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Abstract—This survey delves into the Mixture of Experts
(MoE) architecture, a robust and versatile approach designed to
enhance the performance and efficiency of deep learning models
by leveraging multiple specialized expert models to address
complex tasks. We provide a comprehensive analysis of MoE’s
fundamental principles, focusing on its core components. Firstly,
we examine the dynamic routing mechanisms that intelligently
assign input data to the most suitable experts, ensuring optimal
utilization of each expert’s specialized capabilities. Secondly, we
explore expert specialization strategies, detailing methods for
developing and training experts to effectively handle a diverse
range of problems, thereby distinguishing MoE from traditional
architectures. Additionally, the survey addresses load balancing
techniques essential for the efficient distribution of computational
resources among experts, which is critical for maintaining high
model performance while managing hardware constraints. We
also investigate various expert model architectures, from simple
neural networks to more intricate, task-specific designs, and
their interactions within the MoE framework. A significant
contribution of this survey is the presentation of a comprehensive
taxonomy that categorizes the key methodologies and compo-
nents of MoE, providing a structured overview that facilitates
researchers in understanding, comparing, and advancing existing
MoE architectures. By organizing the diverse approaches to
expert specialization, routing mechanisms, and load balancing,
this taxonomy serves as a valuable tool for further innovation
and development in the field of MoE-based deep learning models.

Impact Statement—The survey on MoE architectures presented
in this paper advances the understanding and application of deep
learning models. By thoroughly dissecting core components such
as routing mechanisms, expert specialization, load balancing, and
diverse expert model designs, this work provides a valuable re-
source for researchers and practitioners alike. The detailed anal-
ysis facilitates more efficient and effective deployment of MoE
systems across various complex tasks, leading to enhanced per-
formance and optimized computational resource utilization. This
survey bridges knowledge gaps, inspires innovative approaches in
model development, and supports the advancement of artificial
intelligence in domains such as natural language processing,
computer vision, and decision-making systems. Ultimately, it
contributes to the creation of more adaptable and powerful AI
solutions capable of addressing increasingly sophisticated and
multifaceted real-world challenges. Furthermore, by categorizing
key techniques and providing a roadmap for future research, this
work empowers the development of scalable and efficient models
that push the boundaries of current AI capabilities.
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I. INTRODUCTION

The Mixture of Experts (MoE) architecture, introduced by
Jacobs et al. [1], is an ensemble learning [2] technique
originally developed for artificial neural networks. Unlike tra-
ditional ensemble methods where all models are trained on the
same dataset and their outputs are combined through averaging
or voting, MoE assigns each expert model to a specific subset
of the data. This specialization allows each expert to focus on
and excel at its designated subtask, enhancing overall perfor-
mance on complex predictive modeling problems. By dividing
input data into multiple subtasks and leveraging a group of
smaller, specialized models, MoE effectively manages diverse
and multifaceted tasks. The popularity of MoE has surged
recently with the advent of Large Language Models (LLMs)
and transformer-based architectures, driven by the increasing
complexity and size of modern datasets, which contain varied
regimes and intricate relationships between features and labels.
To appreciate the essence of MoE, it is crucial to understand
its architectural elements:

• Division of dataset into local subsets: First, the pre-
dictive modeling problem is divided into subtasks. This
division often requires domain knowledge or employs
an unsupervised clustering algorithm. It’s important to
clarify that clustering is not based on the feature vectors’
similarities. Instead, it’s executed based on the correlation
among the relationships that the features share with the
labels.

• Expert models: These are the specialized neural network
layers or experts that are trained to excel at specific sub-
tasks. Each expert receives the same input pattern and
processes it according to its specialization. An expert
is trained for each subset of the data. Typically, the
experts themselves can be any model, from Support
Vector Machines (SVM) [3] to neural networks. Each
expert model receives the same input pattern and makes
a prediction.

• Gating network (Router): The gating network, also
called the router, is responsible for selecting which ex-
perts to use for each input data. It works by estimating
the compatibility between the input data and each expert,
and then outputs a softmax distribution over the experts.
This distribution is used as the weights to combine the
outputs of the expert layers. This model helps interpret
predictions made by each expert and decide which expert
to trust for a given input. Figure 4 illustrates a typical
MoE setup, showing the interplay between experts and
the gating network.
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Fig. 1. A system of Experts and gating networks (Fig. credit: [1])

• Pooling method: Finally, an aggregation mechanism is
needed to make a prediction based on the output from
the gating network and the experts. The gating network
and expert layers are jointly trained to minimize the
overall loss function of the MoE model. The gating
network learns to route each input to the most relevant
expert layer(s), while the expert layers specialize in their
assigned sub-tasks.

This collective architecture embodies a divide-and-conquer
approach [4], effectively delegating complex tasks to spe-
cialized experts. The gating network dynamically routes each
input to the most appropriate expert(s), ensuring that each ex-
pert focuses on its specific area of strength. This collaborative
mechanism enhances efficient processing and improves accu-
racy, leading to a more versatile and capable overall model. By
activating only a subset of model parameters (experts) for each
input, MoEs improve efficiency and allow for larger models
while keeping computational costs manageable.

A. Gate Functionality

This section seeks to answer how the gating network (also
called gate, router, or switch) in MoE models works under the
hood. Let’s explore two distinct but interconnected functions
of the gate in a MoE model:

• Clustering the Data: In the context of an MoE model,
clustering the data means that the gate is learning to
identify and group together similar data points. There
is no clustering in the traditional unsupervised learning,
where the algorithm discovers clusters without any exter-
nal labels. The gate learns from the training process to
identify features or patterns in the data that indicate which
data points are comparable to one another and ought to
be handled accordingly. This is a important stage since it

establishes the structure and interpretation of the data by
the model.

• Mapping Experts to Clusters: when the gate has iden-
tified clusters within the data, the next part is to assign
or map each cluster to the most appropriate expert within
the MoE model. Each expert in the model is specialized
to handle different types of data or different aspects of
the problem. The gate’s function direct each data point
(or each group of similar data points) to the expert that
is best suited to process it. The mapping is dynamic and
is based on the strengths and specialties of each expert
when they evolve during the training process.

In summary, the gate in an MoE model is responsible for
organizing the incoming data into meaningful groups (cluster-
ing) and then efficiently allocating these groups to the most
relevant expert models within the MoE system for further
processing. This dual role of the gate is critical for the overall
performance and efficiency of the MoE model, enabling it to
handle complex tasks by leveraging the specialized skills of
its various expert components.

B. Sparsely Gated

In 2017, an extension of the MoE paradigm suited for
deep learning was proposed by Noam Shazeer et al. [5].
In most deep learning models, increasing model capacity
generally leads to improved performance when datasets are
sufficiently large. However, activating the entire model for
every example can result in a quadratic increase in training
costs as both model size and the number of training exam-
ples grow.Implementing conditional computation effectively in
deep learning poses several challenges:

• Modern computing devices like GPUs and TPUs perform
better in arithmetic operations than in network branching.

• Larger batch sizes benefit performance but are reduced
by conditional computation.

• Network bandwidth can limit computational efficiency,
notably affecting embedding layers.

• Some schemes might need loss terms to attain required
sparsity levels, impacting model quality and load balance.

• Model capacity is vital for handling vast data sets, a
challenge that current conditional computation literature
doesn’t adequately address.

Shazeer’s MoE technique addresses these challenges by
achieving conditional computation while maintaining compu-
tational efficiency. They introduced a new type of network
layer called the ”Sparsely-Gated MoE Layer,” designed as
a general-purpose neural network component adaptable to
various tasks. The Sparsely-Gated MoE architecture consists
of numerous expert networks—each a simple feed-forward
neural network—and a trainable gating network. The gating
network selects a sparse combination of experts to process
each input, meaning that for every input instance, only a
few experts are activated while the rest remain inactive.
This dynamic selection makes the process highly flexible and
adaptive, preserving computational efficiency since inactive
parts of the network are not processed.
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Moreover, the authors introduced an innovative technique
called Noisy Top-K Gating. This mechanism adds tunable
Gaussian noise to the gating function, retains only the top
k values, and assigns the rest to negative infinity, effectively
setting their gating values to zero. This approach ensures
sparsity in the gating network while maintaining robustness
and aiding in load balancing across expert networks. Both the
gating network and the experts are jointly trained via back-
propagation. The output from each expert is weighted by the
corresponding gating value to produce the final model output.

The Sparse MoE architecture has been a game-changer in
large-scale language models, allowing for scaling up model
capacity with almost constant computational complexity. This
has led to breakthroughs such as the Switch Transformer [6],
GPT-4 [7], Mixtral-8x7b [8], and more.

C. Methodology for Literature Review

In conducting this review of Mixture of Experts (MoE)
architectures, we adopted a systematic methodology to ensure
the inclusion of relevant and impactful literature. Our selection
criteria focused on studies that significantly contribute to the
understanding and advancement of MoE’s core components,
including routing mechanisms, expert specialization, load bal-
ancing, and practical applications across fields such as natural
language processing (NLP) and computer vision. Papers were
included if they presented theoretical advancements or ex-
perimental analyses of MoE architectures, explored key MoE
components (such as routing, expert specialization, and load
balancing), or applied MoE models in high-impact domains
like NLP and computer vision. Studies were excluded if
they lacked direct relevance to MoE architecture or frame-
works or focused exclusively on unrelated neural network
architectures without reference to MoE principles. To identify
relevant literature, we conducted a comprehensive search in
databases such as IEEE Xplore, arXiv, and Google Scholar,
using keywords like “Mixture of Experts,” “MoE architecture,”
“routing mechanisms in neural networks,” and “expert model
specialization.” After screening abstracts and, where necessary,
full texts, we synthesized the selected studies by categorizing
them according to the MoE components they addressed, such
as routing strategies, expert specialization methods, or load
balancing techniques. This systematic approach allowed us to
structure our review around the core elements of MoE and
to provide an organized analysis of the state-of-the-art in this
field.

II. RELATED WORKS

The Mixture of Experts (MoE) architecture has seen signifi-
cant development and refinement since its inception, becoming
integral to various machine learning domains. This section
reviews the advancements in MoE, focusing on the evolution
of MoE architectures, routing strategies, load balancing, expert
specialization, token dropping, and notable applications across
vision and language models.

A. Evolution of MoE Architectures

The capacity of neural networks is inherently constrained
by their parameter count. To address this limitation, the
concept of conditional computation was introduced, theorizing
that model capacity could be significantly increased without
proportional increases in computation [9]. However, imple-
menting conditional computation presents practical challenges.
Traditional static neural network architectures apply uniform
functions to all examples, whereas input-dependent models
customize functions for each example. Manually defining
input-dependent functions for every example is impractical,
necessitating automatic inference by the model, which adds
complexity to optimization. To tackle the need for automatic
architecture inference, a common approach is to construct a
single large model (supernetwork) composed of numerous sub-
networks (experts) and route examples through this network.
A Sparsely-Gated Mixture of Experts (MoE) layer, introduced
by Shazeer et al. [5], contains thousands of feed-forward
sub-networks, with a trainable gating network determining
a sparse combination of these experts for each example.
This per-example routing mechanism processes different ex-
amples through distinct subcomponents or experts within
the larger model. The setup intuitively suggests that similar
examples may traverse similar paths, while dissimilar ones
might take different paths. Furthermore, example-dependent
routing promotes expert specialization, where experts focus
their representational capacity on transforming specific subsets
of examples. The proposed MoE layer takes as an input a token
representation x and then routes this to the best determined
top-k experts, selected from a set {Ei(x)}Ni=1 of N experts.
The router variable Wr produces logits h(x) = Wr · x which
are normalized via a softmax distribution over the available N
experts at that layer. The gate-value for expert i is given by:

pi(x) =
eh(x)i∑N
j=1 e

h(x)j
(1)

The top-k gate values are selected for routing the token
x If τ is the set of selected top-k indices then the output
computation of the layer is the linearly weighted combination
of each expert’s computation on the token by the gate value,
y =

∑
i∈τ pi(x)Ei(x) Shazeer et al. applied the MoE to tasks

in language modeling and machine translation, where model
capacity is critical for absorbing vast amounts of knowledge
from training corpora. They presented model architectures in
which an MoE with up to 137 billion parameters is applied
convolutionally between stacked LSTM layers. On large lan-
guage modeling and machine translation benchmarks, these
models achieved significantly better results than state-of-the-
art models at lower computational cost.Further advancements
were made by Eigen et al. [10], who extended MoE to a
stacked model, the Deep MoE, with multiple sets of gating and
experts. This exponentially increases the number of effective
experts by associating each input with a combination of
experts at each layer, yet maintains a modest model size. On a
randomly translated version of the MNIST dataset, they found
that the Deep MoE automatically learns to develop location-
dependent (”where”) experts at the first layer and class-specific
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(”what”) experts at the second layer. Additionally, they ob-
served the effective use of different expert combinations when
the model was applied to a dataset of speech monophones.
These findings demonstrate the model’s ability to utilize all
expert combinations effectively.

Fig. 2. An MoE layer embedded within a recurrent language model. In this
case, the sparse gating function selects two experts to perform computations.
Their outputs are modulated by the outputs of the gating network. (Fig. credit:
[5]).

In 2017, an extension of the MoE paradigm suited for
deep learning was proposed by Shazeer et al. 2, In most
deep learning models, increasing model capacity generally
translates to improved performance when datasets are suffi-
ciently large. Generally, when the entire model is activated
by every example, it can lead to “a roughly quadratic blow-
up in training costs, as both the model size and the number
of training examples increase”. Although the disadvantages of
dense models are clear, there have been various challenges
for an effective conditional computation method targeted to-
ward modern deep learning models, mainly for the following
reasons:

• Modern computing devices like GPUs and TPUs perform
better in arithmetic operations than in network branching.

• Larger batch sizes benefit performance but are reduced
by conditional computation.

• Network bandwidth can limit computational efficiency,
notably affecting embedding layers.

• Some schemes might need loss terms to attain required
sparsity levels, impacting model quality and load balance.

• Model capacity is vital for handling vast data sets, a
challenge that current conditional computation literature
doesn’t adequately address.

The MoE technique presented by Shaazer et al. [5] aims to
achieve conditional computation while addressing the above
mentioned issues. They could increase model capacity by more
than a thousandfold while only sustaining minor computa-
tional efficiency losses. The authors introduced a new type of
network layer called the “Sparsely-Gated MoE Layer”. They
are built on previous iterations of MoE and aim to provide
a general-purpose neural network component that can be
adapted to different types of tasks. The Sparsely-Gated MoE
architecture (henceforth, referred to as the MoE architecture),
consists of numerous expert networks, each being a simple
feed-forward neural network and a trainable gating network.
The gating network is responsible for selecting a sparse
combination of these experts to process each input.

B. Expert Choice Routing

In MoEs, expert capacity and capacity factor are crucial for
ensuring balanced load distribution and efficient utilization of
the model’s experts [80]. Expert capacity sets the maximum
number of tokens or inputs each expert can process, while the
capacity factor adjusts this capacity to provide flexibility in
managing computational resources.

• Expert Capacity: Ci is the Capacity of the ith expert,
representing the maximum number of tokens it can han-
dle.

• Capacity Factor: α Capacity factor, a scalar that adjusts
the effective capacity of each expert.

• Gating Network: Gij Gating probability or decision for
the jth token to be routed to the ith , It can be binary (0
or 1) or a continuous value between 0 and 1.

In the context of MoEs, expert capacity and the capacity
factor play critical roles in managing load distribution and
expert utilization. By incorporating the capacity factor into
the effective capacity constraints and penalty terms in the
loss function, MoE models can achieve balanced load distribu-
tion and improved performance. The equations provided help
formalize the management of expert capacities, ensuring that
the model operates efficiently without overloading any single
expert.

C. Load Balancing

Load balancing is a critical issue in MoEs [80], ensuring
that all experts are used evenly. Without proper load balancing,
some experts might be over-utilized while others are under-
utilized, leading to inefficiencies and degraded model perfor-
mance. Effective load balancing ensures that the computational
resources are fully utilized, which enhances the model’s over-
all effectiveness and efficiency. The loss function in MoEs
typically includes a term to encourage load balancing. This
term penalizes the model when the load is unevenly distributed
across the experts. The loss function can be expressed as

L = Ltask + λLload balancing, (2)

where

Lload balancing = −
N∑
i=1

pi log pi (3)

and pi is the probability of selecting the ith expert. Several
strategies can address load balancing: incorporating regulariza-
tion terms in the loss function to penalize uneven expert use,
employing sophisticated gating networks to ensure balanced
expert selection and avoid over-reliance, setting expert capac-
ity constraints to limit and dynamically adjust the number of
inputs each expert handles, utilizing advanced routing strate-
gies for even input distribution, and adopting the MegaBlocks
approach, which introduces block-wise parallelism and struc-
tured sparse methods to balance the computational load.

D. MegaBlocks Handling of Load Balancing

MegaBlocks [39] is an innovative approach to improve
load balancing in MoE models. It employs four key strategies:
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Fig. 3. Detailed Breakdown Across Vision MoEs, LLMs, Scaling Techniques, System Implementations, Recommendation Systems, and Python Libraries.
This diagram provides a comprehensive mapping of the various state-of-the-art MoE models, categorized by their specific applications and contributions,
highlighting key research advancements and tools in the field.
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block-wise parallelism, which divides the model into smaller,
parallel-processed blocks; sparse activation, which selectively
activates only parts of the model for each input; efficient load
distribution algorithms that monitor and adjust expert utiliza-
tion in real-time; and dynamic capacity adjustment, which
allows experts to adapt their capacity based on current de-
mand. By combining these techniques, MegaBlocks effectively
addresses the crucial issue of load balancing in MoEs, ensuring
more balanced expert utilization and improved overall model
efficiency. This approach represents a significant advancement
in managing computational resources within complex MoE
architectures.

E. Expert Specialization

Recent research has uncovered some insights regarding how
experts specialize within an MoE architecture. Shown below
is a neat visualization from Towards Understanding the MoE
Layer in Deep Learning by Chen [81], which shows how a
4-expert MoE model learns to solve a binary classification
problem on a toy dataset that’s segmented into 4 clusters.
Initially, the experts (shown as different colors) are all over the
place, but as training proceeds, different experts “specialize”
in different clusters until there’s almost a 1:1 correspondence.
That specialization is entirely random, and only driven by
the small initial random perturbations. Meanwhile, the gate is
learning to (1) cluster the data and (2) map experts to clusters.
One of the important take-away from this toy experiment is
that non-linearity appears to be the key to the success of MoE.
Experts with linear activation simply don’t work as well as
those with non-linear (cubic in this work) activation.

Fig. 4. Recent research has started to give us some insights. Here’s a neat
visualization from the paper “Towards Understanding the MoE Layer in Deep
Learning” by Chen et al. [81], which shows how a 4-expert MoE model learns
to solve a binary classification problem on a toy dataset that’s segmented into
4 clusters.

F. Token Dropping

In MoEs, expert capacity and capacity factor are crucial for
ensuring balanced load distribution and efficient utilization of

the model’s experts. Expert capacity sets the maximum number
of tokens or inputs each expert can process, while the capacity
factor adjusts this capacity to provide flexibility in managing
computational resources. Token dropping in MoE models [52]
is a significant challenge that arises from imbalanced expert
activation, strict capacity constraints, and inefficient gating
mechanisms. This issue, where certain input tokens are not
processed by any expert, can severely impact model perfor-
mance and efficiency. To address this problem, researchers
have developed various mitigation strategies. These include
enhancing gating mechanisms for more balanced token distri-
bution, implementing regularization techniques to penalize un-
even expert activation, employing dynamic capacity allocation
to adapt to varying workloads, and developing advanced to-
ken routing algorithms. Other approaches involve introducing
auxiliary loss functions specifically targeting token dropping,
implementing token coverage mechanisms to ensure all tokens
are processed, and utilizing the MegaBlocks approach for ef-
ficient parallel processing. Additionally, techniques promoting
diversity in expert selection and continuous monitoring with
dynamic adjustments have been employed. These strategies
collectively aim to optimize MoE architectures by ensuring
more uniform expert utilization, preventing information loss
from dropped tokens, and ultimately enhancing the model’s
overall performance across diverse tasks. By effectively tack-
ling the token dropping issue, MoE models can better leverage
their distributed expertise, leading to more robust and efficient
processing of input data.

III. VISION MOE

V-MoE: Almost all prevalent computer vision models net-
works are “dense,” that is, every input is processed by every
parameter. This paper by Riquelme et al. [11] from Google
Brain introduces the Vision MoE (V-MoE), a novel approach
for scaling vision models. The V-MoE is a sparsely activated
version of the Vision Transformer (ViT) that demonstrates
scalability and competitiveness with larger dense networks in
image recognition tasks. The paper proposes a sparse variant
of the ViT that uses a MoE architecture. This approach routes
each image patch to a subset of experts, making it possible to
scale up to 15B parameters while matching the performance
of state-of-the-art dense models. An innovative extension to
the routing algorithm is presented, allowing prioritization of
subsets of each input across the entire batch. This adaptive
per-image compute leads to a trade-off between performance
and computational efficiency during inference. The V-MoE
shows impressive scalability, successfully trained up to 15B
parameters, and demonstrates strong performance, including
90.35% accuracy on ImageNet. The paper explores the transfer
learning abilities of V-MoE, showing its adaptability and
effectiveness across different tasks and datasets, even with
limited data. A detailed analysis of the V-MoE’s routing
decisions and the behavior of its experts is provided, offering
insights into the model’s internal workings and guiding future
improvements. V-MoE models require less computational re-
sources than dense counterparts, both in training and inference,
thanks to their sparsely activated nature and the efficient use of
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the Batch Prioritized Routing algorithm. The paper represents
a significant advancement in the field of computer vision,
particularly in the development of scalable and efficient vision
models.
MMoE: This paper by Jiaqi et al. [12] published in KDD
2018, introduces a novel approach to multi-task learning called
Multi-gate MoE (MMoE). The method aims to enhance the
performance of multi-task learning models by better handling
the relationships between different tasks. The MMoE model
adapts the MoE framework to multi-task learning by sharing
expert submodels across all tasks and using a gating network
optimized for each task. This design allows the model to
dynamically allocate shared and task-specific resources, ef-
ficiently handling tasks with varying degrees of relatedness.
The paper presents experiments using synthetic data and real
datasets, including a binary classification benchmark and a
large-scale content recommendation system at Google. These
experiments demonstrate MMoE’s effectiveness in scenarios
where tasks have low relatedness and its superiority over
traditional shared-bottom multi-task models in terms of both
performance and trainability. MMoE’s architecture consists of
multiple experts (feed-forward networks) and a gating network
for each task, which determines the contribution of each expert
to the task. This setup allows the model to learn nuanced
relationships between tasks and allocate computation resources
more effectively. On synthetic data, MMoE showed better
performance, especially when task correlation is low, and
demonstrated improved trainability with less variance in model
performance across runs. On real-world datasets, including
the UCI Census-income dataset and Google’s content recom-
mendation system, MMoE consistently outperformed baseline
models in terms of accuracy and robustness. MMoE offers
computational efficiency by using lightweight gating networks
and shared expert networks, making it suitable for large-scale
applications. The experiments on Google’s recommendation
system highlighted MMoE’s ability to improve both engage-
ment and satisfaction metrics in live experiments compared to
single-task and shared-bottom models.
M³ViT: In the paper by Liang et al. [13] proposes MoE
Vision Transformer for Efficient Multi-task Learning with
Model-Accelerator Co-design (M³ViT)framework presents a
solution through a co-design approach between the model
and its hardware accelerator. It leverages a MoE architecture
embedded within a vision transformer. Imagine a team of spe-
cialists – that’s the concept behind MoE. M³ViT has multiple
sub-networks (experts) within the model, each specializing
in handling specific visual aspects of the data. During train-
ing, a routing mechanism acts like a dispatcher, intelligently
selecting only the most relevant expert(s) for each training
sample. This sparse activation helps avoid training conflicts
by disentangling the parameter spaces for different tasks,
potentially leading to faster and more efficient training.
MoVA: In this paper by Zong et al. [14], proposes MoVA,
a robust and innovative MLLM. MoVA employs a dynamic
routing and fusion mechanism to leverage task-specific vision
experts through a coarse-to-fine approach.During the coarse-
grained phase, MoVA employs a context-aware expert routing
strategy that dynamically selects the most suitable vision

experts based on user instructions, input images, and the exper-
tise of said vision experts. This approach harnesses the potent
function understanding capabilities of the LLM equipped with
expert-routing low-rank adaptation (LoRA), thereby enhancing
overall model performance.Transitioning to the fine-grained
phase, MoVA employs the mixture-of-vision-expert adapter
(MoV-Adapter), which meticulously extracts and fuses task-
specific knowledge from a diverse array of experts. By adopt-
ing this coarse-to-fine paradigm, MoVA effectively utilizes
expert representations based on multimodal context and model
proficiency, thereby bolstering its generalization ability.
LIMoE: In this paper by Mustafa et al. [15] proposes
a novel approach for multimodal learning that tackles this
limitation. LIMoE leverages the efficiency of sparse MoE
models by processing both images and text simultaneously.
During training, a contrastive loss function helps the model
learn similar representations for paired image-text data. The
MoE architecture is particularly well-suited for this task, as
different ”expert” sub-networks can specialize in handling
either images or text. The paper acknowledges challenges like
training stability and balanced expert utilization, proposing an
entropy-based regularization scheme to address them. LIMoE
demonstrates impressive performance gains compared to tradi-
tional models with similar computational cost. It even achieves
state-of-the-art zero-shot ImageNet accuracy when scaled ap-
propriately. Interestingly, the study reveals that LIMoE can
organically develop experts specializing in each modality, and
the model exhibits varying treatment of images and text during
processing. Overall, LIMoE offers a promising direction for
efficient and effective multimodal learning.
MoEBERT: In this paper by Zuo et al. [16] proposes
MoEBERT, a novel approach that leverages a MoE struc-
ture to achieve both high performance and fast inference
speeds. MoEBERT starts by adapting the feed-forward neural
networks within a pre-trained LLM into multiple experts.
Here, the key concept is importance-based selection. The
paper argues that not all neurons within the feed-forward
network contribute equally to the model’s performance. MoE-
BERT identifies the most important neurons and shares them
across all experts, ensuring the preservation of the pre-trained
model’s representational power. The remaining neurons are
then distributed evenly among the experts, promoting diversity
and further enhancing model capabilities. During inference,
MoEBERT employs a gating mechanism to activate only the
most suitable expert for a specific task. This significantly
improves efficiency compared to traditional methods that ac-
tivate the entire LLM, even for simple tasks. Additionally,
the paper proposes a layer-wise distillation method specifi-
cally designed for training MoEBERT. This method ensures
that the knowledge from the pre-trained LLM is effectively
transferred to the individual experts. The effectiveness of
MoEBERT is then evaluated on natural language understand-
ing and question answering tasks. The results demonstrate
that MoEBERT surpasses existing task-specific distillation
techniques. For instance, on the MNLI (mismatched) dataset,
MoEBERT outperforms previous approaches by over 2%.In
essence, this research presents MoEBERT as a promising so-
lution for overcoming the trade-off between performance and
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efficiency in LLMs. MoEBERT leverages a MoE architecture
with importance-based selection and a gating mechanism to
achieve significant efficiency gains during inference while
preserving the performance of the original LLM.
MoE-FFD: In this paper by Kong et al. [17] introduces a
novel ViT-based framework designed to address the challenges
of face forgery detection. The proposed MoE-FFD method in-
tegrates MoE modules with Low-Rank Adaptation(LoRA) [82]
and Adapter layers to create a parameter-efficient model that
effectively captures both global and local forgery clues. By
using the Vision Transformer (ViT) as a frozen backbone
and only updating lightweight layers, MoE-FFD significantly
reduces computational and storage requirements. The MoE
modules dynamically selects the most relevant experts, en-
hancing the model’s capacity and detection performance. Rig-
orous experiments on multiple deepfake datasets demonstrate
that MoE-FFD achieves state-of-the-art performance with a
minimal parameter overhead, offering a robust and adaptable
solution for real-world face forgery detection scenarios.
MLLMs: In this papaer by Wang et al. [18] introduces
Visualized In-Context Text Processing (VisInContext), a novel
method designed to address the challenge of processing
long text contexts in Multimodal Large Language Models
(MLLMs) efficiently. By converting long in-context text into
visual tokens, VisInContext significantly reduces GPU mem-
ory usage and computational costs, enabling an increase in
the pre-training in-context text length from 256 to 2048
tokens with minimal additional floating point operations. This
method, implemented within a Flamingo-based architecture,
not only enhances in-context few-shot evaluation performance
but also improves document understanding capabilities, show-
ing promise in tasks like document question answering and
sequential document retrieval.
VLMo: In this paper by Bao et al. [19] introduces stage-
wise pre-training approach that effectively leverages extensive
image-only, text-only, and image-text paired datasets. Their
experimental results showcase the remarkable performance of
VLMo across diverse vision-language tasks, including VQA,
NLVR2, and image-text retrieval, positioning it as a state-of-
the-art solution. Additionally, they propose a versatile multi-
modal Transformer, dubbed MOME Transformer, tailored for
vision-language tasks. This Transformer adeptly encodes vari-
ous modalities by incorporating modality-specific information
through dedicated experts and aligning the contents of different
modalities via a shared self-attention module.
MoE-LLaVA: The paper by Lin et al. [20] introduces MoE-
LLaVA, a novel training strategy for Large Vision-Language
Models (LVLMs) called MoE-tuning. This approach constructs
a sparse model with a large parameter count while maintaining
constant computational costs, effectively addressing perfor-
mance degradation in multi-modal learning and model sparsity.
MoE-LLaVA activates only the top-k experts through routers
during deployment, reducing hallucinations in model outputs.
Impressively, it performs comparably to existing models with
fewer parameters and outperforms others in object hallucina-
tion benchmarks. The architecture includes vision encoders,
visual projection layers, word embedding layers, LLM blocks,
and MoE blocks. MoE-tuning involves three stages: MLP

training, training all parameters except the Vision Encoder,
and initializing experts in MoE using FFNs and training
only MoE layers. Evaluation on various datasets demonstrates
MoE-LLaVA’s efficiency and effectiveness, with performance
matching or surpassing state-of-the-art models. The paper
includes ablation studies and visualizations to illustrate the
efficacy of MoE-tuning and MoE-LLaVA. Overall, it offers
significant contributions to multi-modal learning systems, pro-
viding insights for future research in developing more efficient
and effective models.
DeepSpeed MoE: In this paper by Rajbhandari et al. [21] in-
troduces DeepSpeed MoE, that tackles the challenges of MoE
models in both training and inference. This comprehensive
solution introduces new MoE architectures and compression
techniques, significantly reducing model size and improving
efficiency. The system achieves remarkable performance gains,
offering faster and more cost-effective inference compared
to traditional dense models and existing MoE solutions. By
enabling the deployment of high-quality, resource-efficient
MoE models, DeepSpeed-MoE aims to shift the paradigm
in large-scale AI modeling. This advancement opens up new
possibilities for researchers and practitioners to explore and
utilize sparse MoE models across various applications, poten-
tially transforming the landscape of LLMs and AI systems.
DSelect-k: In this paper by Hazimeh et al. [22] proposes a
novel approach to the MoE architecture, specifically designed
to address challenges in multi-task learning scenarios. The
key innovation is a differentiable top-k selection mechanism
that allows for more efficient and effective expert selection in
MoE models. It also allows for dynamic task-specific expert
selection. DSelect-k provides a more efficient alternative to
full MoE models, especially in scenarios with a large number
of experts.
MetaBEV: In this paper by Ge et al. [23]introduces a novel
Bird’s Eye View (BEV) perception framework designed for
both 3D object detection and BEV map segmentation. The
framework incorporates M2oE (Multimodal MoE) structures
to address task conflicts that arise when performing 3D de-
tection and segmentation tasks using shared weights. A key
component of MetaBEV is its robust fusion module, which
features a new M2oE-FN (Feed-Forward Network) layer. This
innovative layer is specifically designed to mitigate gradient
conflicts between detection and segmentation tasks, resulting
in more balanced performance across both tasks. Notably,
MetaBEV is the first framework to apply the MoE concept
to 3D object detection and BEV map segmentation, offering a
multi-modal, multi-task, and robust approach to autonomous
driving perception challenges.
AdaMV-MoE: In this paper by Chen et al. [24] proposes
an adaptive multi-task vision recognition framework designed
to automatically adjust the network capacity for different
tasks. This approach customizes the state-of-the-art MoE
(MTL MoE) models by optimizing task-specific model sizes
through the adaptive activation or deactivation of experts. The
framework automatically determines the number of activated
experts for each task based on training dynamics, eliminating
the need for laborious manual tuning of the optimal model
size.
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ERNIE-ViLG 2.0: In this paper by Feng et al. [25] proposes
ERNIE-ViLG 2.0, a sophisticated Chinese text-to-image dif-
fusion model, a significant advancement in image generation
technology. The authors have developed this model to pro-
gressively enhance the quality of generated images through
two key innovations: the incorporation of fine-grained textual
and visual knowledge of crucial scene elements, and the
utilization of specialized denoising experts at different stages
of the denoising process. These improvements have yielded
impressive results, with ERNIE-ViLG 2.0 setting a new state-
of-the-art benchmark on the MS-COCO dataset, achieving a
zero-shot FID-30k score of 6.75.

IV. HARNESSING EXPERT NETWORKS FOR ADVANCED
LANGUAGE UNDERSTANDING

LoRAMoE: This paper by Dou et al. [26] from Fudan Uni-
versity and Hikvision Inc, this paper introduces LoRAMoE,
a new approach to alleviate the conflict between expanding
supervised fine-tuning (SFT) data and retaining world knowl-
edge in LLMs. The paper demonstrates that extensive SFT
can disrupt world knowledge in LLMs, leading to knowledge
forgetting. LoRAMoE is an innovative plugin version of MoE
(MoE), designed to preserve world knowledge by freezing the
backbone model’s parameters during training. It uses localized
balancing constraints to coordinate expert groups, dividing
them between task-specific learning and maintaining world
knowledge. The architecture of LoRAMoE includes multiple
parallel plugins as experts in each feed-forward layer of the
LLM, connected by routers. These experts are divided into
groups, where one focuses on downstream tasks and the
other on aligning world knowledge with human instructions.
This approach effectively reduces knowledge forgetting and
improves downstream task performance. During the training
process, only the experts and the router are optimized. Experi-
ments conducted on various datasets demonstrate LoRAMoE’s
ability to manage experts based on data type and its effective-
ness in preventing knowledge forgetting. The method shows
improvement in downstream tasks, indicating its potential for
multi-task learning. The visualization of expert utilization
confirms that LoRAMoE effectively specializes experts for
different types of tasks. The paper’s innovative approach
leverages the strengths of MoE and Low-Rank Adaptation
(LoRA) for efficient training. It strategically addresses the
issue of balancing expert utilization and preventing knowledge
forgetting in LLMs, making it a notable contribution to the
field of language model alignment.
GLaM: Scaling language models with more data, compute
and parameters has driven significant progress in natural
language processing. For example, thanks to scaling, GPT-
3 was able to achieve strong results on in-context learning
tasks. However, training these large dense models requires
significant amounts of computing resources.This paper by Du
et al. [27] in ICML 2022 proposes and develops a family of
language models named GLaM (Generalist Language Model),
which uses a sparsely activated MoE architecture to scale the
model capacity while also incurring substantially less training
cost compared to dense variants. The largest GLaM has 1.2

trillion parameters, which is approximately 7x larger than
GPT-3.It consumes only 1/3 of the energy used to train GPT-
3 and requires half of the computation FLOPs for inference,
while still achieving better overall zero-shot and one-shot
performance across 29 NLP tasks.
Flan-MoE: The paper MoE Meets Instruction Tuning by Shen
et al. [28] presents significant advancements in the scalability
and efficiency of LLMs through the novel integration of MoE
architecture and instruction tuning, setting new standards in
the field of natural language processing. Sparse MoE is a
neural architecture that adds learnable parameters to LLMs
without increasing inference costs. In contrast, instruction
tuning trains LLMs to follow instructions more effectively. The
authors advocate for the combination of these two approaches,
demonstrating that MoE models benefit significantly more
from instruction tuning compared to their dense model coun-
terparts. The paper presents three experimental setups: direct
finetuning on individual downstream tasks without instruction
tuning; instruction tuning followed by few-shot or zero-shot
generalization on downstream tasks; and instruction tuning
supplemented by further finetuning on individual tasks. The
findings indicate that MoE models generally underperform
compared to dense models of the same computational capacity
in the absence of instruction tuning. However, this changes
with the introduction of instruction tuning, where MoE models
outperform dense models. The paper introduces the FLAN-
MOE32B model, which outperforms FLAN-PALM62B on
four benchmark tasks while using only a third of the FLOPs.
This highlights the efficiency and effectiveness of the FLAN-
MOE approach. The authors conduct a comprehensive series
of experiments to compare the performance of various MoE
models subjected to instruction tuning. These experiments
include evaluations in natural language understanding, reason-
ing, and question-answering tasks. The study also explores the
impact of different routing strategies and the number of experts
on the performance of FLAN-MOE models, showing that
performance scales with the number of tasks rather than the
number of experts. The following image from the paper shows
the effect of instruction tuning on MOE models versus dense
counterparts for base-size models. They perform single-task
finetuning for each model on held-out benchmarks. Compared
to dense models, MoE models benefit more from instruction-
tuning, and are more sensitive to the number of instruction-
tuning tasks. Overall, the performance of MoE models scales
better with respect to the number of tasks, than the number
of experts. The paper discusses the challenge of adapting
MoE models to multilingual benchmarks and highlights the
importance of incorporating diverse linguistic data during
training to ensure effective language coverage.
RAPHAEL: This paper by Xue et al. [29] from the Uni-
versity of Hong Kong and SenseTime Research, the authors
introduce RAPHAEL, a novel text-to-image diffusion model
that generates highly artistic images closely aligned with
textual prompts. RAPHAEL uniquely combines tens of MoEs
layers, including space-MoE and time-MoE layers, allowing
billions of diffusion paths. Each path intuitively functions
as a “painter” for depicting specific textual concepts onto
designated image regions at certain diffusion timesteps. This
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mechanism substantially enhances the precision in aligning
text and image content. The authors report that RAPHAEL
outperforms recent models like Stable Diffusion, ERNIE-ViLG
2.0, DeepFloyd, and DALL-E 2 in terms of image quality and
aesthetic appeal. This is evidenced by superior performance in
diverse styles (e.g., Japanese comics, realism, cyberpunk) and
a state-of-the-art zero-shot FID score of 6.61 on the COCO
dataset.An edge-supervised learning module is introduced to
further refine image quality, focusing on maintaining intricate
boundary details in various styles. RAPHAEL is implemented
using a U-Net architecture with 16 transformer blocks, each
containing a self-attention layer, a cross-attention layer, space-
MoE, and time-MoE layers. The model, with three billion
parameters, was trained on 1,000 A100 GPUs for two months.
Framework of RAPHAEL. (a) Each block contains four pri-
mary components including a selfattention layer, a cross-
attention layer, a space-MoE layer, and a time-MoE layer. The
space-MoE is responsible for depicting different text concepts
in specific image regions, while the time-MoE handles dif-
ferent diffusion timesteps. Each block uses edge-supervised
cross-attention learning to further improve image quality. (b)
shows details of space-MoE. For example, given a prompt “a
furry bear under sky”, each text token and its corresponding
image region (given by a binary mask) are directed through
distinct space experts, i.e., each expert learns particular visual
features at a region. By stacking several space-MoEs, we can
easily learn to depict thousands of text concepts. The au-
thors conducted extensive experiments, including a user study
using the ViLG-300 benchmark, demonstrating RAPHAEL’s
robustness and superiority in generating images that closely
conform to the textual prompts. The study also showcases
RAPHAEL’s flexibility in generating images of diverse styles
and high resolutions up to 4096 × 6144 when combined
with a tailor-made SR-GAN model. RAPHAEL’s potential
applications extend to various domains, with implications for
both academic research and industry. The model’s limitations
include the potential misuse for creating misleading or false
information, a challenge common to powerful text-to-image
generators
Mistral: Mistral 8x7B (56B params) by Jiang et al. [8]
from Mistral follows a MoE architecture, consisting of 8x 7B
experts. With 8 experts and a router network that selects two
of them at every layer for the inference of each token, it looks
directly inspired from rumors about GPT-4’s architecture.
From GPT-4 leaks, we can speculate that GPT-4 is a MoE
model with 8 experts, each with 111 B parameters of their own
and 55B shared attention parameters (166B parameters per
model). For the inference of each token, also only 2 experts are
used. Since the model size (87GB) is smaller than 8x Mistral
7B (8 × 15GB=120GB), we could assume that the new model
uses the same architecture as Mistral 7B but the attention
parameters are shared, reducing the naı̈ve 8x7B model size
estimation. The conclusion is that (probably) Mistral 8x7B
uses a very similar architecture to that of GPT-4, but scaled
down to 8 total experts instead of 16 (2× reduction), 7B
parameters per expert instead of 166B (24× reduction), 42B
total parameters (estimated) instead of 1.8T (42× reduction),
free to use under Apache 2.0 license, Outperforms Llama 2

70B with 6x faster inference. Matches or outperforms GPT-
3.5, Multilingual: vastly outperforms Llama 2 70B [83] on
French, Italian, German and Spanish, Same 32K context as
the original GPT-4. Each layer in a 8x MoE model has its
FFN split into 8 chunks and a router picks 2 of them, while
the attention weights are always used in full for each token.
This means that if the new mistral model uses 5B parameters
for the attention, you will use 5 + (42 − 5)/4 = 14.25B
params per forward pass. Mixtral is basically 8 models in a
trenchcoat: the feedforward layers of the decoder blocks are
divided into 8 experts, and for each token, a router will decide
which 2 experts to allocate the processing to. The advantage
of this architecture is that even though you have 78B = 47B
parameters in total (considering shared parameters which are
not unique to each expery), the model is much cheaper and fast
to run since only 28 experts are activated for each prediction.
CuMo: In the paper by Li et al. [30] proposes a method
CuMo, incorporates Co-upcycled Top-K sparsely-gated MoE
blocks into both the vision encoder and the MLP connec-
tor, thereby enhancing multimodal LLMs with minimal ad-
ditional activated parameters during inference. CuMo first
pre-trains the MLP blocks and then initializes each expert
in the MoE block from the pre-trained MLP block during
the visual instruction tuning stage, using auxiliary losses to
ensure balanced expert loading. This approach allows CuMo to
outperform state-of-the-art multimodal LLMs on various VQA
and visual-instruction-following benchmarks across different
model size groups, while training exclusively on open-source
datasets.
Branch-Train-MiX: The paper by Sukhbaatar et al. [31] in-
troduces Mixing Expert LLMs into a MoE LLM that presents
a method called Branch-Train-MiX (BTX) designed to effi-
ciently train LLMs across multiple specialized domains. BTX
begins with a seed model, which is branched into multiple
copies that are trained independently on different datasets to
become domain-specific experts. These expert models are then
combined into a single model using MoE layers, with the re-
maining parameters averaged and finetuned to optimize perfor-
mance. This approach leverages the benefits of parallel training
to reduce communication costs and increase throughput, while
the MoE framework ensures efficient parameter utilization
and performance across various tasks. Experimental results
using the Llama-2 7B model demonstrate that BTX achieves
superior accuracy and efficiency compared to other methods,
particularly in specialized domains such as mathematics and
code, without suffering from catastrophic forgetting.
Self-MoE: The paper by Kanf et al. [32] introduces Self-MoE,
a method to transform monolithic LLMs into a modular system
called MiXSE (MiXture of Self-specialized Experts). This
approach leverages self-specialization using synthetic data and
self-optimized routing, enabling dynamic and specific task
handling without extensive human-labeled data or additional
parameters. The experiments reveal significant improvements
in performance across various benchmarks, such as knowl-
edge, reasoning, math, and coding, without compromising
non-targeted domains. Self-MoE’s modular design enhances
flexibility, interpretability, and adaptability, outperforming
strong baselines like instance and weight merging. The method
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highlights the critical role of the routing mechanism and
semantic experts and is universally applicable across different
model families and sizes. The paper concludes that Self-
MoE effectively enhances LLMs’ efficiency, scalability, and
adaptability, marking a significant advancement in modular
and self-improving LLM specialization techniques, with plans
to release the code for broader application and validation.
MOELoRA: In this paper by Liu et al. [33] proposes
a novel multi-task Parameter-Efficient Fine-Tuning (PEFT)
framework that leverages the strengths of both MoE and Low-
Rank Adaptation (LoRA). It introduces a task-motivated gate
function to facilitate tuning distinct parameter sets for each
task. The authors claim this work is the first to explore multi-
task PEFT techniques for LLM driven medical applications,
addressing the unique challenges of parameter efficiency and
task-specific tuning in this context.
HetuMoE: In this paper by Nie et al. [34] proposes a
novel system designed to handle the challenges of training
large-scale MoE models. HetuMoE introduces efficient mech-
anisms to manage and distribute the computational load across
multiple processing units, ensuring scalability to trillion-scale
parameters. The system incorporates advanced techniques to
optimize both memory usage and computational efficiency,
making it suitable for extensive machine learning tasks. This
framework enables more effective and efficient training of
large-scale models, paving the way for advancements in deep
learning and artificial intelligence
eDiff-I: In this paper by Balaji et al. [35] proposes an
ensemble-of-expert-denoisers design to enhance the quality of
text-to-image generation while maintaining the same inference
computation cost. The expert denoisers are trained using a
finetuning scheme that reduces training costs. Additionally, the
paper suggests using an ensemble of encoders, including the
T5 text encoder, the CLIP text encoder, and the CLIP image
encoder, to provide input information to the diffusion model.
The text encoders favor different image formations, and the
CLIP image encoder allows for style transfer using a reference
photo. The paper also introduces a training-free extension that
enables paint-with-words capability through a cross-attention
modulation scheme, giving users additional spatial control over
the text-to-image output.

V. LLM EXPANSION VIA SPECIALIZED EXPERT
NETWORKS

u-LLaVA: In this paper by Jinjin et al. [36] have intro-
duced have introduced a novel framework called u-LLaVA.
This framework aims to refine the MLLMs’ perception by
integrating information from three levels of detail: pixels,
regions, and the entire image. Imagine u-LLaVA as a detective
– it can analyze individual clues (pixels), understand the
relationships between them (regions), and grasp the overall
scene (global features) to form a more complete picture. The
foundation for strong visual understanding is laid by training
u-LLaVA on both image and video data. Images provide a
rich set of features, while videos introduce the element of
time and a wider range of visual contexts. By leveraging both
data types, u-LLaVA builds a robust understanding of diverse

visual scenarios. Overall, u-LLaVA represents a significant
leap forward in multi-modal learning. By integrating multi-
level visual information, efficient modality alignment, and
task-specific instruction tuning, it pushes MLLMs beyond
broad comprehension and equips them for robust perception of
visual details. This opens doors for various applications that
require a nuanced understanding of visual content, such as
generating detailed image captions, answering visual questions
that involve specific objects or locations, and more.
QMoE: In this paper by Frantar et al. [37] introduces QMoE,
a framework aimed at addressing the memory challenges
associated with deploying LLMs using MoE architectures.
The primary issue QMoE tackles is the substantial memory
requirement of large models, exemplified by the 1.6 trillion-
parameter SwitchTransformer-c2048 model, typically demand-
ing 3.2TB of memory. QMoE effectively compresses such
models to less than 1 bit per parameter, allowing their execu-
tion on commodity hardware with minimal runtime overhead.
Employing a scalable algorithm and a custom compression
format paired with GPU decoding kernels, QMoE compresses
the SwitchTransformer-c2048 model to less than 160GB (0.8
bits per parameter) with minor accuracy loss in under a day
on a single GPU. The implementation encompasses a highly
scalable compression algorithm and a bespoke compression
format, facilitating efficient end-to-end compressed inference.
This framework enables the operation of trillion-parameter
models on affordable hardware, such as servers equipped with
NVIDIA GPUs, with less than 5% runtime overhead com-
pared to ideal uncompressed execution. The paper discusses
challenges in compressing MoE models, including concep-
tual issues with existing post-training compression methods
and practical scaling challenges. QMoE overcomes these by
introducing a custom compression format and highly effi-
cient decoding algorithms optimized for GPU accelerators.
Technical contributions include a novel approach to handling
massive activation sets and a unique system design for opti-
mized activation offloading, expert grouping, and robustness
modifications, ensuring efficient application of data-dependent
compression to massive MoEs.Significantly reducing the size
of large models, QMoE compressed models achieve over
20x compression rates compared to 16-bit precision models.
This reduction is accompanied by minor increases in loss
on pretraining validation and zero-shot data. The paper also
discusses system design and optimizations addressing memory
costs, GPU utilization, and reliability requirements, including
techniques like optimized activation offloading, list buffer
data structures, lazy weight fetching, and expert grouping.
Experiments demonstrate that QMoE effectively compresses
MoE models while maintaining performance, tested on var-
ious datasets such as Arxiv, GitHub, StackExchange, and
Wikipedia, showcasing good performance preservation even
for highly compressed models.Providing detailed insights into
encoding and decoding processes and kernel implementation
for the GPU, the paper highlights challenges and solutions for
achieving sub-1-bit per parameter compression. The QMoE
framework represents a significant advancement in the prac-
tical deployment of massive-scale MoE models, addressing
key limitations of MoE architectures and facilitating further
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research and understanding of such models. The paper’s find-
ings are crucial as they enable the deployment and research
of trillion-parameter models on more accessible hardware,
potentially democratizing access to high-performance LLMs
and fostering further innovation in the field.
TUTEL: This paper by Hwang et al. [38] from MSR, pub-
lished in MLSys, introduces TUTEL, a scalable and adaptive
system designed to optimize the performance of sparsely-gated
MoE models. The motivation behind TUTEL stems from the
recognition that the dynamic nature of MoE models, which
route input tokens to different experts based on a gating
function, poses significant challenges for efficient computation
due to the static execution strategies of existing systems. These
strategies fail to adapt to the varying workload of experts,
leading to inefficient use of computational resources.TUTEL
addresses these challenges by introducing a dynamic execution
framework that supports adaptive parallelism and pipelining.
The system’s design allows for the distribution of MoE model
parameters and input data in an identical layout, enabling
seamless switching between parallelism strategies without the
need for costly data or tensor migration. This capability facili-
tates real-time optimization of parallelism and pipelining dur-
ing runtime, significantly enhancing computational efficiency.
The authors implement various MoE acceleration techniques
within TUTEL, including a Flexible All-to-All communication
strategy, two-dimensional hierarchical (2DH) All-to-All, and
fast encode/decode mechanisms. These innovations collec-
tively enable TUTEL to deliver substantial speedups in the
execution of single MoE layers over multiple GPUs, demon-
strating improvements of 4.96x and 5.75x over the state-of-the-
art on 16 and 2048 NVIDIA A100 GPUs, respectively. The
evaluation of TUTEL showcases its effectiveness in running
MoE-based models, specifically a real-world model named
SwinV2-MoE, which is built upon the Swin Transformer V2
architecture. TUTEL significantly accelerates the training and
inference of SwinV2-MoE, achieving speedups of up to 1.55x
and 2.11x, respectively, over Fairseq, a previous framework.
Moreover, the SwinV2-MoE model achieves superior accuracy
in both pre-training and downstream computer vision tasks
compared to its dense counterpart, highlighting TUTEL’s
practical utility in enabling efficient training and deployment
of large-scale MoE models for real-world applications.
MegaBlocks: This paper by Gale et al. [39], introduces Drop-
less MoE, a novel system for efficient MoE training on GPUs.
The system, named MegaBlocks, addresses the limitations
of current frameworks that restrict dynamic routing in MoE
layers, often leading to a tradeoff between model quality and
hardware efficiency due to the necessity of dropping tokens or
wasting computation on excessive padding. Token dropping
leads to information loss, as it involves selectively ignoring
part of the input data, while padding adds redundant data to
make the varying input sizes uniform, which increases compu-
tational load without contributing to model learning. This chal-
lenge arises from the difficulty in efficiently handling the dy-
namic routing and load-imbalanced computation characteristic
of MoE architectures, especially in the context of deep learning
hardware and software constraints. MegaBlocks innovatively
reformulates MoE computations as block-sparse operations,

developing new GPU kernels specifically for this purpose.
These kernels efficiently manage dynamic, load-imbalanced
computations inherent in MoEs without resorting to token
dropping. This results in up to 40% faster end-to-end training
compared to MoEs trained with the Tutel library, and 2.4 times
speedup over DNNs trained with Megatron-LM. The system’s
core contributions include high-performance GPU kernels for
block-sparse matrix multiplication, leveraging blocked-CSR-
COO encoding and transpose indices. This setup enables
efficient handling of sparse inputs and outputs in both trans-
posed and non-transposed forms. Built upon the Megatron-
LM library for Transformer model training, MegaBlocks sup-
ports distributed MoE training with data and expert model
parallelism. Its unique ability to avoid token dropping through
block-sparse computation provides a fresh approach to MoE
algorithms as a form of dynamic structured activation sparsity.
The system also reduces the computational overhead and
memory requirements associated with MoE layers, leading to
more efficient utilization of hardware resources. Furthermore,
the approach decreases the number of hyperparameters that
need to be re-tuned for each model and task, simplifying the
process of training large MoE models. The paper provides
detailed insights into the design and performance of the block-
sparse kernels, including analyses of throughput relative to
cuBLAS batched matrix multiplication and discussions on
efficient routing and permutation for MoEs. The results show
that MegaBlocks’ kernels perform comparably to cuBLAS,
achieving an average of 98.6% of cuBLAS’s throughput with
minimal variations across different configurations.
Jamba: This paper by Lieber et al. [40] from AI21labs
presents Jamba, an innovative architecture blending Trans-
former and Mamba layers with MoE modules, creating a
synergistic model that excels in both performance and effi-
ciency. This LLM is distinguished by its ability to process
up to 256K tokens context length, designed to optimize
computational resources by fitting within a single 80GB GPU
using 8bit precision, showcasing 12B active and 52B total
parameters.The architecture features Jamba blocks, each com-
posed of a mix of Mamba and Transformer layers, interspersed
with MoE layers. Jamba employs a configuration of four
Jamba blocks encompassing a total of 4 Transformer and
28 Mamba layers, with an 8-layer structure per block and a
strategic 1:7 Attention-to-Mamba ratio. MoE layers, placed
every other layer, comprise 16 experts, utilizing the top 2
experts per token for dynamic adaptability.Implementation
specifics include the use of grouped-query attention (GQA)
and SwiGLU activation function within Transformer blocks,
aiming for enhanced model stability and performance. A
notable innovation is the addition of RMSNorm to Mamba lay-
ers for large-scale stability, effectively preventing loss spikes
during training. Jamba’s design eschews explicit positional
information mechanisms like RoPE, relying instead on Mamba
layers’ implicit position encoding capabilities. This choice
reflects insights from the model’s development, suggesting
that Mamba layers alone may sufficiently capture positional
dependencies. MoE integration is demonstrated to significantly
improve the hybrid Attention-Mamba model, underscoring
MoE’s contribution to enhancing the model’s capacity and
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efficiency. This advancement is validated through extensive
experimentation, although specific mechanisms behind MoE’s
effectiveness remain an area for further exploration. It is
trained on NVIDIA H100 GPUs, utilizing Full-Model Sharded
Data Parallelism (FSDP) along with Tensor, Sequence, and
Expert Parallelism for optimal efficiency. The model leverages
a comprehensive text dataset aggregated from web sources,
books, and code, updated until March 2024, though detailed
dataset size or the number of training tokens were not spec-
ified. Jamba achieves comparable or superior results against
leading models such as Mixtral 8x7B and Llama-2 70B
across a variety of benchmarks, especially in long-context
evaluations. It is also noted for its remarkable throughput
improvement, particularly for long contexts, compared to
similar-sized attention-only models. In a move to foster further
research and optimization within the community, Jamba is
released under the Apache 2.0 license on HuggingFace. This
initiative is supported by the release of model checkpoints
from smaller-scale training runs, inviting wider exploration
of the model’s novel architecture and potential applications.
Jamba exemplifies the potential of combining Transformer
and Mamba architectures with MoE, setting new standards in
language modeling for long-context processing while address-
ing computational and memory efficiency. Its development
reflects significant technical advancements, promising to drive
future research and applications in the field of natural language
processing.
Switch-NeRF: This paper by Zhenxing et al. [41] pro-
poses a MoE-based Switch-NeRF model which is carefully
implemented and optimized to achieve both high-fidelity
scene reconstruction and efficient computation. SWITCH-
NERF tackles the challenge of large-scale scene modeling
in Neural Radiance Fields (NeRFs) by proposing a learning-
based scene decomposition with a MoE architecture. This
approach decomposes complex scenes into smaller parts, as-
signing a dedicated sub-network (expert) to handle each. A
gating network dynamically routes 3D points to the most
suitable expert, improving efficiency and potentially enhancing
rendering quality. While promising, the paper would benefit
from discussions on evaluation metrics, generalizability to
diverse scenes, and exploration of MoE design choices for
optimal configurations. Overall, SWITCH-NERF presents a
significant step towards efficient and high-fidelity rendering
of large-scale scenes using NeRFs.
SaMoE: This paper by Gao et al. [84] addresses a challenge
in scaling LLMs efficiently. While MoE offers a way to
create powerful LLMs with a vast number of parameters
without significant computational burdens, there’s a trade-off.
Existing MoEs can be parameter-inefficient – simply adding
more experts (sub-models) doesn’t always guarantee better
performance. The paper proposes a solution called SaMoE
(Sparse MoE) to address this parameter inefficiency. Their
analysis reveals that as the number of experts in an MoE layer
increases, the flow of information used for training (gradients)
weakens. This weakness hinders the proper training of individ-
ual experts, limiting overall performance gains.SaMoE tackles
this by introducing a new MoE architecture design. Instead
of relying solely on a single ”expert” for each input, SaMoE

learns a soft combination of a global set of expert layers. Imag-
ine a team of specialists – SaMoE allows the model to consult
and combine insights from multiple experts, rather than relying
on just one. This approach allows SaMoE to achieve significant
parameter savings compared to standard MoE training. The
paper showcases the effectiveness of SaMoE through extensive
experiments on large, autoregressive MoE language models
similar to GPT-3 (having billions of parameters). The results
demonstrate that SaMoE can significantly improve parameter
efficiency by reducing the total number of parameters by
up to 5.2 times. Interestingly, SaMoE even achieves superior
performance in pre-training and handling unseen tasks (zero-
shot generalization) compared to the baseline MoE training
approach. In essence, SaMoE offers a promising solution for
building powerful LLMs with MoE architecture while ensuring
efficient use of parameters. This allows for creating highly
capable models without incurring the usual computational
costs associated with massive parameter sizes.
OpenMoE: This paper by Xue et al. [43]introduces a sig-
nificant contribution to the field. The core of this contribution
is OpenMoE, a collection of open-source MoE LLMs. These
models come in a range of sizes, from a relatively manageable
650 million parameters to a staggering 34 billion, all trained
on massive datasets exceeding 1 trillion tokens. By making
both the code and training data publicly available, the authors
effectively democratize MoE technology, inviting researchers
to explore and build upon their work.Beyond just accessibility,
the paper explores the cost-effectiveness of MoE LLMs. The
study suggests that MoE-based models offer a significant
advantage over traditional, dense LLMs. While dense models
can be powerful, they often require immense computational
resources. MoE LLMs, on the other hand, seem to achieve a
more favorable balance between effectiveness and cost. This
makes them a promising direction for future LLM develop-
ment, with the potential to lead to more efficient and powerful
language models. However, the paper doesn’t stop at simply
introducing OpenMoE. The authors take a critical look under
the hood of MoE models, specifically focusing on how they
decide which ”expert” sub-model handles a particular piece of
text data (token).
SpeechMoE: In this paper by You et al. [44] proposes a
novel approach called SpeechMoE, which combines MoE with
Transformers. MoE offers an enticing benefit for LLMs: it
allows them to grow in capacity without a corresponding surge
in computational cost. Additionally, MoE-based models can
dynamically adapt to the varying complexities found in real-
world speech data. SpeechMoE is specifically designed for
this task and leverages two key improvements. First, a sparsity
L1 loss function ensures efficient routing by controlling how
often the gating mechanism activates different experts. Second,
a mean importance loss promotes diversity in the gating
mechanism’s output, guaranteeing a wider range of experts are
consulted for each speech input.Beyond these improvements,
SpeechMoE boasts a new router architecture that utilizes infor-
mation from two sources: a shared embedding network and the
hierarchical representations generated by different MoE layers.
Evaluations show that SpeechMoE significantly outperforms
traditional static networks in terms of character error rate
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(CER) while maintaining similar computational requirements.
This translates to CER improvements ranging from 7.0% to
23.0% on various benchmark datasets. Overall, SpeechMoE
presents a promising direction for speech recognition by
combining MoE’s efficiency and adaptability with a well-
designed architecture, leading to substantial gains in accuracy.
DeepSeekMoE: In this paper by Dai et al. [45] intro-
duce DeepSeekMoE 16B, a MoE language model comprising
16.4B parameters. This model features an innovative MoE
architecture, incorporating two primary strategies: fine-grained
expert segmentation and shared expert isolation. Trained from
scratch on 2T English and Chinese tokens, DeepSeekMoE 16B
demonstrates performance comparable to DeekSeek 7B and
LLaMA2 7B, while requiring only around 40% of the compu-
tational resources. For the benefit of the research community,
they release the model checkpoints for DeepSeekMoE 16B
Base and DeepSeekMoE 16B Chat to the public, enabling
deployment on a single GPU with 40GB of memory with-
out the need for quantization. DeepSeekMoE’s architecture,
particularly the use of shared experts, could lead to signif-
icant efficiency gains in various language processing tasks.
By focusing on common knowledge, shared experts reduce
redundancy and potentially allow other experts to specialize
in more nuanced areas. This translates to faster processing
times and potentially lower computational costs
MH-MoE: In this paper by Wu et al. [46] proposes Multi-
Head MoE (MH-MoE) model which utilizes a multi-head
approach to divide each token into multiple sub-tokens. These
sub-tokens are distributed among various experts, processed
concurrently, and then seamlessly recombined into their origi-
nal token form. This multi-head mechanism allows the model
to collectively attend to information from different represen-
tation spaces within various experts, significantly enhancing
expert activation. This process deepens context understanding
and reduces overfitting. The MH-MoE model is simple to
implement and operates independently of other SMoE opti-
mization methods, making it easy to integrate with other SMoE
models for improved performance.
JetMoE: In this paper by Shen et al. [47] proposes a high
cost of training powerful LLMs by introducing JetMoE-8B,
a model achieving impressive results for under $0.1 million.
This demonstrates significant cost-effectiveness compared to
traditional methods. JetMoE-8B utilizes a special architecture
that activates only a portion of its parameters for each input,
reducing computation by 70% compared to similar models.
Additionally, JetMoE-8B surpasses existing models in per-
formance, even outperforming a larger and presumably more
expensive model in a chat-focused task. By openly sharing
training data, code, and parameter details, the researchers
promote JetMoE-8B as a foundation for future, cost-effective
LLM development in academia.
MoLE: In this paper by Wu et al. [48] proposes a new multi-
lingual speech recognition network, tackles a gap in current
research. While existing methods focus on improving recog-
nition accuracy across languages, MoLE goes a step further
by also identifying the language being spoken. It achieves this
by employing a lightweight language tokenizer that activates
a specific language expert network for the identified language.

This expert is then combined with a general-purpose expert,
weighted by the tokenizer’s confidence in its identification.
This “language-conditioned embedding” proves particularly
effective in recognizing speech from languages with limited
training data, making MoLE a valuable contribution for multi-
lingual speech recognition, especially for low-resource lan-
guages.
Lory: In this paper by Zhong et al. [49], author proposes a
novel MoE architecture tailored for autoregressive language
model pretraining. This architecture is the first of its kind
to be fully differentiable, enabling end-to-end gradient back-
propagation without the need for load balancing objectives or
intricate assignment algorithms. To enhance efficiency while
maintaining autoregressiveness, the authors propose causal
segment routing. Additionally, they introduce similarity-based
data batching to promote expert specialization. Comparative
evaluations reveal that Lory models featuring up to 32 experts
consistently outperform dense models across various metrics,
including perplexity and downstream tasks, achieving perfor-
mance gains ranging from 1.5% to 13.9%. Notably, Lory
demonstrates domain-level expert specialization, a departure
from previous MoE language models that exhibit token-level
routing and display more superficial, localized patterns. The
findings underscore the promise of differentiable MoE ar-
chitectures in the context of pretraining and call for further
exploration in this area.
Uni-MoE: In this paper by Li et al. [50] proposes a innovative
Uni-MoE model is a unified MLLM based on the MoE
architecture, designed to accommodate various modalities. It
integrates modality-specific encoders into a cohesive mul-
timodal representation and utilizes a sparse MoE structure
within the LLMs to facilitate efficient training and inference
through both modality-level data parallelism and expert-level
model parallelism. To boost collaboration among experts and
generalization, it adopts a progressive training strategy that
includes aligning cross-modality data using different connec-
tors, training modality-specific experts with cross-modality
instruction data, and refining the Uni-MoE framework with
Low-Rank Adaptation (LoRA) on mixed multimodal instruc-
tion data. Evaluation results on extensive multimodal datasets
demonstrate that Uni-MoE effectively reduces performance
bias in managing mixed multimodal datasets, while enhancing
expert collaboration and generalization capabilities.
Mini-Gemini: In this paper by Li et al. [51] author proposes
a novel framework for Vision Language Models (VLMs)
that enhances high-resolution image processing, data qual-
ity, and application versatility. Mini-Gemini employs a dual-
encoder system for efficient high-resolution processing, com-
bining low-resolution embeddings with high-resolution detail
refinement through ConvNet. The framework integrates high-
quality data from diverse sources, including high-quality re-
sponses and task-oriented instructions, to improve model per-
formance. Additionally, Mini-Gemini’s any-to-any paradigm
supports versatile applications, such as simultaneous image
and text generation, leveraging advanced generative models.
The framework sets new benchmarks in VLM capabilities, out-
performing models like Gemini Pro and GPT-4V, particularly
in complex datasets, and demonstrating strong instruction-
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following and reasoning abilities. Future work will focus on
improving training data quality and exploring advanced visual
reasoning and generation methods.
Fully-Differential Sparse Transformer: Sparse MoE ar-
chitectures scale model capacity without large increases in
training or inference costs. MoE allows us to dramatically
scale model sizes without significantly increasing inference
latency. In short, each “expert” can separately attend to a
different subset of tasks via different data subsets before they
are combined via an input routing mechanism. Thus, the
model can learn a wide variety of tasks, but still specialize
when appropriate. Despite their success, MoEs suffer from a
number of issues: training instability, token dropping, inability
to scale the number of experts, or ineffective finetuning. This
paper by Puigcerver et al. [52] from Google DeepMind
proposes Soft MoE, a fully-differentiable sparse Transformer
that addresses these challenges, while maintaining the benefits
of MoEs.Extra-large models like Google’s PaLM (540B pa-
rameters) or OpenAI’s GPT-4 use Sparse MoE under the hood,
which suffers from training instabilities, because it’s not fully
differentiable. Soft-MoE replaces the non-differentiable expert
routing with a differentiable layer. The end-to-end model is
fully differentiable again, can be trained with ordinary SGD-
like optimizers, and the training instabilities go away. Soft
MoE performs an implicit soft assignment by passing different
weighted combinations of all input tokens to each expert. As in
other MoE works, experts in Soft MoE only process a subset
of the (combined) tokens, enabling larger model capacity at
lower inference cost.
ST-MoE: In this paper by Zoph et al. [53] introduces frame-
work for creating sparse expert models that are both stable and
transferable across tasks. The authors address instability issues
in sparse models by proposing architectural modifications
and training techniques that enhance robustness. They also
focus on improving the transferability of these models to
new domains and tasks without significant performance degra-
dation. The results demonstrate that the proposed methods
achieve better stability and transferability compared to existing
approaches.
Uni-Perceiver-MoE: In this paper by Zhu et al. [54] in-
torduces Conditional MoE (Conditional MoEs) for generalist
models, proposing routing strategies under various conditions
for both training and inference phases. Conditional MoEs
are used to tackle the task-interference issue in generalist
models by incorporating information about the current task
and modalities. This approach effectively reduces interference
while maintaining low computational and memory costs, as
well as preserving generalization capabilities.

VI. MOE: ENHANCING SYSTEM PERFORMANCE AND
EFFICIENCY

M6-10T: In this paper by Lin et al. [55] introduce a training
strategy called ”Pseudo-to-Real” designed for large models
that require significant memory. This strategy is suitable for
models with sequential layers. They demonstrate the pretrain-
ing of a groundbreaking 10-trillion-parameter model, which is
ten times larger than the current state-of-the-art, using only

512 GPUs over a span of 10 days. Alongside the Pseudo-to-
Real method, they present a technique known as Granular CPU
Offloading to effectively manage CPU memory and maintain
high GPU utilization during the training of large models. This
approach allows for efficient training of massive models on
limited resources, significantly reducing the carbon footprint
and promoting more environmentally friendly AI practices.
pMoE: In this paper by Chowdhury et al. [56] proposes
a patch-level routing method in MoE (pMoE) that divides
each input into tokens and sends selected patches to experts
through prioritized routing. This method has demonstrated
considerable empirical success by reducing training and in-
ference costs while maintaining test accuracy. Despite these
empirical successes, the theoretical foundations of pMoE and
general MoE models have been less clear. Focusing on a
supervised classification task using a mixture of two-layer
convolutional neural networks (CNNs), the authors demon-
strate that pMoE can provably reduce the number of training
samples required to achieve desirable generalization (known
as sample complexity) by a polynomial factor. Additionally,
pMoE outperforms its single-expert counterpart of equal or
even greater capacity. This advantage is attributed to the
discriminative routing capability, which allows pMoE routers
to filter out label-irrelevant patches and direct similar class-
discriminative patches to the same expert. Experimental results
on datasets such as MNIST, CIFAR-10, and CelebA support
the theoretical claims, showing that pMoE can avoid learning
spurious correlations.
PAD-Net: In this paper by He et al. [57] challenge con-
ventional wisdom regarding dynamic networks by introducing
a partially dynamic network called PAD-Net, which con-
verts redundant dynamic parameters into static ones. They
also develop Iterative Mode Partition to efficiently allocate
dynamic and static parameters. The effectiveness of their
approach is demonstrated through extensive experiments using
two advanced dynamic architectures, DY-Conv and MoE, on
image classification and GLUE benchmarks. Notably, PAD-
Net achieves a 0.7% improvement in top-1 accuracy with only
30% dynamic parameters in ResNet-50, and a 1.9% increase
in average score for language understanding with only 50%
dynamic parameters in BERT, outperforming fully dynamic
networks
StableMoE: In this paper by Dai et al. [58] proposes a
StableMoE to address the issue of routing fluctuation. This
method involves two training phases. Initially, a balanced
and cohesive routing strategy is being learned, which is then
distilled into a separate lightweight router, detached from the
backbone model. Subsequently, the distilled router is being
employed to establish token-to-expert assignments, which are
then fixed to ensure a stable routing strategy. Experimental val-
idation is currently being conducted on tasks such as language
modeling and multilingual machine translation, demonstrating
that StableMoE surpasses previous MoE methods in terms of
both convergence speed and performance.
Alpa: In this paper by Zheng et al. [42] proposes a paral-
lel model training approach Alpa, a parallel model training
approach that automates the process by generating execution
plans integrating data, operator, and pipeline parallelism. Alpa
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addresses the challenge of scaling out complex DL models
on distributed compute devices by distributing the training of
large DL models and conceptualizing parallelisms into two hi-
erarchical levels: inter-operator and intra-operator parallelisms.
Building upon this framework, Alpa creates a new hierarchical
space for extensive model-parallel execution plans. To auto-
matically derive efficient parallel execution plans at each level
of parallelism, Alpa employs a series of compilation passes.
Additionally, Alpa implements an efficient runtime mechanism
to coordinate the two-level parallel execution on distributed
compute devices. Evaluation results indicate that Alpa pro-
duces parallelization plans that either match or surpass the
performance of hand-tuned model-parallel training systems,
even on models they are specifically designed for. Unlike
specialized systems, Alpa also adapts to models with hetero-
geneous architectures and models without manually crafted
plans.
BaGuaLu: In this paper by Ma et al. [59] presents the
first endeavor aimed at training brain-scale models on an en-
tire exascale supercomputer, specifically, the New Generation
Sunway Supercomputer. BaGuaLu, achieved by integrating
hardware-specific intra-node optimization with hybrid parallel
strategies, exhibits commendable performance and scalability
on remarkably large models. Evaluation results demonstrate
that BaGuaLu can train models with 14.5 trillion parameters
at a performance exceeding 1 EFLOPS using mixed precision.
Moreover, it possesses the capability to train models with
174 trillion parameters, a scale comparable to the number of
synapses in a human brain.
MEFT: In this paper by Hao et al. [60] introduces MEFT
(Memory-Efficient Fine-Tuning), a method designed to fine-
tune LLMs more efficiently by addressing the memory limita-
tions often encountered in resource-constrained environments.
MEFT leverages the sparsity in the activation of neurons
within feed-forward networks (FFNs) and utilizes the larger
capacity of CPU memory compared to GPU memory. By
storing and updating larger adapter parameters on the CPU
and using a MoE (MoE)-like architecture, MEFT reduces
unnecessary CPU computations and the communication vol-
ume between the CPU and GPU. The method dynamically
retrieves and activates only relevant neurons for each input,
significantly reducing GPU memory usage while maintain-
ing fine-tuning performance. Experimental results demonstrate
that MEFT achieves comparable results to traditional methods
under resource-limited conditions, particularly in tasks requir-
ing extensive knowledge, thereby proving its effectiveness in
optimizing memory usage and computational efficiency.
GShard: In this paper by Lepikhin et al. [9] proposes condi-
tional computation as a solution to the challenges mentioned
above and illustrate its effectiveness and practicality. They
extensively utilize GShard, a module comprising lightweight
annotation APIs and an extension to the XLA compiler, to
facilitate large-scale models with capacities of up to trillions
of parameters. Leveraging GShard and conditional computa-
tion, they scale up a multilingual neural machine translation
Transformer model with Sparsely-Gated MoE. The authors
demonstrate that such a massive model with 600 billion param-
eters can be efficiently trained on 2048 TPU v3 cores within

4 days, achieving significantly higher translation quality from
100 languages to English compared to previous approaches.
Parameter-efficient MoEs: In this paper by Zadouri [61] pro-
poses an extremely parameter-efficient architecture for MoE
(MoEs). This architecture leverages MoEs using lightweight
settings, allowing for the fine-tuning of a dense model by
updating less than 1% of its parameters. The instruction fine-
tuning with the proposed methods consistently outperforms
traditional parameter-efficient approaches on unseen tasks,
while maintaining high parameter efficiency throughout dif-
ferent scales.
SMoE-Dropout: In this paper by Chen et al. [62] proposes a
new plug-and-play training framework called SMoE-Dropout,
designed to enhance the accuracy of transformers at full ca-
pacity without encountering collapse. SMoE-Dropout includes
a randomly initialized and fixed router network to activate ex-
perts, gradually increasing the number of activated experts as
training progresses. Transformers trained with SMoE-Dropout
inherently display a ”self-slimmable” property, adjusting to
resource availability and delivering smooth and consistent
performance improvements as the number of activated experts
increases during inference or fine-tuning.
EdgeMoE: In this paper by Yi et al. [63] introduces Edge-
MoE, the first on-device LLM inference engine capable of
scaling the model size (number of experts) with both memory
and time efficiency. The design of EdgeMoE is based on the
unique observation that most computations are concentrated in
a small portion of weights (non-experts are ”hot weights”) that
can be stored in device memory, while most weights (experts
are ”cold weights”) contribute minimally to computations.
To enable an I/O-compute pipeline, EdgeMoE predicts which
expert will be activated before executing its router function.
It also introduces two novel techniques—expertwise bitwidth
adaptation and in-memory expert management—to reduce the
expert I/O overhead of EdgeMoE.
SE-MoE: In this paper by Shen et al. [64] proposes a
framework capable of scaling MoE models to trillions of
parameters. It fully utilizes cluster resources, including HBM,
CPU memory, and SSDs, to surpass memory limitations and
achieve efficient training scheduling. Additionally, it employs
2D prefetch scheduling and fusion communication to enhance
heterogeneous storage efficiency. A novel inference method
based on ring memory uses dynamic graph scheduling to
maximize the overlap of computation and communication,
further enhancing inference performance for larger-scale MoE
models without requiring additional machines.
ScheMoE: In this paper by Shi et al. [65] proposes an optimal
scheduling framework for communication and computation
tasks in training MoE models. ScheMoE integrates a novel
all-to-all collective that efficiently utilizes both intra- and inter-
connect bandwidths. It supports easy extensions of customized
all-to-all collectives and data compression methods, all while
benefiting from the proposed scheduling algorithm.
MoE-Mamba: In this paper by Pioro et al. [66] proposes a
model that integrates Mamba with a MoE layer, called MoE-
Mamba. This approach achieves the efficiency benefits of both
SSMs and MoE, reaching the same performance as Mamba
in 2.35× fewer training steps. The authors also confirm that



ARPITA VATS et al.:IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 17

the improvements achieved by MoE-Mamba are consistent
across different model sizes, design choices, and the number
of experts.
Pre-Gates MoE: In this paper by Hwang et al. [67] proposes
the Pre-gated MoE system, which addresses the computational
and memory issues of traditional MoE architectures through
algorithm-system co-design. This system uses a novel pre-
gating function to mitigate the dynamic aspect of sparse expert
activation, enabling it to manage MoE’s large memory foot-
print and deliver high performance. The Pre-gated MoE system
is shown to enhance performance, decrease GPU memory
usage, and maintain model quality. These characteristics make
it possible to cost-effectively deploy large-scale LLMs using
a single GPU with high performance.
NLLB: In this paper by Team NLLB et al. [68] aims to break
the 200 language barrier in machine translation while ensuring
safe, high-quality results that consider ethical implications.
The authors contextualize the need for low-resource language
translation support through interviews with native speakers
and create datasets and models to narrow the performance
gap between low and high-resource languages. They develop
a conditional compute model based on Sparsely Gated MoE
and use novel data mining techniques to obtain training data.
The authors propose architectural and training improvements
to counteract overfitting and evaluate the performance of
over 40,000 translation directions using a human-translated
benchmark, Flores-200. They also combine human evaluation
with a novel toxicity benchmark to assess translation safety.
The proposed model achieves a 44% relative improvement in
BLEU score over the previous state-of-the-art, laying impor-
tant groundwork towards a universal translation system.
EvoMoE: In this paper by Nie et al. [34] introduces EvoMoE,
an efficient end-to-end training framework for MoE models.
EvoMoE addresses the issues of immature experts and unstable
sparse gates in existing MoE models by gradually evolving
from a single expert to a large and sparse MoE structure. The
framework consists of two phases: expert-diversify and gate-
sparsify, and uses a novel Dense-to-Sparse gate (DTS-Gate) to
route tokens to fewer experts. The authors evaluate EvoMoE
on three popular models and tasks and show that it outperforms
existing baselines.
FiLM: In this paper by Zhou et al. [2] present a novel
approach to time series analysis and forecasting called the
Frequency improved Legendre Memory (FiLM) model. This
innovative architecture combines a MoE for robust multiscale
feature extraction with a redesigned Legendre Projection Unit
(LPU), making it a versatile tool for data representation that
addresses the challenge of preserving historical information.
The model also incorporates Frequency Enhanced Layers
(FEL), which leverage Fourier analysis and low-rank matrix
approximation to reduce dimensionality, minimize noise, and
mitigate overfitting in time series data. Through extensive
experiments across six benchmark datasets spanning multiple
domains, including energy, traffic, economics, weather, and
disease, the authors demonstrate significant performance im-
provements. Their model outperforms state-of-the-art methods
by 19.2% in multivariate forecasting and 26.1% in univari-
ate forecasting. Furthermore, the dimensionality reduction

achieved by FiLM yields substantial gains in computational
efficiency. This research contributes valuable insights and tools
to the field of time series analysis, offering enhanced accuracy
and efficiency for forecasting tasks across diverse domains.
FastMoE: In this paper by He et al. [85] proposes a solution
to the challenge of training trillion-scale language models. The
authors highlight the significant potential of scaling language
models to trillions of parameters but note that existing plat-
forms for this task are limited to proprietary hardware and soft-
ware stacks. FastMoE addresses this limitation by offering a
PyTorch-based system compatible with common accelerators.
It features a hierarchical interface for flexible model design
and easy adaptation to various applications, along with highly
optimized training speed through sophisticated acceleration
techniques. Notably, FastMoE supports distributing experts
across multiple GPUs and nodes, enabling linear scaling of
expert numbers with available GPUs. This system aims to
democratize large-scale MoE model training, making it more
accessible to the broader research community, particularly
those using GPUs and PyTorch, while providing the necessary
performance for trillion-parameter models.
ACE: In this paper by Cai et al. [69] proposes a one-stage
recognition approach called Ally Complementary Experts
(ACE) for long-tailed datasets. In this approach, each expert
specializes in a specific subset of data and is complementary to
other experts in less frequently seen categories, without being
affected by unseen data. To prevent overfitting, a distribution-
adaptive optimizer is designed to adapt the learning pace of
each expert.
HyperMoE: In this paper by Zhou et al. [70] proposes
a new design for the MoE framework called HyperMoE,
which includes a HyperExpert component. This novel method
tackles a basic problem in MoE systems: striking a bal-
ance between sufficient expert availability and sparse expert
selection. HyperMoE’s higher performance above baselines
based on Switch Transformers in a range of NLP tasks serves
as evidence of its efficacy. The authors showcases a strong
relationship between the experts who are finally picked and
selection embeddings, which are formed from the environment
of unselected experts. Their findings highlight the intricacy
and effectiveness of the HyperMoE architecture in managing
expert knowledge and selection inside the MoE framework by
indicating that the selection embeddings successfully encode
critical information about the knowledge required by the
selected experts
BlackMamba: In this paper by Anthony et al. [71] proposes
BlackMamba, a novel architecture that combines alternating
attention-free Mamba blocks with routed MLPs. The authors
design, implement, and evaluate this model, demonstrating
its efficiency and effectiveness. They train and open-source
two versions: 340M/1.5B BlackMamba and 630M/2.8B Black-
Mamba2. The study shows that BlackMamba requires signif-
icantly fewer training FLOPs to achieve comparable perfor-
mance on downstream tasks compared to dense transformer
models. Additionally, the paper explores the compounding
inference benefits of combining attention-free architectures
like Mamba with routed sparsity architectures like MoE.
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VII. INTEGRATING MOE INTO RECOMMENDATION
ALGORITHMS

Many modern recommender systems leverage multi-task
learning frameworks to create a more comprehensive un-
derstanding of user behavior. This approach simultaneously
models multiple related objectives, such as user engagement
(clicks, time spent), satisfaction (ratings, likes), and purchases.
By jointly modeling these factors, systems can efficiently
share knowledge and data across tasks, which is particularly
beneficial for objectives with limited data availability. Ad-
ditionally, multi-task learning serves as a regularizer, where
auxiliary tasks introduce inductive biases that enhance the
main task’s generalization capabilities. Traditionally, many
multi-task learning models in recommendation systems have
relied on shared-bottom architectures. However, these struc-
tures often face challenges due to optimization conflicts aris-
ing from multiple tasks sharing the same parameters. Other
common issues include data sparsity, heterogeneity, and the
complexity of users’ underlying intentions. To address these
limitations, recent large-scale recommendation systems have
begun adopting the Multi-gate MoE (MMoE) model for multi-
task learning. This approach has yielded state-of-the-art re-
sults in recommendations by allowing for more flexible and
task-specific parameter allocation. The following section will
highlight notable industry examples of MMoE implementation
in recommender systems, demonstrating its effectiveness in
overcoming the challenges associated with traditional multi-
task learning approaches.
MoME: In this paper by Xu et al. [72] introduces a novel
approach to multi-task learning in recommendation systems.
MoME builds upon the MoE architecture by incorporating a
masking mechanism to enhance efficiency and performance.
The authors address the challenges of computational complex-
ity and negative transfer in traditional MoE models by dynam-
ically selecting a subset of experts for each task. This selective
activation is achieved through learnable binary masks, which
determine which experts contribute to each task’s prediction.
The paper demonstrates that MoME significantly reduces com-
putational costs while maintaining or improving performance
across various recommendation tasks. Furthermore, the authors
show that their approach mitigates negative transfer between
tasks by allowing for more specialized expert utilization.
Extensive experiments on both public and industrial datasets
validate the effectiveness of MoME, showcasing its ability
to outperform existing multi-task recommendation models in
terms of both efficiency and accuracy. The paper also provides
insights into the interpretability of expert assignments across
different tasks, offering a deeper understanding of the model’s
decision-making process.
SummaReranker: In this paper by Ravaut et al. [73] proposes
that while sequence-to-sequence neural networks, especially
those based on large pre-trained language models fine-tuned
for specific tasks, have significantly improved abstractive sum-
marization, they still face challenges. These models typically
rely on beam search to produce a single summary from
numerous possibilities. However, this decoding method is
not ideal due to exposure bias. In this research, the author

demonstrates that it’s possible to train an additional model
to re-evaluate and rank a set of potential summaries. The
proposed solution, called SummaReranker, utilizes a MoE
architecture. This approach is designed to identify the most
suitable summary candidate and consistently improves upon
the performance of the original model.
PLE: In this paper by Tang et al. [74] addressing key
challenges in multi-task learning (MTL) for recommendation
systems. They tackle performance degeneration due to nega-
tive transfer and the “seesaw phenomenon” where improving
one task’s performance often degrades others. The PLE model
achieves this through explicit separation of shared and task-
specific components, coupled with a progressive routing mech-
anism for gradual extraction and separation of deeper semantic
knowledge. The authors rigorously test PLE on a massive Ten-
cent video recommendation dataset, conduct online evaluations
on a large-scale content recommendation platform, and per-
form experiments on public benchmark datasets across various
scenarios. Results consistently show PLE outperforming state-
of-the-art MTL models, with significant online improvements
in view-count and watch time. Notably, PLE successfully
eliminates the seesaw phenomenon across diverse applications.
The model’s effectiveness and practical value are further val-
idated by its successful deployment in Tencent’s online video
recommender system, marking a significant advancement in
MTL for large-scale recommendation environments.
MDFEND: In this paper by Nan et al. [75] proposes the
challenge of multi-domain fake news detection (MFND), an
emerging field that aims to improve upon single-domain
approaches. The authors identify domain shift as a major
obstacle, where varying data distributions across different
domains hinder the effectiveness of existing fake news de-
tection techniques. To tackle this issue, they introduce two
key contributions. First, they create Weibo21, a benchmark
dataset for MFND containing 4,488 fake news items and 4,640
real news items across 9 domains, each with domain labels.
Second, they propose MDFEND (Multi-domain Fake News
Detection Model), which employs a domain gate to aggregate
multiple representations extracted by a MoE. Experimental re-
sults demonstrate that MDFEND significantly enhances multi-
domain fake news detection performance compared to existing
methods.
CAME: In this paper by Guo et al. [76] proposes a novel
approach for competitive learning that fosters the growth and
improvement of each expert’s area of expertise in certain
relevance patterns. The author shows that their model, CAME,
considerably outperforms state-of-the-art baselines in both in-
domain and out-of-domain contexts through comprehensive
testing on a variety of retrieval benchmarks.

VIII. PYTHON LIBRARIES FOR MOE

MoE-Infinity: In this paper by Xue et al. [86] proposes
MoE-Infinity, a library for MoE inference and serving that
is cost-effective, fast, and user-friendly. The library employs
sequence-level expert activation tracing, a novel method that
excels at detecting sparse activations and exploiting the tem-
poral locality of MoE inference. By examining these traces,
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MoE-Infinity implements activation-aware expert prefetching
and caching, which significantly lowers the latency overheads
typically associated with offloading experts, resulting in en-
hanced cost performance.
SMT 2.0: In this paper by Saves et al. [77] introduces a
freely available Python library that provides a comprehensive
suite of surrogate modeling approaches, sampling strategies,
and benchmark problems. This open-source tool is designed
to support researchers and practitioners in the field of surrogate
modeling and optimization. SMT 2.0 is the first open-source
surrogate library to propose surrogate models for hierarchical
and mixed inputs.
Mesh: Mesh TensorFlow [78] is a language designed for
distributed deep learning, enabling the specification of a wide
range of distributed tensor computations. Its primary goal is
to formalize and implement strategies for distributing your
computation graph across available hardware or processors.
fairseq: This open-source modeling toolkit, developed by
Meta [79], allows researchers to train custom models for vari-
ous text generation tasks, including translation, summarization,
and language modeling. Built on PyTorch, the toolkit supports
distributed training across multiple GPUs and machines. Ad-
ditionally, it offers fast mixed-precision training and inference
on modern GPUs.

IX. CONCLUSION

In this survey, we present a systematic and comprehensive
review of the literature on MoE models, serving as a valuable
resource for researchers delving into the MoE domain. We
introduce a taxonomy for MoE models and provide an in-
depth analysis from distinct angles: Vision, LLMs, scaling,
and various other applications. This analysis is enriched with
a curated set of open-source implementations, detailed hyper-
parameter configurations, and extensive empirical evaluations.
While MoE has demonstrated impressive results in fields
like NLP and computer vision, its application to other areas
such as reinforcement learning, tabular data, and beyond
remains largely unexplored. The development of MoE in deep
learning is still in its nascent stages, with many milestones
yet to be reached. However, its potential to revolutionize our
understanding and deployment of deep learning models is vast.
Considering the current state of computing, significant hard-
ware advancements may not happen as quickly as improve-
ments in modeling techniques. By leveraging the core strength
of the MoE paradigm—the division of complex tasks into
simpler subtasks managed by specialized expert models—we
can continue to push the boundaries of deep learning. This
presents an exciting opportunity for future exploration. While
Expert Choice Routing shows great promise, there may be
other innovative approaches that could further enhance the
routing mechanism. To support ongoing knowledge sharing
and updates, we have created a dedicated resource repository
to facilitate the continuous dissemination of advancements in
MoE research. We hope this survey will serve as an essential
reference for researchers seeking to quickly familiarize them-
selves with MoE models and actively contribute to the field’s
dynamic progression.
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