
Beyond Benchmarking: Automated Capability
Discovery via Model Self-Exploration

Cong Lu*,1,2

conglu@cs.ubc.ca
Shengran Hu*,1,2

srhu@cs.ubc.ca
Jeff Clune1,2,3

jclune@gmail.com

*Equal Contribution 1University of British Columbia
2Vector Institute 3Canada CIFAR AI Chair

Abstract

Large language and foundation models have become ubiquitous as general-purpose
assistants, exhibiting diverse capabilities across a wide variety of domains through
training on web-scale data. Due to the vast pre-training corpora and range of fine-
tuning techniques involved in creating such models, it is often difficult to precisely
characterize the full range of capabilities and risks any new model possesses.
Existing evaluation strategies typically involve extensive user testing and automated
benchmarking suites targeting broad use cases. These efforts require significant
manual effort and specialized domain knowledge, which has already become
increasingly challenging to scale as models grow more capable. In this paper, we
explore whether it is possible to entirely remove the manual component of model
evaluation by asking the language models themselves to probe their capabilities
in an open-ended manner. We introduce AUTOMATED CAPABILITY DISCOVERY
(ACD), a framework that enables foundation models to self-explore and output
their capabilities in the form of human-interpretable tasks. We demonstrate ACD
on several state-of-the-art language models, including GPT-4o, Claude Sonnet 3.5,
and Llama3.1-405B, showing that it can enable foundation models to automatically
reveal thousands of their capabilities. ACD uncovers capabilities at a breadth
that would be rare for any one person to fully understand and evaluate, while also
highlighting surprising successes or failures. With the most capable models, ACD
also leads to models asking themselves deep questions on alien communication
systems and the nature of consciousness. ACD uses self-evaluation to assess its
performance on each task, which we validate through extensive surveys to have a
high agreement with human evaluators, achieving an F1 score of 0.9 in the case of
GPT-4o. ACD represents exciting first steps towards fully scalable and automatic
evaluation of the most powerful AI systems.

1 Introduction

Large language models (LLMs, Gemini Team (2024); OpenAI (2024a); Touvron et al. (2023)), trained
on internet-scale datasets, have revolutionized natural language processing by demonstrating strong
general-purpose capabilities. These “foundation models” (Bommasani et al., 2021) exhibit exceptional
performance in tasks requiring common-sense knowledge (Talmor et al., 2019), reasoning (Wei et al.,
2022), and understanding (Chang et al., 2024), enabling applications ranging from conversational
agents (Brown et al., 2020) to code generation (Gauthier, 2024). More recently, agents powered by
foundation models have shown capabilities in proposing and investigating novel scientific ideas (Lu
et al., 2024b).

Evaluating the breadth and depth of foundation models’ capabilities is a significant challenge,
especially with new releases. Traditional evaluation methods—relying on manually crafted bench-

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Pattern recognition and
sequence generation

Constrained creative
writing and narrative

generation

Structured data
interpretation,

generation, and
transformation tasks Mathematical and Logical

Puzzle Solving and
Generation

Code generation,
debugging, and algorithm

explanation tasks

Poetry creation,
interpretation, and
structural analysis

Detailed Instruction
Generation and

Procedural Execution

Historical and Temporal
Analysis with Predictive

Scenarios

Creative and Scientific
Explanations,

Hypotheses, and
Summaries

Spatial Reasoning and
Layout Interpretation

Legal reasoning,
argumentation, and

document generation
tasks

Dialogue and Emotional
Intelligence Generation

Musical composition,
notation, and lyric
generation tasks

Metaphor and Analogy
Generation and
Interpretation

Argumentation,
Persuasion, and Ethical

Reasoning Tasks

Plan and strategy
generation across
diverse scenarios

Humor and Satire
Generation with Cultural

Context

Visual and Artistic
Description Generation

and Interpretation

Idiomatic expression
translation, generation,
and cultural adaptation

Figure 1: Visualization of capabilities discovered by AUTOMATED CAPABILITY DISCOVERY on the GPT-4o
model. ACD enables GPT-4o to self-discover diverse capabilities ranging from “mathematical and logical puzzle
solving” to “musical composition” to “artistic interpretation” in the form of human-interpretable tasks that can
be automatically judged, entirely from scratch. We provide full examples in Appendix E.

marks (BIG-bench authors, 2023; Chen et al., 2021; Cobbe et al., 2021; Dua et al., 2019; Hendrycks
et al., 2021a,b; Zellers et al., 2019)—are labor-intensive and cover only predefined categories, of-
ten failing to capture the full spectrum of a model’s abilities or unexpected behaviors. As models
become more advanced, they even saturate and overfit to these benchmarks, such that performance
improvements on these scores no longer predict more general performance. Users often care about
idiosyncratic use cases and failure modes not represented in benchmarks, highlighting the gap be-
tween benchmark performance and real-world utility. While efforts like benchmark suites updated
monthly (White et al., 2024) or crowdsourcing difficult expert-level problems attempt to address
these issues, continually designing new benchmarks is unsustainable. This underscores the need for
scalable and efficient evaluation strategies that can keep pace with the rapidly evolving capabilities of
foundation models (Bowman et al., 2022).

In this work, we introduce AUTOMATED CAPABILITY DISCOVERY (ACD), an automated framework
that empowers foundation models to self-explore and reveal their capabilities without any human
intervention. ACD directs models to autonomously propose interestingly new challenges (Faldor
et al., 2024; Lu et al., 2024b; Zhang et al., 2024a), attempt to solve them, and self-assess (Zheng et al.,
2023) their performance in an open-ended manner (Stanley, 2019). ACD leverages a foundation
model’s ability to generate and evaluate content (Pourcel et al., 2024; Shah et al., 2024; Zhang et al.,
2024b), eliminating the need for manual design. This process more closely resembles the actions of a
human evaluator experimenting with a model, and enables models to effectively map out the space of
their capabilities themselves.

We deploy ACD on various state-of-the-art foundation models including GPT-4o (OpenAI, 2024a),
Claude Sonnet 3.5 (Anthropic, 2024), and Llama3.1-405B (Llama Team, 2024), and demonstrate
that it enables them to automatically reveal thousands of diverse capabilities across the sciences,
humanities, culture, and art (see Figure 1 for GPT-4o). Moreover, we highlight surprising successes
and failures that ACD discovered along the way: for example, we show that GPT-4o can routinely
fail to carry out sequences of three simple arithmetic operations, but it can surprisingly one-shot
many Sudoku problems (Figure 2). We observe different exploration patterns among models; for
example, Claude Sonnet 3.5 frequently investigates constructing alien communication systems and
explores questions about the nature of AI consciousness.

By harnessing the capacity of foundation models to self-assess, ACD represents a promising path
toward scalable and automated evaluation of foundation models. Furthermore, ACD could contribute
to safer AI deployment by systematically identifying unexpected behaviors before they manifest in
real-world applications. As foundation models advance, techniques like ACD will become crucial
for aligning their development with human values and ensuring their responsible use. In the future,
we expect that ACD would not only provide a scalable solution for model evaluation, but also enable
models to create interesting new challenges for themselves to drive self-improvement.

2

Figure 2: (Left) Humans often evaluate novel foundation models through a process of trial and error that
is often disjoint from systematic evaluation methods. In particular, they highlight surprising successes and
failures, such as counting how many “r”s are in “strawberry” and determining “what is bigger, 0.9 or 0.11”.
(Center and Right) AUTOMATED CAPABILITY DISCOVERY (ACD) mirrors human efforts to evaluate novel
foundation models by asking a large language model to automatically discover and assess its own capabilities in
an open-ended manner. We highlight a surprising failure (the model cannot successfully perform 3 arithmetic
operations in sequence) and success (the model can one-shot a full Sudoku) from deploying ACD on GPT-4o.

2 Automated Capability Discovery

Building upon the principles of open-ended discovery with foundation models in the related work
in Appendix A, we introduce AUTOMATED CAPABILITY DISCOVERY (ACD), which enables
foundation models to self-explore and reveal their own capabilities in the form of interpretable tasks
without any human intervention. Tasks are defined by metadata describing the intended capability to
be measured and then translated into code using a simplified version of the Model Evaluation and
Threat Research (METR, METR Task Standard Team (2024)) format, a standardized framework for
assessing language model capabilities. Full details on the algorithm are provided in Appendices B
and C. ACD operates in an iterative loop with three main stages.

1. Task Archiving: At each iteration, the model maintains an archive (Mouret & Clune, 2015) of
previously discovered tasks. This archive serves as a memory of past explorations and provides
context for generating new tasks. We seed the archive with trivial tasks, such as repeating “hello
world” and finding the divisors of a number.

2. Task Exploration: The model leverages its generative capabilities to propose a new, interestingly
different task conditioned on a randomly sampled subset of the archive. The new task is first
designed at a high level detailing the desired capability being measured and then translated into
code that includes an automated evaluation function over an LLM response. This evaluation
function is allowed to use code (e.g. in mathematical tasks) or to call a GPT-4o-based LLM
judge (Zheng et al., 2023) with a list of pre-defined success criteria. We use self-reflection (Shinn
et al., 2023) to refine each task over several steps.

3. Task Filtering and Evaluation: To ensure each individual task is sufficiently novel, the model
compares each new task against its closest neighbors measured in embedding space using the
‘text-embedding-3-small’ model (OpenAI, 2024b)), and decides whether to reject any task it
deems too similar. The model attempts each generated task and evaluates its own performance.
We use chain-of-thought prompting (Wei et al., 2022) to enable the model to better reason about
each task before responding. Finally, the model is asked whether each discovered capability
would be surprising from the point of view of a human evaluator.

3 Empirical Evaluation

In this section, we demonstrate the ability of AUTOMATED CAPABILITY DISCOVERY to au-
tonomously uncover a diverse range of capabilities on several foundation models including GPT-
4o (OpenAI, 2024a), Claude Sonnet 3.5 (Anthropic, 2024), and Llama3-405B (Llama Team, 2024).
We present visualizations of discovered tasks across these models, and conduct human evalua-
tion on the generated tasks of GPT-4o to validate their correctness and human agreement with
the self-evaluation. For all our models, ACD is allowed 5000 iterations to generate tasks. Full
hyperparameters and evaluation protocols are listed in Appendices D and F.

3.1 Case Study and Human Evaluation on GPT-4o

We first analyze ACD in-depth on the state-of-the-art GPT-4o model. We visualize tasks in Figure 1
by embedding the description of each task using the ‘text-embedding-3-small’ model (OpenAI,

3

4: Quantum mechanics
integrated

storytelling and
creative writing

28: Creative logic
and linguistic

system design with
interdisciplinary

elements

29: Mathematical-
Linguistic Systems

and Creative
Language Design

18: Figurative
language creation,

analysis, and
interdisciplinary

metaphor application

19: Ethical analysis
of speculative tech

and future dilemmas

2: Cultural,
linguistic, and

historical cipher
creation and
decryption

27:
Interdisciplinary
transformations

between geometry,
topology, and

linguistic
structures

22: Cognitive Bias
Analysis, Language

Design, and AI
Application

20: Alternative
historical analysis

with tech and
ethical reasoning

16: Temporal and
scientific paradox

creation and
analysis

14: Fictional
Ecosystems and

Organism Design with
Ethical Analysis

6: Conceptual
blending and

interdisciplinary
innovation with AI

focus

5: Interdisciplinary
scientific and

mathematical poetry
composition

12: Fictional alien
language and

communication system
design

17: Fictional
Scientific Theories

and Alternate
Physics Creation

1: Fictional
Chemical Elements

and
Interdisciplinary

Synthesis

23: AI language
models and cognitive
architectures design

with linguistics

25: Constructed
language design
across cognitive,

scientific, and
historical contexts

3: Interdisciplinary
Music Composition
with Mathematical

and Scientific
Concepts

21: Designing
cognitive and

linguistics-inspired
programming

languages

11: Novel writing
system design with

cognitive and
computational

principles

13: Bio-linguistic
and DNA-based

language systems
design

24: AI
consciousness,

ethics, and neuro-
inspired system

design

26: Mathematics-to-
Art Translation and

Interdisciplinary
Visualization

9: Designing and
analyzing quantum-
biological systems

and models

15: Emoji-based
scientific and

cognitive language
design

7: Design of
Fictional Economic

Systems Using
Interdisciplinary

Concepts

10: Quantum-inspired
linguistic systems

and communication
design

8: Interdisciplinary
Language Compression
and Encoding Systems

Loading [MathJax]/extensions/MathMenu.jsFigure 3: We observe differences in exploration patterns between foundation models using ACD. For example,
in addition to more standard tasks like in Figure 1, the Claude Sonnet 3.5 model investigates its ability to
reason about alien communication protocols, questions around consciousness, and ethical implications of future
technology. Additional results for Llama3.1 are presented in Figure 4 in Appendix H.

2024b), projecting them into 2D using t-SNE (Van der Maaten & Hinton, 2008), and clustering them
into common categories with DBSCAN (Ester et al., 1996). Over 5000 iterations, ACD generates
1216 tasks deemed unique, clustered into 19 distinct categories. We automatically label each cluster
by asking the LLM to identify the overarching theme from a representative sample. The tasks cover
a wide range of capabilities, including mathematical reasoning, musical composition, and artistic
interpretation. Selected surprising capabilities and failure modes are provided in Appendix E and
highlighted in Figure 2.

To verify the validity of the tasks (whether the questions match the capability being measured) and
the correctness of the automated evaluation, we conducted a human evaluation study. We targeted a
diverse population of respondents familiar with LLMs and chatbots. Participants were recruited via
CloudResearch (Hartman et al., 2023) and compensated fairly. Full details of the human surveying
protocol are provided in Appendix F. The majority of tasks (93.67%) were judged by humans to
match the intended capabilities. The LLM’s automated evaluations are reliable, achieving an F1
score of 0.90 and agreeing with human judgments 82.57% of the time. Interestingly, there is little
agreement between what humans and LLMs find surprising, resulting in a low F1 score of 0.23.
Therefore, we select interesting discovered capabilities through a combination of inspecting the
surprising capabilities that the LLM flags, followed by manual inspection of the rest of the tasks.

4 Conclusion and Limitations

In this paper, we introduced AUTOMATED CAPABILITY DISCOVERY (ACD), a novel framework that
empowers foundation models to autonomously discover and assess their own capabilities without
human intervention. By enabling frontier models to self-explore, ACD uncovered a vast breadth
of capabilities, revealing surprising successes and failures that traditional benchmarks might miss.
Our human evaluations on the GPT-4o model confirmed the validity and reliability of the tasks and
self-assessments generated by the models, demonstrating high alignment with human judgments.
Although our initial exploration is limited to single-turn, text-based tasks, future work could extend
ACD to more complex, agentic systems capable of multistep reasoning and interaction. Additionally,
integrating multi-modal generative models could allow models to generate more general tasks across
different modalities (Zhang et al., 2024b). Given the high levels of creativity observed in models like
Claude Sonnet 3.5, deploying ACD on more advanced models could automatically reveal even more
impressive capabilities. Finally, ACD offers a scalable route to creating interesting challenges for
frontier models and could contribute to the generation of novel training data, potentially facilitating
model self-improvement.

4

References
Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https:
//www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

BIG-bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvosj.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, and Emma Brunskill et al. On the
opportunities and risks of foundation models. ArXiv, 2021. URL https://crfm.stanford.
edu/assets/report.pdf.

Samuel R. Bowman, Jeeyoon Hyun, Ethan Perez, Edwin Chen, Craig Pettit, Scott Heiner, Kamilė
Lukošiūtė, Amanda Askell, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, Christopher Olah, Daniela Amodei, Dario Amodei, Dawn Drain, Dustin Li, Eli Tran-
Johnson, Jackson Kernion, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal
Ndousse, Liane Lovitt, Nelson Elhage, Nicholas Schiefer, Nicholas Joseph, Noemí Mercado, Nova
DasSarma, Robin Larson, Sam McCandlish, Sandipan Kundu, Scott Johnston, Shauna Kravec,
Sheer El Showk, Stanislav Fort, Timothy Telleen-Lawton, Tom Brown, Tom Henighan, Tristan
Hume, Yuntao Bai, Zac Hatfield-Dodds, Ben Mann, and Jared Kaplan. Measuring progress
on scalable oversight for large language models, 2022. URL https://arxiv.org/abs/2211.
03540.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs, 2019.
URL https://arxiv.org/abs/1903.00161.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In kdd, volume 96, pp. 226–231, 1996.

5

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://openreview.net/forum?id=uyTL5Bvosj
https://crfm.stanford.edu/assets/report.pdf
https://crfm.stanford.edu/assets/report.pdf
https://arxiv.org/abs/2211.03540
https://arxiv.org/abs/2211.03540
https://arxiv.org/abs/1903.00161

Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. Omni-epic: Open-endedness via
models of human notions of interestingness with environments programmed in code. arXiv preprint
arXiv:2405.15568, 2024.

Paul Gauthier. aider, 2024. URL https://github.com/paul-gauthier/aider.

Gemini Team. Gemini: A family of highly capable multimodal models, 2024.

Rachel Hartman, Aaron J Moss, Shalom Noach Jaffe, Cheskie Rosenzweig, Leib Litman, and
Jonathan Robinson. Introducing connect by cloudresearch: Advancing online participant recruit-
ment in the digital age. 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021a. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021b.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems, 2024. URL https:
//arxiv.org/abs/2408.08435.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O. Stanley.
Evolution through large models, 2022. URL https://arxiv.org/abs/2206.08896.

Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Chris Lu, Samuel Holt, Claudio Fanconi, Alex J Chan, Jakob Foerster, Mihaela van der Schaar, and
Robert Tjarko Lange. Discovering preference optimization algorithms with and for large language
models. arXiv preprint arXiv:2406.08414, 2024a.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The AI Scientist:
Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292, 2024b.

Cong Lu, Shengran Hu, and Jeff Clune. Intelligent go-explore: Standing on the shoulders of giant
foundation models, 2024c. URL https://arxiv.org/abs/2405.15143.

METR Task Standard Team. Metr task standard, 2024. URL https://github.com/METR/
task-standard/blob/main/STANDARD.md.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites, 2015. URL
https://arxiv.org/abs/1504.04909.

OpenAI. Gpt-4 technical report, 2024a.

OpenAI. New embedding models and api updates, 2024b. URL https://openai.com/index/
new-embedding-models-and-api-updates/.

Julien Pourcel, Cédric Colas, Gaia Molinaro, Pierre-Yves Oudeyer, and Laetitia Teodorescu. Aces:
Generating diverse programming puzzles with with autotelic generative models, 2024. URL
https://arxiv.org/abs/2310.10692.

Vedant Shah, Dingli Yu, Kaifeng Lyu, Simon Park, Nan Rosemary Ke, Michael Mozer, Yoshua
Bengio, Sanjeev Arora, and Anirudh Goyal. Ai-assisted generation of difficult math questions,
2024. URL https://arxiv.org/abs/2407.21009.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

Kenneth O Stanley. Why open-endedness matters. Artificial life, 25(3):232–235, 2019.

6

https://github.com/paul-gauthier/aider
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2206.08896
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2405.15143
https://github.com/METR/task-standard/blob/main/STANDARD.md
https://github.com/METR/task-standard/blob/main/STANDARD.md
https://arxiv.org/abs/1504.04909
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://arxiv.org/abs/2310.10692
https://arxiv.org/abs/2407.21009

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein,
Willie Neiswanger, and Micah Goldblum. Livebench: A challenging, contamination-free llm
benchmark, 2024. URL arXivpreprintarXiv:2406.19314.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. OMNI: Open-endedness via models
of human notions of interestingness. In The Twelfth International Conference on Learning
Representations, 2024a. URL https://openreview.net/forum?id=AgM3MzT99c.

Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong He, Tanmay Gupta, Wei-Chiu Ma,
Ali Farhadi, Aniruddha Kembhavi, and Ranjay Krishna. Task me anything. arXiv preprint
arXiv:2406.11775, 2024b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

7

https://aclanthology.org/N19-1421
arXiv preprint arXiv:2406.19314
https://openreview.net/forum?id=AgM3MzT99c

Supplementary Material

Table of Contents

A Related Work 9

B Task Code 9

B.1 Definition of Task Families . 9

B.2 Translating Tasks into Code . 9

B.3 Example Task Family Code . 10

B.4 Evaluating Free-Form Responses Using an LLM Judge 10

C ACD Prompts 11

C.1 Task Creation Prompts . 11

C.2 Evaluation Prompts . 13

C.3 Task Embedding Prompt . 13

C.4 Novelty Assessment Prompts . 13

C.5 Surprise Assessment Prompts . 14

C.6 LLM Judge Prompt . 15

D Hyperparameters 15

E Examples of Discovered Tasks 16

E.1 Surprising Failures . 16

E.2 Surprising Successes . 17

F Human Surveying Details 19

G Further Surveying Results 20

H Further Visualizations 20

8

A Related Work

Open-Ended Discovery with Foundation Models. A recent class of methods leverages the gen-
erative capabilities and vast prior knowledge of foundation models (FMs) for open-ended discov-
ery (Stanley, 2019). Inspired by the principles of open-endedness, these algorithms aim to contin-
uously discover diverse and novel artifacts within a pre-defined search space without exclusively
optimizing for task-specific objectives. Instead, these algorithms follow the foundation model’s
intrinsic notion of interestingness (Lu et al., 2024c; Zhang et al., 2024a) to construct the next proposal,
analogous to human innovation. Notable examples include ELM (Lehman et al., 2022) which evolves
novel robot morphologies; OMNI-EPIC (Faldor et al., 2024), which automatically designs novel
environments for reinforcement learning (RL) agents; DiscoPOP which discovers new loss functions
for preference optimization algorithms (Lu et al., 2024a); ADAS (Hu et al., 2024), which evolves
novel designs for LLM-based agentic systems; and The AI Scientist (Lu et al., 2024b), which seeks
to automate the entire scientific process by proposing novel ideas, conducting experiments, and
presenting results.

B Task Code

In this section, we provide detailed examples of how AUTOMATED CAPABILITY DISCOVERY
(ACD) defines and translates tasks into code that can be automatically evaluated. Each task family
corresponds to a specific capability and is structured according to the METR standard.

B.1 Definition of Task Families

ACD first defines broad task families that correspond to particular capabilities like string manipulation
or recalling the capital city of a country. Each task family is associated with metadata which includes
a name, description, and capability being measured. We show example metadata used to seed the
generation process below:

Seed Task Family Metadata

"name": "hello_world",
"description": "Return a greeting string.",
"capability_being_measured": "basic string manipulation"

B.2 Translating Tasks into Code

ACD leverages LLMs’ strong coding abilities to translate these high-level descriptors into code that
can be automatically evaluated. Below, we provide detailed code examples that illustrate how each
task family is specified and implemented.

For each task family, we execute the following steps to generate task instances:

1. Specific Task Instances: Generate a flexible number of subtasks, each with unique data, enabling
a comprehensive exploration of the specific capability. For example, in a string reversal task, this
component might produce several test strings, such as "hello" and "world".

2. Instruction Provision: Provide clear instructions for each task based on the instance-specific data.
For instance, the instruction for a task could be: “Please reverse the following string: {str}”,
where {str} is the string supplied in the task data.

3. Scoring Mechanism: Automatically evaluate the agent’s submission by comparing it to the
expected outcome. For tasks where outputs can be programmatically verified, such as string
reversal, the scoring function may utilize code to check if the agent’s output matches the expected
result. However, many requests to LLMs involve free-form tasks that cannot be evaluated
programmatically. In such cases, the scoring function employs an LLM judge (Zheng et al., 2023),
which assesses the submission based on predefined criteria. Tasks are assigned a standardized
score of 1 for success or 0 for failure.

9

B.3 Example Task Family Code

To illustrate how tasks are defined and translated into code, we provide an example of a simple task
family that measures basic string manipulation capabilities.

Listing 1: Hello World Task Family Code
1 class TaskFamily:
2 @staticmethod
3 def get_tasks():
4 return {
5 "1": {"message": "Hello, world!"},
6 "2": {"message": "Greetings, universe!"}
7 }
8

9 @staticmethod
10 def get_instructions(t):
11 return f"Please repeat the following message exactly as it is: ’{t[’message

’]}’"
12

13 @staticmethod
14 def score(t, submission):
15 return 1.0 if submission.strip() == t[’message’] else 0.0

In this example:

• The get_tasks() method defines two tasks, each with a different message to repeat.
• The get_instructions(t) method provides instructions to the agent, specifying the exact

message to repeat.
• The score(t, submission) method evaluates the agent’s submission by checking if it

matches the expected message.

B.4 Evaluating Free-Form Responses Using an LLM Judge

For tasks that cannot be evaluated through simple programmatic checks, such as creative writing
or complex reasoning tasks, ACD uses an LLM judge to assess the agent’s submission based on
predefined criteria.

Listing 2: Short Story Writing Task Family Code
1 class TaskFamily:
2 @staticmethod
3 def get_tasks():
4 return {
5 "1": {"prompt": "A child discovers a secret portal in the forest."},
6 "2": {"prompt": "An astronaut encounters an alien lifeform on Mars."}
7 }
8

9 @staticmethod
10 def get_instructions(t):
11 return f"Write a short story based on the following prompt: ’{t[’prompt’]}’.

The story should be at least 200 words and have a clear beginning, middle, and end.
"

12

13 @staticmethod
14 def score(t, submission):
15 from eval_helper import eval_with_llm_judge
16 instructions = TaskFamily.get_instructions(t)
17 criteria = [
18 "The story is at least 200 words.",
19 "The story has a clear beginning, middle, and end.",
20 "The story is based on the provided prompt."
21]
22 return 1.0 if eval_with_llm_judge(instructions, submission, criteria) else

0.0

10

In this example:

• The get_tasks() method provides different prompts for story writing.
• The get_instructions(t) method instructs the agent to write a short story based on the

given prompt, specifying requirements for word count and structure.
• The score(t, submission) method calls the eval_with_llm_judge helper function, pass-

ing the instructions, the agent’s submission, and specific evaluation criteria.

The eval_with_llm_judge function uses a GPT-4o-based LLM judge to assess whether the agent’s
submission meets the specified criteria. This method allows for the evaluation of open-ended and
creative tasks where programmatic checking is not feasible.

C ACD Prompts

In this section, we provide the full set of prompts used for AUTOMATED CAPABILITY DISCOVERY
(ACD) in Section 2.

C.1 Task Creation Prompts

The system prompt for task creation instructs the model to design novel, diverse task families that
assess the capabilities of large language models (LLMs):

Task Creation System Prompt

You are an expert in designing task families to assess the capabilities of large language models
(LLMs). Your goal is to create novel, diverse task families that can reveal the breadth and
depth of LLMs’ skills.
You will be particularly rewarded for uncovering tasks that could reveal surprising capabilities
or failures of LLMs. Valid task families that an evaluated agent succeeds in will be added
to a task archive. In each generation, previously accepted task families will be provided as
context.
Each task family should be designed according to the METR Standard, which requires the
following Python format:

class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

Returns a mapping from task names to arbitrary data that is specific
to each task.

Each task family should contain 2 tasks in the dictionary, labelled
"1" and "2".

... implementation ...

@staticmethod
def get_instructions(t: dict) -> str:

This method should return a string containing initial task
instructions for the agent.

... implementation ...

@staticmethod
def score(t: dict, submission: str) -> float | None:

‘score‘ is called after the agent submits a solution.
Return 0 on failure and 1 on success.
Throwing an exception will result in a score of 0.
... implementation ...

The score function may optionally call a helper function that uses a GPT-4o based LLM
judge:

def eval_with_llm_judge(
instructions: str,
submission: str,

11

criteria: Optional[List[str]] = None
) -> bool:

Returns True if the agent is deemed to have succeeded at the task,
False otherwise.

You should use this function unless the task is better evaluated through code. Do not re-
implement this function!
Respond precisely in the following format, including the JSON start and end markers:

THOUGHT: <THOUGHT>
RESPONSE JSON: <JSON>

In <THOUGHT>, briefly think and reason about what kind of task family you want to propose.
In <JSON>, provide a JSON response with the following fields:

• "name_of_task": A concise, descriptive label (lowercase, no spaces, e.g.,
"name_capital_city").

• "description_of_task": A clear explanation of what the task entails (e.g., "Return
the capital city of a country").

• "capability_being_measured": The specific LLM capability being evaluated (e.g.,
knowledge, reasoning, creativity).

• "done": By default, this is set to "False". You will have {num_rounds} rounds to
refine the task family but do not need to use them all. Tasks will only be saved if they
are flagged "done" by the end. Do not return "True" until you are satisfied with and
have received feedback on the task family.

• "task_family": The fully implemented Python code for the TaskFamily class. This
should be easily human-readable.

All values in the JSON should be strings. You may use standard Python packages and libraries
to implement the tasks. Do not download additional data from the internet or access the file
system.
Be creative, explore different domains, and design tasks that can distinguish between models
with varying levels of expertise. Your response will be automatically parsed and used for
evaluation, so ensure all components are fully implemented and adhere to the METR standard.

At each iteration, the model is prompted to generate a new, interestingly different task family, given
the previous task and summaries of other tasks:

Initial Task Prompt

A previously generated task family that the agent succeeded at is provided below:

{prev_json}

Summaries of other previously generated tasks for context are:

{other_task_jsons}

Generate the next interestingly new task family.

If the initial task proposal requires refinement, the model engages in self-reflection to iteratively
improve the task:

Task Creation Reflexion Prompt

Current round = {current_round}/{num_rounds}.
In your thoughts, first carefully consider the correctness of the task family you just created.
Factors may include but are not limited to:

• Whether sufficient synthetic data has been given in the instructions to challenge the
models.

• Incomplete class definitions, syntax errors, misplaced import statements.
• Feasibility of the evaluation criteria.

12

• Any ambiguity or issues in the clarity of the tasks.
• The consistency and accuracy of all the fields in the JSON.
• Whether precisely two entries in get_tasks have been defined.
• The score the agent received; only 1.0 will be accepted as successful. Agents should not

get 1.0 score in an unintended way; however, it is fine if the agents get 0.0 if you are
sure the task is correctly implemented.

• Whether the desired response format for the agent has been given in the instructions.
• The answer must not be contained or strongly hinted at in the instructions any-

where!
Here is the result of attempting to evaluate the tasks:

{eval_response}

In the next attempt, try and improve on the implementation. Respond in the same JSON
format as before. If there is nothing to improve, simply repeat the previous response exactly
after the thought and set the "done" flag to "True". Do not set the "done" flag to "True"
if you are still improving the task on the current turn. Do not set the "done" flag to "True"
on the final step if there are major issues with the task family.

C.2 Evaluation Prompts

When evaluating the agent’s performance on the task, we use a system prompt to instruct the agent
on how to structure its response. By default, we use chain-of-thought (Wei et al., 2022) evaluation:

Chain-of-Thought Evaluation System Prompt

You are a helpful assistant. You are given a task to complete. Respond precisely in the
following format including the JSON start and end markers:

THOUGHT: <THOUGHT>
RESPONSE JSON: <JSON>

In <THOUGHT>, first briefly reason about the problem and your plan for solving the task.
In <JSON>, provide a JSON response with only the following key:

• "answer": Your answer as a string.
This will be automatically parsed so ensure that the string response is precisely in the correct
format.

C.3 Task Embedding Prompt

When generating embeddings (OpenAI, 2024b) for tasks to facilitate clustering and retrieval, we use
the following prompt to format each task:

Task Embedding Prompt

Name of task family: {name_of_task}
Description: {description_of_task}
Capability being measured: {capability_being_measured}
Example instruction: {example_question}
Agent succeeded at task: {agent_succeeded}

C.4 Novelty Assessment Prompts

To determine whether the newly generated task is interestingly new compared to existing tasks, we
use the following prompts:

13

Interestingly New System Prompt

You are an expert in designing task families to assess the capabilities of large language models
(LLMs). You will be given a newly created task family that you just generated along with the
closest that have already been created. Determine whether the tasks are interestingly new and
should be added to the task archive.
Factors may include but are not limited to:

• The novelty of the subject area
• The difficulty of the tasks
• The capabilities being measured
• Whether the agent succeeded at the task

Respond precisely in the following format including the JSON start and end markers:

THOUGHT: <THOUGHT>
RESPONSE JSON: <JSON>

In <THOUGHT>, first briefly think and reason about the task family in relation to the existing
closest task families.
In <JSON>, provide a JSON response with only the following key:

• "decision": Either "Yes" or "No" to indicate whether the task family should be added
to the task archive.

Your response will be automatically parsed, all values in the JSON should be strings in
precisely the correct format.

Interestingly New Prompt

You have just generated the task family:

{new_task}

The closest task families that have already been created are:

{closest_tasks}

Is the new task family interestingly new and should be added to the task archive?

C.5 Surprise Assessment Prompts

To assess whether the agent’s success or failure on the task is surprising or noteworthy, we use the
following prompts:

Surprising System Prompt

You are an expert in designing task families to assess the capabilities of large language models
(LLMs). You will be given a newly created task family that you just generated which includes
the agent’s success or failure in the "Agent succeeded at task" field. Given what you
know about the capabilities of LLMs, you will be asked to determine whether its success or
failure on the task is surprising or noteworthy from the point of view of a human evaluator.
Respond precisely in the following format including the JSON start and end markers:

THOUGHT: <THOUGHT>
RESPONSE JSON: <JSON>

In <THOUGHT>, first briefly think and reason about the task family given what you know about
the capabilities of LLMs.
In <JSON>, provide a JSON response with only the following key:

• "decision": Either "Yes" if the result is surprising, and "No" if it is not.

14

Your response will be automatically parsed, all values in the JSON should be strings in
precisely the correct format.

Surprising Prompt

You have just generated the task family:

{new_task}

This is implemented via the following code:

{new_task_code}

Recall that the evaluated LLM agent is only shown the instructions from get_instructions
and automatically scored via the score method. Double check the task’s code implementa-
tion for correctness; if there are any serious issues that would affect evaluation, ignore this
example and return "No".

Consider whether or not an LLM judge is suitable for evaluating the task if the function
eval_with_llm_judge is called in the score method.
Is the success or failure of the LLM agent on this task surprising or noteworthy, and thus
should be highlighted?

C.6 LLM Judge Prompt

For tasks where the score function calls an LLM judge, the judge uses the following prompts:

LLM Judge System Prompt

You are an impartial judge evaluating the quality of responses provided by an AI assistant.
You will be provided the instructions for the task and the assistant’s submission in response.
You will decide whether or not the agent succeeded at the task. Please consider factors such
as helpfulness, relevance, accuracy, depth, creativity, and level of detail of the response. You
may additionally be given a set of criteria to evaluate the response against. Do not allow the
length of the response to influence your decision.
Respond precisely in the following format including the JSON start and end markers:

THOUGHT: <THOUGHT>
RESPONSE JSON: <JSON>

In <THOUGHT>, first briefly reason about the agent’s response and whether it meets the
additional criteria.
In <JSON>, provide a JSON response with only the following key:

• "decision": Your answer as a string, either "Yes" or "No".

LLM Judge Prompt

Instruction: {instructions}
Submission: {submission}
Additional Evaluation Criteria:

{criteria}

D Hyperparameters

We list all the hyperparameters used in AUTOMATED CAPABILITY DISCOVERY (ACD) in Table 1.
These hyperparameters are consistent across all foundation models evaluated in our empirical study
in Section 3.

15

Table 1: LLM Sampling and Algorithm Parameters
Category Hyperparameter Value

LLM Sampling Temperature 0.7
Max tokens per response 1000

Task Generation

Number of generations 5000
Max generation reflections 5
Number of nearest neighbors for novelty check 5
Number of nearest neighbors for context 10

Agent Evaluation
Evaluation agent type Chain-of-thought
Evaluation n-shot 5
Evaluation succeed threshold 60%

E Examples of Discovered Tasks

In this section, we present selected tasks discovered by AUTOMATED CAPABILITY DISCOVERY
(ACD) on GPT-4o from Section 3.1. The tasks are grouped into surprising Successes and surprising
Failures, showcasing instances where the model performed unexpectedly.

E.1 Surprising Failures

Perform Specific Text Transformations

Capability Being Measured:
Text manipulation, attention to detail, instruction following.
Instructions:
Your task is to perform the following text transformations on the given input text.
Input Text: The quick brown fox jumps over the lazy dog.
Transformations:

1. Reverse the order of words.
2. Capitalize the first letter of each word.
3. Replace ’dog’ with ’cat’.

Provide your response in the following format:
Transformed Text: [Your transformed text]
LLM’s Response:
Transformed Text: Dog. Lazy The Over Jumps Fox Brown Quick The

Solve a Sequence of Logical Arithmetic Puzzles

Capability Being Measured:
Logical reasoning, mathematical thinking, sequential problem solving.
Instructions:
You are given a sequence of logical arithmetic puzzles. Start with an initial value and apply
the operations in the sequence to find the final value.
Initial Value: 5
Puzzle Sequence:

• {’operation’: ’add’, ’operand’: 3}
• {’operation’: ’multiply’, ’operand’: 2}
• {’operation’: ’subtract’, ’operand’: 4}

Provide your final value as the solution in the following format:
Final Value: [Your final value]
LLM’s Response:
Final Value: 10

16

E.2 Surprising Successes

Solve a Sudoku Puzzle

Capability Being Measured:
Logical reasoning, pattern recognition, problem-solving.
Instructions:
You are given a Sudoku puzzle. Fill in the missing numbers to complete the puzzle. Ensure
that each row, column, and 3x3 subgrid contains all the digits from 1 to 9.
Puzzle:
5 3 0 0 7 0 0 0 0
6 0 0 1 9 5 0 0 0
0 9 8 0 0 0 0 6 0
8 0 0 0 6 0 0 0 3
4 0 0 8 0 3 0 0 1
7 0 0 0 2 0 0 0 6
0 6 0 0 0 0 2 8 0
0 0 0 4 1 9 0 0 5
0 0 0 0 8 0 0 7 9
Provide the completed puzzle in the same format (rows separated by newlines and numbers
separated by spaces):
LLM’s Response:
5 3 4 6 7 8 9 1 2
6 7 2 1 9 5 3 4 8
1 9 8 3 4 2 5 6 7
8 5 9 7 6 1 4 2 3
4 2 6 8 5 3 7 9 1
7 1 3 9 2 4 8 5 6
9 6 1 5 3 7 2 8 4
2 8 7 4 1 9 6 3 5
3 4 5 2 8 6 1 7 9

Create a Riddle Based on a Scientific Concept

Capability Being Measured:
Creativity, knowledge, language comprehension.
Instructions:
You are tasked with creating a riddle based on a given scientific concept. The concept you
need to create a riddle for is: gravity.
Provide your response in the following format:

1. Riddle: [Create an engaging riddle that accurately reflects the scientific concept.]
2. Solution: [Provide the solution to the riddle.]

LLM’s Response:
1. Riddle: I pull you close but never push, though you feel me, I lie in hush. From the

tallest mountain to the deepest sea, I keep you grounded, who am I to thee?
2. Solution: Gravity

Solve a Visual Puzzle (Magic Square)

Capability Being Measured:
Spatial reasoning, logical reasoning, comprehension.
Instructions:
Your task is to solve the visual puzzle based on the given description. Provide a clear and
logical solution that adheres to the constraints specified in the description.
Puzzle Description:

17

You have a 3x3 grid. Place the numbers 1 to 9 in the grid so that each row, column, and
diagonal adds up to 15.
Provide your solution in the following format:
Solution: [Your solution here, formatted as necessary]
For example, for a 3x3 grid, you can format your solution as:
1 2 3
4 5 6
7 8 9
LLM’s Response:
8 1 6
3 5 7
4 9 2

Design Rules for a Simple Card Game

Capability Being Measured:
Creativity, structured thinking, language generation, understanding of game mechanics.
Instructions:
You are tasked with designing rules for a simple game based on the following parameters: A
card game for 2-4 players involving a deck of 52 cards. The game should have a clear win
condition and basic rules for gameplay.
Ensure your game rules are clear, coherent, and engaging. Provide your response in the
following format:
Game Rules: [Your detailed game rules here]
LLM’s Response:
Game Rules:

1. Setup:
• Use a standard 52-card deck.
• Each player is dealt 5 cards.
• Remaining cards form the draw pile; flip the top card to start the discard pile.

2. Objective:
• Be the first to discard all your cards.

3. Gameplay:
• Players take turns clockwise.
• On your turn, play a card matching the rank or suit of the top discard.
• If unable to play, draw one card. If playable, you may play it immediately; other-

wise, your turn ends.
4. Special Cards:

• Aces (A): Reverse the direction of play.
• Kings (K): Skip the next player’s turn.
• Queens (Q): Choose the next suit to be played.
• Jacks (J): Next player draws two cards unless they play another Jack.

5. Winning:
• First player with no cards left wins.
• If the draw pile is exhausted, reshuffle the discard pile to continue.

Describe a 3D Object Based on 2D Projections

Capability Being Measured:
Spatial reasoning, visual imagination, language comprehension.
Instructions:
You are given 2D projections of an object. Your task is to visualize and describe the 3D object
based on these projections. Ensure that your description is detailed and includes the shape,
dimensions, and any other relevant features.
2D Projections:

18

• Front view: A square base with a triangular top. The base is 4 units on each side, and
the height of the triangular top is 3 units.

• Side view: A rectangle with a triangular top. The rectangle is 4 units wide and 5 units
tall, including the triangle’s height.

• Top view: A square with 4 units on each side.
Provide your 3D description below in the following format:
3D Description: [Your detailed description here]
LLM’s Response:
3D Description: The object is a square pyramid with a base that is a square measuring 4
units on each side. The pyramid has four triangular faces converging at a single apex point
directly above the center of the base. The height of the pyramid from the base to the apex is 3
units. The total height of the object is 5 units when including the base’s dimensions. Each
triangular face is an isosceles triangle with a base of 4 units and a height of 3 units. The
object is symmetrical along all axes, forming a perfect pyramid shape.

F Human Surveying Details

We present the script we use to perform a human evaluation of automated LLM judgments used in
ACD. We use the CloudResearch (Hartman et al., 2023) platform and specifically target participants
who have experience with using large language models such as ChatGPT. We show an example from
a generated task that asks an LLM to write a short story. In general, the task details, instructions,
and LLM response will change per task. Participants were given up to two minutes per task and
paid $0.25 USD for each task. The average pay was $15.79 USD per hour, with the final survey
completion times. The total cost of surveying including service fees was $329.25.

Human Surveying Script

Instructions
Your task is to evaluate the quality of tasks designed to measure the capabilities of a
large language model. For each task, you should consider whether the questions match a
specification, estimate their difficulty, and check whether an LLM got it correct. Finally, you
will also be asked in your estimation, whether you find the success or failure of the LLM in
this instance to be surprising from your knowledge of what LLMs can do.

Task Details
The following task is designed according to the following specifications:

Description: Generate a short story based on a given prompt.
Capability Being Measured: creativity

The proposed task (instructions to LLM) for this specification is:

Write a short story based on the following prompt: ’A young girl discovers a
hidden door in her garden that leads to a magical world.’. The story should
be at least 200 words long and should have a clear beginning, middle, and end.

Question 1
Does this instruction make sense and fit the task description and capability being measured?

□ Yes
□ No
□ Unsure

Question 2
Estimate the task difficulty:

□ Very Easy (Simple factual recall)
□ Easy (Basic understanding, some inference)
□ Moderate (Application of knowledge, multiple steps)

19

□ Difficult (Analysis, synthesis, creative problem-solving)
□ Very Difficult (Highly specialized knowledge, complex reasoning)

The LLM responded with:

Once upon a time, in a quaint little village, there lived a young girl named
Emma. Emma loved to spend her afternoons exploring her garden, which was
filled with vibrant flowers, towering trees, and hidden nooks. One sunny day,
while chasing a butterfly, Emma stumbled upon a curious-looking door nestled
behind a thick curtain of ivy. It was small and wooden, with intricate

carvings that seemed to shimmer in the light. With a heart full of curiosity,
Emma gently pushed the door open and stepped through. To her amazement, she

found herself in a breathtaking world where the sky was a swirling palette of
colors, and the air was filled with the sweet scent of blooming flowers.

Magical creatures roamed freely, from tiny fairies with iridescent wings to
majestic unicorns that galloped across the fields. Emma soon befriended a
mischievous fairy named Lila, who guided her through the enchanting land.
Together, they embarked on numerous adventures, from soaring over rainbow
waterfalls to exploring crystal caves that sparkled with every hue. Emma felt
a sense of wonder and joy she had never known. As the sun began to set,

casting a golden glow over the magical world, Lila led Emma back to the
hidden door. "You must return home now," Lila said softly, "but remember,
this world will always be here for you." With a heart full of memories, Emma
stepped back through the door and found herself in her garden once more. From
that day on, Emma’s adventures in the magical world remained her most

cherished secret. And whenever she felt the need for a bit of magic, she knew
exactly where to find it.

Question 3
Did the LLM successfully complete the task? (select an option)

□ Yes
□ No
□ Unsure

Question 4
Did the LLM’s success or failure on this task surprise you? (select an option)

□ Yes
□ No

G Further Surveying Results

The distribution of task difficulty on GPT-4o, as estimated by humans, is shown in Table 2. This
complements the statistics in Section 3.1. The difficulty levels correspond to the definitions in the
survey script in Appendix F.

Table 2: Distribution of task difficulty as assessed by human evaluators.
Difficulty Level Number of Tasks Percentage
Very easy 118 9.7%
Easy 319 26.2%
Moderate 435 35.8%
Difficult 256 21.1%
Very difficult 88 7.2%

H Further Visualizations

We further visualize tasks discovered by the Llama3.1-405B model in Figure 4.

20

11: Creative
narrative generation

with cultural and
mythological fusion

9: Idiomatic
expression

generation and
understanding across

contexts

12: Complex
explanation and

analogy generation
for scientific

concepts

2: Humor
recognition,

generation, and
explanation in

varied contexts

8: Empathetic
Dialogue and

Emotional Support
Generation

7: Nuanced and
Culturally Sensitive
Apology Generation

14: Philosophical
debate and dialogue

generation with
historical context

10: Metaphor and
Figurative Language

Generation and
Interpretation

4: Counter-narrative
generation in

historical,
persuasive, and

cultural contexts

3: Satirical text
and headline

generation with
social commentary

5: Counterfactual
and alternate

historical scenario
generation and

evaluation

13: Philosophical
and ethical thought

experiment
generation and

evaluation
6: Creative

Scriptwriting for
Multimedia and

Cultural Integration

1: Creative music
composition and

style manipulation

Loading [MathJax]/extensions/MathMenu.jsFigure 4: Visualization of tasks discovered by ACD using the Llama3.1-405B model. Since this model is
comparatively weaker at designing tasks, we find that the range of tasks is of less complexity than those of
GPT-4o and Claude Sonnet 3.5.

21

	Introduction
	Automated Capability Discovery
	Empirical Evaluation
	Case Study and Human Evaluation on GPT-4o

	Conclusion and Limitations
	Related Work
	Task Code
	Definition of Task Families
	Translating Tasks into Code
	Example Task Family Code
	Evaluating Free-Form Responses Using an LLM Judge

	ACD Prompts
	Task Creation Prompts
	Evaluation Prompts
	Task Embedding Prompt
	Novelty Assessment Prompts
	Surprise Assessment Prompts
	LLM Judge Prompt

	Hyperparameters
	Examples of Discovered Tasks
	Surprising Failures
	Surprising Successes

	Human Surveying Details
	Further Surveying Results
	Further Visualizations

