
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ORDINAL PREFERENCE OPTIMIZATION:
ALIGNING HUMAN PREFERENCES VIA NDCG

Anonymous authors
Paper under double-blind review

ABSTRACT

Aligning Large Language Models (LLMs) with diverse human preferences is a
pivotal technique for controlling model behaviors and enhancing generation qual-
ity. Reinforcement Learning from Human Feedback (RLHF), Direct Preference
Optimization (DPO), and their variants optimize language models by pairwise
comparisons. However, when multiple responses are available, these approaches
fall short of leveraging the extensive information in the ranking given by the re-
ward models or human feedback. In this work, we propose a novel listwise ap-
proach named Ordinal Preference Optimization (OPO), which employs the Nor-
malized Discounted Cumulative Gain (NDCG), a widely-used ranking metric, to
better utilize relative proximity within ordinal multiple responses. We develop
an end-to-end preference optimization algorithm by approximating NDCG with a
differentiable surrogate loss. This approach builds a connection between ranking
models in information retrieval and the alignment problem. In aligning multi-
response datasets assigned with ordinal rewards, OPO outperforms existing pair-
wise and listwise approaches on evaluation sets and general benchmarks like Al-
pacaEval. Moreover, we demonstrate that increasing the pool of negative samples
can enhance model performance by reducing the adverse effects of trivial nega-
tives.

1 INTRODUCTION

Large Language Models (LLMs) trained on extensive datasets have demonstrated impressive capa-
bilities in fields such as natural language processing and programming (Achiam et al., 2023; Team
et al., 2023; Dubey et al., 2024). Alignment with human preferences is crucial for controlling model
behavior, where Reinforcement Learning from Human Feedback (RLHF) demonstrates high effec-
tiveness in practice (Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022). However,
the RLHF procedure is resource-intensive and sensitive to hyperparameters due to its online multi-
stage nature. Direct Preference Optimization (DPO) (Rafailov et al., 2023) integrates the multi-stage
process into a single offline training objective by eliminating the separate reward model.

The success of RLHF and DPO hinges on the human preferences elicited from pairwise compar-
isons. A variety of pairwise-based offline preference optimization methods have been developed,
such as RRHF (Yuan et al., 2023), SLiC (Zhao et al., 2023), RPO (Yin et al., 2024), SimPO (Meng
et al., 2024), and LiPO-λ (Liu et al., 2024), which primarily modify DPO’s reward function and
Bradley-Terry (BT) paradigm (Bradley & Terry, 1952). These pairwise contrastive methods es-
sentially classify preferred and non-preferred responses as positive and negative samples, naturally
suited for the binary responses in data sets like Reddit TL;DR and AnthropicHH (Stiennon et al.,
2020; Bai et al., 2022). However, multi-response data are often available, where a single prompt
corresponds to several responses with assigned rewards (Ouyang et al., 2022; Yuan et al., 2023;
Dong et al., 2023; Köpf et al., 2024). The rewards reflect the overall order of the list and the relative
quality of each response compared to the others.

Existing pairwise contrastive approaches optimize models by comparing all possible pairs, but they
overlook relative proximities of responses. Alternatively, listwise methods present a more compre-
hensive view of the entire list of responses. Existing listwise methods like DPO-PL, PRO, LIRE
(Rafailov et al., 2023; Song et al., 2024; Zhu et al., 2024) mainly integrate the Plackett-Luce (PL)
model (Plackett, 1975) to represent the likelihood of list permutations, which is relatively simplistic.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: An illustration of Ordinal Preference Optimization (OPO) workflow. Each response is
assigned a ground truth label by the reward model and pre-sorted in descending order. Reward scores
are then derived from the policy and re-sorted to a new permutation. OPO calculates NDCG@K
from the difference between two permutations and optimizes the policy model.

In this work, we propose Ordinal Preference Optimization (OPO), a new and effective listwise ap-
proach to align ordinal human preferences. The training of OPO is based on the ranking metric
Normalized Discounted Cumulative Gain (NDCG) (Järvelin & Kekäläinen, 2002), a widely ac-
cepted listwise evaluation metric in Learning to Rank (LTR) literature (Valizadegan et al., 2009a;
Vargas & Castells, 2011; Wang et al., 2020). One challenge of optimizing NDCG is its discontinuity
for backpropagation. We employ a smooth surrogate loss NeuralNDCG (Pobrotyn & Białobrzeski,
2021) to approximate the non-differentiable NDCG. We establish an explicit connection between
aligning LLMs with human preferences and training a ranking model. From this view, alignment
can be framed as optimizing a calibrated score function that assigns reward scores to responses. The
objective is to learn to rank these responses to match the permutation derived from ground truth
labels. This approach aligns LLMs’ likelihood closely to human preferences across multi-response
datasets, improving the quality of the generative outputs.

We construct a multiple response dataset assigned with ordinal rewards based on UltraFeedback
(Cui et al., 2023) and SimPO (Meng et al., 2024). Comprehensive experiments are conducted to
evaluate model performance with various pairwise and listwise benchmarks across different list
sizes and hyperparameters. Our method OPO consistently achieves the best performance on both
evaluation datasets and general benchmarks like AlpacaEval (Li et al., 2023). We investigate the
impact of positive-negative pairs of varying quality on pairwise preference alignment. Our findings
reveal that employing a diverse range of negative samples enhances model performance compared to
using only the lowest-quality response as negative under the same single positive sample. Moreover,
aligning all pairs of listwise responses (i.e., multiple positives against multiple negatives) does not
significantly boost performance compared to jointly aligning one positive against multiple negatives.
This indicates that a larger pool of negative samples leads to better performance in the pairwise
contrastive scenario, as trivial negatives can result in suboptimal outcomes.

Our contributions are summarized as follows:

• We propose a new listwise alignment method named OPO that can leverage ordinal multi-
ple responses, which demonstrates superior performance than existing pairwise and listwise
approaches across various model scales.

• We establish a connection between ranking models in information retrieval and the align-
ment problem in LLMs by illustrating the effectiveness of directly optimizing ranking met-
rics for LLM alignment.

• We construct an ordinal multiple responses dataset and demonstrate that increasing the pool
of negative samples can enhance the performance of existing pairwise approaches.

2 PRELIMINARIES

The traditional RLHF framework aligns large language models (LLMs) with binary human prefer-
ences in a contrastive manner, which maximizes the likelihood of the preferred response yw over
the non-preferred yl. In contrast, this paper adopts the Learning to Rank (LTR) framework, which
learns how to permute a list of responses by ranking models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 PROBLEM SETTING

Following the setup in LiPO (Liu et al., 2024), we assume access to an offline static dataset D =
{x(i),Y(i),Ψ(i)}Ni=1, where Y = (y1, ..., yK) is a list of responses from various generative models
of size K given the prompt x. Each response is associated with a label from Ψ = (ψ1, ..., ψK),
also known as the ground truth labels in the Learning to Rank literature. The label ψ measures the
quality of responses, which can be generated from human feedback or a pre-trained reward model.
In the empirical study, we obtain the score Ψ from a reward model as

ψk = RM(x, yk), (1)

where ψk ∈ [0, 1]. The label is fixed for a response, representing the degree of human preference.

For each prompt-response pair, we also compute a reward score representing the likelihood of the
generating probability of the response:

s(x, y) = β log
πθ(y|x)
πref(y|x)

. (2)

Here, πref is a reference model which we set as the SFT model. πθ(y|x) and πref(y|x) means
the probability of the response y given the prompt x under the policy model and the reference
model. Similar to DPO (Rafailov et al., 2023), the partition function is omitted due to the sym-
metry in the choice model of multiple responses. Unlike the fixed labels ψk, the reward scores
s = {s(x, y1), ..., s(x, yK)} depend on the model πθ and are updated during the model training.

2.2 NDCG METRIC

Normalized Discounted Cumulative Gain (NDCG) (Järvelin & Kekäläinen, 2002; Burges et al.,
2006) is a widely-used metric for evaluating the ranking model performance, which directly assesses
the quality of a permutation from listwise data. Assume the list of responses Y = (y1, ..., yK)
have been pre-ranked in the descending order based on labels Ψ = (ψ1, ..., ψK) from Eq 1, where
ψi ≥ ψj if i ≥ j. The Discounted Cumulative Gain at k-th position (k ≤ K) is defined as:

DCG@k =

k∑
j=1

G(ψj)D(τ(j)), (3)

where ψj denotes the ground truth labels of the response yj , and τ(j) is the descending rank position
of yj based on the reward scores s computed by the current model πθ. Typically, the discount
function and the gain function are set as D(τ(j)) = 1

log2(τ(j)+1) and G(ψj) = 2ψj − 1. An
illustration is provided in Appendix A.1.

The NDCG at k is defined as

NDCG@k =
1

maxDCG@k
DCG@k, (4)

where maxDCG@k is the maximum possible value of DCG@k, computed by ordering the responses
Y by their ground truth labels Ψ. The normalization ensures that NDCG is within the range (0, 1).

The value k of NDCG@k (k ≤ K) indicates that we focus on the ranking of the top k elements
while ignoring those beyond k. For example, when k = 2, we only need to correctly order the first 2
elements, regardless of the order of the remainingK−2 elements in the list. It means solely making
s1 ≥ s2 (because ψ1 ≥ ψ2 always holds) leads to the maximum NDCG@2 value.

3 ORDINAL PREFERENCE OPTIMIZATION

In LLM alignment, the reward score s in Eq 2 is the key component connecting the loss objective
to model parameters θ. However, there is a gap between using NDCG as an evaluation metric and
a training objective, since the NDCG metric is non-differentiable with respect to reward scores s,
which prevents the utilization of gradient descent to optimize models.

To overcome this limitation, surrogate losses (Valizadegan et al., 2009b) have been developed. These
losses approximate the NDCG value by converting its discrete and non-differentiable characteristics

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

into a continuous and score-differentiable form, suitable for backpropagation. The original NDCG
is computed by iterating over each list element’s gain value and multiplying it by its corresponding
position discount, a process known as the alignment between gains and discounts (i.e., each gain is
paired with its respective discount). Thus, surrogate losses can be interpreted in two parts: aligning
gains and discounts to approximate the NDCG value, and ensuring these functions are differentiable
with respect to the score to enable gradient descent optimization. We will leverage NeuralNDCG as
such a surrogate loss (Pobrotyn & Białobrzeski, 2021).

3.1 NEURALSORT RELAXATION

NeuralNDCG incorporates a score-differentiable sorting algorithm to align gain values G(·) with
position discounts D(·). This sorting operation is achieved by left-multiplying a permutation matrix
Psort(s) with the score vector s to obtain a list of scores sorted in descending order. The element
Psort(s)[i, j] denotes the probability that response yj is ranked in the i-th position after re-sorting

based on s. Applying this matrix to the gains G(·) results in the sorted gains vector Ĝ(·), which is
aligned with the position discounts. For detailed illustrations, please refer to Appendix A.1.

To approximate the sorting operator, we need to approximate this permutation matrix. In NeuralSort
(Grover et al., 2019), the permutation matrix is approximated using a unimodal row stochastic matrix
P̂sort(s)(τ), defined as:

P̂sort(s)[i, :](τ) = softmax
[
((n+ 1− 2i)s−As1)

τ

]
. (5)

Here, As is the matrix of absolute pairwise differences of elements in s, where As[i, j] = |si − sj |,
and 1 is a column vector of ones. The row of P̂sort(s) always sums to one. The temperature parameter
τ > 0 controls the accuracy of the approximation. Lower values of τ yield better approximations
but increase gradient variance. It can be shown that:

lim
τ→0

P̂sort(s)(τ) = Psort(s). (6)

A more specific simulation is shown in Table 6. For simplicity, we refer to P̂sort(s)(τ) as P̂ .

3.2 OPO OBJECTIVE WITH NEURALNDCG

Similar to the original NDCG, but with the gain functionG(·) replaced by Ĝ(·) = P̂ ·G(·) to ensure
proper alignment between gains and discounts. The estimated gain at rank j can be interpreted as a
weighted sum of all gains, where the weights are given by the entries in the j-th row of P̂ . Since P̂
is a row-stochastic matrix, each row sums to one, though the columns may not. This can cause Ĝ to
disproportionately influence the NDCG value at certain positions. To address this issue, Sinkhorn
scaling (Sinkhorn, 1964) is employed on P̂ to ensure each column sums to one. Then we get the
NeuralNDCG (Pobrotyn & Białobrzeski, 2021) formula:

NeuralNDCG@k (τ ; s,Ψ) = N−1
k

k∑
j=1

(scale(P̂) ·G(Ψ))j ·D(j), (7)

where N−1
k represents the maxDCG@k (for k ≤ K) as defined in Equation 4. The function scale(·)

denotes Sinkhorn scaling, and G(·) and D(·) are the gain and discount functions, respectively, as in
Equation 3. Intuitively, the gain function should be proportional to the label, effectively capturing
the relative ranking of different responses. The discount function penalizes responses appearing
later in the sequence, as in many generation or recommendation tasks the focus is on the top-ranked
elements, especially the first. Thus, higher-ranked responses have a more significant impact on the
overall loss in NeuralNDCG. Further illustrations are provided in Appendix A.1.

Finally, we derive the OPO objective, which can be optimized using gradient descent:

LNeuralNDCG@k(πθ;πref) = −E(x,Y,Ψ)∼D

N−1
k

k∑
j=1

(scale(P̂) ·G(Ψ))j ·D(j)

 . (8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Note that setting k = 2 with K > 2 is not equivalent to having a list size of K = 2. The former
indicates a focus on the top-2 responses from the entire list, where a higher rank signifies superior
response quality. Conversely, K = 2 typically refers to a binary contrastive scenario, classifying
responses as positive or negative samples and maximizing the likelihood of preferred response yw
over non-preferred yl. In high-quality response pairs, labeling one as negative may adversely impact
the generation quality of LLMs. OPO provides a more comprehensive view of relative proximities
within multiple ordinal responses. In this work, we set k = K by default.

3.3 OTHER APPROXIMATION OF NDCG

In addition to aligning gains and discounts, we can modify the discount function to be differentiable.
ApproxNDCG (Qin et al., 2010) is proposed as an approximation to the rank position in the NDCG
equation (Eq 3) using the sigmoid function:

τ̂(j) = 1 +
∑
i̸=j

exp (−α(sj − si))

1 + exp (−α(sj − si))
= 1 +

∑
i ̸=j

σ(α(si − sj)). (9)

As observed, if si ≫ sj , the descending rank position of yj will increase by 1. Note that the
hyperparameter α controls the precision of the approximation. We then obtain the estimated τ̂(j)
and subsequently the ApproxNDCG objective:

LApproxNDCG@k(πθ;πref) = −E(x,Y,Ψ)∼D

N−1
k

k∑
j=1

G(ψj) ·D(τ̂(j))

 . (10)

4 EXPERIMENTS

Baselines To explore the connection between LLM alignment and ranking tasks, as well as the
performance of OPO, we employ various pairwise and listwise alignment baselines. Their opti-
mization objectives are detailed in Table 1. We introduce three paradigms of positive-negative pairs
for DPO on ordinal multiple responses. LiPO-λ (Liu et al., 2024) incorporates LambdaRank from
the Learning to Rank (LTR) literature, acting as a weighted version of DPO. SLiC and RRHF em-
ploy a similar hinge contrastive loss. ListMLE utilizes the Plackett-Luce Model (Plackett, 1975) to
represent the likelihood of list permutations. For further information, please see Appendix A.2.

Datasets We construct a multi-response dataset named ListUltraFeedback1. This dataset combines
four responses from UltraFeedback and five generated responses from the fine-tuned Llama3-8B
model2 in SimPO (Cui et al., 2023; Meng et al., 2024), all based on the same prompts. All responses
are assigned ordinal ground truth labels using the Reward Model ArmoRM (Wang et al., 2024).
This model is the leading open-source reward model, outperforming both GPT-4 Turbo and GPT-4o
in RewardBench (Lambert et al., 2024) at the time of our experiments. To ensure clear distinction
between positive and negative samples, while maintaining diversity, we select two responses with
the highest scores and two with the lowest. Additionally, we randomly draw four responses from the
remaining pool. Details of the dataset are presented in Table 2.

Training Details We select Qwen2-0.5B (qwe, 2024) and Mistral-7B (Jiang et al., 2023) as our
foundation models, representing different parameter scales. Following the training pipeline in DPO
(Rafailov et al., 2023), Zephyr (Tunstall et al., 2023b), and SimPO (Meng et al., 2024), we start with
supervised fine-tuning (SFT) (qwe, 2024) on UltraChat-200k (Ding et al., 2023) to obtain our SFT
model. We then apply various pairwise and listwise approaches to align preferences on our ordinal
multiple response dataset, ListUltraFeedback. Adhering to the settings in HuggingFace Alignment
Handbook (Tunstall et al., 2023a), we use a learning rate of 5×10−7 and a total batch size of 128 for
all training processes. The models are trained using the AdamW optimizer (Kingma & Ba, 2014) on
4 Nvidia V100-32G GPUs for Qwen2-0.5B models and 16 Nvidia V100-32G GPUs for Mistral-7B.
Unless noted otherwise, we fix α = 25 for ApproxNDCG and τ = 1 for OPO to achieve optimal
performance, as determined by ablation studies and hyperparameter sensitivity analysis presented
in Section 4.2. Both models and datasets are open-sourced, ensuring high transparency and ease of
reproduction. Further training details can be found in Appendix A.3.

1https://huggingface.co/datasets/OPO-alignment/ListUltraFeedback
2https://huggingface.co/datasets/princeton-nlp/llama3-ultrafeedback-armorm

5

https://huggingface.co/datasets/OPO-alignment/ListUltraFeedback
https://huggingface.co/datasets/princeton-nlp/llama3-ultrafeedback-armorm

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Pairwise and listwise baselines given ordinal multiple-response data D = (x,Y,Ψ).

Method Type Objective

DPO - Single Pair (13) Pairwise − log σ (s1 − sK)

DPO - BPR (14) Pairwise − 1
K−1

∑K
j ̸=1 log σ (s1 − sj)

DPO - All Pairs (15) Pairwise −
(
K
2

)−1 ∑
ψi>ψj

log σ (si − sj)

LambdaRank (16) Pairwise −
(
K
2

)−1 ∑
ψi>ψj

∆i,j log σ (si − sj)

where ∆i,j = |Gi −Gj | · |D(τ(i))−D(τ(j))|

SLiC (17) Pairwise −
(
K
2

)−1 ∑
ψi>ψj

max(0, 1− (si − sj))

ListMLE (18) Listwise − log
∏K
k=1

exp(sk)∑K
j=k

exp(sj)

ApproxNDCG (10) Listwise −N−1
k

∑k
j=1G(ψj) ·D(τ̂(j))

OPO (8) Listwise −N−1
k

∑k
j=1(scale(P̂) ·G(Ψ))j ·D(j)

Evaluation The KL-divergence in the original RLHF pipeline is designed to prevent the Policy
model from diverging excessively from the SFT model, thus avoiding potential manipulation of
the Reward Model. As we employ ArmoRM in the construction of the training dataset,we incor-
porate various judging models and evaluation benchmarks, such as different Reward models and
AlpacaEval (Li et al., 2023) with GPT-4, to reduce the impact of overfitting on ArmoRM. We de-
sign 2 pipelines to thoroughly analyze the performance of OPO, using the Win Rate of generated
responses from aligned models compared to the SFT model as our primary metric. Details of evalu-
ation datasets are presented in Table 2.

In the Proxy Model pipeline, we deploy the Scoring Reward Model ArmoRM3 (Wang et al., 2024)
and the Pair-Preference Reward Model4 (Dong et al., 2024) as Proxy Models to calculate the win
rate on ListUltraFeedback. Both Proxy models surpass GPT-4 Turbo and GPT-4o in rewarding tasks
on RewardBench (Lambert et al., 2024). The Scoring model provides a score in the range (0, 1)
for a given prompt and response, while the Pair-Preference model outputs the winner when given a
prompt and two responses, offering a more intuitive approach for pairwise comparisons.

In the General Benchmark pipeline, we evaluate our models using two widely recognized bench-
marks: AlpacaEval (Li et al., 2023) and MT-Bench (Zheng et al., 2023), which assess the model’s
comprehensive conversational abilities across various questions. Consistent with the original setup,
we employ GPT-4 Turbo (Achiam et al., 2023) as the standard judge model to determine which of
the two responses exhibits higher quality.

Table 2: Details of training datasets and evaluation datasets.

Datasets Examples Judge Model Notes

UltraChat200k 208k - SFT
ListUltraFeedbacktrain 59.9k - Ordinal Preference Optimization

ListUltraFeedbacktest 1968 RLHFlow Pair-Preference Pair-Preference win rates
ArmoRM Scoring win rates

AlpacaEval 805 GPT-4 Turbo Pair-Preference win rates
MT-Bench 80 GPT-4 Turbo Scoring win rates

4.1 MAIN RESULTS

We list win rates of various alignment approaches across diverse evaluation benchmarks in Table 3.
Pairwise contrastive methods that leverage extensive structural information from multiple responses

3https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
4https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B

6

https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

outperform those relying solely on traditional single pairs. Both BPR and All Pairs methods exceed
the performance of Single Pair, with no significant difference between BPR and All Pairs, partic-
ularly evident with the Mistral-7B model (Table 5). This suggests that utilizing diverse negative
samples is more crucial than varying positive samples in pairwise contrastive scenarios. Trivial neg-
atives lead to suboptimal outcomes, but a larger pool of negative samples can reduce the uncertainty
associated with their varying quality.

When the list size is 8, the OPO algorithm, which directly optimizes an approximation of NDCG,
achieves superior performance. OPO’s advantage over pairwise and ListMLE methods lies in its
ability to effectively utilize the relative proximities within ordinal multiple responses. Traditional
contrastive pairwise approaches tend to crudely classify one response as negative and maximize
the likelihood of the preferred response yw over the non-preferred yl. It can adversely affect the
generation quality of LLMs when high-quality responses are treated as negative samples. In contrast,
OPO provides a more nuanced approach to handling the relationships between responses.

Table 3: The proposed OPO and ApproxNDCG outperform existing baselines across various eval-
uation benchmarks. The win rates are derived from comparisons between the preference-aligned
Qwen2-0.5B and its SFT model. We fix α = 25 for ApproxNDCG and τ = 1 for OPO. We also set
β = 0.1 in Eq 2 for all methods except β = 0.05 for SLiC to achieve the optimal performance.

Method Type
Proxy Model General Benchmark

Pair-Preference Scoring AlpacaEval MT-Bench

Single Pair Pairwise 60.75 56.86 57.95 52.81
BPR Pairwise 60.32 58.33 58.74 55.00
All Pairs Pairwise 63.82 60.54 57.23 53.13
SLiC Pairwise 63.31 60.70 61.00 53.75
LambdaRank Listwise 62.30 59.04 58.72 55.31
ListMLE Listwise 63.03 59.76 57.05 53.13

ApproxNDCG Listwise 61.46 58.59 58.16 55.94
OPO Listwise 64.25 61.36 61.64 53.44

4.2 ABLATION STUDY

Score Function Scale The hyperparameter β controls the scaling of the score function Eq 2 and
the deviation from the base reference policy πref, which is significantly influence models perfor-
mance. Following the common setting in previous works (Rafailov et al., 2023; Meng et al., 2024;
Liu et al., 2024), we set the hyperparameter space of β as [0.01, 0.05, 0.1, 0.5] and conduct sensi-
tivity analysis over broad approaches. As illustrated in Fig 2, all methods achieve their best perfor-
mance at β = 0.1 except the SLiC method. OPO consistently achieves the best performance on both
β = 0.05 and β = 0.1. More detailed results are shown in Table 8.

List Size To evaluate the effectiveness of listwise methods in leveraging the sequential structure
of multiple responses compared to pairwise methods, we analyze performance across varying list
sizes.5 The results, presented in Figure 2, indicate that models trained with multiple responses (more
than two) significantly outperform those using binary responses. Many models achieve optimal
performance with a list size of 8. Notably, the OPO method (Equation 7) consistently outperforms
other approaches when K > 4, with performance improving as list size increases. This trend is also
evident across different values of β, as shown in the supplementary results 9.

Approximation Accuracy The temperature parameter τ controls the approximation accuracy and
gradient variance of NeuralNDCG (Pobrotyn & Białobrzeski, 2021). We visualize the values of
NDCG and NeuralNDCG on specific data and assess model performance with various τ . The re-
sults, shown in Figure 3, reveal that as NeuralNDCG more closely approximates true NDCG, model
performance tends to decline. This may occur because training involves multiple high-quality re-
sponses with similar ground truth labels. Enforcing responses to conform to NDCG’s step-wise

5For the Single Pair approach, list sizes remain constant, as detailed in Section 13. In the case of BPR
(Rendle et al., 2012), since it focuses on the expected difference between the best response and others, list size
has minimal impact in a random selection context.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 2: OPO outperforms other methods across different β and list sizes. The Proxy win rates are
calculated by Pair-Preference Proxy model by comparing preference-aligned Qwen2-0.5B against
its SFT model.

structure can reduce the likelihood of these good responses. Additionally, as the approximation ac-
curacy of NeuralNDCG increases, more plateaus appear due to NDCG’s inherent step-wise nature.
On these plateaus, gradients become zero, preventing model optimization on these data points. A
similar observation is confirmed in ApproxNDCG, as discussed in Appendix A.5.

Figure 3: Higher NDCG approximation accuracy doesn’t always lead to better performance. Given
ground truth label ψ = [1.0, 0.8, 0.6, 0.4, 0.2] and the scores s = [x, 0.8, 0.6, 0.4, 0.2], an illustration
of NeuralNDCG Approximation Accuracy with different τ and its corresponding absolute value of
error and Pair-Preference Proxy model win rates against SFT.

OPO Setup We set τ = 1.0 and perform an ablation study on key components of OPO, with
results shown in Table 4. (i) When evaluating the NDCG@4 metric (Equation 7) for multiple re-
sponses with a list size of 8, the performance is comparable to OPO with a list size of 4. This
suggests that OPO’s effectiveness is more influenced by the quantity and size of listwise data rather
than the specific metric calculation method. (ii) The choice of gain function, whether Gi = 2ψi − 1
or Gi = ψi, does not significantly impact model performance. The critical factor is that the gain
function provides the correct ranking order and reflects the relative proximity of different responses.
(iii) Omitting Sinkhorn scaling (Sinkhorn, 1964) on P̂ significantly degrades performance. With-
out scaling, the permutation matrix P̂ may not be column-stochastic, meaning each column may
not sum to one. This can cause the weighted sum of G(·) to disproportionately contribute to the
estimated gain function Ĝ(·) (Equation 7), thereby adversely affecting results.

Model Scale Up To thoroughly assess the performance of OPO, we employ the Mistral-7B model
(Jiang et al., 2023) as our large-scale language model. Following the SimPO pipeline (Meng et al.,
2024), we use Zephyr-7B-SFT from HuggingFace (Tunstall et al., 2023b) as the SFT model. Mistral-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Ablation study results for OPO Setup on Qwen2-0.5B: (i) Only calculate the top-4 NDCG
metric; (ii) Replace the exponential function with the direct label as the gain function; (iii) Remove
the Sinkorn Scale function in Eq 8.

.
Method β Pair-Preference Scoring β Pair-Preference Scoring

All Pairs 0.1 63.82 60.54 0.05 62.12 58.36
OPO 0.1 64.25 61.36 0.05 63.92 60.09

Top-4 0.1 61.92 59.35 0.05 61.36 58.64
w/o Power 0.1 63.49 61.28 0.05 64.05 59.45
w/o Scale 0.1 57.32 56.20 0.05 57.49 55.72

7B is then aligned with ordinal multiple preferences on ListUltraFeedback, and its performance is
validated across evaluation sets and standard benchmarks, as shown in Table 5. For hyperparameter
details and additional results, refer to Appendix A.3 and A.4.2.

Table 5: OPO outperforms other baselines on win rates of aligned Mistral-7B against Zephyr-7B-
SFT. We set β = 0.01 for Single Pair and β = 0.05 for other approaches to achieve the best
performance. The other settings are the same as in Table 3.

Method Type
Proxy Model General Benchmark

Avg.
Pair-Preference Scoring AlpacaEval MT-Bench

Single Pair Pairwise 71.90 70.66 74.75 52.19 67.38
BPR Pairwise 84.43 82.37 86.69 63.44 79.23
All Pairs Pairwise 85.34 83.31 82.79 61.56 78.25
SLiC Pairwise 84.12 83.46 83.27 66.25 79.28
LambdaRank Listwise 85.11 82.52 86.13 69.06 80.71
ListMLE Listwise 83.79 83.61 83.46 66.56 79.35

ApproxNDCG Listwise 82.04 74.64 85.80 67.50 77.50
OPO Listwise 84.98 83.05 87.54 67.81 80.85

OPO demonstrates competitive performance on win rates against the SFT model. To clearly illustrate
OPO’s advantages over other methods, we compare their generated responses and present OPO’s win
rates in Figure 4. More detailed comparisons can be found in Figure 5.

Figure 4: OPO outperforms other approaches on direct comparisons with Mistral-7B. The win rates
are derived from comparisons between OPO and other methods on their optimal settings. We employ
the Pair-Preference Proxy model on evaluation sets and GPT-4 on AlpacaEval as the judge models.

5 RELATED WORK

Pairwise Preference Optimization Direct Preference Optimization (DPO) (Rafailov et al., 2023)
removes the necessity for an explicit reward model within the RLHF framework by introducing
a novel algorithm to compute reward scores for each response. Similar to RLHF, DPO uses the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Bradley-Terry (BT) model (Bradley & Terry, 1952) to align binary human preferences in a con-
trastive manner. Subsequent research, including methods like IPO, KTO, RPO, SimPO, and others
(Liu et al., 2023; Xu et al., 2023; Azar et al., 2024; Yin et al., 2024; Ethayarajh et al., 2024; Hong
et al., 2024; Park et al., 2024; Meng et al., 2024), focus on refining the reward function and the BT
model to enhance performance and simplify the process. Additionally, iterative methods are devel-
oped to align pairwise preferences with a dynamic reference model (Rosset et al., 2024; Pang et al.,
2024; Kim et al., 2024; Yuan et al., 2024). They classify preferred responses yw as positive samples
and non-preferred responses yl as negative samples, with the objective of maximizing the likelihood
of r(x, yw) over r(x, yl). These contrastive techniques are influenced by the quality and quantity of
negative samples. As indicated by the contrastive learning literature, the presence of hard negatives
and large batch size is crucial (Chen et al., 2020). Incorporating trivial negatives can lead to subop-
timal results; hence, leveraging multiple-response data can expand the pool of candidate samples,
reducing the likelihood of trivial negatives.

Multiple Responses Alignment Recent research has introduced simple and efficient methods to
align human preferences across multiple responses. These approaches expand candidate responses
from various large language models (LLMs) such as ChatGPT, Alpaca, and GPT-4, assigning ordinal
rewards via reward models or human feedback. RRHF(Yuan et al., 2023) employs the same hinge
objective as SLiC (Zhao et al., 2023) on ordinal multiple responses through pairwise comparisons.
LiPO-λ (Liu et al., 2024) incorporates LambdaRank (Donmez et al., 2009) where higher-quality
responses against lower-quality ones receive greater weights, acting as a weighted version of DPO.
However, when handling high-quality response pairs, incorrectly classifying one of them as the
negative sample and minimizing its likelihood can adversely affect LLM generation quality. List-
wise methods offer a more nuanced approach to handling relationships between responses. DPO-PL
(Rafailov et al., 2023) and PRO (Song et al., 2024) employ the same PL framework (Plackett, 1975)
but differ in their reward functions. LIRE (Zhu et al., 2024) calculates softmax probabilities with
a consistent denominator and multiplies them by corresponding rewards, functioning as a point-
wise algorithm since permutations do not alter loss values. Despite their potential, current listwise
techniques are not yet state-of-the-art in the learning-to-rank (LTR) literature, indicating a need for
further research.

Learning to Rank Learning to Rank (LTR) involves a set of machine learning techniques widely
applied in information retrieval, web search, and recommender systems (Liu et al., 2009; Karat-
zoglou et al., 2013; Hidasi et al., 2016; Li et al., 2024). The goal is to train a ranking model by
learning a scoring function s = f(x, y) that assigns scores to elements for ranking purposes. The
loss is computed by comparing the current permutation with the ground truth, which updates the
model parameters θ. Loss functions in LTR are generally categorized into three types: pointwise,
pairwise, and listwise. Pointwise and pairwise methods convert the ranking task into classification
problems, often overlooking the inherent structure of ordered data. Conversely, listwise approaches
(Xia et al., 2008b) directly tackle the ranking problem by considering entire ranking lists as training
instances. This approach fully exploits the relative proximities within ordinal multiple responses,
providing a more comprehensive understanding of the ranking relationships.

6 DISCUSSION

In this work, we propose Ordinal Preference Optimization (OPO), a novel listwise preference opti-
mization algorithm to align ordinal human preferences. By optimizing the standard ranking metric
NDCG, OPO learns a score function that assigns reward scores to responses and ranks them prop-
erly, and it connects ranking models in information retrieval and LLM alignment. Empirical studies
show that OPO consistently outperforms existing pairwise and listwise approaches across various
training setups and evaluation benchmarks.

Our study has several limitations and suggests promising directions for future research. In construct-
ing ordinal multiple responses, a pre-trained Reward Model serves as the judge model, which might
not fully align with real-world human preferences. Future study can develope more robust and se-
cure data construction methods to ensure responses remain harmless and improve model alignment
quality. Additionally, there is a lack of theoretical analysis on aligning human preferences as a
Learning to Rank (LTR) task despite its empirical success. The extensive LTR literature remains
underexplored, indicating potential for further research and applications in related fields.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Qwen2 technical report. 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
ing from human preferences. In International Conference on Artificial Intelligence and Statistics,
pp. 4447–4455. PMLR, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Christopher Burges, Robert Ragno, and Quoc Le. Learning to rank with nonsmooth cost functions.
Advances in neural information processing systems, 19, 2006.

Angelica Chen, Sadhika Malladi, Lily H. Zhang, Xinyi Chen, Qiuyi Zhang, Rajesh Ranganath, and
Kyunghyun Cho. Preference learning algorithms do not learn preference rankings, 2024. URL
https://arxiv.org/abs/2405.19534.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. UltraFeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations, 2023.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf,
2024.

Pinar Donmez, Krysta M Svore, and Christopher JC Burges. On the local optimality of lambdarank.
In Proceedings of the 32nd international ACM SIGIR conference on Research and development
in information retrieval, pp. 460–467, 2009.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

11

https://arxiv.org/abs/2405.19534

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
networks via continuous relaxations. arXiv preprint arXiv:1903.08850, 2019.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks, 2016. URL https://arxiv.org/abs/
1511.06939.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model, 2024. URL https://arxiv.org/abs/2403.07691.

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM
Trans. Inf. Syst., 20(4):422–446, oct 2002. ISSN 1046-8188. doi: 10.1145/582415.582418. URL
https://doi.org/10.1145/582415.582418.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Alexandros Karatzoglou, Linas Baltrunas, and Yue Shi. Learning to rank for recommender systems.
In Proceedings of the 7th ACM Conference on Recommender Systems, pp. 493–494, 2013.

Dahyun Kim, Yungi Kim, Wonho Song, Hyeonwoo Kim, Yunsu Kim, Sanghoon Kim, and Chanjun
Park. sdpo: Don’t use your data all at once. arXiv preprint arXiv:2403.19270, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
conversations-democratizing large language model alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi.
Rewardbench: Evaluating reward models for language modeling, 2024.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023.

Yongqi Li, Nan Yang, Liang Wang, Furu Wei, and Wenjie Li. Learning to rank in generative retrieval.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 8716–8723,
2024.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and
Jialu Liu. Statistical rejection sampling improves preference optimization. arXiv preprint
arXiv:2309.06657, 2023.

Tianqi Liu, Zhen Qin, Junru Wu, Jiaming Shen, Misha Khalman, Rishabh Joshi, Yao Zhao, Mo-
hammad Saleh, Simon Baumgartner, Jialu Liu, Peter J. Liu, and Xuanhui Wang. Lipo: Listwise
preference optimization through learning-to-rank, 2024. URL https://arxiv.org/abs/
2402.01878.

Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and Trends® in Informa-
tion Retrieval, 3(3):225–331, 2009.

Yu Meng, Mengzhou Xia, and Danqi Chen. SimPO: Simple preference optimization with a
reference-free reward. arXiv preprint arXiv:2405.14734, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

12

https://arxiv.org/abs/1511.06939
https://arxiv.org/abs/1511.06939
https://arxiv.org/abs/2403.07691
https://doi.org/10.1145/582415.582418
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2402.01878
https://arxiv.org/abs/2402.01878

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. arXiv preprint arXiv:2404.19733, 2024.

Ryan Park, Rafael Rafailov, Stefano Ermon, and Chelsea Finn. Disentangling length from quality
in direct preference optimization. arXiv preprint arXiv:2403.19159, 2024.

Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society Series C:
Applied Statistics, 24(2):193–202, 1975.

Przemysław Pobrotyn and Radosław Białobrzeski. Neuralndcg: Direct optimisation of a rank-
ing metric via differentiable relaxation of sorting, 2021. URL https://arxiv.org/abs/
2102.07831.

Tao Qin, Tie-Yan Liu, and Hang Li. A general approximation framework for direct optimization of
information retrieval measures. Information retrieval, 13:375–397, 2010.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2023. URL https://arxiv.org/abs/2305.18290.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback, 2012. URL https://arxiv.org/abs/
1205.2618.

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
preferences. arXiv preprint arXiv:2404.03715, 2024.

Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matri-
ces. The annals of mathematical statistics, 35(2):876–879, 1964.

Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei Huang, Yongbin Li, and Houfeng Wang.
Preference ranking optimization for human alignment, 2024. URL https://arxiv.org/
abs/2306.17492.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Shengyi Huang, Kashif Rasul,
Alexander M. Rush, and Thomas Wolf. The alignment handbook. https://github.com/
huggingface/alignment-handbook, 2023a.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, Nathan Sarrazin, Omar
Sanseviero, Alexander M. Rush, and Thomas Wolf. Zephyr: Direct distillation of lm alignment,
2023b.

Hamed Valizadegan, Rong Jin, Ruofei Zhang, and Jianchang Mao. Learning to rank by optimizing
ndcg measure. Advances in neural information processing systems, 22, 2009a.

Hamed Valizadegan, Rong Jin, Ruofei Zhang, and Jianchang Mao. Learning to rank by optimizing
ndcg measure. Advances in neural information processing systems, 22, 2009b.

Saúl Vargas and Pablo Castells. Rank and relevance in novelty and diversity metrics for recom-
mender systems. In Proceedings of the fifth ACM conference on Recommender systems, pp. 109–
116, 2011.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences
via multi-objective reward modeling and mixture-of-experts. arXiv preprint arXiv:2406.12845,
2024.

13

https://arxiv.org/abs/2102.07831
https://arxiv.org/abs/2102.07831
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1205.2618
https://arxiv.org/abs/1205.2618
https://arxiv.org/abs/2306.17492
https://arxiv.org/abs/2306.17492
https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yixin Wang, Dawen Liang, Laurent Charlin, and David M. Blei. Causal inference for recom-
mender systems. In Proceedings of the 14th ACM Conference on Recommender Systems, RecSys
’20, pp. 426–431, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450375832. doi: 10.1145/3383313.3412225. URL https://doi.org/10.1145/
3383313.3412225.

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to learning
to rank: theory and algorithm. In Proceedings of the 25th international conference on Machine
learning, pp. 1192–1199, 2008a.

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to learning
to rank: theory and algorithm. In Proceedings of the 25th international conference on Machine
learning, pp. 1192–1199, 2008b.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe than
others: Preference optimization with the pairwise cringe loss. arXiv preprint arXiv:2312.16682,
2023.

Yueqin Yin, Zhendong Wang, Yi Gu, Hai Huang, Weizhu Chen, and Mingyuan Zhou. Relative
preference optimization: Enhancing llm alignment through contrasting responses across identical
and diverse prompts. arXiv preprint arXiv:2402.10958, 2024.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf: Rank
responses to align language models with human feedback without tears, 2023. URL https:
//arxiv.org/abs/2304.05302.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J. Liu. Slic-hf:
Sequence likelihood calibration with human feedback, 2023. URL https://arxiv.org/
abs/2305.10425.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Mingye Zhu, Yi Liu, Lei Zhang, Junbo Guo, and Zhendong Mao. Lire: listwise reward enhancement
for preference alignment. arXiv preprint arXiv:2405.13516, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

14

https://doi.org/10.1145/3383313.3412225
https://doi.org/10.1145/3383313.3412225
https://arxiv.org/abs/2304.05302
https://arxiv.org/abs/2304.05302
https://arxiv.org/abs/2305.10425
https://arxiv.org/abs/2305.10425

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ILLUSTRATION OF SORTING OPERATIONS

Given the input ground truth labels Ψ = [5, 4, 3, 2]T and scores s = [9, 1, 5, 2]T , the descending
order of Ψ based on the current reward scores s is τ = [1, 4, 2, 3]T . According to the formula
introduced in Eq 3:

DCG@4 =

k∑
j=1

G(ψj) ·D(τ(j)) =
G(5)

log2(1 + 1)
+

G(4)

log2(1 + 4)
+

G(3)

log2(1 + 2)
+

G(2)

log2(1 + 3)

Building upon the preliminaries defined in (Grover et al., 2019), consider an n-dimensional per-
mutation z = [z1, z2, . . . , zn]

T , which is a list of unique indices from the set 1, 2, . . . , n. Each
permutation z has a corresponding permutation matrix Pz ∈ 0, 1n×n, with entries defined as fol-
lows:

Pz[i, j] =

{
1 if j = zi
0 otherwise.

(11)

Let Zn denote the set containing all n! possible permutations within the symmetric group. We
define the sort : Rn → Zn operator as a function that maps n real-valued inputs to a permutation
representing these inputs in descending order.

The sort(s) = [1, 3, 4, 2]T since the largest element is at the first index, the second largest element
is at the third index, and so on. We can obtain the sorted vector simply via Psort(s) · s:

Psort(s) · s =

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


9
1
5
2

 =

9
5
2
1

 (12)

Here we demonstrate the results by conducting NeuralSort Relaxation Eq 5 with different τ . When

Table 6: Illustration of Sorting Operation of ground truth labels Ψ = [5, 4, 3, 2]T and scores s =
[9, 1, 5, 2]T via NeuralSort (Grover et al., 2019) with different τ .

P̂sort(s) · s
limτ→0 9 5 2 1

τ = 0.01 9.0000 5.0000 2.0000 1.0000
τ = 0.1 9.0000 5.0000 2.0000 1.0000
τ = 1.0 8.9282 4.9420 1.8604 1.2643
τ = 10.0 6.6862 4.8452 3.2129 2.2557

we integrate the NeuralNDCG formula in Eq 7, ideally, limτ→0 P̂sort(s)(τ) = Psort(s), yielding the
following result:

Ĝ = Psort(s) · G(Ψ) =

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


G(5)

G(4)
G(3)
G(2)

 =

G(5)
G(3)
G(2)
G(4)


Then,

NeuralDCG@4 =

k∑
j=1

(Ĝ)j ·D(j) =
G(5)

log2(1 + 1)
+

G(3)

log2(1 + 2)
+

G(2)

log2(1 + 3)
+

G(4)

log2(1 + 4)

which can be easily seen to be the same as DCG@4 as long as we keep the alignment between gains
and discounts.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 DETAILS OF BASELINES

Table 1 shows the types and objectives of the baselines we consider in the empirical study.

To ensure variable consistency and comparability of experiments, we choose the original DPO algo-
rithm as our reward score function Eq 2 and pairwise baseline method and assess its performance in
both binary-response and multi-response scenarios.

DPO-BT In detail, we implement three variants of the original sigmoid-based pairwise DPO based
on the Bradley-Terry (BT) methods while aligning multiple responses. The first one is Single Pair
paradigm, where we compare only the highest-scoring and lowest-scoring responses, which is equiv-
alent to the original DPO in the pairwise dataset scenario.

LSingle Pair(πθ;πref) = −E(x,Y,Ψ)∼D [log σ (s1 − sK)] , (13)
Then we introduce the Bayesian Personalized Ranking (BPR) (Rendle et al., 2012) algorithm that
computes the response with the highest score against all other negative responses based on Bayes’
theorem6, which is widely used in recommender system (Hidasi et al., 2016).

LBPR(πθ;πref) = −E(x,Y,Ψ)∼D

 1

K − 1

K∑
j ̸=1

log σ (s1 − sj)

 , (14)

In the last BT variant, we consider all pairs that can be formed from K responses, which is similar to
PRO (Song et al., 2024). This approach allows the model to gain more comprehensive information
than the aforementioned methods, including preference differences among intermediate responses,
which is referred to as All Pairs:

LAll Pairs(πθ;πref) = −E(x,Y,Ψ)∼D

 1(
K
2

) ∑
ψi>ψj

log σ (si − sj)

 , (15)

where
(
K
2

)
denotes the number of combinations choosing 2 out of K elements.

LiPO-λ Deriving from the LambdaRank (Donmez et al., 2009), the objective of LiPO-λ (Liu
et al., 2024) can be written as follows:

LLambdaRank(πθ;πref, β) = −E(x,Y,Ψ)∼D

 1(
K
2

) ∑
ψi>ψj

∆i,j log σ (si − sj)

 , (16)

where ∆i,j = |Gi −Gj | · |D(τ(i))−D(τ(j))| .
∆i,j is referred to as the Lambda weight and G(·) and D(·) is the same gain and discount function
in Eq 3.

SLiC Following the analogous objectives proposed in RRHF (Yuan et al., 2023) and SLiC (Zhao
et al., 2023), we integrate the pairwise Hinge loss as one of our baselines:

LSLiC(πθ;πref) = E(x,Y,Ψ)∼D

 1(
K
2

) ∑
ψi>ψj

max(0, 1− (si − sj))

 , (17)

DPO-PL The DPO objective can also be derived under the Plackett-Luce Model (Plackett, 1975)
in a listwise manner, which is equivalent to the ListMLE (Xia et al., 2008a) method:

LListMLE(πθ;πref) = −E(x,Y,Ψ)∼D

[
log

K∏
k=1

exp(sk)∑K
j=k exp(sj)

]
, (18)

A.3 TRAINING DETAILS

The detailed training hyperparameters of Mistral-7B are shown in Table 7.
6The BPR variant Eq 14 can be viewed as the expected loss function in the following scenario: we have a

multiple responses dataset, but we only retain the highest-scoring response and randomly select one from the
remaining. Finally, we construct a binary responses dataset for pairwise preference optimization, which is a
widely used method for building pairwise datasets (Tunstall et al., 2023a; Meng et al., 2024).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 7: Training hyperparameters for Mistral-7B.

Hyperparameters value

Mini Batch 1
Gradient Accumulation Steps 8
GPUs 16×Nvidia V100-32G
Total Batch Size 128
Learning Rate 5e-7
Epochs 1
Max Prompt Length 512
Max Total Length 1024
Optimizer AdamW
LR Scheduler Cosine
Warm up Ratio 0.1
Random Seed 42

β 0.1
τ for OPO 1.0
α for ApproxNDCG 25

Sampling Temperature 0
Pair-Preference Proxy Model RLHFlow Pair-Preference
Scoring Proxy Model ArmoRM
GPT Judge GPT-4-Turbo
AlpacaEval Judge alpaca eval gpt4 turbo fn

Since Nvidia v100 is incompatible with the bf16 type, we use fp16 for mixed precision in deepspeed
configuration. Notably, as the ListMLE method doesn’t have normalization, it will encounter loss
scaling errors with mixed precision settings.

A.4 SUPPLEMENTARY RESULTS

A.4.1 PROXY MODELS RESULTS

The supplementary results of the Proxy Model Win Rate are shown in Table 8 and Table 9. For
OPO, we fix τ = 1.0. For ApproxNDCG, we fix α = 25 because it is the parameter α · β that
controls the approximation accuracy of the sigmoid function in Eq 9.

Table 8: Supplementary Results across different β on Qwen2-0.5B.

Run Name β Pair-Preference Scoring β Pair-Preference Scoring

Single Pair 0.05 57.24 54.04 0.01 55.59 51.73
0.1 60.75 56.86 0.5 58.97 58.16

BPR 0.05 59.86 56.86 0.01 56.13 55.16
0.1 60.32 58.33 0.5 54.24 55.31

All Pairs 0.05 62.12 58.36 0.01 61.18 56.35
0.1 63.82 60.54 0.5 56.12 55.77

SLiC 0.05 63.31 60.70 0.01 59.30 55.61
0.1 62.68 60.34 0.5 55.23 55.44

LambdaRank 0.05 60.77 56.07 0.01 54.52 51.35
0.1 62.30 59.04 0.5 57.72 56.71

ListMLE 0.05 61.81 57.60 0.01 57.49 55.16
0.1 63.03 59.76 0.5 56.05 55.77

ApproxNDCG
0.05 58.66 54.34 0.01 55.56 50.76
0.1 61.46 58.59 0.2 60.04 57.27
0.5 58.71 57.39 1.0 56.61 56.00

OPO 0.05 63.92 60.09 0.01 59.58 55.46
0.1 64.25 61.36 0.5 58.41 57.65

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 9: Supplementary Results across different list sizes on Qwen2-0.5B. In practice, we keep the
response with the highest label and the one with the lowest label, then conduct random sampling
from the remaining responses.

Run Name List Size Pair-Preference Scoring Pair-Preference Scoring

β = 0.1 β = 0.05

All Pairs

2 60.75 56.86 57.24 54.04
4 63.26 60.90 61.59 58.54
6 63.03 59.50 62.83 57.93
8 63.82 60.54 62.12 58.36

SLiC

2 63.44 59.07 61.00 57.39
4 63.79 61.40 64.04 60.54
6 63.64 61.15 62.01 58.61
8 62.68 60.34 63.31 60.70

LambdaRank

2 60.85 57.62 59.76 56.02
4 61.10 58.05 59.88 55.51
6 62.09 57.72 62.02 56.81
8 62.30 59.04 60.77 56.07

ListMLE

2 60.14 57.01 57.14 53.53
4 63.57 61.23 61.94 58.49
6 62.78 60.92 61.18 57.83
8 63.03 59.76 61.81 57.60

ApproxNDCG

2 59.73 57.72 61.56 58.26
4 59.65 56.45 60.11 55.79
6 60.70 57.32 59.53 56.35
8 61.46 58.59 58.66 54.34

OPO

2 61.94 58.00 58.69 55.89
4 62.91 59.96 62.65 58.56
6 64.02 60.11 61.08 59.43
8 64.25 61.36 63.92 60.09

A.4.2 SUPPLEMENTARY RESULTS FOR MISTRAL-7B

We observe that decreasing the hyperparameter β may increase the performance when language
models scale up to 7B parameters. All methods achieve their best performance with β = 0.05
except for Single Pair with β = 0.01. Our approach OPO consistently achieves the best overall
performance, shown in Table 10.

To further explore the distribution shift during human preference alignment, we demonstrate the
score distribution of all methods of which scores are assigned by the Reward model ArmoRM (Wang
et al., 2024) in Fig 5. The OPO method causes the reward score distribution to shift more signif-
icantly to the right, resulting in fewer instances at lower scores. Consequently, when compared to
the SFT model, its win rate is not as high as methods like All Pairs, SLiC, and ListMLE. However,
it can outperform these methods in direct comparisons.

A.5 APPROXNDCG ANALYSIS

The ApproxNDCG method performs poorly, possibly due to the following reasons: (1) The position
function is an approximation, leading to error accumulation. (2) The sigmoid function used for the
approximation of the position function may suffer from the vanishing gradient problem (Qin et al.,
2010).

In ApproxNDCG, we observe similar results to NeuralNDCG; the model achieves optimal perfor-
mance only when the approximation accuracy reaches a certain threshold. First, we prove that the
Accuracy of ApproxNDCG is relevant to the multiplication of α and β when we employ the score

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 10: Model Scale Up results in Mistral-7B.

Method β Pair-Preference Scoring AlpacaEval

Single Pair

0.1

61.26 70.21 64.45
BPR 79.73 77.59 78.39
All Pairs 79.22 78.43 77.65
SLiC 76.17 75.36 73.04
LambdaRank 80.82 78.53 81.01
ListMLE 78.58 79.22 75.12
ApproxNDCG 76.12 69.21 82.50
OPO 83.13 81.66 81.07

Single Pair

0.05

66.44 65.50 68.87
BPR 84.43 82.37 86.69
All Pairs 85.34 83.31 82.79
SLiC 84.12 83.46 83.27
LambdaRank 85.11 82.52 86.13
ListMLE 83.79 83.61 83.46
ApproxNDCG 82.04 74.64 85.80
OPO 84.98 83.05 87.54

Single Pair

0.01

71.90 70.66 74.75
BPR 77.01 78.46 86.71
All Pairs 72.66 74.09 82.44
OPO 73.17 75.00 84.51

Figure 5: OPO demonstrates superior performance compared to other methods in Scoring Proxy
model win rates on Mistral-7B, while also shifting the distribution of response reward scores more
significantly to the right (i.e., increasing reward scores).

function in Eq 2:

τ̂(j) = 1 +
∑
i ̸=j

exp (−α(sj − si))

1 + exp (−α(sj − si))
== 1 +

∑
i̸=j

1

1 + exp(α(sj − si))

= 1 +
∑
i ̸=j

1

1 + exp(αβ)(log
πθ(yj |x)
πref (yj |x) − log πθ(yi|x)

πref (yi|x))

= 1 +
∑
i ̸=j

1

1 + exp(αβ)× πθ(yj |x)πref (yi|x)
πref (yj |x)πθ(yi|x)

= 1 +
∑
i ̸=j

πref (yj |x)πθ(yi|x)
πref (yj |x)πθ(yi|x) + exp(αβ)× πθ(yj |x)πref (yi|x)

(19)

Then, we illustrate the Approximation accuracy and model performance of ApproxNDCG with
different hyperparameters α · β in Fig 6.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 6: Given ground truth label ψ = [1.0, 0.8, 0.6, 0.4, 0.2], the scores s = [x, 0.8, 0.6, 0.4, 0.2]
and fix β = 0.1, we visualize the ApproxNDCG Approximation Accuracy with different α and its
corresponding absolute value of error and Pair-Preference proxy model win rate against SFT model.

Notice that the approximation accuracy of ApproxNDCG decreases as α increases, which is opposite
to NeuralNDCG.

A.6 TRAINING EFFICIENCY

The computational complexity of each method depends on calculating πθ(yj |x) and πref(yj |x) for
each yj ∈ {Y} to get corresponding scores in Eq 2, which is O(K), where K is the list size of
multiple responses. Subsequently, the pairwise comparison of multiple responses can be efficiently
computed using PyTorch’s broadcasting mechanism to perform matrix subtraction.The resulting
matrix P [i, j] represents the value of si−sj . Therefore, for pairwise methods, it suffices to consider
only the upper triangular matrix, excluding diagonal elements. This approach does not significantly
increase training time when performing pairwise comparisons. The training time and GPU memory
usage of Mistral-7B model is shown in Table 11.

Table 11: Training Time and GPU memory usage on 16×Nvidia V100-32G with Mistral-7B.

Run Name List Size Training Time GPU Memory Usage

Single Pair 2 3h 28m 92.44%
BPR 8 12h 42m 93.43%
All Pairs 8 12h 38m 93.63%
SLiC 8 11h 42m 93.79%
LambdaRank 8 12h 14m 93.66%
ListMLE 8 12h 26m 93.29%

ApproxNDCG 8 12h 56m 93.64%
OPO 8 11h 39m 93.73%

It is important to note that specific training times and GPU memory usage can exhibit random
fluctuations. This result is intended to demonstrate that the training times for pairwise and listwise
methods on multiple responses with the same list size do not show significant differences.

A.7 RESPONSE SAMPLES

We select generated response samples on Mistral-7B to further illustrate the enhanced performance
of OPO.

Table 12: Average response length on AlpacaEval dataset on Mistral-7B.

Method SFT Single Pair BPR All Pairs SLiC LambdaRank ListMLE ApproxNDCG OPO

Length 828 877 1096 1054 1023 1140 1041 1284 1120

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 13: OPO generates a longer and more detailed response on AlpacaEval in the following sam-
ples and outperforms other methods in quality judged by GPT-4 Turbo on Mistral-7B.

Prompt Q: Who is Larry Page?

SFT Larry Page is the co-founder and former CEO of
Google, a multinational technology company. He
is also the co-founder of Alphabet Inc., the
parent company of Google. Page is known for
his contributions to the development of the
PageRank algorithm, which is used to determine
the importance of websites in search engine
rankings. He is also involved in various
philanthropic efforts, including the creation
of the Google Foundation, which supports
projects related to education, health, and the
environment.

OPO Larry Page is a co-founder, former CEO, and
current CEO of Alphabet Inc., the parent
company of Google. He was born on March
26, 1973, in East Lansing, Michigan, and
graduated from Stanford University with a
degree in computer science and artificial
intelligence. Page, along with Sergey Brin,
developed the PageRank algorithm, which forms
the basis of Google’s search engine. In 1998,
they founded Google, which quickly became
one of the most successful and influential
technology companies in the world. Page served
as Google’s CEO from 1999 to 2001 and again
from 2011 to 2015, during which time he oversaw
the company’s expansion into new markets,
including mobile devices, cloud computing, and
artificial intelligence. In 2015, Page stepped
down as CEO of Google and became the CEO of
Alphabet, the holding company that was created
to separate Google’s core internet business
from its other ventures. As Alphabet’s CEO,
Page has focused on developing new technologies
and expanding into emerging markets, such as
healthcare and autonomous vehicles. Page is
widely regarded as one of the most innovative
and influential entrepreneurs of our time, and
his contributions to the field of computer
science and technology have had a profound
impact on the world.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Single Pair Larry Page is an American entrepreneur,
computer scientist, and co-founder of Google,
along with Sergey Brin. He was born on March
26, 1973, in East Lansing, Michigan, and
graduated from Stanford University with a
degree in computer science and artificial
intelligence. Page is known for his innovative
ideas and leadership in the technology
industry, particularly in the areas of search
engines, artificial intelligence, and renewable
energy. He currently serves as the CEO of
Alphabet Inc., the parent company of Google,
and is considered one of the most influential
figures in the tech world.

BPR Larry Page is a co-founder of Google, along
with Sergey Brin. He was born on March 26,
1973, in East Lansing, Michigan, USA. Page
and Brin started Google in 1998 while they
were both PhD students at Stanford University.
Page’s primary role in the company has been
as CEO from 2001 to 2019, and he currently
serves as the CEO of Alphabet Inc., the parent
company of Google. Under his leadership,
Google has become one of the most successful
and influential technology companies in the
world, with a market capitalization of over
$1 trillion. Page is also known for his
philanthropic efforts, including funding
research on renewable energy and supporting
education initiatives.

All Pairs Larry Page is a co-founder of Google, along
with Sergey Brin. He was born on March 26,
1973, in East Lansing, Michigan, USA. Page and
Brin started Google in 1998 while they were
both PhD students at Stanford University.
Page is known for his focus on innovation,
simplicity, and user experience, and he has
been instrumental in shaping Google’s vision
and strategy. He served as CEO of Alphabet
Inc., the parent company of Google, from 2015
to 2019, and currently serves as the CEO of
Alphabet’s subsidiary, Google. Page is also
a philanthropist and has been involved in
various charitable initiatives, including
the PageRipples Foundation, which supports
education and environmental causes.

SLiC Larry Page is a co-founder of Google, along
with Sergey Brin. He was born on March 26,
1973, in East Lansing, Michigan, USA. Page and
Brin started Google in 1998 while they were
both PhD students at Stanford University. Page
is currently the CEO of Alphabet Inc., the
parent company of Google, and is responsible
for overseeing the company’s overall strategy
and direction. He is also a prominent figure
in the technology industry, known for his
focus on innovation, sustainability, and
philanthropy.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

LambdaRank Larry Page is a co-founder of Google, along
with Sergey Brin. He was born on March 26,
1973, in East Lansing, Michigan, USA. Page
and Brin started Google in 1998 while they
were both PhD students at Stanford University.
Page served as the CEO of Google from 1999 to
2001, and then again from 2011 to 2015. He
currently serves as the CEO of Alphabet Inc.,
the parent company of Google. Page is known
for his focus on innovation, sustainability,
and philanthropy, and has been recognized
as one of the most influential people in the
world.

ListMLE Larry Page is a co-founder of Google, along
with Sergey Brin. He was born on March 26,
1973, in East Lansing, Michigan, USA. Page and
Brin started Google in 1998 while they were
both PhD students at Stanford University. Page
is currently the CEO of Alphabet Inc., the
parent company of Google, and is responsible
for overseeing the company’s overall strategy
and direction. He is also a prominent figure
in the technology industry, known for his
focus on innovation, sustainability, and
philanthropy.

ApproxNDCG Larry Page is a co-founder of Google, along
with Sergey Brin. He was born on March 26,
1973, in East Lansing, Michigan, and grew
up in the Detroit area. Page and Brin met
at Stanford University, where they developed
the PageRank algorithm, which became the basis
for Google’s search engine.\n\n Page served as
the CEO of Google from 1999 to 2001, and then
again from 2011 to 2019. During his tenure,
he oversaw the company’s growth and expansion,
including the development of new products and
services, such as Google Maps, Google Earth,
and Google Glass.\n\n Page is known for his
focus on innovation, user experience, and
sustainability. He has also been involved
in various philanthropic efforts, including
the creation of the Google.org foundation and
the development of the Google Self-Driving
Car Project.\n\n Today, Page is the CEO of
Alphabet, the parent company of Google, and
continues to play a key role in shaping the
future of technology and the internet.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.8 ILLUSTRATION OF PSORT

The code for NeuralSort Eq 5 is provided below.

import torch
import torch.nn.functional as F

def neuralsort(s, tau=1):
s.shape = [batch_size, list_size]
s=s.unsqueeze(2)

A_s[i,j] = |s[i] - s[j]|
A_s = s - s.transpose(1, 2)
A_s = torch.abs(A_s)

B=A_s*ones
n = s.size(1)
one = torch.ones((n, 1),dtype=torch.float)
B = torch.matmul(A_s, one @ one.transpose(0, 1))

C=(n+1-2i)*s
K = torch.arange(1, n + 1,dtype=torch.float)
C = torch.matmul(s, (n + 1 - 2 * K).unsqueeze(0))

P= softmax(((n+1-2i)*s-A_s*ones)/tau)
P = (C - B).transpose(1, 2)
P = F.softmax(P / tau, dim=-1)

return P

Given the score s = [9, 1, 5, 2]T provided in Appendix A.1, we have

As =

0 8 4 7
8 0 4 1
4 4 0 3
7 1 3 0

 , B = As · 1k×k =

19 19 19 19
13 13 13 13
11 11 11 11
11 11 11 11



C = [(n+ 1− 2i) ∗ s] =

27 9 −9 −27
3 1 −1 −3
15 5 −5 −15
6 2 −2 −6


Based on Eq 5, we can get P̂sort(s)

P̂sort(s) = softmax [
C −B

τ
] =

 0.98 1.5e− 8 0.018 2.2e− 6
0.017 2.3e− 3 0.93 0.047

2.2e− 7 0.26 0.035 0.71
6.8e− 14 0.73 3.3e− 5 0.27


Finally, we can get the permutation of the sorted score vector as shown in Tab 6:

P̂sort(s) · s = (8.9282 4.9420 1.8604 1.2691)

We also show the sum of columns and rows:

column sum : (0.9991 0.9928 0.9872 1.0208)

row sum : (1.0000 1.0000 1.0000 1.0000)
T

As discussed above, P̂sort(s) is not column-stochastic, meaning each column may not sum to one.
This can cause some G(ψi) to contribute to the overall loss objective disproportionately and ad-
versely affect model performance. The ablation studies are shown in Tab 4.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.9 RANKING ACCURACY ANALYSIS

Proposition 1. The optimal policy from NDCG-based loss π∗
NDCG leads to the same order of reward

scores as π∗
DPO.

Proof of Proposition 1: Assume access to a list of ground truth labels in descending order Ψ =
{ψ1, ..., ψK}, where ψi ≥ ψj if i < j. Now we have a score vector s = {s1, ..., sk}, the descending
rank position of si is denoted by τ(i) = 1+

∑k
j=1 Isi<sj . According to the definition of NDCG Eq

4, the maximum NDCG value is achieved when τ(i) = i, which is equivalent to s∗i ≥ s∗j if i < j.
The permutation of s∗ is the same as the permutation of ground truth labels Ψ = {ψ1, ..., ψK}. The
reward score of the preferred response is higher than the non-preferred one in every preference pair,
which has the same order of π∗

DPO.

Following the definition in (Chen et al., 2024), we define the ranking accuracy as

R(x, yw, yl) =

{
1 πθ(yw | x) ≥ πθ(yl | x),
0 otherwise.

(20)

Then we define (π, yw, yl) is a correct rank pair when R(x, yw, yl) = 1 and it is an incorrect rank
pair otherwise.
Proposition 2. The ranking accuracy on the optimal policy π∗ from an NDCG-based loss is
bounded by the ranking accuracy of the reference model πref. If πref(yw|x) ≥ πref(yl|x), we have
R(x, yw, yl) = 1.

Proof of Proposition 2: Under pairwise scenario, by definition, we have G(ψw) ≥ G(ψl). Then the
optimal policy π∗ from an NDCG-based objective satisfies

s∗(x, yw) ≥ s∗(x, yl)

which is equivalent to
π∗(yw|x)
πref(yw|x)

≥ π∗(yl|x)
πref(yl|x)

.

The above formula means the ranking accuracy of the reference model is a lower bound of policy
ranking accuracy:

π∗(yw|x)
π∗(yl|x)

≥ πref(yw|x)
πref(yl|x)

= DKL(πref(yw|x)||πref(yl|x))

When the ranking accuracy of πref is 1, the ranking accuracy of the optimal policy R(x, yw, yl) = 1
always holds, which is shown in experiments Fig 9.

π∗(yw|x)
π∗(yl|x)

≥ πref(yw|x)
πref(yl|x)

≥ 1 ⇒ R(x, yw, yl) = 1

To thoroughly analyze the performance gap in correcting incorrect pairs (i.e., make πθ(yw|x)
πθ(yl|x) > 1

given πref(yw|x)
πref(yl|x) < 1), we compare DPO, LiPO, and OPO in a pairwise scenario. We can explicitly

show that even with only 2 responses, the NDCG-based method demonstrates a higher efficiency in
flipping incorrect pairs into correct ones Fig 8. When the flipping is converged, all three methods
share a similar flip distribution, which is highly constrained to reference ranking accuracy yw and
yl. It is hard for policy models to flip a rank pair if πref(yw|x)/πref(yl|x) is extremely low. This
could be explained by the fact that the current DPO-based score function only necessarily ensures

π∗(yw|x)
π∗(yl|x)

≥ πref(yw|x)
πref(yl|x)

,

instead of
π∗(yw|x)
π∗(yl|x)

≥ 1.

The experimental results provide evidence supporting Proposition 1, namely that under optimal
conditions, different learning-to-rank methods yield the same score permutation. However, NDCG-
based methods do not necessarily maximize the reward margin in the same way as DPO and LiPO,
which may explain their higher efficiency in improving ranking accuracy metrics.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 7: We train the Qwen2-0.5B model with list size equals 2, we count the four types of rank
flip (1) Correct to Correct (2) Correct to Incorrect (3) Incorrect to Correct (4) Incorrect to Correct
on a test dataset of 1024 prompt samples. Type (1) and (2) remain the same during training. (3) and
(4) differ across different methods but converge to a similar value when the step is large.

Figure 8: OPO demonstrates a higher efficiency in correcting incorrect pairs to correct ones. The
dashed line refers to the steps in which the loss objective is converged for all three methods.

Figure 9: The successful flip (Incorrect to Correct) distribution is highly constrained to reference
ranking accuracy yw and yl. We refer to the ”converged” as the step where the four rank flips type
ultimately stabilizes, which in our experiments corresponds to 5700 steps.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 10: OPO demonstrates more successful rank flips in early training steps compared to DPO.
As the number of steps increases, the distributions of the two methods gradually converge. However,
OPO outperforms DPO in terms of successful rank flips in the long-tail region.

Figure 11: OPO demonstrates more successful rank flips in early training steps compared to LiPO.
As the number of steps increases, the distributions of the two methods gradually converge. However,
OPO outperforms LiPO in terms of successful rank flips in the long-tail region.

27

	Introduction
	Preliminaries
	Problem Setting
	NDCG Metric

	Ordinal Preference Optimization
	NeuralSort relaxation
	OPO Objective with NeuralNDCG
	Other Approximation of NDCG

	Experiments
	Main Results
	Ablation Study

	Related Work
	Discussion
	Appendix
	Illustration of Sorting Operations
	Details of Baselines
	Training Details
	Supplementary Results
	Proxy Models Results
	Supplementary Results for Mistral-7B

	ApproxNDCG Analysis
	Training Efficiency
	Response Samples
	Illustration of Psort
	Ranking Accuracy Analysis

