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ABSTRACT

Aligning Large Language Models (LLMs) with diverse human preferences is a
pivotal technique for controlling model behaviors and enhancing generation qual-
ity. Reinforcement Learning from Human Feedback (RLHF), Direct Preference
Optimization (DPO), and their variants optimize language models by pairwise
comparisons. However, when multiple responses are available, these approaches
fall short of leveraging the extensive information in the ranking given by the re-
ward models or human feedback. In this work, we propose a novel listwise ap-
proach named Ordinal Preference Optimization (OPO), which employs the Nor-
malized Discounted Cumulative Gain (NDCG), a widely-used ranking metric, to
better utilize relative proximity within ordinal multiple responses. We develop
an end-to-end preference optimization algorithm by approximating NDCG with a
differentiable surrogate loss. This approach builds a connection between ranking
models in information retrieval and the alignment problem. In aligning multi-
response datasets assigned with ordinal rewards, OPO outperforms existing pair-
wise and listwise approaches on evaluation sets and general benchmarks like Al-
pacaEval. Moreover, we demonstrate that increasing the pool of negative samples
can enhance model performance by reducing the adverse effects of trivial nega-
tives.

1 INTRODUCTION

Large Language Models (LLMs) trained on extensive datasets have demonstrated impressive capa-
bilities in fields such as natural language processing and programming (Achiam et al., 2023; Team
et al., 2023; Dubey et al., 2024). Alignment with human preferences is crucial for controlling model
behavior, where Reinforcement Learning from Human Feedback (RLHF) demonstrates high effec-
tiveness in practice (Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022). However,
the RLHF procedure is resource-intensive and sensitive to hyperparameters due to its online multi-
stage nature. Direct Preference Optimization (DPO) (Rafailov et al., 2023) integrates the multi-stage
process into a single offline training objective by eliminating the separate reward model.

The success of RLHF and DPO hinges on the human preferences elicited from pairwise compar-
isons. A variety of pairwise-based offline preference optimization methods have been developed,
such as RRHF (Yuan et al., 2023), SLiC (Zhao et al., 2023), RPO (Yin et al., 2024), SimPO (Meng
et al., 2024), and LiPO-λ (Liu et al., 2024), which primarily modify DPO’s reward function and
Bradley-Terry (BT) paradigm (Bradley & Terry, 1952). These pairwise contrastive methods es-
sentially classify preferred and non-preferred responses as positive and negative samples, naturally
suited for the binary responses in data sets like Reddit TL;DR and AnthropicHH (Stiennon et al.,
2020; Bai et al., 2022). However, multi-response data are often available, where a single prompt
corresponds to several responses with assigned rewards (Ouyang et al., 2022; Yuan et al., 2023;
Dong et al., 2023; Köpf et al., 2024). The rewards reflect the overall order of the list and the relative
quality of each response compared to the others.

Existing pairwise contrastive approaches optimize models by comparing all possible pairs, but they
overlook relative proximities of responses. Alternatively, listwise methods present a more compre-
hensive view of the entire list of responses. Existing listwise methods like DPO-PL, PRO, LIRE
(Rafailov et al., 2023; Song et al., 2024; Zhu et al., 2024) mainly integrate the Plackett-Luce (PL)
model (Plackett, 1975) to represent the likelihood of list permutations, which is relatively simplistic.
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Figure 1: An illustration of Ordinal Preference Optimization (OPO) workflow. Each response is
assigned a ground truth label by the reward model and pre-sorted in descending order. Reward scores
are then derived from the policy and re-sorted to a new permutation. OPO calculates NDCG@K
from the difference between two permutations and optimizes the policy model.

In this work, we propose Ordinal Preference Optimization (OPO), a new and effective listwise ap-
proach to align ordinal human preferences. The training of OPO is based on the ranking metric
Normalized Discounted Cumulative Gain (NDCG) (Järvelin & Kekäläinen, 2002), a widely ac-
cepted listwise evaluation metric in Learning to Rank (LTR) literature (Valizadegan et al., 2009a;
Vargas & Castells, 2011; Wang et al., 2020). One challenge of optimizing NDCG is its discontinuity
for backpropagation. We employ a smooth surrogate loss NeuralNDCG (Pobrotyn & Białobrzeski,
2021) to approximate the non-differentiable NDCG. We establish an explicit connection between
aligning LLMs with human preferences and training a ranking model. From this view, alignment
can be framed as optimizing a calibrated score function that assigns reward scores to responses. The
objective is to learn to rank these responses to match the permutation derived from ground truth
labels. This approach aligns LLMs’ likelihood closely to human preferences across multi-response
datasets, improving the quality of the generative outputs.

We construct a multiple response dataset assigned with ordinal rewards based on UltraFeedback
(Cui et al., 2023) and SimPO (Meng et al., 2024). Comprehensive experiments are conducted to
evaluate model performance with various pairwise and listwise benchmarks across different list
sizes and hyperparameters. Our method OPO consistently achieves the best performance on both
evaluation datasets and general benchmarks like AlpacaEval (Li et al., 2023). We investigate the
impact of positive-negative pairs of varying quality on pairwise preference alignment. Our findings
reveal that employing a diverse range of negative samples enhances model performance compared to
using only the lowest-quality response as negative under the same single positive sample. Moreover,
aligning all pairs of listwise responses (i.e., multiple positives against multiple negatives) does not
significantly boost performance compared to jointly aligning one positive against multiple negatives.
This indicates that a larger pool of negative samples leads to better performance in the pairwise
contrastive scenario, as trivial negatives can result in suboptimal outcomes.

Our contributions are summarized as follows:

• We propose a new listwise alignment method named OPO that can leverage ordinal multi-
ple responses, which demonstrates superior performance than existing pairwise and listwise
approaches across various model scales.

• We establish a connection between ranking models in information retrieval and the align-
ment problem in LLMs by illustrating the effectiveness of directly optimizing ranking met-
rics for LLM alignment.

• We construct an ordinal multiple responses dataset and demonstrate that increasing the pool
of negative samples can enhance the performance of existing pairwise approaches.

2 PRELIMINARIES

The traditional RLHF framework aligns large language models (LLMs) with binary human prefer-
ences in a contrastive manner, which maximizes the likelihood of the preferred response yw over
the non-preferred yl. In contrast, this paper adopts the Learning to Rank (LTR) framework, which
learns how to permute a list of responses by ranking models.
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2.1 PROBLEM SETTING

Following the setup in LiPO (Liu et al., 2024), we assume access to an offline static dataset D =
{x(i),Y(i),Ψ(i)}Ni=1, where Y = (y1, ..., yK) is a list of responses from various generative models
of size K given the prompt x. Each response is associated with a label from Ψ = (ψ1, ..., ψK),
also known as the ground truth labels in the Learning to Rank literature. The label ψ measures the
quality of responses, which can be generated from human feedback or a pre-trained reward model.
In the empirical study, we obtain the score Ψ from a reward model as

ψk = RM(x, yk), (1)

where ψk ∈ [0, 1]. The label is fixed for a response, representing the degree of human preference.

For each prompt-response pair, we also compute a reward score representing the likelihood of the
generating probability of the response:

s(x, y) = β log
πθ(y|x)
πref(y|x)

. (2)

Here, πref is a reference model which we set as the SFT model. πθ(y|x) and πref(y|x) means
the probability of the response y given the prompt x under the policy model and the reference
model. Similar to DPO (Rafailov et al., 2023), the partition function is omitted due to the sym-
metry in the choice model of multiple responses. Unlike the fixed labels ψk, the reward scores
s = {s(x, y1), ..., s(x, yK)} depend on the model πθ and are updated during the model training.

2.2 NDCG METRIC

Normalized Discounted Cumulative Gain (NDCG) (Järvelin & Kekäläinen, 2002; Burges et al.,
2006) is a widely-used metric for evaluating the ranking model performance, which directly assesses
the quality of a permutation from listwise data. Assume the list of responses Y = (y1, ..., yK)
have been pre-ranked in the descending order based on labels Ψ = (ψ1, ..., ψK) from Eq 1, where
ψi ≥ ψj if i ≥ j. The Discounted Cumulative Gain at k-th position (k ≤ K) is defined as:

DCG@k =

k∑
j=1

G(ψj)D(τ(j)), (3)

where ψj denotes the ground truth labels of the response yj , and τ(j) is the descending rank position
of yj based on the reward scores s computed by the current model πθ. Typically, the discount
function and the gain function are set as D(τ(j)) = 1

log2(τ(j)+1) and G(ψj) = 2ψj − 1. An
illustration is provided in Appendix A.1.

The NDCG at k is defined as

NDCG@k =
1

maxDCG@k
DCG@k, (4)

where maxDCG@k is the maximum possible value of DCG@k, computed by ordering the responses
Y by their ground truth labels Ψ. The normalization ensures that NDCG is within the range (0, 1).

The value k of NDCG@k (k ≤ K) indicates that we focus on the ranking of the top k elements
while ignoring those beyond k. For example, when k = 2, we only need to correctly order the first 2
elements, regardless of the order of the remainingK−2 elements in the list. It means solely making
s1 ≥ s2 (because ψ1 ≥ ψ2 always holds) leads to the maximum NDCG@2 value.

3 ORDINAL PREFERENCE OPTIMIZATION

In LLM alignment, the reward score s in Eq 2 is the key component connecting the loss objective
to model parameters θ. However, there is a gap between using NDCG as an evaluation metric and
a training objective, since the NDCG metric is non-differentiable with respect to reward scores s,
which prevents the utilization of gradient descent to optimize models.

To overcome this limitation, surrogate losses (Valizadegan et al., 2009b) have been developed. These
losses approximate the NDCG value by converting its discrete and non-differentiable characteristics

3
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into a continuous and score-differentiable form, suitable for backpropagation. The original NDCG
is computed by iterating over each list element’s gain value and multiplying it by its corresponding
position discount, a process known as the alignment between gains and discounts (i.e., each gain is
paired with its respective discount). Thus, surrogate losses can be interpreted in two parts: aligning
gains and discounts to approximate the NDCG value, and ensuring these functions are differentiable
with respect to the score to enable gradient descent optimization. We will leverage NeuralNDCG as
such a surrogate loss (Pobrotyn & Białobrzeski, 2021).

3.1 NEURALSORT RELAXATION

NeuralNDCG incorporates a score-differentiable sorting algorithm to align gain values G(·) with
position discounts D(·). This sorting operation is achieved by left-multiplying a permutation matrix
Psort(s) with the score vector s to obtain a list of scores sorted in descending order. The element
Psort(s)[i, j] denotes the probability that response yj is ranked in the i-th position after re-sorting

based on s. Applying this matrix to the gains G(·) results in the sorted gains vector Ĝ(·), which is
aligned with the position discounts. For detailed illustrations, please refer to Appendix A.1.

To approximate the sorting operator, we need to approximate this permutation matrix. In NeuralSort
(Grover et al., 2019), the permutation matrix is approximated using a unimodal row stochastic matrix
P̂sort(s)(τ), defined as:

P̂sort(s)[i, :](τ) = softmax
[
((n+ 1− 2i)s−As1)

τ

]
. (5)

Here, As is the matrix of absolute pairwise differences of elements in s, where As[i, j] = |si − sj |,
and 1 is a column vector of ones. The row of P̂sort(s) always sums to one. The temperature parameter
τ > 0 controls the accuracy of the approximation. Lower values of τ yield better approximations
but increase gradient variance. It can be shown that:

lim
τ→0

P̂sort(s)(τ) = Psort(s). (6)

A more specific simulation is shown in Table 6. For simplicity, we refer to P̂sort(s)(τ) as P̂ .

3.2 OPO OBJECTIVE WITH NEURALNDCG

Similar to the original NDCG, but with the gain functionG(·) replaced by Ĝ(·) = P̂ ·G(·) to ensure
proper alignment between gains and discounts. The estimated gain at rank j can be interpreted as a
weighted sum of all gains, where the weights are given by the entries in the j-th row of P̂ . Since P̂
is a row-stochastic matrix, each row sums to one, though the columns may not. This can cause Ĝ to
disproportionately influence the NDCG value at certain positions. To address this issue, Sinkhorn
scaling (Sinkhorn, 1964) is employed on P̂ to ensure each column sums to one. Then we get the
NeuralNDCG (Pobrotyn & Białobrzeski, 2021) formula:

NeuralNDCG@k (τ ; s,Ψ) = N−1
k

k∑
j=1

(scale(P̂ ) ·G(Ψ))j ·D(j), (7)

where N−1
k represents the maxDCG@k (for k ≤ K) as defined in Equation 4. The function scale(·)

denotes Sinkhorn scaling, and G(·) and D(·) are the gain and discount functions, respectively, as in
Equation 3. Intuitively, the gain function should be proportional to the label, effectively capturing
the relative ranking of different responses. The discount function penalizes responses appearing
later in the sequence, as in many generation or recommendation tasks the focus is on the top-ranked
elements, especially the first. Thus, higher-ranked responses have a more significant impact on the
overall loss in NeuralNDCG. Further illustrations are provided in Appendix A.1.

Finally, we derive the OPO objective, which can be optimized using gradient descent:

LNeuralNDCG@k(πθ;πref) = −E(x,Y,Ψ)∼D

N−1
k

k∑
j=1

(scale(P̂ ) ·G(Ψ))j ·D(j)

 . (8)
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Note that setting k = 2 with K > 2 is not equivalent to having a list size of K = 2. The former
indicates a focus on the top-2 responses from the entire list, where a higher rank signifies superior
response quality. Conversely, K = 2 typically refers to a binary contrastive scenario, classifying
responses as positive or negative samples and maximizing the likelihood of preferred response yw
over non-preferred yl. In high-quality response pairs, labeling one as negative may adversely impact
the generation quality of LLMs. OPO provides a more comprehensive view of relative proximities
within multiple ordinal responses. In this work, we set k = K by default.

3.3 OTHER APPROXIMATION OF NDCG

In addition to aligning gains and discounts, we can modify the discount function to be differentiable.
ApproxNDCG (Qin et al., 2010) is proposed as an approximation to the rank position in the NDCG
equation (Eq 3) using the sigmoid function:

τ̂(j) = 1 +
∑
i̸=j

exp (−α(sj − si))

1 + exp (−α(sj − si))
= 1 +

∑
i ̸=j

σ(α(si − sj)). (9)

As observed, if si ≫ sj , the descending rank position of yj will increase by 1. Note that the
hyperparameter α controls the precision of the approximation. We then obtain the estimated τ̂(j)
and subsequently the ApproxNDCG objective:

LApproxNDCG@k(πθ;πref) = −E(x,Y,Ψ)∼D

N−1
k

k∑
j=1

G(ψj) ·D(τ̂(j))

 . (10)

4 EXPERIMENTS

Baselines To explore the connection between LLM alignment and ranking tasks, as well as the
performance of OPO, we employ various pairwise and listwise alignment baselines. Their opti-
mization objectives are detailed in Table 1. We introduce three paradigms of positive-negative pairs
for DPO on ordinal multiple responses. LiPO-λ (Liu et al., 2024) incorporates LambdaRank from
the Learning to Rank (LTR) literature, acting as a weighted version of DPO. SLiC and RRHF em-
ploy a similar hinge contrastive loss. ListMLE utilizes the Plackett-Luce Model (Plackett, 1975) to
represent the likelihood of list permutations. For further information, please see Appendix A.2.

Datasets We construct a multi-response dataset named ListUltraFeedback1. This dataset combines
four responses from UltraFeedback and five generated responses from the fine-tuned Llama3-8B
model2 in SimPO (Cui et al., 2023; Meng et al., 2024), all based on the same prompts. All responses
are assigned ordinal ground truth labels using the Reward Model ArmoRM (Wang et al., 2024).
This model is the leading open-source reward model, outperforming both GPT-4 Turbo and GPT-4o
in RewardBench (Lambert et al., 2024) at the time of our experiments. To ensure clear distinction
between positive and negative samples, while maintaining diversity, we select two responses with
the highest scores and two with the lowest. Additionally, we randomly draw four responses from the
remaining pool. Details of the dataset are presented in Table 2.

Training Details We select Qwen2-0.5B (qwe, 2024) and Mistral-7B (Jiang et al., 2023) as our
foundation models, representing different parameter scales. Following the training pipeline in DPO
(Rafailov et al., 2023), Zephyr (Tunstall et al., 2023b), and SimPO (Meng et al., 2024), we start with
supervised fine-tuning (SFT) (qwe, 2024) on UltraChat-200k (Ding et al., 2023) to obtain our SFT
model. We then apply various pairwise and listwise approaches to align preferences on our ordinal
multiple response dataset, ListUltraFeedback. Adhering to the settings in HuggingFace Alignment
Handbook (Tunstall et al., 2023a), we use a learning rate of 5×10−7 and a total batch size of 128 for
all training processes. The models are trained using the AdamW optimizer (Kingma & Ba, 2014) on
4 Nvidia V100-32G GPUs for Qwen2-0.5B models and 16 Nvidia V100-32G GPUs for Mistral-7B.
Unless noted otherwise, we fix α = 25 for ApproxNDCG and τ = 1 for OPO to achieve optimal
performance, as determined by ablation studies and hyperparameter sensitivity analysis presented
in Section 4.2. Both models and datasets are open-sourced, ensuring high transparency and ease of
reproduction. Further training details can be found in Appendix A.3.

1https://huggingface.co/datasets/OPO-alignment/ListUltraFeedback
2https://huggingface.co/datasets/princeton-nlp/llama3-ultrafeedback-armorm
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Table 1: Pairwise and listwise baselines given ordinal multiple-response data D = (x,Y,Ψ).

Method Type Objective

DPO - Single Pair (13) Pairwise − log σ (s1 − sK)

DPO - BPR (14) Pairwise − 1
K−1

∑K
j ̸=1 log σ (s1 − sj)

DPO - All Pairs (15) Pairwise −
(
K
2

)−1 ∑
ψi>ψj

log σ (si − sj)

LambdaRank (16) Pairwise −
(
K
2

)−1 ∑
ψi>ψj

∆i,j log σ (si − sj)

where ∆i,j = |Gi −Gj | · |D(τ(i))−D(τ(j))|

SLiC (17) Pairwise −
(
K
2

)−1 ∑
ψi>ψj

max(0, 1− (si − sj))

ListMLE (18) Listwise − log
∏K
k=1

exp(sk)∑K
j=k

exp(sj)

ApproxNDCG (10) Listwise −N−1
k

∑k
j=1G(ψj) ·D(τ̂(j))

OPO (8) Listwise −N−1
k

∑k
j=1(scale(P̂ ) ·G(Ψ))j ·D(j)

Evaluation The KL-divergence in the original RLHF pipeline is designed to prevent the Policy
model from diverging excessively from the SFT model, thus avoiding potential manipulation of
the Reward Model. As we employ ArmoRM in the construction of the training dataset,we incor-
porate various judging models and evaluation benchmarks, such as different Reward models and
AlpacaEval (Li et al., 2023) with GPT-4, to reduce the impact of overfitting on ArmoRM. We de-
sign 2 pipelines to thoroughly analyze the performance of OPO, using the Win Rate of generated
responses from aligned models compared to the SFT model as our primary metric. Details of evalu-
ation datasets are presented in Table 2.

In the Proxy Model pipeline, we deploy the Scoring Reward Model ArmoRM3 (Wang et al., 2024)
and the Pair-Preference Reward Model4 (Dong et al., 2024) as Proxy Models to calculate the win
rate on ListUltraFeedback. Both Proxy models surpass GPT-4 Turbo and GPT-4o in rewarding tasks
on RewardBench (Lambert et al., 2024). The Scoring model provides a score in the range (0, 1)
for a given prompt and response, while the Pair-Preference model outputs the winner when given a
prompt and two responses, offering a more intuitive approach for pairwise comparisons.

In the General Benchmark pipeline, we evaluate our models using two widely recognized bench-
marks: AlpacaEval (Li et al., 2023) and MT-Bench (Zheng et al., 2023), which assess the model’s
comprehensive conversational abilities across various questions. Consistent with the original setup,
we employ GPT-4 Turbo (Achiam et al., 2023) as the standard judge model to determine which of
the two responses exhibits higher quality.

Table 2: Details of training datasets and evaluation datasets.

Datasets Examples Judge Model Notes

UltraChat200k 208k - SFT
ListUltraFeedbacktrain 59.9k - Ordinal Preference Optimization

ListUltraFeedbacktest 1968 RLHFlow Pair-Preference Pair-Preference win rates
ArmoRM Scoring win rates

AlpacaEval 805 GPT-4 Turbo Pair-Preference win rates
MT-Bench 80 GPT-4 Turbo Scoring win rates

4.1 MAIN RESULTS

We list win rates of various alignment approaches across diverse evaluation benchmarks in Table 3.
Pairwise contrastive methods that leverage extensive structural information from multiple responses

3https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
4https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B
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outperform those relying solely on traditional single pairs. Both BPR and All Pairs methods exceed
the performance of Single Pair, with no significant difference between BPR and All Pairs, partic-
ularly evident with the Mistral-7B model (Table 5). This suggests that utilizing diverse negative
samples is more crucial than varying positive samples in pairwise contrastive scenarios. Trivial neg-
atives lead to suboptimal outcomes, but a larger pool of negative samples can reduce the uncertainty
associated with their varying quality.

When the list size is 8, the OPO algorithm, which directly optimizes an approximation of NDCG,
achieves superior performance. OPO’s advantage over pairwise and ListMLE methods lies in its
ability to effectively utilize the relative proximities within ordinal multiple responses. Traditional
contrastive pairwise approaches tend to crudely classify one response as negative and maximize
the likelihood of the preferred response yw over the non-preferred yl. It can adversely affect the
generation quality of LLMs when high-quality responses are treated as negative samples. In contrast,
OPO provides a more nuanced approach to handling the relationships between responses.

Table 3: The proposed OPO and ApproxNDCG outperform existing baselines across various eval-
uation benchmarks. The win rates are derived from comparisons between the preference-aligned
Qwen2-0.5B and its SFT model. We fix α = 25 for ApproxNDCG and τ = 1 for OPO. We also set
β = 0.1 in Eq 2 for all methods except β = 0.05 for SLiC to achieve the optimal performance.

Method Type
Proxy Model General Benchmark

Pair-Preference Scoring AlpacaEval MT-Bench

Single Pair Pairwise 60.75 56.86 57.95 52.81
BPR Pairwise 60.32 58.33 58.74 55.00
All Pairs Pairwise 63.82 60.54 57.23 53.13
SLiC Pairwise 63.31 60.70 61.00 53.75
LambdaRank Listwise 62.30 59.04 58.72 55.31
ListMLE Listwise 63.03 59.76 57.05 53.13

ApproxNDCG Listwise 61.46 58.59 58.16 55.94
OPO Listwise 64.25 61.36 61.64 53.44

4.2 ABLATION STUDY

Score Function Scale The hyperparameter β controls the scaling of the score function Eq 2 and
the deviation from the base reference policy πref, which is significantly influence models perfor-
mance. Following the common setting in previous works (Rafailov et al., 2023; Meng et al., 2024;
Liu et al., 2024), we set the hyperparameter space of β as [0.01, 0.05, 0.1, 0.5] and conduct sensi-
tivity analysis over broad approaches. As illustrated in Fig 2, all methods achieve their best perfor-
mance at β = 0.1 except the SLiC method. OPO consistently achieves the best performance on both
β = 0.05 and β = 0.1. More detailed results are shown in Table 8.

List Size To evaluate the effectiveness of listwise methods in leveraging the sequential structure
of multiple responses compared to pairwise methods, we analyze performance across varying list
sizes.5 The results, presented in Figure 2, indicate that models trained with multiple responses (more
than two) significantly outperform those using binary responses. Many models achieve optimal
performance with a list size of 8. Notably, the OPO method (Equation 7) consistently outperforms
other approaches when K > 4, with performance improving as list size increases. This trend is also
evident across different values of β, as shown in the supplementary results 9.

Approximation Accuracy The temperature parameter τ controls the approximation accuracy and
gradient variance of NeuralNDCG (Pobrotyn & Białobrzeski, 2021). We visualize the values of
NDCG and NeuralNDCG on specific data and assess model performance with various τ . The re-
sults, shown in Figure 3, reveal that as NeuralNDCG more closely approximates true NDCG, model
performance tends to decline. This may occur because training involves multiple high-quality re-
sponses with similar ground truth labels. Enforcing responses to conform to NDCG’s step-wise

5For the Single Pair approach, list sizes remain constant, as detailed in Section 13. In the case of BPR
(Rendle et al., 2012), since it focuses on the expected difference between the best response and others, list size
has minimal impact in a random selection context.
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Figure 2: OPO outperforms other methods across different β and list sizes. The Proxy win rates are
calculated by Pair-Preference Proxy model by comparing preference-aligned Qwen2-0.5B against
its SFT model.

structure can reduce the likelihood of these good responses. Additionally, as the approximation ac-
curacy of NeuralNDCG increases, more plateaus appear due to NDCG’s inherent step-wise nature.
On these plateaus, gradients become zero, preventing model optimization on these data points. A
similar observation is confirmed in ApproxNDCG, as discussed in Appendix A.5.

Figure 3: Higher NDCG approximation accuracy doesn’t always lead to better performance. Given
ground truth label ψ = [1.0, 0.8, 0.6, 0.4, 0.2] and the scores s = [x, 0.8, 0.6, 0.4, 0.2], an illustration
of NeuralNDCG Approximation Accuracy with different τ and its corresponding absolute value of
error and Pair-Preference Proxy model win rates against SFT.

OPO Setup We set τ = 1.0 and perform an ablation study on key components of OPO, with
results shown in Table 4. (i) When evaluating the NDCG@4 metric (Equation 7) for multiple re-
sponses with a list size of 8, the performance is comparable to OPO with a list size of 4. This
suggests that OPO’s effectiveness is more influenced by the quantity and size of listwise data rather
than the specific metric calculation method. (ii) The choice of gain function, whether Gi = 2ψi − 1
or Gi = ψi, does not significantly impact model performance. The critical factor is that the gain
function provides the correct ranking order and reflects the relative proximity of different responses.
(iii) Omitting Sinkhorn scaling (Sinkhorn, 1964) on P̂ significantly degrades performance. With-
out scaling, the permutation matrix P̂ may not be column-stochastic, meaning each column may
not sum to one. This can cause the weighted sum of G(·) to disproportionately contribute to the
estimated gain function Ĝ(·) (Equation 7), thereby adversely affecting results.

Model Scale Up To thoroughly assess the performance of OPO, we employ the Mistral-7B model
(Jiang et al., 2023) as our large-scale language model. Following the SimPO pipeline (Meng et al.,
2024), we use Zephyr-7B-SFT from HuggingFace (Tunstall et al., 2023b) as the SFT model. Mistral-
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Table 4: Ablation study results for OPO Setup on Qwen2-0.5B: (i) Only calculate the top-4 NDCG
metric; (ii) Replace the exponential function with the direct label as the gain function; (iii) Remove
the Sinkorn Scale function in Eq 8.

.
Method β Pair-Preference Scoring β Pair-Preference Scoring

All Pairs 0.1 63.82 60.54 0.05 62.12 58.36
OPO 0.1 64.25 61.36 0.05 63.92 60.09

Top-4 0.1 61.92 59.35 0.05 61.36 58.64
w/o Power 0.1 63.49 61.28 0.05 64.05 59.45
w/o Scale 0.1 57.32 56.20 0.05 57.49 55.72

7B is then aligned with ordinal multiple preferences on ListUltraFeedback, and its performance is
validated across evaluation sets and standard benchmarks, as shown in Table 5. For hyperparameter
details and additional results, refer to Appendix A.3 and A.4.2.

Table 5: OPO outperforms other baselines on win rates of aligned Mistral-7B against Zephyr-7B-
SFT. We set β = 0.01 for Single Pair and β = 0.05 for other approaches to achieve the best
performance. The other settings are the same as in Table 3.

Method Type
Proxy Model General Benchmark

Avg.
Pair-Preference Scoring AlpacaEval MT-Bench

Single Pair Pairwise 71.90 70.66 74.75 52.19 67.38
BPR Pairwise 84.43 82.37 86.69 63.44 79.23
All Pairs Pairwise 85.34 83.31 82.79 61.56 78.25
SLiC Pairwise 84.12 83.46 83.27 66.25 79.28
LambdaRank Listwise 85.11 82.52 86.13 69.06 80.71
ListMLE Listwise 83.79 83.61 83.46 66.56 79.35

ApproxNDCG Listwise 82.04 74.64 85.80 67.50 77.50
OPO Listwise 84.98 83.05 87.54 67.81 80.85

OPO demonstrates competitive performance on win rates against the SFT model. To clearly illustrate
OPO’s advantages over other methods, we compare their generated responses and present OPO’s win
rates in Figure 4. More detailed comparisons can be found in Figure 5.

Figure 4: OPO outperforms other approaches on direct comparisons with Mistral-7B. The win rates
are derived from comparisons between OPO and other methods on their optimal settings. We employ
the Pair-Preference Proxy model on evaluation sets and GPT-4 on AlpacaEval as the judge models.

5 RELATED WORK

Pairwise Preference Optimization Direct Preference Optimization (DPO) (Rafailov et al., 2023)
removes the necessity for an explicit reward model within the RLHF framework by introducing
a novel algorithm to compute reward scores for each response. Similar to RLHF, DPO uses the

9
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Bradley-Terry (BT) model (Bradley & Terry, 1952) to align binary human preferences in a con-
trastive manner. Subsequent research, including methods like IPO, KTO, RPO, SimPO, and others
(Liu et al., 2023; Xu et al., 2023; Azar et al., 2024; Yin et al., 2024; Ethayarajh et al., 2024; Hong
et al., 2024; Park et al., 2024; Meng et al., 2024), focus on refining the reward function and the BT
model to enhance performance and simplify the process. Additionally, iterative methods are devel-
oped to align pairwise preferences with a dynamic reference model (Rosset et al., 2024; Pang et al.,
2024; Kim et al., 2024; Yuan et al., 2024). They classify preferred responses yw as positive samples
and non-preferred responses yl as negative samples, with the objective of maximizing the likelihood
of r(x, yw) over r(x, yl). These contrastive techniques are influenced by the quality and quantity of
negative samples. As indicated by the contrastive learning literature, the presence of hard negatives
and large batch size is crucial (Chen et al., 2020). Incorporating trivial negatives can lead to subop-
timal results; hence, leveraging multiple-response data can expand the pool of candidate samples,
reducing the likelihood of trivial negatives.

Multiple Responses Alignment Recent research has introduced simple and efficient methods to
align human preferences across multiple responses. These approaches expand candidate responses
from various large language models (LLMs) such as ChatGPT, Alpaca, and GPT-4, assigning ordinal
rewards via reward models or human feedback. RRHF(Yuan et al., 2023) employs the same hinge
objective as SLiC (Zhao et al., 2023) on ordinal multiple responses through pairwise comparisons.
LiPO-λ (Liu et al., 2024) incorporates LambdaRank (Donmez et al., 2009) where higher-quality
responses against lower-quality ones receive greater weights, acting as a weighted version of DPO.
However, when handling high-quality response pairs, incorrectly classifying one of them as the
negative sample and minimizing its likelihood can adversely affect LLM generation quality. List-
wise methods offer a more nuanced approach to handling relationships between responses. DPO-PL
(Rafailov et al., 2023) and PRO (Song et al., 2024) employ the same PL framework (Plackett, 1975)
but differ in their reward functions. LIRE (Zhu et al., 2024) calculates softmax probabilities with
a consistent denominator and multiplies them by corresponding rewards, functioning as a point-
wise algorithm since permutations do not alter loss values. Despite their potential, current listwise
techniques are not yet state-of-the-art in the learning-to-rank (LTR) literature, indicating a need for
further research.

Learning to Rank Learning to Rank (LTR) involves a set of machine learning techniques widely
applied in information retrieval, web search, and recommender systems (Liu et al., 2009; Karat-
zoglou et al., 2013; Hidasi et al., 2016; Li et al., 2024). The goal is to train a ranking model by
learning a scoring function s = f(x, y) that assigns scores to elements for ranking purposes. The
loss is computed by comparing the current permutation with the ground truth, which updates the
model parameters θ. Loss functions in LTR are generally categorized into three types: pointwise,
pairwise, and listwise. Pointwise and pairwise methods convert the ranking task into classification
problems, often overlooking the inherent structure of ordered data. Conversely, listwise approaches
(Xia et al., 2008b) directly tackle the ranking problem by considering entire ranking lists as training
instances. This approach fully exploits the relative proximities within ordinal multiple responses,
providing a more comprehensive understanding of the ranking relationships.

6 DISCUSSION

In this work, we propose Ordinal Preference Optimization (OPO), a novel listwise preference opti-
mization algorithm to align ordinal human preferences. By optimizing the standard ranking metric
NDCG, OPO learns a score function that assigns reward scores to responses and ranks them prop-
erly, and it connects ranking models in information retrieval and LLM alignment. Empirical studies
show that OPO consistently outperforms existing pairwise and listwise approaches across various
training setups and evaluation benchmarks.

Our study has several limitations and suggests promising directions for future research. In construct-
ing ordinal multiple responses, a pre-trained Reward Model serves as the judge model, which might
not fully align with real-world human preferences. Future study can develope more robust and se-
cure data construction methods to ensure responses remain harmless and improve model alignment
quality. Additionally, there is a lack of theoretical analysis on aligning human preferences as a
Learning to Rank (LTR) task despite its empirical success. The extensive LTR literature remains
underexplored, indicating potential for further research and applications in related fields.
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A APPENDIX

A.1 ILLUSTRATION OF SORTING OPERATIONS

Given the input ground truth labels Ψ = [5, 4, 3, 2]T and scores s = [9, 1, 5, 2]T , the descending
order of Ψ based on the current reward scores s is τ = [1, 4, 2, 3]T . According to the formula
introduced in Eq 3:

DCG@4 =

k∑
j=1

G(ψj) ·D(τ(j)) =
G(5)

log2(1 + 1)
+

G(4)

log2(1 + 4)
+

G(3)

log2(1 + 2)
+

G(2)

log2(1 + 3)

Building upon the preliminaries defined in (Grover et al., 2019), consider an n-dimensional per-
mutation z = [z1, z2, . . . , zn]

T , which is a list of unique indices from the set 1, 2, . . . , n. Each
permutation z has a corresponding permutation matrix Pz ∈ 0, 1n×n, with entries defined as fol-
lows:

Pz[i, j] =

{
1 if j = zi
0 otherwise.

(11)

Let Zn denote the set containing all n! possible permutations within the symmetric group. We
define the sort : Rn → Zn operator as a function that maps n real-valued inputs to a permutation
representing these inputs in descending order.

The sort(s) = [1, 3, 4, 2]T since the largest element is at the first index, the second largest element
is at the third index, and so on. We can obtain the sorted vector simply via Psort(s) · s:

Psort(s) · s =

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


9
1
5
2

 =

9
5
2
1

 (12)

Here we demonstrate the results by conducting NeuralSort Relaxation Eq 5 with different τ . When

Table 6: Illustration of Sorting Operation of ground truth labels Ψ = [5, 4, 3, 2]T and scores s =
[9, 1, 5, 2]T via NeuralSort (Grover et al., 2019) with different τ .

P̂sort(s) · s
limτ→0 9 5 2 1

τ = 0.01 9.0000 5.0000 2.0000 1.0000
τ = 0.1 9.0000 5.0000 2.0000 1.0000
τ = 1.0 8.9282 4.9420 1.8604 1.2643
τ = 10.0 6.6862 4.8452 3.2129 2.2557

we integrate the NeuralNDCG formula in Eq 7, ideally, limτ→0 P̂sort(s)(τ) = Psort(s), yielding the
following result:

Ĝ = Psort(s) · G(Ψ) =

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


G(5)

G(4)
G(3)
G(2)

 =

G(5)
G(3)
G(2)
G(4)


Then,

NeuralDCG@4 =

k∑
j=1

(Ĝ)j ·D(j) =
G(5)

log2(1 + 1)
+

G(3)

log2(1 + 2)
+

G(2)

log2(1 + 3)
+

G(4)

log2(1 + 4)

which can be easily seen to be the same as DCG@4 as long as we keep the alignment between gains
and discounts.
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A.2 DETAILS OF BASELINES

Table 1 shows the types and objectives of the baselines we consider in the empirical study.

To ensure variable consistency and comparability of experiments, we choose the original DPO algo-
rithm as our reward score function Eq 2 and pairwise baseline method and assess its performance in
both binary-response and multi-response scenarios.

DPO-BT In detail, we implement three variants of the original sigmoid-based pairwise DPO based
on the Bradley-Terry (BT) methods while aligning multiple responses. The first one is Single Pair
paradigm, where we compare only the highest-scoring and lowest-scoring responses, which is equiv-
alent to the original DPO in the pairwise dataset scenario.

LSingle Pair(πθ;πref) = −E(x,Y,Ψ)∼D [log σ (s1 − sK)] , (13)
Then we introduce the Bayesian Personalized Ranking (BPR) (Rendle et al., 2012) algorithm that
computes the response with the highest score against all other negative responses based on Bayes’
theorem6, which is widely used in recommender system (Hidasi et al., 2016).

LBPR(πθ;πref) = −E(x,Y,Ψ)∼D

 1

K − 1

K∑
j ̸=1

log σ (s1 − sj)

 , (14)

In the last BT variant, we consider all pairs that can be formed from K responses, which is similar to
PRO (Song et al., 2024). This approach allows the model to gain more comprehensive information
than the aforementioned methods, including preference differences among intermediate responses,
which is referred to as All Pairs:

LAll Pairs(πθ;πref) = −E(x,Y,Ψ)∼D

 1(
K
2

) ∑
ψi>ψj

log σ (si − sj)

 , (15)

where
(
K
2

)
denotes the number of combinations choosing 2 out of K elements.

LiPO-λ Deriving from the LambdaRank (Donmez et al., 2009), the objective of LiPO-λ (Liu
et al., 2024) can be written as follows:

LLambdaRank(πθ;πref, β) = −E(x,Y,Ψ)∼D

 1(
K
2

) ∑
ψi>ψj

∆i,j log σ (si − sj)

 , (16)

where ∆i,j = |Gi −Gj | · |D(τ(i))−D(τ(j))| .
∆i,j is referred to as the Lambda weight and G(·) and D(·) is the same gain and discount function
in Eq 3.

SLiC Following the analogous objectives proposed in RRHF (Yuan et al., 2023) and SLiC (Zhao
et al., 2023), we integrate the pairwise Hinge loss as one of our baselines:

LSLiC(πθ;πref) = E(x,Y,Ψ)∼D

 1(
K
2

) ∑
ψi>ψj

max(0, 1− (si − sj))

 , (17)

DPO-PL The DPO objective can also be derived under the Plackett-Luce Model (Plackett, 1975)
in a listwise manner, which is equivalent to the ListMLE (Xia et al., 2008a) method:

LListMLE(πθ;πref) = −E(x,Y,Ψ)∼D

[
log

K∏
k=1

exp(sk)∑K
j=k exp(sj)

]
, (18)

A.3 TRAINING DETAILS

The detailed training hyperparameters of Mistral-7B are shown in Table 7.
6The BPR variant Eq 14 can be viewed as the expected loss function in the following scenario: we have a

multiple responses dataset, but we only retain the highest-scoring response and randomly select one from the
remaining. Finally, we construct a binary responses dataset for pairwise preference optimization, which is a
widely used method for building pairwise datasets (Tunstall et al., 2023a; Meng et al., 2024).
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Table 7: Training hyperparameters for Mistral-7B.

Hyperparameters value

Mini Batch 1
Gradient Accumulation Steps 8
GPUs 16×Nvidia V100-32G
Total Batch Size 128
Learning Rate 5e-7
Epochs 1
Max Prompt Length 512
Max Total Length 1024
Optimizer AdamW
LR Scheduler Cosine
Warm up Ratio 0.1
Random Seed 42

β 0.1
τ for OPO 1.0
α for ApproxNDCG 25

Sampling Temperature 0
Pair-Preference Proxy Model RLHFlow Pair-Preference
Scoring Proxy Model ArmoRM
GPT Judge GPT-4-Turbo
AlpacaEval Judge alpaca eval gpt4 turbo fn

Since Nvidia v100 is incompatible with the bf16 type, we use fp16 for mixed precision in deepspeed
configuration. Notably, as the ListMLE method doesn’t have normalization, it will encounter loss
scaling errors with mixed precision settings.

A.4 SUPPLEMENTARY RESULTS

A.4.1 PROXY MODELS RESULTS

The supplementary results of the Proxy Model Win Rate are shown in Table 8 and Table 9. For
OPO, we fix τ = 1.0. For ApproxNDCG, we fix α = 25 because it is the parameter α · β that
controls the approximation accuracy of the sigmoid function in Eq 9.

Table 8: Supplementary Results across different β on Qwen2-0.5B.

Run Name β Pair-Preference Scoring β Pair-Preference Scoring

Single Pair 0.05 57.24 54.04 0.01 55.59 51.73
0.1 60.75 56.86 0.5 58.97 58.16

BPR 0.05 59.86 56.86 0.01 56.13 55.16
0.1 60.32 58.33 0.5 54.24 55.31

All Pairs 0.05 62.12 58.36 0.01 61.18 56.35
0.1 63.82 60.54 0.5 56.12 55.77

SLiC 0.05 63.31 60.70 0.01 59.30 55.61
0.1 62.68 60.34 0.5 55.23 55.44

LambdaRank 0.05 60.77 56.07 0.01 54.52 51.35
0.1 62.30 59.04 0.5 57.72 56.71

ListMLE 0.05 61.81 57.60 0.01 57.49 55.16
0.1 63.03 59.76 0.5 56.05 55.77

ApproxNDCG
0.05 58.66 54.34 0.01 55.56 50.76
0.1 61.46 58.59 0.2 60.04 57.27
0.5 58.71 57.39 1.0 56.61 56.00

OPO 0.05 63.92 60.09 0.01 59.58 55.46
0.1 64.25 61.36 0.5 58.41 57.65
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Table 9: Supplementary Results across different list sizes on Qwen2-0.5B. In practice, we keep the
response with the highest label and the one with the lowest label, then conduct random sampling
from the remaining responses.

Run Name List Size Pair-Preference Scoring Pair-Preference Scoring

β = 0.1 β = 0.05

All Pairs

2 60.75 56.86 57.24 54.04
4 63.26 60.90 61.59 58.54
6 63.03 59.50 62.83 57.93
8 63.82 60.54 62.12 58.36

SLiC

2 63.44 59.07 61.00 57.39
4 63.79 61.40 64.04 60.54
6 63.64 61.15 62.01 58.61
8 62.68 60.34 63.31 60.70

LambdaRank

2 60.85 57.62 59.76 56.02
4 61.10 58.05 59.88 55.51
6 62.09 57.72 62.02 56.81
8 62.30 59.04 60.77 56.07

ListMLE

2 60.14 57.01 57.14 53.53
4 63.57 61.23 61.94 58.49
6 62.78 60.92 61.18 57.83
8 63.03 59.76 61.81 57.60

ApproxNDCG

2 59.73 57.72 61.56 58.26
4 59.65 56.45 60.11 55.79
6 60.70 57.32 59.53 56.35
8 61.46 58.59 58.66 54.34

OPO

2 61.94 58.00 58.69 55.89
4 62.91 59.96 62.65 58.56
6 64.02 60.11 61.08 59.43
8 64.25 61.36 63.92 60.09

A.4.2 SUPPLEMENTARY RESULTS FOR MISTRAL-7B

We observe that decreasing the hyperparameter β may increase the performance when language
models scale up to 7B parameters. All methods achieve their best performance with β = 0.05
except for Single Pair with β = 0.01. Our approach OPO consistently achieves the best overall
performance, shown in Table 10.

To further explore the distribution shift during human preference alignment, we demonstrate the
score distribution of all methods of which scores are assigned by the Reward model ArmoRM (Wang
et al., 2024) in Fig 5. The OPO method causes the reward score distribution to shift more signif-
icantly to the right, resulting in fewer instances at lower scores. Consequently, when compared to
the SFT model, its win rate is not as high as methods like All Pairs, SLiC, and ListMLE. However,
it can outperform these methods in direct comparisons.

A.5 APPROXNDCG ANALYSIS

The ApproxNDCG method performs poorly, possibly due to the following reasons: (1) The position
function is an approximation, leading to error accumulation. (2) The sigmoid function used for the
approximation of the position function may suffer from the vanishing gradient problem (Qin et al.,
2010).

In ApproxNDCG, we observe similar results to NeuralNDCG; the model achieves optimal perfor-
mance only when the approximation accuracy reaches a certain threshold. First, we prove that the
Accuracy of ApproxNDCG is relevant to the multiplication of α and β when we employ the score
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Table 10: Model Scale Up results in Mistral-7B.

Method β Pair-Preference Scoring AlpacaEval

Single Pair

0.1

61.26 70.21 64.45
BPR 79.73 77.59 78.39
All Pairs 79.22 78.43 77.65
SLiC 76.17 75.36 73.04
LambdaRank 80.82 78.53 81.01
ListMLE 78.58 79.22 75.12
ApproxNDCG 76.12 69.21 82.50
OPO 83.13 81.66 81.07

Single Pair

0.05

66.44 65.50 68.87
BPR 84.43 82.37 86.69
All Pairs 85.34 83.31 82.79
SLiC 84.12 83.46 83.27
LambdaRank 85.11 82.52 86.13
ListMLE 83.79 83.61 83.46
ApproxNDCG 82.04 74.64 85.80
OPO 84.98 83.05 87.54

Single Pair

0.01

71.90 70.66 74.75
BPR 77.01 78.46 86.71
All Pairs 72.66 74.09 82.44
OPO 73.17 75.00 84.51

Figure 5: OPO demonstrates superior performance compared to other methods in Scoring Proxy
model win rates on Mistral-7B, while also shifting the distribution of response reward scores more
significantly to the right (i.e., increasing reward scores).

function in Eq 2:

τ̂(j) = 1 +
∑
i ̸=j

exp (−α(sj − si))

1 + exp (−α(sj − si))
== 1 +

∑
i̸=j

1

1 + exp(α(sj − si))

= 1 +
∑
i ̸=j

1

1 + exp(αβ)(log
πθ(yj |x)
πref (yj |x) − log πθ(yi|x)

πref (yi|x) )

= 1 +
∑
i ̸=j

1

1 + exp(αβ)× πθ(yj |x)πref (yi|x)
πref (yj |x)πθ(yi|x)

= 1 +
∑
i ̸=j

πref (yj |x)πθ(yi|x)
πref (yj |x)πθ(yi|x) + exp(αβ)× πθ(yj |x)πref (yi|x)

(19)

Then, we illustrate the Approximation accuracy and model performance of ApproxNDCG with
different hyperparameters α · β in Fig 6.
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Figure 6: Given ground truth label ψ = [1.0, 0.8, 0.6, 0.4, 0.2], the scores s = [x, 0.8, 0.6, 0.4, 0.2]
and fix β = 0.1, we visualize the ApproxNDCG Approximation Accuracy with different α and its
corresponding absolute value of error and Pair-Preference proxy model win rate against SFT model.

Notice that the approximation accuracy of ApproxNDCG decreases as α increases, which is opposite
to NeuralNDCG.

A.6 TRAINING EFFICIENCY

The computational complexity of each method depends on calculating πθ(yj |x) and πref(yj |x) for
each yj ∈ {Y} to get corresponding scores in Eq 2, which is O(K), where K is the list size of
multiple responses. Subsequently, the pairwise comparison of multiple responses can be efficiently
computed using PyTorch’s broadcasting mechanism to perform matrix subtraction.The resulting
matrix P [i, j] represents the value of si−sj . Therefore, for pairwise methods, it suffices to consider
only the upper triangular matrix, excluding diagonal elements. This approach does not significantly
increase training time when performing pairwise comparisons. The training time and GPU memory
usage of Mistral-7B model is shown in Table 11.

Table 11: Training Time and GPU memory usage on 16×Nvidia V100-32G with Mistral-7B.

Run Name List Size Training Time GPU Memory Usage

Single Pair 2 3h 28m 92.44%
BPR 8 12h 42m 93.43%
All Pairs 8 12h 38m 93.63%
SLiC 8 11h 42m 93.79%
LambdaRank 8 12h 14m 93.66%
ListMLE 8 12h 26m 93.29%

ApproxNDCG 8 12h 56m 93.64%
OPO 8 11h 39m 93.73%

It is important to note that specific training times and GPU memory usage can exhibit random
fluctuations. This result is intended to demonstrate that the training times for pairwise and listwise
methods on multiple responses with the same list size do not show significant differences.

A.7 RESPONSE SAMPLES

We select generated response samples on Mistral-7B to further illustrate the enhanced performance
of OPO.

Table 12: Average response length on AlpacaEval dataset on Mistral-7B.

Method SFT Single Pair BPR All Pairs SLiC LambdaRank ListMLE ApproxNDCG OPO

Length 828 877 1096 1054 1023 1140 1041 1284 1120
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Table 13: OPO generates a longer and more detailed response on AlpacaEval in the following sam-
ples and outperforms other methods in quality judged by GPT-4 Turbo on Mistral-7B.

Prompt Q: Who is Larry Page?

SFT Larry Page is the co-founder and former CEO of
Google, a multinational technology company. He
is also the co-founder of Alphabet Inc., the
parent company of Google. Page is known for
his contributions to the development of the
PageRank algorithm, which is used to determine
the importance of websites in search engine
rankings. He is also involved in various
philanthropic efforts, including the creation
of the Google Foundation, which supports
projects related to education, health, and the
environment.

OPO Larry Page is a co-founder, former CEO, and
current CEO of Alphabet Inc., the parent
company of Google. He was born on March
26, 1973, in East Lansing, Michigan, and
graduated from Stanford University with a
degree in computer science and artificial
intelligence. Page, along with Sergey Brin,
developed the PageRank algorithm, which forms
the basis of Google’s search engine. In 1998,
they founded Google, which quickly became
one of the most successful and influential
technology companies in the world. Page served
as Google’s CEO from 1999 to 2001 and again
from 2011 to 2015, during which time he oversaw
the company’s expansion into new markets,
including mobile devices, cloud computing, and
artificial intelligence. In 2015, Page stepped
down as CEO of Google and became the CEO of
Alphabet, the holding company that was created
to separate Google’s core internet business
from its other ventures. As Alphabet’s CEO,
Page has focused on developing new technologies
and expanding into emerging markets, such as
healthcare and autonomous vehicles. Page is
widely regarded as one of the most innovative
and influential entrepreneurs of our time, and
his contributions to the field of computer
science and technology have had a profound
impact on the world.
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Single Pair Larry Page is an American entrepreneur,
computer scientist, and co-founder of Google,
along with Sergey Brin. He was born on March
26, 1973, in East Lansing, Michigan, and
graduated from Stanford University with a
degree in computer science and artificial
intelligence. Page is known for his innovative
ideas and leadership in the technology
industry, particularly in the areas of search
engines, artificial intelligence, and renewable
energy. He currently serves as the CEO of
Alphabet Inc., the parent company of Google,
and is considered one of the most influential
figures in the tech world.

BPR Larry Page is a co-founder of Google, along
with Sergey Brin. He was born on March 26,
1973, in East Lansing, Michigan, USA. Page
and Brin started Google in 1998 while they
were both PhD students at Stanford University.
Page’s primary role in the company has been
as CEO from 2001 to 2019, and he currently
serves as the CEO of Alphabet Inc., the parent
company of Google. Under his leadership,
Google has become one of the most successful
and influential technology companies in the
world, with a market capitalization of over
$1 trillion. Page is also known for his
philanthropic efforts, including funding
research on renewable energy and supporting
education initiatives.

All Pairs Larry Page is a co-founder of Google, along
with Sergey Brin. He was born on March 26,
1973, in East Lansing, Michigan, USA. Page and
Brin started Google in 1998 while they were
both PhD students at Stanford University.
Page is known for his focus on innovation,
simplicity, and user experience, and he has
been instrumental in shaping Google’s vision
and strategy. He served as CEO of Alphabet
Inc., the parent company of Google, from 2015
to 2019, and currently serves as the CEO of
Alphabet’s subsidiary, Google. Page is also
a philanthropist and has been involved in
various charitable initiatives, including
the PageRipples Foundation, which supports
education and environmental causes.

SLiC Larry Page is a co-founder of Google, along
with Sergey Brin. He was born on March 26,
1973, in East Lansing, Michigan, USA. Page and
Brin started Google in 1998 while they were
both PhD students at Stanford University. Page
is currently the CEO of Alphabet Inc., the
parent company of Google, and is responsible
for overseeing the company’s overall strategy
and direction. He is also a prominent figure
in the technology industry, known for his
focus on innovation, sustainability, and
philanthropy.
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LambdaRank Larry Page is a co-founder of Google, along
with Sergey Brin. He was born on March 26,
1973, in East Lansing, Michigan, USA. Page
and Brin started Google in 1998 while they
were both PhD students at Stanford University.
Page served as the CEO of Google from 1999 to
2001, and then again from 2011 to 2015. He
currently serves as the CEO of Alphabet Inc.,
the parent company of Google. Page is known
for his focus on innovation, sustainability,
and philanthropy, and has been recognized
as one of the most influential people in the
world.

ListMLE Larry Page is a co-founder of Google, along
with Sergey Brin. He was born on March 26,
1973, in East Lansing, Michigan, USA. Page and
Brin started Google in 1998 while they were
both PhD students at Stanford University. Page
is currently the CEO of Alphabet Inc., the
parent company of Google, and is responsible
for overseeing the company’s overall strategy
and direction. He is also a prominent figure
in the technology industry, known for his
focus on innovation, sustainability, and
philanthropy.

ApproxNDCG Larry Page is a co-founder of Google, along
with Sergey Brin. He was born on March 26,
1973, in East Lansing, Michigan, and grew
up in the Detroit area. Page and Brin met
at Stanford University, where they developed
the PageRank algorithm, which became the basis
for Google’s search engine.\n\n Page served as
the CEO of Google from 1999 to 2001, and then
again from 2011 to 2019. During his tenure,
he oversaw the company’s growth and expansion,
including the development of new products and
services, such as Google Maps, Google Earth,
and Google Glass.\n\n Page is known for his
focus on innovation, user experience, and
sustainability. He has also been involved
in various philanthropic efforts, including
the creation of the Google.org foundation and
the development of the Google Self-Driving
Car Project.\n\n Today, Page is the CEO of
Alphabet, the parent company of Google, and
continues to play a key role in shaping the
future of technology and the internet.
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A.8 ILLUSTRATION OF PSORT

The code for NeuralSort Eq 5 is provided below.

import torch
import torch.nn.functional as F

def neuralsort(s, tau=1):
# s.shape = [batch_size, list_size]
s=s.unsqueeze(2)

# A_s[i,j] = |s[i] - s[j]|
A_s = s - s.transpose(1, 2)
A_s = torch.abs(A_s)

# B=A_s*ones
n = s.size(1)
one = torch.ones((n, 1),dtype=torch.float)
B = torch.matmul(A_s, one @ one.transpose(0, 1))

# C=(n+1-2i)*s
K = torch.arange(1, n + 1,dtype=torch.float)
C = torch.matmul(s, (n + 1 - 2 * K).unsqueeze(0))

# P= softmax(((n+1-2i)*s-A_s*ones)/tau)
P = (C - B).transpose(1, 2)
P = F.softmax(P / tau, dim=-1)

return P

Given the score s = [9, 1, 5, 2]T provided in Appendix A.1, we have

As =

0 8 4 7
8 0 4 1
4 4 0 3
7 1 3 0

 , B = As · 1k×k =

19 19 19 19
13 13 13 13
11 11 11 11
11 11 11 11



C = [(n+ 1− 2i) ∗ s] =

27 9 −9 −27
3 1 −1 −3
15 5 −5 −15
6 2 −2 −6


Based on Eq 5, we can get P̂sort(s)

P̂sort(s) = softmax [
C −B

τ
] =

 0.98 1.5e− 8 0.018 2.2e− 6
0.017 2.3e− 3 0.93 0.047

2.2e− 7 0.26 0.035 0.71
6.8e− 14 0.73 3.3e− 5 0.27


Finally, we can get the permutation of the sorted score vector as shown in Tab 6:

P̂sort(s) · s = (8.9282 4.9420 1.8604 1.2691)

We also show the sum of columns and rows:

column sum : (0.9991 0.9928 0.9872 1.0208)

row sum : (1.0000 1.0000 1.0000 1.0000)
T

As discussed above, P̂sort(s) is not column-stochastic, meaning each column may not sum to one.
This can cause some G(ψi) to contribute to the overall loss objective disproportionately and ad-
versely affect model performance. The ablation studies are shown in Tab 4.
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A.9 RANKING ACCURACY ANALYSIS

Proposition 1. The optimal policy from NDCG-based loss π∗
NDCG leads to the same order of reward

scores as π∗
DPO.

Proof of Proposition 1: Assume access to a list of ground truth labels in descending order Ψ =
{ψ1, ..., ψK}, where ψi ≥ ψj if i < j. Now we have a score vector s = {s1, ..., sk}, the descending
rank position of si is denoted by τ(i) = 1+

∑k
j=1 Isi<sj . According to the definition of NDCG Eq

4, the maximum NDCG value is achieved when τ(i) = i, which is equivalent to s∗i ≥ s∗j if i < j.
The permutation of s∗ is the same as the permutation of ground truth labels Ψ = {ψ1, ..., ψK}. The
reward score of the preferred response is higher than the non-preferred one in every preference pair,
which has the same order of π∗

DPO.

Following the definition in (Chen et al., 2024), we define the ranking accuracy as

R(x, yw, yl) =

{
1 πθ(yw | x) ≥ πθ(yl | x),
0 otherwise.

(20)

Then we define (π, yw, yl) is a correct rank pair when R(x, yw, yl) = 1 and it is an incorrect rank
pair otherwise.
Proposition 2. The ranking accuracy on the optimal policy π∗ from an NDCG-based loss is
bounded by the ranking accuracy of the reference model πref. If πref(yw|x) ≥ πref(yl|x), we have
R(x, yw, yl) = 1.

Proof of Proposition 2: Under pairwise scenario, by definition, we have G(ψw) ≥ G(ψl). Then the
optimal policy π∗ from an NDCG-based objective satisfies

s∗(x, yw) ≥ s∗(x, yl)

which is equivalent to
π∗(yw|x)
πref(yw|x)

≥ π∗(yl|x)
πref(yl|x)

.

The above formula means the ranking accuracy of the reference model is a lower bound of policy
ranking accuracy:

π∗(yw|x)
π∗(yl|x)

≥ πref(yw|x)
πref(yl|x)

= DKL(πref(yw|x)||πref(yl|x))

When the ranking accuracy of πref is 1, the ranking accuracy of the optimal policy R(x, yw, yl) = 1
always holds, which is shown in experiments Fig 9.

π∗(yw|x)
π∗(yl|x)

≥ πref(yw|x)
πref(yl|x)

≥ 1 ⇒ R(x, yw, yl) = 1

To thoroughly analyze the performance gap in correcting incorrect pairs (i.e., make πθ(yw|x)
πθ(yl|x) > 1

given πref(yw|x)
πref(yl|x) < 1), we compare DPO, LiPO, and OPO in a pairwise scenario. We can explicitly

show that even with only 2 responses, the NDCG-based method demonstrates a higher efficiency in
flipping incorrect pairs into correct ones Fig 8. When the flipping is converged, all three methods
share a similar flip distribution, which is highly constrained to reference ranking accuracy yw and
yl. It is hard for policy models to flip a rank pair if πref(yw|x)/πref(yl|x) is extremely low. This
could be explained by the fact that the current DPO-based score function only necessarily ensures

π∗(yw|x)
π∗(yl|x)

≥ πref(yw|x)
πref(yl|x)

,

instead of
π∗(yw|x)
π∗(yl|x)

≥ 1.

The experimental results provide evidence supporting Proposition 1, namely that under optimal
conditions, different learning-to-rank methods yield the same score permutation. However, NDCG-
based methods do not necessarily maximize the reward margin in the same way as DPO and LiPO,
which may explain their higher efficiency in improving ranking accuracy metrics.
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Figure 7: We train the Qwen2-0.5B model with list size equals 2, we count the four types of rank
flip (1) Correct to Correct (2) Correct to Incorrect (3) Incorrect to Correct (4) Incorrect to Correct
on a test dataset of 1024 prompt samples. Type (1) and (2) remain the same during training. (3) and
(4) differ across different methods but converge to a similar value when the step is large.

Figure 8: OPO demonstrates a higher efficiency in correcting incorrect pairs to correct ones. The
dashed line refers to the steps in which the loss objective is converged for all three methods.

Figure 9: The successful flip (Incorrect to Correct) distribution is highly constrained to reference
ranking accuracy yw and yl. We refer to the ”converged” as the step where the four rank flips type
ultimately stabilizes, which in our experiments corresponds to 5700 steps.
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Figure 10: OPO demonstrates more successful rank flips in early training steps compared to DPO.
As the number of steps increases, the distributions of the two methods gradually converge. However,
OPO outperforms DPO in terms of successful rank flips in the long-tail region.

Figure 11: OPO demonstrates more successful rank flips in early training steps compared to LiPO.
As the number of steps increases, the distributions of the two methods gradually converge. However,
OPO outperforms LiPO in terms of successful rank flips in the long-tail region.
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