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Abstract

We study multi-agent reinforcement learning (MARL) in infinite-horizon dis-
counted zero-sum Markov games. We focus on the practical but challenging setting
of decentralized MARL, where agents make decisions without coordination by
a centralized controller, but only based on their own payoffs and local actions
executed. The agents need not observe the opponent’s actions or payoffs, possibly
being even oblivious to the presence of the opponent, nor be aware of the zero-sum
structure of the underlying game, a setting also referred to as radically uncoupled in
the literature of learning in games. In this paper, we develop a radically uncoupled
Q-learning dynamics that is both rational and convergent: the learning dynamics
converges to the best response to the opponent’s strategy when the opponent fol-
lows an asymptotically stationary strategy; when both agents adopt the learning
dynamics, they converge to the Nash equilibrium of the game. The key challenge
in this decentralized setting is the non-stationarity of the environment from an
agent’s perspective, since both her own payoffs and the system evolution depend
on the actions of other agents, and each agent adapts her policies simultaneously
and independently. To address this issue, we develop a two-timescale learning dy-
namics where each agent updates her local Q-function and value function estimates
concurrently, with the latter happening at a slower timescale.

1 Introduction

Reinforcement learning (RL) has achieved tremendous successes recently in a wide range of applica-
tions, including playing the game of Go [Silver et al., 2017], playing video games (e.g., Atari [Mnih
et al., 2015] and Starcraft [Vinyals et al., 2019]), robotics [Lillicrap et al., 2015, Kober et al., 2013],
and autonomous driving [Shalev-Shwartz et al., 2016, Sallab et al., 2017]. Most of these applications
involve multiple decision-makers, where the agents’ rewards and the evolution of the system are
affected by the joint behaviors of all agents. This setting naturally leads to the problem of multi-agent
RL (MARL). In fact, MARL is arguably one key ingredient of large-scale and reliable autonomy, and
is significantly more challenging to analyze than single-agent RL. There has been a surging interest
recently in both a deeper theoretical and empirical understanding of MARL; see comprehensive
overviews on this topic in Busoniu et al. [2008], Zhang et al. [2021], Hernandez-Leal et al. [2019].

The pioneering work that initiated the sub-area of MARL, where the model of Markov/stochastic
games [Shapley, 1953] has been considered as a framework, is Littman [1994]. Since then, there
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has been a plethora of works on MARL in Markov games; see a detailed literature review in the
supplementary material. These algorithms can be broadly categorized into two types: central-
ized/coordinated and decentralized/independent ones. For the former type, it is assumed that there
exists a central controller for the agents, who can access the agents joint actions and local observations.
With full awareness of the game setup, the central controller coordinates the agents to optimize their
own policies, and aims to compute an equilibrium. This centralized paradigm is typically suitable for
the scenarios when a simulator of the game is accessible [Silver et al., 2017, Vinyals et al., 2017].
Most existing MARL algorithms in Markov games have focused on this paradigm.

Nevertheless, in many practical multi-agent learning scenarios, e.g., multi-robot control [Wang and
de Silva, 2008], urban traffic control [Kuyer et al., 2008], as well as economics with rational decision-
makers [Fudenberg and Levine, 1998], agents make decentralized decisions without a coordinator.
Specifically, agents make updates independently with only local observations of their own payoff
and action histories, usually in a myopic fashion. Besides its ubiquity in practice, this decentralized
paradigm also has the advantage of being scalable, as each agent only cares about her own policy
and/or value functions, and the algorithms complexity do not suffer from the exponential dependence
on the number of agents.

Unfortunately, establishing provably convergent decentralized MARL algorithms is well-known to
be challenging; see the non-convergent cases (even in the fully cooperative setting) in Tan [1993],
Boutilier [1996], Claus and Boutilier [1998], and see Matignon et al. [2012] for more empirical
evidences. The key challenge is the non-stationarity of the environment from each agent’s perspective
since all agents are adapting their policies simultaneously and independently. In other words, the
opponent is not playing according to a stationary strategy. This non-stationarity issue is in fact one of
the core issues in (decentralized) MARL [Busoniu et al., 2008, Hernandez-Leal et al., 2017].

Studying when self-interested players can converge to an equilibrium through non-equilibrium
adaptation is core question in the related literature of learning in games [Fudenberg and Levine, 1998,
2009]. For example, simple and stylized learning dynamics, such as fictitious play, are shown to
converge to an equilibrium in certain but important classes of games, e.g., zero-sum [Robinson, 1951,
Harris, 1998] and common-interest [Monderer and Shapley, 1996], in repeated play of the same
game. However, we cannot generalize these results to decentralized MARL in Markov games (also
known as stochastic games, introduced by Shapley [1953]), because agents strategies affect not only
the immediate reward, as in the repeated play of the same strategic-form game, but also the rewards
that will be received in the future. Therefore, the configuration of the induced stage games are not
necessarily stationary in Markov games.

Contributions. In this paper, we present a provably convergent decentralized MARL learning
dynamics2 for zero-sum discounted Markov games over an infinite horizon with minimal information
available to agents. Particularly, each agent only has access to her immediate reward and the
current state with perfect recall. They do not have access to the immediate reward the opponent
receives. They do not know a model of their reward functions and the underlying state transitions
probabilities. They are oblivious to the zero-sum structure of the underlying game. They also do not
observe the opponent’s actions. Indeed, they may even be oblivious to the presence of other agents.
Learning dynamics with such minimal information is also referred to as being radically uncoupled or
value-based in the literature of learning in games [Foster and Young, 2006, Leslie and Collins, 2005].

To address the non-stationarity issue, we advocate a two-timescale adaptation of the individual
Q-learning, introduced by Leslie and Collins [2005] and originating in Fudenberg and Levine [1998].
Particularly, each agent infers the opponent’s strategy indirectly through an estimate of the local
Q-function (a function of the opponent’s strategy) and simultaneously forms an estimate of the
value function to infer the continuation payoff. The slow update of the value function estimate is
natural since agents tend to change their strategies faster than their estimates (as observed in the
evolutionary game theory literature, e.g., Ely and Yilankaya [2001], Sandholm [2001]), but this
also helps weakening the dependence between the configuration of the stage games (specifically
the global Q-functions) and the strategies. We show the almost sure convergence of the learning
dynamics to the Nash equilibrium using the stochastic approximation theory, by developing a novel
Lyapunov function and identifying the sufficient conditions precisely later in §3. Our techniques

2To emphasize the difference from many existing MARL algorithms that focus on the computation of Nash
equilibrium, we refer to our update rule as learning dynamics, following the literature of learning in games.
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toward addressing these challenges might be of independent interest. We also verify the convergence
of the learning dynamics via numerical examples.

To the best of our knowledge, our learning dynamics appears to be one of the first provably convergent
decentralized MARL learning dynamics for Markov games that enjoy all the appealing properties
below, addressing an important open question in the literature [Pérolat et al., 2018, Daskalakis et al.,
2020]. In particular, our learning dynamics –

• requires only minimal information available to the agents, i.e., it is a radically uncoupled
learning dynamic, unlike many other MARL algorithm, e.g., Pérolat et al. [2015], Sidford et al.
[2019], Leslie et al. [2020], Sayin et al. [2020], Bai and Jin [2020], Xie et al. [2020], Zhang
et al. [2020], Liu et al. [2020], Shah et al. [2020];

• requires no coordination or communication between agents during learning. For example,
agents always play the (smoothed) best response consistent with their self-interested decision-
making, contrary to being coordinated to keep playing the same strategy within certain time
intervals as in Arslan and Yuksel [2017] and Wei et al. [2021];

• requires no asymmetric update rules and/or stepsizes for the agents unlike existing literature
[Vrieze and Tijs, 1982], [Bowling and Veloso, 2002], [Leslie and Collins, 2003], [Daskalakis
et al., 2020], [Zhao et al., 2021, Guo et al., 2021]. Such an asymmetry implies implicit
coordination between agents to decide who follows which update rule or who chooses which
stepsize (and correspondingly who reacts fast or slow). Daskalakis et al. [2020] refers to each
agent playing a symmetric role in learning as strongly independent learning.

• is both rational and convergent, a desired property for MARL (independent of whether it is
centralized or decentralized), e.g., see Bowling and Veloso [2001], Busoniu et al. [2008]. A
MARL algorithm is rational if each agent can converge to best-response, when the opponent
plays an (asymptotically) stationary strategy; and it can converge only to an equilibrium when
all agents adopt it.

A detailed literature review is deferred to the supplementary material due to space limitations. Of
particular relevance are two recent works Tian et al. [2020] and Wei et al. [2021] studied decentralized
setting similar to ours. Tian et al. [2020] focused on the exploration aspect for finite-horizon settings,
and focused on minimizing a weak notion of regret without providing convergence guarantees under
self-play.3 Wei et al. [2021] presented an optimistic variant of the gradient descent-ascent method that
shares similar desired properties with our learning dynamics, with a strong guarantee of last-iterate
convergence rates. However, the algorithm is delicately designed and different from the common
value/policy-based RL update rules, e.g., Q-learning, as in our work. Moreover, to characterize
finite-time convergence, in the model-free setting, the agents need to coordinate to interact multiple
steps at each iteration of the algorithm, while our learning dynamics is coordination-free with natural
update rules. These two works can thus be viewed as orthogonal to ours. After submitting our paper,
we became aware of a concurrent and independent work Guo et al. [2021], which also developed a
decentralized algorithm for zero-sum Markov games with function approximation and finite-sample
guarantees. In contrast to our learning dynamics, the algorithm requires a double-loop update rule,
and thus is asymmetric and requires coordination between agents. The assumptions and technical
novelties in both works are also fundamentally different. See §A.2 for a detailed comparison.

Organization. The rest of the paper is organized as follows. We describe Markov games and our
decentralized Q-learning dynamics in §2. In §3, we present the assumptions and the convergence
results. In §4, we provide numerical examples. We conclude the paper with some remarks in §5. The
supplementary material includes a detailed literature review and the proofs of technical results.

Notations. Superscript denotes player identity. We represent the entries of vectors q (or matrices Q)
via q[i] (or Q[i, j]). For two vectors x and y, the inner product is denoted by x · y = xT y. For a finite
set A, we denote the probability simplex over A by ∆(A).

3Note that the same update rule with different stepsize and bonus choices and a certified policy technique,
however, can return a non-Markovian approximate Nash equilibrium policy pair in the self-play setting; see Bai
et al. [2020] for more details.
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2 Decentralized Q-learning in Zero-sum Markov Games

This section presents a decentralized Q-learning dynamics that does not need access to the opponent’s
actions and does not need to know the zero-sum structure of the underlying Markov game. To this
end, we first start by providing a formal description of Markov games.

Consider two players interacting with each other in a common dynamic environment, with totally
conflicting objectives. The setting can be described by a two-player zero-sum Markov game, charac-
terized by a tuple 〈S, {Ais}(i,s)∈{1,2}×S , {ris}(i,s)∈{1,2}×S , p, γ〉, where S denotes the set of states,
Ais denotes the action set of player i at state s ∈ S, and γ ∈ [0, 1) denotes the discount factor. At each
interaction round, player i receives a reward according to the function ris : A1

s ×A2
s → R. Since it is

a zero-sum game, we have r1
s(a

1, a2) + r2
s(a

1, a2) = 0 for each joint action pair (a1, a2) ∈ A1
s ×A2

s.
We denote the transition probability from state s to state s′ given a joint action profile (a1

s, a
2
s) by

p(s′|s, a1
s, a

2
s). Let us denote the stationary (Markov) strategy of player i by πi := {πis ∈ ∆(Ais)}s∈S .

We define the expected utility of player i under the strategy profile (π1, π2) as the expected discounted
sum of the reward he collects over an infinite horizon

U i(π1, π2) = E{ajk∼πjsk}j∈{1,2}

{ ∞∑
k=0

γkrisk(a1
k, a

2
k)

}
, (1)

where {s0 ∼ po, sk+1 ∼ p(·|sk, a1
k, a

2
k), k ≥ 0} is a stochastic process describing the evolution of

the state over time and po ∈ ∆(S) is the initial state distribution. The expectation is taken with
respect to the initial state, randomness induced by state transitions and mixed strategies.

A strategy profile (π1
∗, π

2
∗) is an ε-Nash equilibrium of the Markov game with ε ≥ 0 provided that

U1(π1
∗, π

2
∗) ≥ U1(π1, π2

∗)− ε, ∀π1 (2a)

U2(π1
∗, π

2
∗) ≥ U2(π1

∗, π
2)− ε, ∀π2. (2b)

A Nash equilibrium is an ε-Nash equilibrium with ε = 0. It is known that such a Nash equilibrium
exists for discounted Markov games [Fink, 1964, Filar and Vrieze, 2012].

Given a strategy profile π := (π1, π2), we define the value function of player i by

viπ(s) = E{ajk∼πjsk}j∈{1,2}

{
ris(a

1, a2) + γ
∑
s′∈S

viπ(s′)p(s′|s, a1, a2)

}
, ∀s. (3)

Note that U i(π1, π2) = E
{
viπ(s0) | s0 ∼ po

}
. We also define the Q-function that represents the

value obtained for a given state and joint action pair as

Qiπ(s, a1, a2) = ris(a
1, a2) + γ

∑
s′∈S

viπ(s′)p(s′|s, a1, a2), ∀(s, a1, a2), (4)

as well as the local Q-function for player i as

qiπ(s, ai) := Ea−i∼π−is
{
Qiπ(s, a1, a2)

}
, ∀(s, ai), (5)

where −i denotes the opponent of player i.

By the one-stage deviation principle, we can interpret the interaction between the players at each
stage as they are playing an auxiliary stage game, in which the payoff functions are equal to the
Q-functions, e.g., see Shapley [1953]. However, the Q-functions, and correspondingly the payoff
functions in these auxiliary stage games, change with evolving strategies of the players. Therefore,
the plethora of existing results for repeated play of the same strategic-form game (e.g., see the review
Fudenberg and Levine [2009]) do not generalize here. To address this challenge, we next introduce
our decentralized Q-learning dynamics.

2.1 Decentralized Q-learning Dynamics

In our decentralized Q-learning dynamics, minimal information is available to players. In other
words, they only have access to the immediate reward received and current state visited with perfect
recall. They do not observe the actions taken by the opponent. Correspondingly, they cannot form
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Figure 1: A figurative illustration of the dependence between local Q-function, global Q-function,
opponent’s mixed strategy and the value function. From an agents’ perspective, the local Q-function
gives the expected values associated with local actions. Here, agents will infer the opponent’s strategy
over the local Q-function and estimate the value function at a slower timescale to ensure that the
implicit global Q-function is relatively stationary compared to the opponent’s strategy.

a belief about the opponent’s strategy based on the empirical play as in fictitious play [Fudenberg
and Levine, 1998] or its variant for stochastic games [Sayin et al., 2020]. Instead, the players can
look for inferring the opponent’s strategy, e.g., by estimating the local Q-function since the local
Q-function contains information about the opponent’s strategy, as illustrated in Figure 1. As seen
in Figure 1, however, the local Q-function also depends on the global Q-function while the global
Q-function is not necessarily stationary since it depends on the value function, and therefore, depends
on the players’ evolving strategies. An estimate of the global Q function which is slowly evolving
would make it relatively stationary compared to the strategies. However, the players cannot estimate
the global Q-function directly since they do not have access to the opponent’s actions. Instead, they
estimate the value function while updating it at a slower timescale. The slow update of the value
function estimate makes the implicit globalQ-function relatively stationary compared to the strategies.
Therefore, the players can use the local Q-function estimate to infer the opponent’s strategy.

Note that the local Q-function estimate for different actions would get updated asynchronously via
the classical Q-learning algorithm since they would be updated only when the associated action is
taken, however, the actions are likely to be taken at different frequencies. Instead, here the players
update the local Q-function estimate via a learning dynamics inspired from the individual Q-learning.
The individual Q-learning, presented by Leslie and Collins [2005] and originating in Fudenberg
and Levine [1998], is based on the Q-learning with soft-max exploration while the step sizes are
normalized with the probability of the actions taken. This normalization ensures that the estimates
for every action get updated at the same learning rate in the expectation. We elaborate further on this
after we introduce the precise update of the local Q-function estimate later in this section.

Each player i keeps track of {q̂is,k}s∈S and {v̂is,k}s∈S estimating, respectively, the local Q-function
and the value function. Player i updates {q̂is,k}s∈S at a faster timescale than {v̂is,k}s∈S . Players also
count the number of times each state s is visited (until the current stage), denoted by #s.

We assume players know that the reward function takes values in [−R,R] for some R ∈ (0,∞),
i.e., |ris(a1, a2)| ≤ R for all (i, s, a1, a2). Therefore, player i knows that his local Q-function
‖qiπ(s, ·)‖∞ ≤ R/(1− γ) =: D and the value function |viπ(s)| ≤ D for any strategy profile π and
s ∈ S. Correspondingly, the players initiate these estimates arbitrarily such that ‖q̂is,0‖∞ ≤ D and
|v̂is,0| ≤ D, for all s.

Let sk denote the current state at stage k. Player i takes his action aik ∈ Aisk , drawn from the

smoothed best response Br
i

sk
(q̂isk,k, τ#sk) ∈ ∆(Ais), which depends on a temperature parameter

τ#s > 0 associated with #s. We define

Br
i

s(q, τ) := argmax
µ∈∆(Ais)

{
µ · q + τνis(µ)

}
, (6)
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Table 1: Decentralized Q-learning dynamics in Markov games

Require: Keep track of {q̂is,k, v̂is,k,#s}s∈S .
1: Observe the current state sk.
2: Update the entry of the local Q-function estimate for the previous state sk−1 and local action
aik−1 according to

q̂isk−1,k
[aik−1] = q̂isk−1,k−1[aik−1] + ᾱik−1

(
rik−1 + γv̂isk,k−1 − q̂isk−1,k−1[aik−1]

)
,

where ᾱik−1 = min
{

1,
α#sk−1

πik−1[aik−1]

}
, and q̂is,k[ai] = q̂is,k−1[ai] for all (s, ai) 6= (sk−1, a

i
k−1).

3: Increment the counter only for the current state by one.
4: Take action aik ∼ πik where

πik = argmax
µ∈∆(Aisk

)

{
µ · q̂isk,k + τ#skν

i
sk

(µ)
}
.

5: Collect the local reward rik and update the value function estimate for the current state
according to

v̂isk,k+1 = v̂isk,k + β#sk

[
πik · q̂isk,k − v̂

i
sk,k

]
.

On the other hand, v̂is,k+1 = v̂is,k for all s 6= sk.

where νis is a smooth and strictly concave function whose gradient is unbounded at the boundary of
the simplex ∆(Ais) [Fudenberg and Levine, 1998]. The temperature parameter τ > 0 controls the
amount of perturbation on the smoothed best response. The smooth perturbation ensures that there
exists a unique maximizer πik := Br

i

sk
(q̂isk,k, τ#sk). Choosing νis(µ) := −

∑
ai∈Ais

µ[ai] logµ[ai]

results in the explicit characterization:

πik[ai] =
exp

(
q̂isk,k[ai]/τ#sk

)
∑
ãi exp

(
q̂isk,k[ãi]/τ#sk

) > 0. (7)

We let player i update his local Q-function estimate’s entry associated with the current state and local
action pair (sk, a

i
k) towards the reward received plus the discounted continuation payoff estimate. To

this end, we include v̂isk+1,k
as an unbiased estimate of the continuation payoff obtained by looking

one stage ahead, as in the classical Q-learning introduced by Watkins and Dayan [1992]. Due to the
one-stage look ahead, the update for the current state and local action can take place just after the
game visits the next state. The update of q̂isk,k is given by

q̂isk,k+1[aik] = q̂isk,k[aik] + ᾱik

(
rik + γv̂isk+1,k

− q̂isk,k[aik]
)
, (8)

where ᾱik ∈ (0, 1] is defined by ᾱik := min
{

1,
α#sk

πik[aik]

}
, with {αc}c>0 a step size sequence, and

rik ∈ [−R,R] denotes the immediate reward of player i at stage k. There is no update on others,
i.e., q̂is,k+1[ai] = q̂is,k[ai] for all (s, ai) 6= (sk, a

i
k). Inspired by the approach in Leslie and Collins

[2005], the normalization addresses the asynchronous update of the entries of the local Q-function
estimate and ensures that every entry of the local Q-function estimate is updated at the same rate in
expectation. We will show this explicitly in the proof of main theorem in the supplementary material.

Simultaneous to updating the local Q-function estimate, player i updates his value function estimate
v̂isk,k towards πik · q̂isk,k corresponding to the expected value of the current state. However, the player
uses a different step size {βc}c>0 and updates v̂isk,k according to

v̂isk,k+1 = v̂isk,k + β#sk

[
πik · q̂isk,k − v̂

i
sk,k

]
. (9)

For other states s 6= sk, there is no update on the value function estimate, i.e., v̂is,k+1 = v̂is,k. To sum
up, player i follows the learning dynamics in Table 1. We emphasize that this dynamic is radically
uncoupled since each player’s update rule does not depend on the opponent’s payoffs or actions. In
the next section, we study its convergence properties.

6



3 Convergence Results

We study whether the value function estimates in the learning dynamics, described in Table 1,
converge to an equilibrium value of the zero-sum Markov game. The answer is affirmative under
certain conditions provided below precisely. The first assumption (with two parts) is related to the
step sizes and the temperature parameter, and not to the properties of the Markov game model.

Assumption 1-i. The sequences {αc ∈ (0, 1)}c>0 and {βc ∈ (0, 1)}c>0 are non-increasing and
satisfy

∑∞
c=1 αc =∞,

∑∞
c=1 βc =∞, and limc→∞ αc = limc→∞ βc = 0.

Assumption 1-ii. Given any M ∈ (0, 1), there exists a non-decreasing polynomial function C(·)
(which may depend on M ) such that for any λ ∈ (0, 1) if

{
` ∈ Z+ | ` ≤ c and β`

αc
> λ

}
6= ∅, then

max

{
` ∈ Z+ | ` ≤ c and

β`
αc

> λ

}
≤Mc, ∀c ≥ C

(
λ−1

)
. (10)

Assumption 1-i is a common assumption used in stochastic approximation theory, e.g., see Benaim
[1999], Borkar [2008]. On the other hand, Assumption 1-ii imposes further condition on the step sizes
than the usual two-timescale learning assumption, e.g., limc→∞

βc
αc

= 0, to address the asynchronous
update of the iterates. Particularly, the iterates evolving at fast timescale can lag behind even the
iterates evolving at slow timescale due to their asynchronous update. Assumption 1-ii ensures that
this can be tolerated when states are visited at comparable frequencies.

For example, αc = c−ρα and βc = c−ρβ , where 0.5 < ρα < ρβ ≤ 1, satisfy Assumption 1 since
it can be shown that there exists a non-decreasing polynomial, e.g., C(x) = Mox

m, for all x ≥ 1,
where Mo := M−ρβ/(ρβ−ρα) > 0 and m ∈ {m′ ∈ Z+ : m′ ≥ 1/(ρβ − ρα)}. We provide the
relevant technical details in the supplementary material.

Such learning dynamics is not guaranteed to converge to an equilibrium in every class of zero-sum
Markov games. For example, the underlying Markov chain may have an absorbing state such that once
the game reaches that state, it stays there forever. Then, the players will not have a chance to improve
their estimates for other states. Therefore, in the following, we identify two sets of assumptions (in
addition to Assumption 1) imposing increasingly stronger conditions on the underlying game while
resulting in different convergence guarantees.

Assumption 2-i. Given any pair of states (s, s′), there exists at least one sequence of actions such
that s′ is reachable from s with some positive probability within a finite number, n, of stages.

Assumption 2-ii. The sequence {τc}c>0 is non-increasing and satisfies limc→∞(τc+1− τc)/αc = 0
and limc→∞ τc = ε for some ε > 0. The step size {αc}c>0 satisfies

∑∞
c=1 α

2
c <∞.

In Assumption 2, we do not let the temperature parameter go to zero. Next we let limc→∞ τc = 0 but
make the following assumption, imposing further condition on the underlying game and {αc}c>0

compared to Assumption 2 to ensure that each state gets visited infinitely often at comparable
frequencies and the normalization in the update of the local Q-function estimate does not cause an
issue since it can be arbitrarily small when τc → 0.

Assumption 2’-i. Given any pair of states (s, s′) and any infinite sequence of actions, s′ is reachable
from s with some positive probability within a finite number, n, of stages.

Assumption 2’-ii. The sequence {τc}c>0 is non-increasing and satisfies limc→∞(τc+1−τc)/αc = 0
and limc→∞ τc = 0. The step size {αc}c>0 satisfies

∑∞
c=1 α

2−ρ
c <∞, for some ρ ∈ (0, 1). There

exists C,C ′ ∈ (0,∞) such that αρc exp (4D/τc) ≤ C ′ for all c ≥ C.

While being stronger than Assumption 2-i, Assumption 2’-i is still weaker than those used in Leslie
et al. [2020]. In Leslie et al. [2020], it is assumed that there is a positive probability of reaching
from any state to any other state in one stage for any joint action taken by the players. On the other
hand, we say that a Markov game is irreducible if given any pure stationary strategy profile, the states
visited form an irreducible Markov chain [Hoffman and Karp, 1966, Brafman and Tennenholtz, 2002].
Assumption 2’-i is akin to the irreducibility assumption for Markov games because the irreducibility
assumption implies that there is a positive probability that any state is visited from any state within
|S| stages. Furthermore, it reduces to the ergodicity property of Markov decision problems, e.g., see
Kearns and Singh [2002], if one of the players has only one action at every state.
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As an example, αc = c−ρα and βc = c−ρβ , where 0.5 < ρα < ρβ ≤ 1 satisfies Assumptions 2-ii
and 2’-ii. There exists ρ ∈ (0, 2− 1/ρα) for the latter since ρα ∈ (0.5, 1). To satisfy Assumption
2-ii, the players can choose the temperature parameter {τc}c>0 as

τc =
1

c
τ̄ +

(
1− 1

c

)
ε, ∀c > 0 (11)

with some τ̄ > 0. On the other hand, to satisfy Assumption 2’-ii, they can choose the temperature
parameter {τ ′c}c>0 as

τ ′c = τ̄
(

1 + τ̄
ραρ

4D
log(c)

)−1

, ∀c > 0. (12)

Alternative to (11), τc = max{ε, τ ′c} also satisfies Assumption 2-ii while having similar nature with
(12). We provide the relevant technical details in the supplementary material.

We have the following key properties for the estimate sequence generated by our learning dynamics.

Proposition 1. Since ᾱik ∈ (0, 1] for all k ≥ 0, βc ∈ (0, 1) for all c > 0, ‖q̂is,0‖∞ ≤ D and
|v̂is,0| ≤ D for all (i, s), the iterates are bounded, i.e., ‖q̂is,k‖∞ ≤ D and |v̂is,k| ≤ D for all (i, s)
and k ≥ 0.

Proposition 2. Suppose that Assumption 1-i and either Assumption 2-ii or 2’-ii hold. Then, there
exists Cs ∈ Z+ for each s ∈ S such that αc exp (2D/τc) < mini=1,2{|Ais|−1}, for all c ≥ Cs.
Correspondingly, the update of the local Q-function estimate (8) reduces to

q̂isk,k+1[aik] = q̂isk,k[aik] +
α#sk

πik[aik]

(
rik + γv̂isk+1,k

− q̂isk,k[aik]
)
, (13)

for all #sk ≥ Csk since α#sk/π
i
k[aik] ≤ |Aisk |α#sk exp (2D/τ#sk) ≤ 1 by (7).

Proposition 3. Suppose that either Assumption 2 or Assumption 2’ holds. Then, at any stage k, there
is a fixed positive probability, e.g., p > 0, that the game visits any state s at least once within n-stages
independent of how players play. Therefore, #s→∞ as k →∞ with probability 1.

Proposition 1 says that defining ᾱik = min{1, α#sk/π
i
k[aik]} ensures that the iterates remain bounded.

On the other hand, Propositions 2 and 3 say that the update of the local Q-function estimates reduces
to (13) where ᾱik = α#sk/π

i
k[aik] after a finite number of stages, almost surely. The following

theorem characterizes the convergence properties of the Q-learning dynamics presented.

Theorem 1. Suppose that both players follow the learning dynamics described in Table 1 and
Assumption 1 holds. Let viπ∗ and Qiπ∗ , as described resp. in (3) and (4), be the unique values
associated with some equilibrium profile π∗ = (π1

∗, π
2
∗) of the underlying zero-sum Markov game.

Then, the asymptotic behavior of the value function estimates {v̂is,k}k≥0 is given by

lim sup
k→∞

|v̂is,k − viπ∗(s)| ≤ εξg(γ), under Assumption 2, (14a)

lim
k→∞

|v̂is,k − viπ∗(s)| = 0, under Assumption 2’, (14b)

for all (i, s) ∈ {1, 2} × S, with probability (w.p.) 1, where ξ := maxs′∈S
{

log(|A1
s′ ||A2

s′ |)
}

, and
g(γ) = 2+λ−λγ

(1−λγ)(1−γ) with some λ ∈ (1, 1/γ).

Furthermore, let π̂is,k be the weighted time-average of the smoothed best response updated as

π̂is,k+1 = π̂is,k + 1{s=sk}α#s

(
πik − π̂is,k

)
.

Then, the asymptotic behavior of these weighted averages {π̂ik}k≥0 is given by

lim sup
k→∞

(
max
πi

vi
πi,π̂−ik

(s)− vi
π̂ik,π̂

−i
k

(s)
)
≤ εξh(γ), under Assumption 2, (15a)

lim
k→∞

(
max
πi

vi
πi,π̂−ik

(s)− vi
π̂ik,π̂

−i
k

(s)
)

= 0, under Assumption 2’, (15b)

for all (i, s) ∈ {1, 2}×S, w.p. 1, where h(γ) =
[
4γ · g(γ) + 2(1 +λ)/(1−λγ)

]
/(1−γ), i.e., these

weighted-average strategies converge to near or exact equilibrium depending on whether Assumption
2 or 2’ hold.

8



A brief sketch of the proof is as follows: We decouple the dynamics specific to a single state from
others by addressing the asynchronous update of the local Q-function estimate and the diminishing
temperature parameter. We then approximate the dynamics specific to a single state via its limiting
ordinary differential equation (o.d.e.) as if the iterates evolving at the slow timescale are time-
invariant. We present a novel Lyapunov function for the limiting o.d.e. to characterize the limit set
of the discrete-time update. This Lyapunov function shows that the game perceived by the agents
become zero-sum asymptotically and the local Q-function estimates are asymptotically belief-based.
Finally, we use this limit set characterization to show the convergence of the dynamics across every
state by using asynchronous stochastic approximation methods, e.g., see Tsitsiklis [1994].

The following corollary to Theorem 1 highlights the rationality property of our learning dynamics.

Corollary 1. Suppose that player −i follows an (asymptotically) stationary strategy {π̃−is ∈
int∆(Ais)}s∈S while player i adopts the learning dynamics described in Table 1, and Assumption 1
holds. Then, the asymptotic behavior of the value function estimate {v̂is,k}k≥0 is given by

lim sup
k→∞

∣∣∣∣v̂is,k −max
πi

viπi,π̃−i(s)

∣∣∣∣ ≤ εξig(γ), under Assumption 2, (16a)

lim
k→∞

∣∣∣∣v̂is,k −max
πi

viπi,π̃−i(s)

∣∣∣∣ = 0, under Assumption 2’ (16b)

for all s ∈ S, w.p. 1, where ξi := maxs′∈S
{

log(|Ais′ |)
}

and g(·) is as described in Theorem 1.

Furthermore, the asymptotic behavior of the weighted averages {π̂ik}k≥0, described in Theorem 1, is
given by

lim sup
k→∞

(
max
πi

viπi,π̃−i(s)− v
i
π̂ik,π̃

−i(s)
)
≤ εξih(γ), under Assumption 2, (17a)

lim
k→∞

(
max
πi

viπi,π̃−i(s)− v
i
π̂ik,π̃

−i(s)
)

= 0, under Assumption 2’, (17b)

for all s ∈ S, w.p. 1, where h(γ) is as described in Theorem 1, i.e., these weighted-average strategies
converge to near or exact best-response strategy, depending on whether Assumption 2 or 2’ hold.

4 Simulation Results

All the simulations are executed on a desktop computer equipped with a 3.7 GHz Hexa-Core Intel
Core i7-8700K processor with Matlab R2019b. The device also has two 8GB 3000MHz DDR4
memories and a NVIDIA GeForce GTX 1080 8GB GDDR5X graphic card. For illustration, we
consider a zero-sum Markov game with 5 states and 3 actions at each state, i.e., S = {1, 2, · · · , 5} and
Ais = {1, 2, 3}. The discount factor γ = 0.6. The reward functions are chosen randomly in a way that
r1
s(a

1, a2) ∝ r̄s,a1,a2 ·exp (s2) for s ∈ S, where r̄s,a1,a2 is uniformly drawn from [−1, 1]. r1
s(a

1, a2)
is then normalized by maxs,a1,a2{r1

s(a
1, a2)} so that |ris(a1, a2)| ≤ R = 1 for all (i, s, a1, a2). For

the state transition dynamics p, we construct two cases, Case 1 and Case 2 by randomly generating
transition probabilities, so that they satisfy Assumptions 2-i and 2’-i, respectively. For both cases,
we choose αc = 1/c0.9 and βc = 1/c with ρα = 0.9, ρβ = 1, and ρ = 0.7, and set τc in accordance
with (11) and (12), respectively. For Case 1, we choose ε = 2× 10−4 and τ̄ = 4.5× 104; for Case 2,
we choose τ̄ = 0.07. Note that the different choices of τ̄ are due to the different decreasing rates of
τc in (11) and (12), and are chosen to generate aesthetic plots. The simulation results are illustrated
in Figure 2, which are generated after 20 runs of our learning dynamics.

As shown in Figure 2 (a), for Case 1, the value function estimates successfully converge to the
neighborhood of the Nash equilibrium values, where the size of the neighborhood is indeed controlled
by (14a). For Case 2, it is shown in Figure 2 (b) that the value function estimates converge to the Nash
equilibrium, as τ → 0. These observations have corroborated our theory established in §3. Moreover,
it is observed that the variance of the iterates decreases as they converge to the (neighborhood of)
Nash equilibrium, implying the almost-sure convergence guarantees we have established.

Besides the illustrative example, we have also tested our learning dynamics on larger scale games,
and validated our theory for this case (see Figure 3). See §G for more details of the example.
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(a) Convergence under Assumption 2 (b) Convergence under Assumption 2’

Figure 2: Convergence of the value function estimates after 20 runs of the decentralized Q-learning
dynamics. The red and blue curves represent the quantities for players 1 and 2, respectively. The
solid red/blue lines and the bar-areas around them denote the average value function estimates
{v̂is,k}k≥0 at all states s ∈ S and the standard deviations, after the 20 runs, respectively. The solid
black lines denote the summation of the estimates {v̂1

s,k+ v̂2
s,k}k≥0 at each s (which should converge

to (almost) zero asymptotically). The dotted lines / denote the actual Nash equilibrium
values; the dashed-dotted lines / denote the boundaries of the neighborhoods around the
Nash equilibrium given in Theorem 1. (a) Convergence to the neighborhood of the Nash equilibrium
value, under Assumption 2. (b) Convergence to the Nash equilibrium value, under Assumption 2’.
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(a) Convergence under Assumption 2
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(b) Convergence under Assumption 2’

Figure 3: Convergence of the value function estimates of the decentralized Q-learning dynamics.
The blue curves represents the quantities for player 2. The solid blue lines denote the value function
estimates {v̂2

s,k}k≥0 at all states s ∈ S. The solid black lines denote the summation of the estimates
{v̂1
s,k + v̂2

s,k}k≥0 at each s (which should converge to (almost) zero asymptotically). The dotted
lines denote the actual Nash equilibrium values. (a) Convergence to the neighborhood of the
Nash equilibrium value, under Assumption 2. (b) Convergence to the Nash equilibrium value, under
Assumption 2’.

5 Concluding Remarks

This paper has studied decentralized multi-agent reinforcement learning in zero-sum Markov games.
We have developed a decentralized Q-learning dynamics with provable convergence guarantees to the
(neighborhoods of the) Nash equilibrium value of the game. Unlike many existing MARL algorithms,
our learning dynamics is both rational and convergent, and only based on the payoffs received and
the local actions executed by each agent. It also requires neither asymmetric stepsizes/update rules or
any coordination for the agents, nor even being aware of the existence of the opponent.
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K. Zhang, Z. Yang, and T. Başar. Multi-agent reinforcement learning: A selective overview of
theories and algorithms. Studies in Systems, Decision and Control, Handbook on RL and Control,
pages 321–384, 2021.

Y. Zhao, Y. Tian, J. D. Lee, and S. S. Du. Provably efficient policy gradient methods for two-player
zero-sum Markov games. arXiv preprint arXiv:2102.08903, 2021.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 3.
(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] To the best

of our knowledge, our work appears to be the first provably convergent decentralizedQ-
learning algorithm for Markov games that enjoys all the desired properties above. Some
limitations that are worth further investigation include, establishing non-asymptotic
convergence guarantees; generalizing to other types of Markov games other than the
zero-sum setting; generalizing to the setting with large state-action spaces and function
approximation. Still, we believe our work has addressed an important open question
in multi-agent RL, which would have broader impact on learning in Markov/dynamic
games in general. We also believe that our work will not cause any potential negative
societal impacts. In fact, allowing symmetric update rules as we advocated might
benefit the fairness and equality of multi-agent RL algorithms when applied to societal
applications.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] our paper conforms to the ethics review guidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.
(b) Did you include complete proofs of all theoretical results? [Yes] See the supplementary

material. We also included a sketch of the proof in Section 3.
3. If you ran experiments...

14



(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] See the
supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A] There is no training for the algorithm.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 4.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15


