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Abstract

Multilingual transfer techniques often improve001
low-resource machine translation (MT). Many002
of these techniques are applied without con-003
sidering data characteristics. We show in004
the context of Haitian-to-English translation005
that transfer effectiveness is correlated with006
amount of training data and relationships be-007
tween knowledge-sharing languages. Our ex-008
periments suggest that beyond a threshold of009
authentic data, back-translation augmentation010
methods are counterproductive, while cross-011
lingual transfer during training is preferred. We012
complement this finding by contributing a rule-013
based French-Haitian orthographic and syntac-014
tic engine and a novel method for phonologi-015
cal embedding. When used with multilingual016
techniques, orthographic transformation signifi-017
cantly improves performance over conventional018
methods, and phonological transfer greatly im-019
proves performance in Jamaican MT.020

1 Introduction and Motivation021

Machine translation (MT) for low resource lan-022

guages (LRL) requires special attention due to data023

scarcity. Often LRL MT is aided by knowledge024

transfer from languages with more abundant re-025

sources (Tars et al., 2021; Neubig and Hu, 2018;026

Zoph et al., 2016). In this work we report a027

case study showing that transfer techniques based028

on back-translation can improve poor scores in029

very low-resource settings but be counterproduc-030

tive once a threshold of authentic data is reached.031

We show that beyond this threshold, multi-032

source MT methods are more effective (Zoph et al.,033

2016). In these settings, MT systems map from a034

small amount of data in a LRL and a larger amount035

of data in a related high resource language (HRL)036

to a target language (TGT), in order to improve037

LRL-to-TGT translation quality. (See §2.) In ad-038

dition to applying these methods conventionally,039

we present novel techniques for harnessing syn-040

tactic, orthographic, and phonological similarities041

between source languages. Prior to training, we 042

transform HRL data to resemble LRL orthogra- 043

phy and syntax by harnessing morphological and 044

syntactic relationships between related languages. 045

For phonologically similar languages, we present 046

novel phonological word embeddings via PanPhon 047

(Mortensen et al., 2016) and use these to initilize 048

MT models. 049

We conduct these experiments in a case study of 050

Haitian-to-English MT. We also contribute a rule- 051

based French-Haitian (FRA-HAT) orthographic 052

and syntactic engine that transforms French to 053

Haitian text with 59.5% character error rate (CER) 054

and 1.60 BLEU (Papineni et al., 2002) on a single- 055

reference set of 50 sentences. To demonstrate how 056

these techniques can be applied to other LRL, we 057

adapt these strategies to Jamaican and show sig- 058

nificant improvements over baseline performance, 059

particularly via phonological transfer. 060

In summary, our findings suggest that despite 061

back-transltion’s reputation for usefulness in some 062

settings, it cannot result in usable MT in others, in 063

which case other transfer methods are needed for 064

further improvement. To our knowledge, this is the 065

first work to present this finding. 066

Case Study: Haitian We consider Haitian as a 067

paradigm low-resource language. This language 068

has critical importance for the global community, 069

particularly in the context of recent immigration 070

and disaster relief efforts. Haitian is closely re- 071

lated to high-resource French, but the two have 072

an unconventional relationship: high phonological 073

and lexical similarity with low syntactic and ortho- 074

graphic similarity. This is comparable to a large 075

number of language pairs such as Thai and Lao, 076

Arabic and Maltese, Jamaican and English, etc. 077

The Haitian government did not formalize a 078

Haitian writing system until the 20th century. Still 079

today, Haitians often write in French rather than 080

Haitian due to social pressures, which contributes 081
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to a lack of written and digitized materials. De-082

spite this lack of resources, Haitian is a widely083

spoken language. Roughly 12 million people speak084

it natively, including about 1 million immigrants085

in the USA and over a million more in Brazil, the086

Bahamas, Canada, Chile, Cuba, the Dominican Re-087

public, France, Mexico, and elsewhere. Not many088

other residents of these countries learn Haitian. As089

a result, the lives of many Haitian speakers could be090

greatly improved by high-quality MT technology.091

2 Related Work and Approach092

We are not the first researchers to explore Haitian-093

to-English MT. Frederking et al. (1998) developed094

early statistical systems for Haitian MT and auto-095

matic speech recognition. In 2010 a devastating096

earthquake in Haiti’s capital killed roughly a quar-097

ter million people. This disaster renewed interna-098

tional interest in Haitian MT systems for disaster re-099

lief efforts, the deployment of which was a “widely100

heralded success story” (Neubig and Hu, 2018).101

Back-translation Augmentation Many re-102

searchers have employed back-translation to103

augment LRL data (Sennrich et al., 2016). This104

technique requires a small LRL-TGT bitext and105

a larger monolingual TGT corpus. Rather than106

mapping from LRL to HRL sentences in the107

small bitext, Sennrich et al. (2016) proposed108

a new method: (1) use the small bitext to train109

a TGT-to-LRL system, (2) translate the large110

TGT corpus to LRL, creating a large synthetic111

HRL-LRL bitext, then (3) train a system that112

maps from the LRL to the HRL on both the small113

authentic bitext and large synthetic bitext. In this114

paradigm, the quality of the synthetic translations115

may be low because they were produced by a116

system trained on a small bitext. The idea is that117

a small amount of high-quality data mixed with118

a large amount of low-quality data is preferable119

to a small amount of high-quality data alone.120

Back-translation has shown improvements in121

multiple MT settings (Popel et al., 2020). Xia122

et al. (2019) extended variations of this idea123

to a multilingual framework. They investigated124

translating to English (ENG) from an LRL that125

has a closely related HRL. A large HRL-ENG126

bitext, and small bitexts between the LRL and the127

two other languages are assumed, as well as a128

large monolingual ENG corpus. They proposed129

producing synthetic LRL-ENG aligned data in130

three ways:131

1. Train an ENG-to-LRL system on the small 132

LRL-ENG bitext, and translate the large 133

monolingual English corpus to LRL (i.e. back- 134

translation) 135

2. Train an HRL-to-LRL system on the small 136

LRL-HRL bitext, and translate the large ENG- 137

aligned HRL data to LRL 138

3. Train an ENG-to-HRL system on the HRL- 139

ENG bitext, and using the system from the 140

previous step, translate the large ENG mono- 141

lingual corpus to HRL and then to LRL 142

In the current work, we apply these augmentation 143

methods for Haitian-to-English translation with 144

HRL French. We refer to the synthetic bitext pro- 145

duced by step 1 as synth_mono, by step 2 as 146

synth_mix1, and by step 3 as synth_mix2. 147

Multi-source MT Multi-source MT incorporat- 148

ing one or more HRL-TGT bitexts into training 149

has been shown to improve LRL-TGT translation. 150

(Freitag and Firat, 2020; Zoph et al., 2016). Neu- 151

big and Hu (2018) trained systems that map from 152

an LRL and one related HRL to English. This im- 153

proved LRL-ENG BLEU score significantly. In our 154

work we show that this method is more effective 155

than back-translation when more authentic data is 156

available, and we expand it through syntactic, or- 157

thographic, and phonological data representations 158

to exploit relations between source languages. 159

3 Methodology and Experiments 160

Our experiments use a HAT-ENG bitext with 161

189,182 aligned sentence pairs (LRL-ENG) and a 162

FRA-ENG bitext with 315,577 (HRL-TGT). These 163

data come from broadcasts and literature produced 164

by the Church of Jesus Christ of Latter-day Saints, 165

with small additions from OPUS1. Because of over- 166

lap between the English portions of these two 167

bitexts, we have an implicit FRA-HAT bitext of 168

length 77,121. We have a large monolingual ENG 169

corpus of text from Wikipedia, the Toronto book 170

corpus (Zhu et al., 2015), and text scraped from 171

Reddit. 172

All our models are attention-based (Vaswani 173

et al., 2017), adapted from The Annotated Trans- 174

former (Klein et al., 2017), and trained using the 175

Adam optimizer (Kingma and Ba, 2017). Hyper- 176

parameters are detailed in Appendix A.1 Because 177

1https://opus.nlpl.eu
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Original French: elle ne pensait pas descendre de sa maison pour lui rendre le livre, comme elle a fait ce matin
Orthograph transform: lwi panse pa dèsann son kay pou lwi rann la liv, konm lwi gen fè sa maten
Syntax transform: il pas tape penser descendre maison il pour rendre li livre le comme il té faire matin ce
Both transforms: li pa tap panse dèsann kay li pou rann li liv la konm li te fè maten sa
Actual Haitian translation: li pa tap panse desann sòti kay li pou rann li liv la, jan li te fè maten sa
English: she did not want to descend from her house to give him the book, like she did this morning

Table 1: Outputs of the Haitian-approximating orthographic and syntactic engines applied to transform French text

we are comparing data sets produced with different178

transfer methods, we used this same model config-179

uration for all experiments.180

Haitian Back-translation We employed the181

same back-translation data augmentation strate-182

gies outlined in the numbered items of §2. To183

observe effects of this augmentation on varying184

amounts of authentic data, we augmented gradu-185

ally. Starting with 5K, 25K and 189K lines of au-186

thentic aligned data, we added 5K, then, 25K, then187

200K lines of synth_mono data. Then to the188

200K of synth_mono we added 5K, 25K, then189

200K of synth_mix1 data, and we followed suit190

with synth_mix2 data. Results from training on191

these 30 different sets are discussed in §4.192

Multi-source Training We also trained multi-193

source MT models with HAT and LRL, FRA as194

HRL, and ENG as TGT. We conducted the same ex-195

periment with Spanish (SPA) as the HRL and with196

all three source languages together. We selected197

French and Spanish because of their proximity to198

Haitian. However, the nature of this proximity199

introduces interesting challenges. Roughly 90%200

of Haitian lexemes are of French origin, and the201

two languages are phonologically close. However202

they have few shared word forms because of their203

distinct orthography systems. And they are syn-204

tactically different. Because traditional MT trans-205

formers do not access phonological information,206

this similarity does not provide any benefit in using207

French as co-source with Haitian.208

Orthographic, Syntactic, and Phonological209

Transfer To experiment with different methods210

of multi-source training, we developed a pipeline211

that orthographically transforms French to Haitian.212

The first engine changes word orthography via213

transformation rules based on French and Haitian214

grammar. The process resembles other automatic215

orthography transliterators like Epitran (Mortensen216

et al., 2018). The second engine uses the Berkeley217

Neural constituency parser (Kitaev et al., 2019) to218

change word order in French sentences, approxi-219

mating Haitian syntax. This 922-line script tuned 220

on zero data produces HAT reference translations 221

from a single set with BLEU 1.60 and CER 59.5%2. 222

In this manner we transform our French-English 223

bitext into a pseudo-Haitian-English bitext and 224

train jointly with that and our authentic Haitian- 225

English data. To observe the different effects of 226

transfer from orthographic similarity and from syn- 227

tactic similarity in MT training, we also transform 228

French to pseudo-Haitian using the two engines in 229

isolation. See Table 1 for output examples. 230

Many languages are not lexically or phonolog- 231

ically close but share syntactic features, such as 232

Jamaican and Haitian. We explore this more gener- 233

alizable case in §4. 234

We employ a separate method to exploit phono- 235

logical similarity between source languages. We 236

convert Haitian and French words to IPA feature 237

vectors using Epitran (Mortensen et al., 2018) and 238

PanPhon (Mortensen et al., 2016). We represent 239

each word as the sum of its phone vectors and 240

use these to initialize transformer embeddings. In 241

this way, the model can know that French unité 242

(IPA: ynite) and its Haitian translation inite (IPA: 243

inite) are closely related. This method does not 244

involve transforming or altering either language 245

and can be applied readily to other language pairs. 246

For this application, we made significant improve- 247

ments to Epitran for its French setting. 248

4 Results and Discussion 249

Figure 1 shows translation performance scores 250

across a progression of back-translation-based aug- 251

mentation as discussed in §3. These techniques im- 252

prove performance when the amount of authentic 253

data is very small. But once it crosses a threshold, 254

they become counter-productive. 255

Results for multilingual source training experi- 256

ments are in Table 2. This illustrates that bi- and 257

trilingual source training can improve MT even 258

when we use all 189K authentic HAT-ENG pairs. 259

As mentioned in §3, our MT models cannot take 260

2BLEU is a poor metric for this engine since a majority of
its errors are word choice differences and misspellings.
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Figure 1: Scores in four performance metrics across
models employing back-translation techniques. Back-
translation augmentation increases to the right.

Source BLEU BLEURT
HAT 43.94* .6810*
HAT+FRA 46.05* .7026*
HAT+SPA 46.51* .7065
HAT+FRA+SPA 46.41* .7131*
HAT+JPN 30.41 -.1554

Table 2: HAT-ENG translation scores from multi-source
training, best results bolded
*Significant improvement over next-best score, p=1e-6, details in Appendix B.1

full advantage of Haitian’s similarity to French.261

Note that augmenting with French is still more262

helpful than with an unrelated language, Japanese,263

which degrades performance. The best configura-264

tions used Haitian and Spanish, evaluated using265

BLEU and BLEURT (Sellam et al., 2020).266

Table 3 displays the results from different trans-267

formations of French source data to augment for268

HAT-ENG training. Synt and Orth refer to data269

transformation from our syntactic and orthographic270

FRA-to-HAT engines, respectively. Phon indicates271

phonological encoded similarity via PanPhon. All272

indicates all of these transfers employed at once.273

Overall, our best HAT-to-ENG model uses ortho-274

graphically transformed FRA data, and the second-275

best uses both Synt and Orth.276

Although these methods all score significantly277

higher than zero augmentation (and significantly278

higher than the untransformed FRA baseline in279

Transform. BLEU BLEURT
No HRL 43.94 .6810
No transf. on FRA 46.05* .7026
Synt 46.08* .7015*
Orth 46.88* .7061
Synt+Orth 46.43* .7057
Phon 46.21* .7050
All 46.37* .7053

Table 3: French co-source data transformed in three
different ways to resemble Haitian, best results bolded
*Significant improvement over next-best score, p=1e-6

Transform. BLEU BLEURT
JAM→ENG (baseline) 4.868 .3873*
JAM+HAT →ENG (synt.) 10.32* .4483*
JAM+cs-ENG →FRA (orth.) 7.807* .1698
JAM+ENG phon. embeds. (phon.) 81.31* .6861*

Table 4: Experiments for harnessing syntactic, or-
thographic, and phonological relatedness to higher-
resourced languages for Jamaican translation
*Significant improvement over next-best score, p=1e-6

BLEU), their margin of improvement is smaller 280

than expected. We hypothesize this could be im- 281

proved by learning phonological embeddings that 282

preserve phone order in the case of Phon and by 283

tuning our FRA-HAT pipeline to a small amount 284

of real data in the case of Synt and Orth. 285

Rapid Adaptation to New Languages We show 286

rapid adaptation of these methodologies to new lan- 287

guages, without language-specific transformation 288

engines, by exploring Jamaican (JAM) MT. In this 289

setting, phonological transfer is highly effective 290

(see Figure 4). For this experiment we created a 291

new Jamaican setting in Epitran via 37 mapping 292

rules. (Note this step would be unnecessary for 293

adaption to any of the 77 languages supported by 294

Epitran.) This simple technique improves both 295

BLEU and BLEURT scores markedly. We used 296

ENG as HRL (with FRA as TGT) in this experi- 297

ment and in orthographic transfer, which consisted 298

of code-switched English data using a dictionary 299

of 200 Jamaican words. For syntactic transfer we 300

simply used HAT as the HRL, since Jamaican is 301

even lower-resourced, and the two are syntactically 302

close. 303

5 Conclusion 304

Although back-translation transfer methods are ef- 305

fective in some MT settings, in others they are un- 306

able to improve MT performance beyond a thresh- 307

old or result in usable translation. Per our explo- 308

rations, methods involving multilingual transfer 309

during training are able to make further improve- 310

ments, even when more authentic data is available 311

and baseline performance is higher. Our experi- 312

ments on Haitian MT have the potential for future 313

improvements and broad social impact. And our 314

exploration of Jamaican demonstrates the capacity 315

of these techniques for significant improvements in 316

low-resource domains more generally. 317
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A.1 All Experiments422

The following settings are true for all experiements423

reported in this paper:424

architecture: Transformer (Vaswani et al., 2017)425

layers: 2 encoder layers, 2 decoder layers426

attention heads: 6427

learning rate: 0.0005428

dropout rate: 0.1429

optimizer: Adam (Kingma and Ba, 2017)430

Following subsections provide the settings for431

individual experiments.432

A.2 Experiment 1: Hatian Back-Translation433

parameters: 43283546434

training set (sentences): 4375-690535435

evaluation set (sentences): 625-98647436

computing infrastructure: NVIDIA GeForce437

GTX 1080 Ti438

average runtime: < 1 hour439

A.3 Experiment 2: Multi-Source Training440

parameters: 43283546441

training set (sentences): 165535-777440442

evaluation set (sentences): 23647-111062443

computing infrastructure: NVIDIA GeForce444

GTX 1080 Ti445

average runtime: 2-3 hours446

A.4 Experiment 3: Orthographic, Syntactic,447

and Phonological Transfer448

parameters: 43283546449

training set (sentences): 441665450

evaluation set (sentences): 63094451

computing infrastructure: NVIDIA GeForce452

RTX 2080 Ti453

average runtime: 2 hours454

A.5 Experiment 4: Jamaican MT455

parameters: 43283546456

training set (sentences): 6939-283069457

evaluation set (sentences): 991-40438458

computing infrastructure: NVIDIA GeForce459

RTX 2080 Ti460

average runtime: 1 hour461

B Evaluation Metrics462

We employed four translation evaluation metrics:463

BLEU (Papineni et al., 2002), BLEURT (Sel-464

lam et al., 2020), chrF++ (Popović, 2017), and465

Sentence-BERT (SBERT) (Reimers and Gurevych,466

2019)467

B.1 Computing Statistical Significance 468

We computed statistical significance via a differ- 469

ence of means test over our evaluation set. We 470

used the stats.wilcoxon from SciPy. For 471

BLEURT we considered a simple difference of 472

means, and for BLEU we bootstrapped 1000 473

document-level scores from our evaluation set 474

(Koehn, 2004). 475
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