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ABSTRACT
Large Language models (LLM) have demonstrated the capability to handle a vari-
ety of generative tasks. This paper presents the UniAudio system, which, unlike
prior task-specific approaches, leverages LLM techniques to generate multiple
types of audio (including speech, sounds, music, and singing) with given input
conditions. UniAudio 1) first tokenizes all types of target audio along with other
condition modalities, 2) concatenates source-target pair as a single sequence, and
3) performs next-token prediction using LLM. Also, a multi-scale Transformer
model is proposed to handle the overly long sequences caused by the residual
vector quantization-based neural codec in tokenization. Training of UniAudio is
scaled up to 165K hours of audio and 1B parameters, based on all generative tasks,
aiming to obtain sufficient prior knowledge not only in the intrinsic properties of
audio but also the inter-relationship between audio and other modalities. Therefore,
the trained UniAudio model has the potential to become a foundation model for
universal audio generation: it shows strong capability in all trained tasks and can
seamlessly support new audio generation tasks after simple fine-tuning. Experi-
ments demonstrate that UniAudio achieves state-of-the-art or at least competitive
results on most of the 11 audio generation tasks. Demo and code are released.1 .

1 INTRODUCTION
Audio generation is an important component of generative AI. Recently, the popularity of generative
AI has induced increasingly emergent and varying needs in audio generation: audio is expected to
be generated based on humans’s demands, such as speech synthesis (TTS), voice conversion (VC),
singing voice synthesis (SVS), text-to-sound, and text-to-music. Prior works on audio generation
tasks are commonly task-specific: their designs heavily leverage domain knowledge and their usage
is restricted to fixed setups (Tan et al., 2021; Luo & Mesgarani, 2019; Zmolikova et al., 2023; Huang
et al., 2021b; Cho et al., 2021). Instead of taking care of each task independently, this work is an
attempt to achieve universal audio generation, which intends to accomplish multiple audio generation
tasks with only one unified model. The universal audio generation model is expected to obtain
sufficient prior knowledge in audio and related modalities, which has the potential to provide simple
and effective solutions for the increasing needs of generating diverse types of audio.

The superiority of Large Languge Models (LLM) in text-generative tasks inspires a series of LLM-
based models in audio generation (Wang et al., 2023a; Kharitonov et al., 2023; Huang et al., 2023b;
Agostinelli et al., 2023; Borsos et al., 2023). Among these works, LLM’s capability in independent
tasks has been extensively studied in tasks like text-to-speech (TTS) (Wang et al., 2023a; Kharitonov
et al., 2023; Huang et al., 2023b) and music generation (Agostinelli et al., 2023; Copet et al., 2023),
and achieves competitive performance. However, LLM’s ability to process multiple tasks with a
unified model is less exploited in audio generation research: most existing LLM-based works are
still designed for single tasks (Wang et al., 2023a; Kharitonov et al., 2023). We argue that achieving
universality and versatility in audio generation through the LLM paradigm is promising but has not
yet been comprehensively studied before this work.

Toward universal audio generation, this work presents UniAudio, which adopts LLM techniques
and is able to generate multiple types of audio (speech, sounds, music, and singing) conditioned on
various input modalities, such as phoneme sequences, textual descriptions, and audio itself. The
proposed UniAudio is mainly featured as follows: First, all types of audio, along with all other input

1https://uniaudio666.github.io/demo_UniAudio/
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modalities, are tokenized as discrete sequences. Specifically, a universal neural codec model is built to
effectively tokenize audio regardless of the audio type, and other tokenizers are used to tokenize other
different modalites. Then, UniAudio concatenates the source-target pair as a single sequence. Lastly,
UniAudio performs next-token prediction using LLM. The residual vector quantization (Zeghidour
et al., 2021) based on neural codecs is used in the tokenization process, resulting in overly long token
sequences (one frame corresponding to multiple tokens) that cannot be processed efficiently by LLM.
A multi-scale Transformer architecture is designed to reduce computational complexity by modeling
the inter- and intra-frame correlation separately. Specifically, a global Transformer module is used to
model the inter-frame correlation (e.g. semantic level), and a local Transformer module is used to
model the intra-frame correlation (e.g. acoustic level).

To demonstrate the scalability of UniAudio for new tasks, the building process of UniAudio takes
two stages. Firstly, the proposed UniAudio is trained on multiple audio generation tasks jointly,
which allows the model to obtain sufficient prior knowledge not only of the intrinsic properties of
audio but also of the interrelationship between audio and other input modalities. Secondly, through
fine-tuning, the trained model can seamlessly support more unseen audio generation tasks. Thus,
UniAudio has the potential to become a foundation model for universal audio generation: it is able to
continuously support emergent needs in audio generation. Experimentally, our UniAudio supports 11
audio generation tasks: the training stage includes 7 audio generation tasks, while 4 tasks are further
added in the fine-tuning stage. The building process of UniAudio is scaled up to 165k hours of audio
and 1B parameters. Among the 11 tasks, UniAudio consistently obtains competitive performance in
both objective and subjective evaluations. State-of-the-art results are even achieved on most of these
tasks. Further investigation suggests that training multiple tasks simultaneously in the training stage
is mutually beneficial to each task involved. In addition, UniAudio can effectively adapt to new audio
generation tasks and outperform task-specific models with a non-trivial gap.

To sum up, this work reveals that building universal audio generation models is necessary, promising,
and beneficial. The main contributions of this work are summarized as follows:
(1) Toward universal audio generation, UniAudio is presented as a unified solution for 11 audio
generation tasks.

(2) Per methodology, UniAudio provides novel approaches for (i) sequential representations of audio
and other input modalities; (ii) uniform formulation for LLM-based audio generation tasks; and (iii)
efficient model architecture specifically designed for audio generation.

(3) Per experiments, the overall performance of UniAudio is well validated, and the benefits of
building a versatile audio generation model are verified by exhaustive experimental results.

(4) Demo and code are released, in the hope that UniAudio can become a foundation model that
supports emergent audio generation in future research.

2 UNIAUDIO
This section introduces the technical details of the proposed UniAudio. Section 2.1 explains how
audio and other modalities are tokenized. Then, all considered audio generation tasks are uniformly
formulated in Section 2.2. Subsequently, the multi-scale Transformer architecture is proposed in
Section 2.3 to handle the overly long sequence challenge caused by the adoption of neural codecs.

2.1 TOKENIZATION

LLM are commonly used for sequential modeling, so audio and all other input modalities are
tokenized before being processed. These processes for each modality are completed by independent
modules. All of these modules are fixed in the optimization of UniAudio or parameter-free.

2.1.1 AUDIO

For all audio generation tasks considered in this work, audio, regardless of its types (speech, sounds,
music, or singing), is the target to predict. Instead of modeling different types of audio separately,
UniAudio intends to tokenize all types of audio as a single and unified modality (even though they
commonly have distinct patterns, such as frequency span), which requires a model that is well-suited
to mapping all audio types into a shared latent space. Following Wang et al. (2023a); Kharitonov
et al. (2023), neural codec models (Défossez et al., 2022; Yang et al., 2023b; Kumar et al., 2023) are
used in this work for audio tokenization. An audio signal of duration d with sample rate fs can be
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represented by a sequence x ∈ [−1, 1]d∗fs . An audio neural codec intends to compress x and then
recover it as x̂ using an encoder-decoder architecture with a quantization module:

h = Encoder(x) ∈ RT∗L; ĥ = Quantization(h); x̂ = Decoder(ĥ) (1)
where T denotes the number of audio frames after down-sampling in the encoder, and L denotes the
feature dimension of the encoder. The discrete representations of audio are the intermediate product
of the quantization process. Given any frame of hidden output ht, the integer vector zt = [z1t , ..., z

nq

t ]
is generated by Residual Vector Quantization (RVQ) (Zeghidour et al., 2021), where nq denotes the
number of vector quantization layers. Iteratively, each element zkt is the index among all pre-learned
and fixed k-th level quantizer vectors {q∗

k} that has the smallest L2 distance to the residual between

ht and the sum of all previous chosen quantizer vectors {qzj
t

j , j = 1, ..., k − 1}. With the discrete
representation zt, ĥt is reconstructed as a close estimation of ht that can be used to recover xt with
the decoder.

zkt = argmin
m

Distance(ht −
k−1∑
j=1

q
zj
t

j ,qm
k ); ĥt =

nq∑
j=1

q
zj
t

j ; 1 ≤ k ≤ nq (2)

The discrete representation of all audio frames z ∈ ZT×nq is a matrix and needs to be converted into
a sequence before being processed by LM: it is simply flattened as a sequence, in which every nq

element for one frame is consecutive. Without specifically stated, we set nq = 3 in our experiments.
As the waveform can be recovered from z with a neural codec decoder, the rest of this paper mainly
discusses how to predict the audio token sequence z using LLM techniques. As UniAudio intends to
generate both speech and non-speech content, we build the codec model on our own and with broader
data coverage. Details of our codec configuration is in Appendix E.

2.1.2 OTHER MODALITIES

Besides audio, other modalities considered in UniAudio also need to be represented as sequences.
In addition, most of these sequences are transformed into discrete ones through tokenization. The
serialization and tokenization of these input modalities, along with their key features, are briefly
summarized as below.

Phoneme: Phonemes are the basic units of speech pronunciation in linguistics. Phoneme sequences
have multiple sources: (1) when only text is available, phoneme sequence without duration informa-
tion can be obtained by text-to-phoneme mapping using a pronunciation dictionary; (2) when only
speech is available, phoneme sequence with duration information is obtained by beam search of the
DNN-HMM system (Hinton et al., 2012); (3) when both text and speech are available, phoneme
sequence with duration information is obtained by forced alignment of the DNN-HMM system 2.

MIDI: MIDI (Zhang et al., 2022) is widely used for singing voice synthesis tasks. F0 and duration
information are included in the MIDI. We use the duration information to flatten the F0 sequence, so
that the frame-level F0 sequence is obtained.

Text: Text acts as a effective carrier of human instructions in audio generation tasks (Yang et al.,
2023a; Copet et al., 2023). In this work, these textual instructions are represented as continuous
embeddings derived from pre-trained text LLM (Raffel et al., 2020), as these embeddings contain
rich textual semantics. Processing these continuous embeddings with LLM is further clarified in
Section 2.33.

Semantic Token: The semantic tokens are derived from the continuous embeddings output by audio
self-supervised learning (SSL) models. These continuous representations are highly informative and
can be adopted in both speech understanding (Rubenstein et al., 2023) and generative tasks (Borsos
et al., 2023). Following Huang et al. (2023b), these continuous representations are tokenized by
performing K-means clustering (Hsu et al., 2021) over these continuous representations. Since the
continuous representations are frame-level, the semantic tokens also encode duration information4.

2CMUDict (http://www.speech.cs.cmu.edu/cgi-bin/cmudict) is adopted as the pronunciation dict; kaldi recipe
(https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech/s5/local/chain/run_tdnn.sh) is adopted to build the
deep neural network-hidden Markov model (DNN-HMM) system.

3The encoder of T5 (https://github.com/google-research/text-to-text-transfer-transformer) is used to extract
the continuous text embeddings.

4The 9-th layer hidden output of Hubert (Hsu et al., 2021) is adopted as the semantic token representations
(https://github.com/facebookresearch/fairseq/hubert). The number of clusters for K-means is 500.
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2.2 UNIFIED TASK FORMULATION

Table 1: Sequence formats of all tasks supported by UniAudio. Text color represents modality. black:
audio; green: phoneme; blue: MIDI; purple: text; brown: semantic token. ♣ means tasks that
generate audio with deterministic length. ♢: means tasks that are only included in the fine-tuning
stage. The speaker prompt is a 3-second speech and is used to represent the speaker identification.

Task Conditions Audio Target
Text-to-Speech (TTS) (Wang et al., 2023a) phoneme, speaker prompt speech
Voice Conversion (VC) ♣ (Wang et al., 2023e) semantic token, speaker prompt speech
Speech Enhancement (SE) ♣ (Wang et al., 2023b) noisy speech speech
Target Speech Extraction (TSE) ♣ (Wang et al., 2018) mixed speech, speaker prompt speech
Singing Voice Synthesis (SVS) (Liu et al., 2022) phoneme (with duration), speaker prompt, MIDI singing
Text-to-Sound (Sound) (Yang et al., 2023c) textual description sounds
Text-to-Music (Music) (Agostinelli et al., 2023) textual description music
Audio Edit (A-Edit) ♣♢ (Wang et al., 2023d) textual description, original sounds sounds
Speech dereverberation (SD) ♣♢ (Wu et al., 2016) reverberant speech speech
Instruct TTS (I-TTS)♢ (Guo et al., 2023) phoneme, textual instruction speech
Speech Edit (S-Edit) ♢ (Tae et al., 2021) phoneme (with duration), original speech speech

For all tasks considered in UniAudio, the target audio is generated based on given conditions. With
the same target modality, i.e., audio, it is the conditions that define different audio generation tasks.
However, even with the variance in conditions, all tasks can still be uniformly formulated as sequential
modeling tasks that can be processed by LLM: both the target audio and the conditions are first
transformed as sub-sequences and spliced as [conditions, target] sequences to be processed.

UniAudio supports 11 audio generation tasks in total. The sequential formats of each task are defined
in Table 1, in which the sub-sequences of all modalities are derived as in Section 2.1. However,
due to the unique configurations of each task, some of the condition sub-sequences are subject to
task-specific pre-processing operations during the tokenization. For audio, these operations are
mainly for data corruption, such as adding noise, reverberation, and speech mixed with other speakers
in the raw audio before tokenization. For phoneme and semantic tokens, duration information is
reserved by default but can also be removed. For singing voice synthesis and speech edit tasks, the
duration information of phoneme is used. For TTS and I-TTS tasks, the duration information is not
used. For MIDI, the duration information is used repeat the F0 sequence. For text embeddings, no
operations are applied in this work.

To avoid ambiguity, some special discrete tokens (enclosed by <>) are inserted to indicate (1) the start
and end of the whole sequence; (2) the start and end of each sub-sequence of a certain modality; and
(3) the task identifier. For example, for a text-to-sound task sequence that generates target audio based
on textual description, the whole sequence is like: <start> <sound_task> <text_start> text_sequence
<text_end> <audio_start> audio_sequence <audio_end> <end>.

2.3 MULTI-SCALE TRANSFORMER

Previous work on LLM-based audio generation (Copet et al., 2023) advocates to modeling the discrete
audio tokens as flattened sequences. If so, these sequences are processed in the length of T × nq,
which is highly challenging considering the quadratic space complexity of Transformer (Vaswani
et al., 2017) with respect to the lengths. Inspired by Yu et al. (2023), a multi-scale Transformer
architecture is specifically designed for discrete audio sequences, which is a hierarchical model that
processes the inter- and intra-frame correlation by global and local Transformer modules separately.
An overview of the proposed architecture is in Figure 1. Instead of processing the whole flattened
sequence token-by-token like prior works (Kharitonov et al., 2023), the multi-scale transformer
considers patches (i.e., every consecutive nq token) as the global modeling units and then handles the
tokens within each patch locally. Note that both the global and local Transformers are causal.

For audio token sequences, each patch accounts for nq consecutive audio tokens that exactly represent
one audio frame. First, as suggested in Equation 2, regardless of the exact choices of each quantization
vector qz∗

t
∗ , it is the summed quantization vector ĥt that is used to represent the audio frame. Thus,

in the embedding stage, each patch (a.k.a., frame) is represented by the summed vector of the
corresponding embeddings before entering the global Transformer. Second, the global Transformer
is to predict audio frame-by-frame: to predict the frame xt, it outputs the continuous representations

4



Under review as a conference paper at ICLR 2024

AudioPhoneme MIDI Text

Tokenization for Multiple Modalities
Semantic

Token

Condition Sequences Target Audio Sequence

TTS VC SE TSE ...

Task Formulation for Multiple Tasks

Global Transformer

Predicted Audio Sequence

Multi-Scale Transformer

<e> <e>

Local
Transformer

Local
Transformer

Local
Transformer

<e> <e> <e>

Figure 1: Overview of UniAudio (left) and multi-scale Transformer architecture (right). <e> represent
the end of the sequence. zkt denotes the k-th audio token at t-th frame.

that include frame xt−1 and all previous content. These continuous representations will be further
processed by the local Transformer. Third, also as in Equation 2, given the hidden representation
ht, the acquisition of zt is independent of any hidden output other than ht. Inspired by this, it is
reasonable to predict the discrete tokens for frame xt, a.k.a., patch zt, only with the hidden output
of global Transformer corresponding to frame xt−1. To be more detailed, as the acquisition of each
token zkt is auto-regressively dependent on its prior tokens {zjt |j < k}, a local Transformer is adopted
to predict the patch sequence zt in auto-regressive style. During this process, the corresponding
vector output by the global transformer acts as a patch-level context, which is linearly transformed
and then added to the embedded results of each token zkt .

The proposed multi-scale Transformer architecture is also compatible with discrete and continuous
sequences besides audio. For all discrete tokens except audio (phoneme, semantic, MIDI and special
tokens), each token has independent semantics and thus should account for one patch. So these
discrete tokens repeat for nq times to fill each patch. The continuous text embeddings are also
repeated for nq times for the same purpose. Additionally, their embedding process is replaced by
a linear transformation while their predicting targets for local Transformer are consecutive special
tokens <continuous_token>.

The design of the proposed multi-scale Transformer can effectively reduce computational complexity.
First, the equivalent sequence length for the global Transformer is reduced from T × nq to T , which
makes the global modeling cost independent to nq and thus the adoption of a larger nq becomes
feasible. Second, the intra-patch computation to generate the discrete tokens for each frame is
offloaded to the local Transformer. The computation on the local transformer is comparatively light
since it only processes the very short sequence (fixed to the length of nq) and empirically has fewer
parameters than the global Transformer by design.

3 EXPERIMENTS

This section first introduces the experimental setup in Section 3.1. The results for the training stage
and the fine-tuning stage are presented in Section 3.2 and 3.3 respectively. Ablation studies are
presented in Section 3.4.

3.1 EXPERIMENTAL SETUP

Data and Model: UniAudio is built on labeled datasets. Specifically, 12 datasets are adopted in this
work, all of which are publicly available. The overall audio volume is 165K hours. Detailed data
statistics and their adoption for each task are in Appendix A.1. Discrete tokens from all modalities
form a joint vocabulary of size 4212, including all special tokens. Vanilla Transformer decoder layers
with causality are consistently adopted in global and local Transformer. The overall parameter budget
is roughly 1B. Detailed model configuration is in Appendix A.2. Existing neural codec models are
sub-optimal for universal audio generation, mainly due to data coverage. An improved neural codec
model is then built with fewer quantization levels nq, smaller frame-per-second rate, higher quality,
and wider coverage (see Appendix E).

Training and Inference: The training stage includes 7 tasks while 4 new tasks are added in the
fine-tuning stage. Table 1 specifies the tasks for fine-tuning only. Both the training and fine-tuning
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Table 2: Performance evaluation for UniAudio and selected prior works in the training stage

Task Model Objective Evaluation Subjective Evaluation
Metrics Results Metrics Results

Text-to-Speech Shen et al. (2023) SIM(↑) / WER(↓) 0.62 / 2.3 MOS(↑)
/ SMOS(↑)

3.83±0.10 / 3.11±0.10
UniAudio 0.71 / 2.0 3.81±0.07 / 3.56±0.10

Voice
Conversion

Wang et al. (2023e) SIM(↑) / WER(↓) 0.82 / 4.9 MOS(↑)
/ SMOS(↑)

3.41±0.08 / 3.17±0.09
UniAudio 0.87 / 4.8 3.54±0.07 / 3.56±0.07

Speech
Enhancement

Richter et al. (2023) PESQ(↑) / VISQOL(↑)
/ DNSMOS(↑)

3.21 / 2.72 / 3.29 MOS(↑) 3.56±0.08
UniAudio 2.63 / 2.44 / 3.66 3.68±0.07

Target Speaker
Extraction

Wang et al. (2018) PESQ(↑) / VISQOL(↑)
/ DNSMOS(↑)

2.41 / 2.36 / 3.35 MOS(↑) 3.43±0.09
UniAudio 1.88 / 1.68 / 3.96 3.72±0.06

Singing Voice
Synthesis

Liu et al. (2022) - - MOS(↑)
/ SMOS(↑)

3.94±0.02 / 4.05±0.06
UniAudio 4.08±0.04 / 4.04±0.05

Text-to-Sound Liu et al. (2023a) FAD (↓) / KL (↓) 4.93 / 2.6 OVL (↑)
/ REL (↑)

61.0±1.9 / 65.7±1.8
UniAudio 3.12 / 2.6 61.9±1.9 / 66.1±1.5

Text-to-Music Copet et al. (2023) FAD (↓) / KL (↓) 4.52 / 1.4 OVL (↑)
/ REL (↑)

73.3±1.5 / 71.3±1.7
UniAudio 3.65 / 1.9 67.9±1.7 / 70.0±1.5

are completed with 16 AMD MI200-64G GPUs. The detailed configuration of optimization is in
Appendix A.3. To retain the performance of previous tasks during fine-tuning, following Conneau
et al. (2020), the training data are re-sampled with respect to tasks with α = 0.05. Top-k sampling is
adopted consistently for inference, in which k and the temperature are set to 30 and 0.8, respectively.
As the global Transformer does not directly predict tokens, the sampling process only happens in the
local Transformer inference.

Evaluation: For evaluation, most tasks are evaluated using both objective and subjective metrics 5.
Generally, for objective evaluation, Word Error Rate (WER) is used to evaluate the intelligibility of
generated speech; Similarity Score (SIM) is for similarity in terms of speaker identity6; Perceptual
Evaluation of Speech Quality (PESQ), VISQOL7, DNSMOS 8 and Mel Cepstral Distortion (MCD)
are signal-level quality metrics derived from human auditory research; Following (Copet et al., 2023),
Fréchet Audio Distance (FAD), Kullback-Leiber (KL) Divergence, and Fréchet Distance (FD) are for
audio fidelity and audio similarity; For subjective evaluation, MOS and SMOS are adopted to provide
human-centric judgment for speech and sing related tasks. For text-to-sound and text-to-music tasks,
we use overall quality (OVL), and relevance to the text input (REL) (Copet et al., 2023). Note all
subjective results are obtained from Amazon Mechanical Turk9 for fair comparison. Appendix F
shows details of the subjective evaluation process.

3.2 THE RESULTS OF 7 GENERATIVE TASKS IN THE TRAINING STAGE

This section presents the overall evaluation results of the proposed UniAudio model over all 7 audio
generation tasks during the training stage. A comprehensive comparison is conducted between
UniAuduio and multiple prior works on each task, including not only the LM-based methods but also
the diffusion model-based methods as well as other conventional audio generation methods. The
detailed comparison is presented in Appendix B. We selected one of the most advanced prior work in
each task and present the results in Table 2.

As suggested in Table 2, UniAudio is a versatile system that can handle all 7 audio generation tasks
together and achieve competitive performance. Per subjective evaluation, UniAudio surpasses the
baselines in 3 out of 6 tasks (TTS, VC, Sound); per objective evaluation, it achieves better results
on 5 out of the 7 tasks except SVS and Music. We also find UniAudio under-perform on several
metrics. UniAudio’s subjective performance for SE and TSE is less competitive compared with its
competitors, which is also observed in previous literature (Erdogan et al., 2023) that the signal-level
evaluation metrics may not be suitable for LM-based generative methods. UniAudio cannot surpass
the selected competitor (Copet et al., 2023) in the Text-to-Music task. We note that (Copet et al.,
2023) is built with more private labeled data than our UniAudio.

5Following the setting of DiffSinger (Liu et al., 2022), SVS tasks don’t report the objective results
6WER and SIM evaluation models follow Wang et al. (2023a)
7https://github.com/google/visqol
8https://github.com/microsoft/DNS-Challenge/tree/master/DNSMOS
9https://www.mturk.com/
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3.3 THE RESULTS OF 4 GENERATIVE TASKS IN THE FINE-TUNING STAGE

Table 3: Performance evaluation for UniAudio and selected prior works in the fine-tuning stage

Task Model Evaluation
Metrics Results

Audio Edit AUDIT (Wang et al., 2023d) FD (↓) / KL (↓) 20.78 / 0.86
UniAudio 17.78 / 0.77

Speech Dereverb. SGMSE+ Richter et al. (2023) PESQ(↑) / DNSMOS(↑) 2.87 / 3.42
UniAudio 2.13 / 3.51

Instructed TTS GroundTruth MOS(↑) / SMOS(↑) 3.77±0.07 / 3.85±0.08
UniAudio 3.61±0.09 / 3.71±0.09

Speech Edit TTS system regeneration MCD(↓) / MOS(↑) 6.98 / 3.69±0.08
UniAudio 5.12 / 3.82±0.06

As UniAudio is designed to continuously support new audio generation tasks, this section reports
UniAudio’s performance on unseen tasks. The model is obtained by fine-tuning over 4 new tasks
jointly and the results are presented in Table 3. Similar to section 3.2, for each task, we compare
UniAudio’s performance with one selected prior work and report the detailed results in Appendix B.

As shown in Table 3, the fine-tuned UniAudio model surpasses its baselines in audio edit and speech
dereverberation and is approaching the ground-truth quality in the Instructed TTS task. For speech
editing, UniAudio shows considerable improvement compared to generating the whole sentence.

3.4 ABLATION STUDY

3.4.1 BENEFIT OF BUILDING UNIFIED AUDIO GENERATION MODEL

To further validate our claim that building a unified model for all 11 audio generation tasks is
promising and beneficial, more ablation studies are conducted. In Appendix C.1, we demonstrate
that the joint-trained UniAudio model consistently outperforms the models that are trained for each
specific task10, regardless they are included in the training stage or the fine-tuning stage. In Appendix
C.2, we additionally validate that fine-tuning over the 4 new audio generation tasks does not affect
UniAudio’s performance on the original 7 tasks. In Appendix C.3, we observe that UniAudio can
consistently benefit from increased training data volume of each task, which provides another reason
to build universal audio generation models: these models are easier to scale up as the data collection
is more feasible. We provide more discussion in Appendix D about the effectiveness of building a
universal audio generation model.

3.4.2 THE EFFECTIVENESS OF MULTI-SCALE TRANSFORMER MODEL

As in section 2.3, the adoption of neural codecs has become a popular choice of LLM-based audio
generation but causes an overly long sequence issue that needs further consideration. This section
compares the proposed multi-scale Transformer with four representative approaches in this field:
Flattening Prediction (e.g. SPEARTTS (Kharitonov et al., 2023)), Coarse first prediction (e.g.
VALL-E (Wang et al., 2023a)), Parallel prediction (e.g. AudioGen (Kreuk et al., 2022)), and Delay
prediction (e.g. MusicGen (Copet et al., 2023)). Figure 2 illustrates the prediction order of these five
architectures. Experiments are conducted on text-to-speech and text-to-music tasks and the results
are reported in Table 4 and 5 respectively 11.

Auto-Regression and Performance: Among all 4 baselines aforementioned, Copet et al. (2023)
claims that the flattening method provides the best audio generation quality. they further claim that
the superior performance of flattening prediction is mainly attributed to the auto-regressive property;
the other three methods do not reserve this property as the concurrent prediction is introduced
(see Fig. 2). Under the scenario of codec adoption, we reinterpret the auto-regressive property
as: current token prediction is based on all tokens of previous frames and the previous tokens
within the current frame, or formally, the prediction of the current token zkt is based on tokens:
{zk′

t′ |t′ < t} ∪ {zk′

t′ |t′ = t, k′ < k}. With this definition, we claim that the proposed multi-scale
transformer is also auto-regressive.

Aligned with Copet et al. (2023), our experiments also validate the importance of the auto-regressive
property. As in Table 4 and 5, flattening prediction brings better generation quality than parallel,

10Note the task-specific models are built with the corresponding subset of the training data.
11Results are based on unofficial implementations.
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Figure 2: Order of token prediction for 4 representative methods in audio generation (Copet et al.,
2023) and the proposed multi-scale Transformer. Assume nq = 3 and T = 3. Current token
prediction (red) is conditioned on prior tokens (in green). Tokens in orange are concurrently predicted
with the current token. 0 is a special token indicating empty positions in the delay prediction.

Table 4: Model comparison among Coarse first, Flattening, Parallel, delay prediction, and multi-scale
Transformer. Experiments were conducted on the LibriTTS. GPU memory and training time are
obtained by a 20-second audio (average of 100 trials). All models have a similar parameter budget.

Structure nq MOS (↑) MCD (↓) GPU Mem. (GB) Time (s) / Iter.

Coarse first 8 3.48±0.05 7.37 18.7 0.58
Parallel 3 3.14±0.07 7.89 13.56 0.53
Delay 3 3.48±0.05 6.95 13.65 0.59
Flattening 3 3.80±0.09 6.56 36.7 1.63
Multi-Scale Transformer (ours) 3 3.77±0.05 6.52 19.4 0.73
Multi-Scale Transformer (ours) 8 3.84±0.06 6.27 24.0 1.10

coarse first, and delay prediction. Additionally, with the same auto-regressive property, our proposed
multi-scale transformer achieves a comparable performance with flattening prediction in terms of
generation quality, which, again, validates the importance of auto-regression.

Efficiency: Besides generation quality, efficiency is a major concern of audio generation. Although
with the auto-regressive property, the flattening prediction is sub-optimal in terms of efficiency: the
modeling is based on the T × nq long sequence, which has a space complexity of O((T ∗ nq)

2) in
self-attention. As increasing nq gives higher reconstruction quality at the cost of longer sequences and
more computation, this issue becomes more severe when a larger nq is adopted. Since the sequence
length grows proportionally with nq, we experimentally find it difficult to train with nq ≥ 4. By
contrast, the proposed multi-scale Transformer distributes the inter- and intra-frame modeling to the
global and local sub-modules respectively, which thus alleviates the space complexity to O(T∗2).
Finally, without the requirement of auto-regression, methods like parallel, coarse first, and delay
predictions achieve better efficiency due to the adoption of concurrent predictions. Since the space
complexity is independent to nq , training a larger nq with the multi-scale transformer is then feasible.

Experimentally, the proposed multi-scale transformer considerably reduces the time and memory cost
compared with the flatting prediction. It still costs more time and memory compared with the other
three baselines.

Based on the observations above, we claim that the proposed multi-scale transformer is an auto-
regressive architecture that achieves a better trade-off between generation quality and efficiency.

4 RELATED WORKS
This work is an attempt to achieve universal audio generation through LLM-based techniques. There
is a long research history for many audio generation tasks. Conventionally, the design of these tasks

8
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Table 5: The ablation study to explore the effectiveness of our proposed multi-scale transformer.
Experiments were conducted on text-to-music tasks with the Million Song dataset.

Structure nq FAD (↓) KL (↓) OVL. (↑) REL. (↑)

Parallel 3 6.92 2.36 60.4±2.3 61.3±1.5
Delay 3 6.07 2.23 62.8±1.9 63.9±1.6
Flatten 3 5.18 1.83 64.8±1.8 65.2±2.0
Multi-Scale Transformer (ours) 3 5.24 1.80 64.4±2.1 66.2±2.4

heavily leverages the domain knowledge of each specific task, and their workflows are distinctive
from each other: For tasks like TTS, SE, TSE, TT-Music, VC, S-Edit, SD, SVS, (1) their neural
network architectures are based on Transformer (Ren et al., 2020) or others (Oord et al., 2016; Luo &
Mesgarani, 2019); (2) their training objectives can be either in time-domain (Luo & Mesgarani, 2019),
frequency-domain (Yu et al., 2017) or others (Gu et al., 2021; Shen et al., 2023); (3) their designs are
inspired by and derived from linguistics and phonetics (Zen et al., 2013), signal processing (Griffin &
Lim, 1984), auditory perception (Shadle & Damper, 2001) and machine learning (Wang et al., 2016)
research, etc; (4) they use different generative models, such as diffusion model (Shen et al., 2023;
Wang et al., 2023b), flow (Le et al., 2023), Seq2Seq (Ren et al., 2020; Liu et al., 2021).

The prosperity of LLM techniques (Radford et al., 2019; OpenAI, 2023) significantly promotes
progress in audio generation research in several directions. First, the large language models, along
with the prompt methods, inspired multiple emergent audio generation tasks that are based on textual
instruction or descriptions from humans, such as Instruct-TTS (Yang et al., 2023a), Text-to-sound
(Kreuk et al., 2022; Huang et al., 2023a) and text-to-music Copet et al. (2023); Agostinelli et al.
(2023). Second, besides the text, audio can also be tokenized as discrete sequences (Zeghidour et al.,
2021; Défossez et al., 2022; Kumar et al., 2023) that can be further processed by LMs. LM-based
audio generative models then show superior capability in generalization towards unseen speakers
(Wang et al., 2023a), low resources (Kharitonov et al., 2023) and multilingual (Zhang et al., 2023)
scenarios. These methods also achieve state-of-the-art results in overall performance within their own
scopes. Finally, the LM-like model can be further combined with existing generative models (e.g.,
diffusion models Rombach et al. (2022)) to obtain improved generation quality.

It is laborious to handle each audio generation task case-by-case, especially when considering the data
shortage as well as the emergent and varying needs in this area. Alternatively, building a universal
audio generation model is a promising and practical paradigm. Given the rapid progress in audio
generation research, recent designs of audio generation, including LM-based ones, tend to support
multiple audio generation tasks simultaneously. Some pioneer works (Wang et al., 2023c; Le et al.,
2023; Shen et al., 2023; Liu et al., 2023b; Jiang et al., 2023) clearly consider supporting multiple
tasks as a key strength; the designs of other prior works (Borsos et al., 2023; Kharitonov et al., 2023;
Shen et al., 2023) do show the potential to generate audio in a broader sense than what they originally
claim. Following these pioneering research works, UniAudio supports an extended coverage of 11
audio generation tasks in a unified LM-based model.

5 LIMITATION
Not all known audio generation tasks are included in the proposed UniAudio, such as noise removal,
noise speech edit (Wang et al., 2023c) and speech-to-speech translation (Rubenstein et al., 2023;
Barrault et al., 2023). All new tasks added in fine-tuning are formulated with the known modalities
in the training stage; Introducing new modalities during fine-tuning is unexplored in this work.
Current UniAudio considers neither unlabeled data nor domain-specific foundation models, which
can possibly further improve the overall performance. The samples generated by UniAudio are not
guaranteed in quality and may contain errors.

6 CONCLUSION

To handle the emergent and varying needs in audio generation, this work is an attempt to achieve
universal audio generation. UniAudio is proposed as a unified LM-based generative model that
supports 11 different audio generation tasks. In experiments, the proposed UniAudio provides com-
petitive performance on all 11 tasks. It also empirically demonstrates the capability of continuously
integrating unseen audio generation tasks. Demo and code are released, in the hope that UniAudio
can become a foundation model for universal audio generation in further research.
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7 ETHICAL STATEMENT

We are delving into the revolutionary field of generating diverse audio using large language model
techniques. We find ourselves at the confluence of innovation and responsibility. It is imperative to
acknowledge the ethical dimensions of our work and ensure that our contributions are employed for
the betterment of society.

Being Open: As we advance in this domain, it’s crucial to ensure that the benefits of this technology
are widespread and not limited to a privileged few. Our code is released publicly along with this
submission to ensure equal access for each person. All experiments are based on open-accessible
datasets that allow research-oriented comparison and reproduction.

Avoid Misuse: While our model can produce a myriad of audio content ranging from music to
speech, there’s potential for misuse in the generation of misinformation, deepfake audio, or any
harmful content. We advocate for adopting our code and model responsibly, with full respect to
individual privacy and observance of regulations. Concerning the potential misuse of our model,
checkpoints will not be released.
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