania highlighted.
Color coded by country.

Figure 33: t-SNE representation of CLIP embeddings of Tourist samples, with those of southern Africa
highlighted. Color coded by country. South Africa is the only Southern African country represented in the
Tourist dataset. Note the superposition between this region position and that of Oceania countries.
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E.2.5 Highly mixed Europe Regions - Geoguessr Dataset

In Figures 34 and 35 we can see that for both the complete and filtered Geoguessr dataset, although there
are some Southern and Northern European outliers, the European embeddings are generally very well mixed
and difficult to separate.

Figure 34: t-SNE representation of CLIP embeddings of samples from the Geoguessr dataset. Samples from
European countries are highlighted, color coded by sub-continental regions.

43



Under review as submission to TMLR

Figure 35: t-SNE representation of CLIP embeddings of samples from European countries from the Geoguessr
dataset, color coded by sub-continetal region. This re-computation of t-SNE on a restricted set of samples
allows the comparison of sample representations in an Europe-only context.

E.2.6 Confused European Regions - Tourist Dataset
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Figure 36: The normalized, continent-ordered regions confusion matrix shows European misclassifications in
the Tourist dataset

Figure 37: t-SNE representation of CLIP embeddings of samples from the Tourist dataset, highlighting the
grouping of European samples
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F fine-tuning Results

The Figure 39 and Figure 38 show how the Geoguessr Weakly-Balanced model predicts fewer countries with
higher precision, using some countries of one regions as an “umbrella” for all the countries in that region,
while the Geoguessr Strongly-Balanced model reduces this behavior, predicting a larger variety of countries,
at the cost of more confusion especially within a region.
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Figure 38: Regionally ordered confusion matrix for the Geoguessr Strongly-Balanced model with L50 config-
uration.

Figure 39: Regionally ordered confusion matrix for the Geoguessr Weakly-Balanced model with L50 config-
uration.
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Figure 40: Northern europe confusion matrix for the Geoguessr Weakly-Balanced model with L50 configura-
tion.

Figure 41: Northern europe confusion matrix for the Geoguessr Strongly-Balanced model with L50 configu-
ration.
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Figure 42: West Asia confusion matrix for the Geoguessr Strongly-Balanced model with L50 configuration.

Figure 43: West Asia confusion matrix for the Geoguessr Weakly-Balanced model with L50 configuration.
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mixed precision mixed recall mixed F1
Experiment
Geoguessr Weakly Balanced
L0 M=0.328,SD=0.015 M=0.328,SD=0.015 M=0.355,SD=0.015
L25 M=0.378,SD=0.012 M=0.378,SD=0.012 M=0.414,SD=0.016
L50 M=0.381,SD=0.010 M=0.381,SD=0.010 M=0.429,SD=0.013
LDY N M=0.349,SD=0.008 M=0.349,SD=0.008 M=0.377,SD=0.011
Geoguessr Strongly Balanced
L0 M=0.498,SD=0.017 M=0.381,SD=0.014 M=0.352,SD=0.013
L25 M=0.528,SD=0.031 M=0.425,SD=0.014 M=0.307,SD=0.016
L50 M=0.543,SD=0.039 M=0.415,SD=0.011 M=0.404,SD=0.020
LDY N M=0.482,SD=0.024 M=0.402,SD=0.016 M=0.366,SD=0.015
Mixed Weakly Balanced
L0 M=0.586,SD=0.036 M=0.336,SD=0.011 M=0.361,SD=0.014
L25 M=0.593,SD=0.026 M=0.389,SD=0.012 M=0.420,SD=0.014
L50 M=0.589,SD=0.012 M=0.382,SD=0.009 M=0.419,SD=0.010
LDY N M=0.555,SD=0.033 M=0.353,SD=0.012 M=0.379,SD=0.015
Mixed Strongly Balanced
L0 M=0.482,SD=0.023 M=0.396,SD=0.016 M=0.363,SD=0.014
L25 M=0.535,SD=0.022 M=0.441,SD=0.013 M=0.417,SD=0.014
L50 M=0.576,SD=0.023 M=0.438,SD=0.011 M=0.434,SD=0.013
LDY N M=0.498,SD=0.030 M=0.423,SD=0.014 M=0.381,SD=0.016

Table 4: Fine-tuning Experiment aggregated performance results as mean (M) and standard deviation (SD)
for each of the mixed metrics (For metric definitions see Equation 7)

F.1 T-test Reuslts

In the following we first give the t-test results comparing different loss functions in each dataset and then
the t-test results comparing different datasets on the L50.

F.2 Loss inbalances

When observing the following loss graph (Figure 44), we see that the losses are scaled differently from each
other. This is due to the larger number of countries in comparison to the number of regions. Noticeably, this
leads LDYN to have jumps of increasing loss after each epoch: due to the recalculation of the loss function
as γ decreases in value. In this case in particular, this scaling issue may cause ineffective or inefficient
training. A possible solution would be to multiply an additional scaling factor of log( nc

nr
) to the Regional

Cross Entropy loss function (nc := number of countries, nr := number of regions).
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mixed precision mixed recall mixed F1
Experiment
Geoguessr Weakly Balanced
L0|L25 t(18)=-8.189,p=.0 t(18)=-8.189,p=.0 t(18)=-8.648,p=.0
L0|L50 t(18)=-9.345,p=.0 t(18)=-9.345,p.0 t(18)=-12.003,p=.0
L0|LDY N t(18)=-3.953,p=.001 t(18)=-3.953,p=.001 t(18)=-3.682,p=.002
L25|L50 t(18)=-0.686,p=.502 t(18)=-0.686,p=.502 t(18)=-2.304,p=.033
L25|LDY N t(18)=6.087,p=.0 t(18)=6.087,p=.0 t(18)=6.127,p=.0
L50|LDY N t(18)=7.632,p=.0 t(18)=7.632,p=.0 t(18)=9.751,p=.0
Geoguessr Strongly Balanced
L0|L25 t(18)=-2.715,p=.014 t(18)=-7.107,p=.0 t(18)=-8.100,p=.0
L0|L50 t(18)=-3.307,p=.004 t(18)=-6.251,p=.0 t(18)=-6.830,p=.0
L0|LDY N t(18)=1.690,p=.108 t(18)=-3.22,p=.005 t(18)=-2.114,p=.049
L25|L50 t(18)=-0.839,p=.382 t(18)=1.697,p=.107 t(18)=0.367,p=.718
L25|LDY N t(18)=3.713,p=.002 t(18)=3.483,p=.003 t(18)=5.914,p=.0
L50|LDY N t(18)=4.154,p=.001 t(18)=2.246,p=.037 t(18)=4.927,p=.0
Mixed Weakly Balanced
L0|L25 t(18)=-0.492,p=.629 t(18)=-9.928,p=.0 t(18)=-9.344,p=.0
L0|L50 t(18)=-0.202,p=.842 t(18)=-10.005,p=.0 t(18)=-10.55,p=.0
L0|LDY N t(18)=2.206,p=.058 t(18)=-3.297,p=.004 t(18)=-2.611,p=.016
L25|L50 t(18)=0.496,p=.626 t(18)=1.508,p=.149 t(18)=0.117,p=.909
L25|LDY N t(18)=2.886,p=.010 t(18)=6.543,p=.0 t(18)=6.425,p=.0
L50|LDY N t(18)=3.025,p=.007 t(18)=6.040,p=.0 t(18)=7.181,p=.0
Mixed Strongly Balanced
L0|L25 t(18)=-5.248,p=.0 t(18)=-7.215,p=.0 t(18)=8.789,p=.0
L0|L50 t(18)=-9.006,p=.0 t(18)=-6.959,p=.0 t(18)=-11.657,p=.0
L0|LDY N t(18)=-1.322,p=.203 t(18)=-4.042,p=.001 t(18)=-2.739,p=.0
L25|L50 t(18)=-4.010,p=.001 t(18)=0.684,p=.504 t(18)=-2.895,p=.010
L25|LDY N t(18)=3.213,p=.005 t(18)=3.058,p=.007 t(18)=5.402,p=.0
L50|LDY N t(18)=6.562,p=.0 t(18)=2.588,p=.019 t(18)=8.057,p=.0

Table 5: Fine-tuning Experiment t-test results as statistic and p-value for each metric and pairwise compar-
ison of loss configuration in the different training dataset configurations
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Figure 44: Example evolution of loss functions’ value during fine-tuning model’s training on the weakly
balanced dataset.
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