
Dynamic Programming using Tensor Approximation
for Contact-rich Manipulation

Teng Xue∗1,2, Suhan Shetty∗1,2, and Sylvain Calinon1,2

Abstract—Contact-rich manipulation is a challenging task for
robot planning and control, due to the varying contact modes
involved and the resultant uncertainties that arise from the
contact points. Approximate Dynamic programming (ADP) is
a promising approach for such problems as it can handle
hybrid systems. Most existing methods in ADP that use neural
networks for function approximation and gradient-based opti-
mization procedures for policy retrieval struggle to handle the
hybrid nature of contacts. In this work, we present a gradient-
free, low-rank tensor approximation approach using Tensor
Train (TT) to approximate the value function. The associated
numerical optimization techniques for functions in TT format
further allow performing optimization over both continuous
and discrete variables, hence allowing handling hybrid systems.
We demonstrate the effectiveness of our approach on a non-
prehensile manipulation task with hybrid states and actions in
both simulation and the real world. A video describing our work
can be found at: https://youtu.be/ZrShvUQAyIs.

Index Terms—approximate dynamic programming, tensor-
train, contact-rich manipulation.

I. INTRODUCTION

Motion planning and control of systems involving contact
with the environment is a challenging task for model-based
control techniques. This study focuses on the planar pushing
task, which requires joint logistic and geometric planning over
diverse interaction modes related to different types of contact
and contact interaction [6]. For example, to push an object, a
prerequisite is to decide how much force should be applied,
and which point/surface to push. Moreover, in some cases such
as pushing an object with a small distance to the target but
a large orientation error, relying on a single fixed face is not
feasible. Therefore, a sequence of face switching is required,
as well as the corresponding contact mode schedule. Thus this
problem has become a benchmark problem for the planning
and control of hybrid systems.

The objective is to push a block with the option to switch
both the contact mode and the face of the object to be used
as contact. To tackle this, previous methods such as mixed
integer programming [2] and hybrid Differential Dynamic
Programming [1] have been proposed, but both still struggle
to cope with the computational complexity involved in solving
this problem. The state-triggered contact-implicit approach
in [5] demonstrated promising performance by heuristically
designing constraints for the hybrid system, but selecting a

*Authors contributed equally.
1Robot Learning & Interaction Group, Idiap Research Institute, Martigny,

Switzerland (e-mail: firstname.lastname@idiap.ch)
2École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

(a) Reaching (b) with add. weight (c) with disturbance

Fig. 1. Pusher-slider system where the robot pushes an object by contact
switching. Three experiments were performed: a) Reaching: The block is
pushed by the end-effector from initial state qs0 to the origin. b): Reaching
with additional weight: The block is pushed by the end-effector from qs0 to
the origin, but with an additional weight on the block, leading to nonuniform
friction distribution. c) Reaching with external disturbance: The block is
pushed by the end-effector from qs0 to the origin, disturbed by moving around
qdist = [0.1m 0.03m 90◦]⊤.

suitable set of constraints that allows for dynamic responsive-
ness to the environment can be difficult, and the method is not
generalizable.

Dynamic Programming (DP) is a powerful tool for motion
planning and control that can potentially deal with hybrid
systems. However, as the complexity of the problem increases,
classical DP algorithms become less efficient. To overcome
this challenge, Approximate DP (ADP) was introduced, which
uses function approximation techniques to reduce the com-
putational burden of DP. Neural Networks (NNs) have been
a popular choice for function approximation, however, they
lose convergence guarantees, resulting in heuristic approaches
requiring laborious work in training them. Moreover, to the
best of our knowledge, ADP algorithms using NN have not
been able to tackle problems beyond classical problems of
pendulum swing-up and cart-pole problems often involving
only one-dimensional continuous action. To overcome this
issue, Reinforcement Learning (RL) using NN has been a
popular alternative to ADP. However, RL comes with other
challenges to cope with generalizability and robustness. In this
work, we focus on ADP for hybrid systems, and we propose
using low-rank tensor approximation, specifically the Tensor
Train (TT) method, to handle the hybrid nature of contacts.

TT is a versatile function approximator that can handle
both continuous and discrete variables and is particularly
efficient when the function being modeled is smooth and/or
when there is a correlation among the variables. The approach
models the state-value and action-value functions as a sum of
products of univariate functions, and TT-Cross [3], a powerful
gradient-free approximation method, allows us to achieve TT
approximation of a given function with a desired accuracy.

https://youtu.be/ZrShvUQAyIs


Moreover, a recent technique called TTGO [4] enables the
direct finding of optima of functions represented in TT format.
This allows us to efficiently obtain the best action for a given
state by modeling the action-value or advantage function in
TT format. We will demonstrate that our proposed algorithm
can achieve the planar pushing task robustly in both simulation
and the real world.

II. PROBLEM AND PROPOSED METHOD

The state of the system is denoted as [q⊤
s q⊤

p cc]
⊤, where

qs = [sx sy sθ]
⊤ is the position and orientation of the

block, qp = [px py]
⊤ is the position of end-effector, and

cc ∈ {0, 1, 2, 3} is the current contact face. The action is
expressed as [v⊤ cn]

⊤, where v = [vn vt]
⊤ is the velocity of

the end-effector, and cn ∈ {0, 1, 2, 3} is the next contact face.
The system, therefore, has n = 6 states and m = 3 control
variables in total, including both continuous and discrete
variables.

We use Value Iteration (VI) to find the optimal value
function. At any iteration k, the (k + 1)-th value function
approximation is computed as:

V k+1 =TT-Cross(BπkV k, ϵ),

BπkV k(s) =R(s, πk(s)) + γV k(f(s, πk(s)))

πk(s) =argmax
a

Ak(s, a),

Ak(s, a) =R(s, a) + γV k(f(s, a))− V k(s),∀s,

(1)

where Ak(s, a) is the advantage function.
The value update step involves computing πk(s) =

argmax
a

A(s, a) numerous times across several iterations. To

compute V k+1 in TT-format, the function BπkV k is queried
iteratively using TT-Cross(BπkV k, ϵ), with batches of states
(usually ranging from 1000 to 100,000 in practice). This
requires computing the policy πk for each of these states,
making a fast computation of argmax

a
Ak(s, a) in batch form

crucial.
To resolve the bottleneck, the advantage function Ak is

computed in TT format using TT-Cross. This is efficient as
the calculation only requires evaluating V k and R, which are
cheap to compute. This enables use of TTGO [4], a numerical
optimization technique for a function in TT format that can
handle optimization over a mix of continuous and discrete
variables. As a result, solutions for πk(s) = argmax

a
Ak(s, a)

over batches of states can be obtained quickly. This results
in an efficient way of policy retrieval for problems involving
hybrid actions. The pseudocode is shown in Algorithm 1.

III. EXPERIMENTS

We first trained the control policy in simulation based on the
motion equation shown in [6], but removing the acceleration
part and explicitly representing contact face as a state and
input variable for ease of implementation on a real-world
system. The continuous variables in state and action space
are discretized into 200 and 50 points separately, while the
discrete variables are kept as they are. The domain is set

Algorithm 1 ADP using Tensor Approximation
Input:

1: nv : Number of value update steps,
2: ϵ : Accuracy of TT representation,
3: δmax: Tolerance specified for convergence of DP,
4: α: learning rate (0 ≤ α ≤ 1, α = 1 if no learning rate),
5: R(s, a) : Reward Function,
6: f(s, a) : Forward dynamics model (or a simulator),
7: Discretization for each state and action (implicitly as-

sumed in TT-Cross)
Output: Policy π∗

8: Initialize:
9: Value model in TT-format: V 0 = 0,

10: Advantage model in TT-format:
11: A0 = TT-Cross(R(s, a), ϵ),
12: (alternatively, initialize them arbitrarily in TT-format)
13: while δ ≤ δmax do
14: k = k + 1
15: πk(s) = argmax

a
Ak−1(s, a) (definition)

16: V k
0 = V k−1

17: for j ← 1 to nv do
18: V k

j (s) = TT-Cross(Bπk

V k
j−1, ϵ)

19: end for
20: V k = V k

nv

21: Âk(s, a) = R(s, a) + γV k(f(s, a))− V k(s)
22: Ak = TT-Cross(Âk, ϵ)
23: Ak = αAk + (1− α)Ak−1

24: δ = ∥V k−V k−1∥2

∥V k−1∥2

25: end while

Fig. 2. Simulation of a block motion under a policy from four different
initial states. The colored trajectories represent the motion of the block to the
target qs = [0 0 0]⊤, by means of contact mode and face switching.

in the range from [−0.5m,−0.5m,−π] to [0.5m, 0.5m,π],
with maximum velocity defined as 0.1 m/s. The accuracy of
function approximation in TT-cross is defined as 10−3. The
reward function is defined as:

R(s, a) = −∥qs∥ × (1 + γ1 × (1− δ(cc − cn)) + γ2 × ∥v∥), (2)



(a) Reaching (b) W/ add. weight (c) W/ disturbance

Fig. 3. Block trajectories of the 3 experiments conducted in the real world,
namely reaching, reaching with additional weight and reaching with external
disturbance. The black square and arrow represents the initialization. The blue
square and arrow denote the final pose of the block. The red arrow is the target
orientation, while the red circle represents the position errors. The numerical
results are shown in Table I.

TABLE I
PERFORMANCE OF THREE REAL-WORLD EXPERIMENTS

Experiments xerr/cm yerr/cm θerr/rad

Reaching -0.83 1.07 -0.06
Reaching, w. weight 2.89 -1.04 -0.01
Reaching, w. disturbance -4.78 -4.10 -0.04

where qs represent the block pose, δ(cc − cn) returns 1 if
cc = cn, otherwise, 0. γ1 and γ2 are set as 0.1 and 0.001,
respectively. Note that the flexibility offered by our method
allows us to utilize such reward functions.

Each iteration of the VI procedure took about 10 seconds
on average. To test the generalization capability of the policy,
we randomly selected 1000 initializations in the domain. The
success rate is 100%. Fig. 2 shows part of the simulation
results. We reached a robust policy generating a 100% success
rate in about 40 iterations while the convergence of the whole
algorithm took about 500 iterations.

We then tested the trained policy on the real robot setup
(Fig. 1), using a 7-axis Franka Emika robot and a RealSense
D435 camera. The slider (rs = 6 cm) is a 3D-printed prismatic
object with PLA, lying on a flat plywood surface, with an
Aruco Marker on the top face. A wooden pusher (rp = 0.5cm)
is attached to the robot to move the object. The motion of the
object is tracked by the camera at 30 HZ, and the policy is
called at 100 HZ, with a low-level Cartesian velocity controller
(1000 HZ) actuating the robot.

Three experiments were conducted to assess the robustness
of our policy: a) Reaching task: The robot pushes the
slider from qs0 = [0.05m 0.16m 0]⊤ to origin (Fig. 1a);
b) Reaching with additional weight: The robot pushes the
block from the same initialization as before, but with an
additional weight, 3 times heavier than the block (Fig. 1b); c)
Reaching with external disturbance: The same initialization
like before, but with a significant external disturbance of
qdist = [0.1m 0.03m π

2 ]
⊤ exerted by a human (Fig. 1c).

The results of these experiments are displayed in Fig. 3 and
Table I. The results show that in all experiments, the policy
successfully reaches the final target in terms of both position
and orientation. The error increases with the disturbance, while
orientation errors remaining less than 4◦ and position errors
staying less than 5cm even under a significant disturbance.

Experiment 3 demonstrates that the policy is able to dynam-
ically select the contact face based on the current state, as
evidenced by the change in contact face after a 90-degree
rotation. This highlights the global optimality of our method
and its ability to handle both continuous and discrete variables
in hybrid systems.

REFERENCES

[1] Neel Doshi, Francois R Hogan, and Alberto Rodriguez.
Hybrid differential dynamic programming for planar ma-
nipulation primitives. In Proc. IEEE Intl Conf. on Robotics
and Automation (ICRA), pages 6759–6765, 2020.

[2] François Robert Hogan and Alberto Rodriguez. Feedback
control of the pusher-slider system: A story of hybrid
and underactuated contact dynamics. In Algorithmic
Foundations of Robotics XII: Proceedings of the Twelfth
Workshop on the Algorithmic Foundations of Robotics,
pages 800–815. Springer, 2020.

[3] Ivan Oseledets and Eugene Tyrtyshnikov. TT-cross ap-
proximation for multidimensional arrays. Linear Algebra
and its Applications, 432(1):70–88, 2010.

[4] S. Shetty, T. Lembono, T. Löw, and S. Calinon. Ten-
sor trains for global optimization problems in robotics.
arXiv:2206.05077, 2022.

[5] Maozhen Wang, Aykut Özgün Önol, Philip Long, and
Taşkın Padır. Contact-implicit planning and control for
non-prehensile manipulation using state-triggered con-
straints. In Robotics Research, pages 189–204. Springer,
2023.

[6] Teng Xue, Hakan Girgin, Teguh Santoso Lembono, and
Sylvain Calinon. Demonstration-guided optimal control
for long-term non-prehensile planar manipulation. In Proc.
IEEE Intl Conf. on Robotics and Automation (ICRA),
2023.


	I Introduction
	II Problem and proposed method
	III Experiments

